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Abstract
Digital transformation is driving the current technological trends inmanufacturing. An integral constituent is a communication
betweenmachines, betweenmachines and humans, or betweenmachines and products. This extensive communication involves
large volumes of data. Many manufacturers apply data analytics (e.g., for quality management or improvement purposes)
to translate the data into a business value. However, isolated, rigid, and area-specific IT solutions often carry this out.
Today’s complex manufacturing requires quality management approaches that constitute a holistic view of and understanding
of process–product interactions along the process chain instead of focusing solely on single processes. A novel platform
approach to support quality management in manufacturing systems is proposed in this paper to overcome this deficit. It
integrates state-of-the-art concepts of IT with modeling approaches for planning and operation of quality management. A
conceptual framework and the technical architecture for implementing a digitalization platform are presented in this regard.
Moreover, the approach is validated and implemented within a web application based on a use case of data-driven quality
management in electronics production.

Keywords Quality management · Machine learning · Digital platform · Data analytics · Manufacturing system

Introduction

Motivation and problem statement

Digital transformation is driving the current technologi-
cal trends in industrial manufacturing. Rapid information
and communication technologies (ICT) advancements have
enabled the development of advanced sensors, data acqui-
sition systems, wireless communication devices, and dis-
tributed computing systems. The communication between
machines and humans or between machines and products is
enabled (Weber et al., 2017). This extensive communication
involves large volumes of data from various data sources.
The digital transformation of manufacturing is subject to an
increasing data orientation to merge the physical with the
cyberworld in terms of a digital representation of the physical
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world enabled by cyber-physical production systems (CPPS)
(Qi & Tao, 2018).

Data analytics has become a success factor for manu-
facturing companies (World Economic Forum, 2021). Data
Analytics refers to “the theories, technologies, tools, and pro-
cesses that enable an in-depth understanding and discovery
of actionable insight into data” (Cao, 2017). Although the
foundations have existed before (Monostori et al., 1996), the
required low-cost computation power has recently become
available. Therefore, more andmore manufacturers are mov-
ing towards data-driven approaches to increase productivity
and enhance manufacturing systems’ capabilities (Brynjolf-
sson & McElheran, 2016, 2019). Quality management is a
focus area of data-driven approaches.Data analytics facilitate
the continuous improvement of product and process quality
(Bergs et al., 2020a). Beyond improving a traditional quality
understanding, data analytics also enables a paradigm shift
from reactive approaches (such as prevailing quality inspec-
tions) towards proactive intervention and adaptation (Bergs
et al., 2020a; Davis et al., 2012). It is often neglected that
individualmanufacturingprocesses are linkedwith other pro-
cesses to form a process chain. Central questions can only
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be answered inadequately with an isolated view of separate
processes and their quality. These questions include error
propagation, process–product interactions, or the robustness
of the entire process chain. Data-driven approaches facilitate
unveiling these aspects and promoting a systemic manufac-
turing understanding.

The generated knowledge and insights from the data
must be effectively transferred to the manufacturing sys-
tem regarding decision support or direct control strategies.
Current IT systems in manufacturing, including those for
implementing data analytics, are predominantly isolated
applications (Angione et al., 2019; Gluchowski & Chamoni,
2015). Such applications are often rigid and area-specific
(Meister et al., 2019). They lack system integration and
cannot adapt to changing requirements. In contrast, today’s
complex and connectedmanufacturing systems require holis-
tic analytics approaches.

Consequently, analytics results have not been effectively
deployed in most manufacturing systems (Gröger, 2021).
Platform approaches are promising for overcoming these
issues. A data analytics platform is “an information sys-
tem for analytical data processing” (Kemper et al., 2010).
Transaction-centric and data-centric platforms can be distin-
guished. Transaction-centric platforms mediate transactions
by matching supply and demand, whereas data-centric plat-
forms create a holistic data system (Engelhardt et al., 2017).
Internal platforms are generally data-centric (Hoffmann,
2018). They aim to constitute a single source of truth by
integrating all data into a central entity and enabling data
usage for decision support and control (Hoffmann, 2018;
Schuh et al., 2020; World Economic Forum, 2021). Addi-
tionally, synergies can be applied for standardization (e.g.,
interfaces or services) to reduce cost, increase scalability, and
foster flexible manufacturing. By shifting towards platform
approaches, data and information technology can effectively
link with expert knowledge of manufacturing systems and
processes (Kozjek et al., 2020; Woo et al., 2018).

To capitalize on the advantages of platforms in manu-
facturing, they must integrate and support holistic planning
and operation of entire manufacturing systems. Manufac-
turing systems are becoming increasingly complex in terms
of, e.g., increasing customization of products and the num-
ber of different variants. Traditional quality management
and improvement approaches are sequential and have a ret-
rospective feedback loop that loses their validity in this
environment (Kuhn et al., 2018; Morariu et al., 2020).
Feedback loops leverage data analytics and allow for decen-
tralized, iterative decision-making close to the subject of
planning and operation. It enables dynamic and adaptive
approaches and enhances the system’s responsiveness. In
addition to control, adaption becomes essential during the
operation of a manufacturing system. While control has a

retrospective character—adjusting manufacturing after inci-
dents and events—adaption proactively adjusts plans and
aligns them with real-time insights into the manufactur-
ing system (Mourtzis & Vlachou, 2018; Niehues, 2016;
Peruzzini & Pellicciari, 2017). Thereby, sustainability in
manufacturing can be advanced, especially concerning the
economic and environmental dimensions, through the reduc-
tion of scrap and rework and efficient quality inspection
strategies (Chen et al., 2015; Thiede, 2018; Thiede et al.,
2020).

Research objectives

Against this background, two guiding research questions
(RQ) are derived. In general,manufacturing systems are com-
plex systems with extensive interactions and dependencies
between processes, products, and the environment that are
not fully understood. The existing IT infrastructure of iso-
lated applications further increases this complexity, and the
lack of holistic approaches complicates achieving the sys-
tem’s overarching goal. Therefore, a central, holistic entity
for all manufacturing data and its usage must be investigated,
i.e., a single source of truth. Considering these top-down
needs, the first research question is formulated:

RQ 1 What platform architecture is required for holistically
acquiring, managing, and analyzing manufacturing data and
deploying generated knowledge?

Additionally, this paper draws motivation from existing
research on how data-driven approaches can enhance quality
management. These approaches are referred to as “data-
driven quality planning and operation” and aim at reducing
quality-related costs and manufacturing time while at the
same time ensuring high product quality. Therefore, the fol-
lowing bottom-up research question is formulated:

RQ 2 How can the application of data-driven quality man-
agement approaches in manufacturing be enabled through an
IT entity, i.e. a platform?

Both research questions (top-down and bottom-up) are
closely related to each other. Answering the first top-down
research question will automatically contribute to answer-
ing the second bottom-up research question. Against this
background, a generic manufacturing analytics platform
architecture is proposed. For validation, data-driven quality
management within a case study from electronic production
is tested. Thereby, a contribution toward the second research
question is achieved.

The paper is structured as follows. Sect. “Theoretical
background” addresses the necessary theoretical background
of this paper. Sect. “State of research” analysis the state of
research and derives research demand. Sect. “Development
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Fig. 1 CPPS framework

of manufacturing analytics platform” develops a concep-
tual framework to address the derived research demand.
The framework is applied to a case study from electronics
industry in Sect. “Case study: data-driven quality manage-
ment in electronics production”. The conclusion is drawn in
Sect. “Conclusion”, and an outlook is given in Sect. “Out-
look”.

Theoretical background

Cyber-physical production systems

A CPPS is a unique application of a cyber-physical system
(CPS) that refers to a feedback loop interaction of the physi-
cal world with the cyber world of embedded computers and
networks that monitor and control a physical process in the
area of manufacturing and is strongly interrelated with the
term of industry 4.0 (Lee & Seshia, 2016; Monostori, 2014;
Thiede, 2018).

A CPPS consists of four levels: I. physical world, II. data
acquisition, III. cyber world, and IV. decision support/control
(Thiede, 2018; Thiede et al., 2016). Figure 1 graphically
shows the main elements of a CPPS. The different levels
are introduced in the following subchapters.

Physical world

The physical world represents the system of interest. In
the case of cyber-physical production systems, this is the
manufacturing system. According to CIRP, the Interna-
tional Academy for Production Engineering, manufacturing
is defined as “all functions and activities directly contributing
to the making of goods” (Segreto et al., 2019). Thus, man-
ufacturing comprises “the value-adding processes, namely,
fabrication and assembly, and the organizational functions”
(Segreto et al., 2019).

Manufacturing encompasses multiple hierarchical levels:
products, processes, and process chains. In manufacturing,
raw materials are transformed into final products by value-
adding tomeet customers’ requirements (Schenk et al., 2014;
Westkämper, 2006). The value-adding process consists of a

physical transformation (e.g., transforminggeometry, state of
matter, or chemical composition). Therefore, manufacturing
is called a “transformation process” (Dyckhoff & Spengler,
2007). Multiple processes are connected by a material flow
to form a process chain (Tönshoff & Denkena, 2011). In a
process chain, products are gradually transformed. Products
between the initial and the final state are called “intermedi-
ate products” (Wengler, 1996). Their intermediate and final
product features can characterize both intermediate and final
products on a product level. These features are quantitative
(e.g., temperature) or qualitative (e.g., material composition)
descriptions of the product, aswell as definable anddetermin-
istic measurements (Klocke et al., 2014; Wuest et al., 2011).
Product features change with every manufacturing process
due to the transformation processes. The final features of
a product are referred to as product properties. (Filz et al.,
2020a, 2020b; Wuest, 2015).

Organizational functions and management mainly con-
cern the planning and operation of manufacturing systems.
The traditional approach to planning and operating man-
ufacturing systems considers these complicated systems.
Complicated systems are predictable and can be understood
by knowledge (ElMaraghy et al., 2019). Managing complex
manufacturing systems, therefore, require experts (Snowden
& Boone, 2007). In the manufacturing context, these experts
centrallymake decisions on the planning and operation of the
system. A sequential approach is followed: Before starting
production, a manufacturing system is planned, while after-
ward, it is operated (Caggiano et al., 2019). Planning of the
manufacturing system determines what is to be produced,
when, and how (D’Addona et al., 2019). It includes pro-
cess design and equipment design (Eversheim, 2002).During
the operational phase, manufacturing systems are controlled.
Control of manufacturing systems consists of process moni-
toring and control, quality monitoring and control, shop floor
control, and inventory control (Caggiano et al., 2019).

Over the last years, manufacturing systems have become
increasingly complex (ElMaraghy et al., 2019; Kuhn et al.,
2018). This applies particularly to high technologies such as
battery cell manufacturing, casting, or electronics production
withmany process–product relationships. A complex system
incorporates uncertainty, so the outcome is not entirely pre-
dictable or controllable (ElMaraghy et al., 2019). It is also
dynamic, resulting in constantly changing entities and their
non-linear relations (Cilliers, 1998). Following the evolution
of manufacturing systems’ complexity, the understanding
of planning and operation must also evolve. The traditional
expert-driven, sequential planning and operation is not suf-
ficient anymore because a complex system is unpredictable
and cannot be understood entirely (Morariu et al., 2020).
Instead, a decentralized, dynamic, and adaptive approach that
interacts with the system is required. In this regard, adaption
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becomes a complement to control during the operation of a
manufacturing system.

Data acquisition

Data acquisition starts with identifying the relevant data.
These data can be classified based on the structure. In
principle, a distinction is made between structured, semi-
structured, and unstructured data (VDI & VDE, 2020a).
Structured data, such as process parameters or measurement
results, has a predetermined format that fits into the data.
Semi-structured data (e.g., workplans) follow a basic struc-
ture and include unstructured data (e.g., text or photos). In
manufacturing, images can be acquired from visual quality
inspections. (VDI & VDE, 2020a).

The identified data originates from single or multiple data
sources. Based on the accessibility of these sources, data
can be divided into private, club, and public data (Otto et al.,
2016). In themanufacturing context, often private data can be
found. Private data is owned by a company that can regulate
data access, often limiting access to internal stakeholders.
Club data is generally available to companies that jointly
manage access. Club data is a result of inter-company coop-
eration throughout the value chain (e.g., supplier and original
equipment manufacturer (OEM)) or in specific industrial
ecosystems (e.g., OEM and start-up). Public data is avail-
able to every user and often provided by a public entity.

Independent of accessibility, data sources in manufactur-
ing contexts are very heterogeneous and thus require specific
interfaces, communication protocols, etc., for data gathering
(Cui et al., 2020; Gröger et al., 2012; Ismail et al., 2019;
VDI & VDE, 2020b). Generally, data is either operational or
process data. Process data originates directly from the ana-
lyzed process and also includes inspection data. In contrast,
operational data is derived from existing legacy IT systems
such asManufacturingExecutionSystems (MES),Enterprise
Resource Planning (ERP), or Product LifecycleManagement
(PLM). (Cui et al., 2020; Kemper et al., 2010; VDI & VDE,
2020b).

Based on the information of the data source and the data
format, data accessibility is reviewed and evaluated concern-
ing intended usage in the cyber world. One option is to store
data in files. This data can be acquired manually by upload-
ing through graphical user interfaces (GUIs). Alternatively,
an extraction, transformation, and loading process (ETL)
can be used if the directory is defined and accessible. Data
stored in software applications can be, e.g., accessed through
the application’s database via queries. Continuously run-
ning applications (ERP, PLC, etc.) could have standardized
communication protocols (e.g., open platform communica-
tion unified architecture (OPC UA), ModBus, PROFINET,
PROFIBUS, etc.) that can be accessed and used to acquire
data. Sensors might also have communication protocols or

can be read out via analog or digital signals. More often,
sensors are read out by small internet of things (IoT) devices
and can constitute an entire IoT device network. (Filz et al.,
2020a).

An essential aspect of data acquisition is the creation of
a unique identifier (ID) for tracking and tracing. A unique
identifier is assigned to each data point. From an engineering
perspective, identifiers are required to ensure product track-
ing and tracing. From an IT perspective, identifiers facilitate
efficient data management and ensure that the relevant data
can be found and accessed for data analytics.

The choice of data management, if entirely needed, is
made concerning the cyber world and the intended appli-
cations. Since IoT devices have become more durable and
performant, they can also be used for data management, stor-
ing small amounts of data, either decentralized or on edge.
Furthermore, the data can be stored centralized, either on-
premise, if the IT support is guaranteed, or in the cloud.
For data management, various technologies exist for on-
premise or cloud data storage (e.g., Hadoop distributed file
system (HDFS), MySQL, MongoDB, Amazon web services
(AWS)). (Filz et al., 2020a).

Cyber world

The acquired data is deployed for data analytics use cases
within the cyber world. Relevant techniques include e.g. data
mining, simulation, hybrid modeling or visual analytics (Filz
et al., 2020a).

Manufacturing analytics is defined as the holistic data
analysis across all manufacturing processes to increase trans-
parency and improve processes (Cviko & Böing, 2019). It
aims to identify best practices, react quickly to events, and
anticipate potential problems before they can affect product
quality, yield, or cost (Halvorsen, 2006; Lade et al., 2017).
Similar approaches target the application of data analytics
in manufacturing, including “production analytics” (Schuh
et al., 2019) and “manufacturing intelligence” (Davis et al.,
2015).

Fourmaturity levels characterize data analytics andmanu-
facturing analytics. These levels vary regarding the quality of
information and knowledge and, thus, require human input.
On the lowest level, descriptive analysis enhances the visibil-
ity of manufacturing systems by providing what happened.
One step further, diagnostic analysis recognizes interrela-
tions and interprets them to derive root causes. Hence,
diagnostic analysis increases transparency. On the third level,
predictive analysis learns patterns from historical data to
predict future data, respectively, their probabilities. Prescrip-
tive analysis minimizes human input and directly leads to
decision-making (cf. Fig. 1). Depending on the achievable
degree of autonomy, either decision support is provided to
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enable the human to make improved decisions, or the deci-
sion is entirely automated. (Linden et al., 2013; Schuh et al.,
2020).

Data-driven approaches from the cyber world impact a
wide range of manufacturing tasks. These areas include
quality control, maintenance, root cause analysis, fault diag-
nostics, job shop scheduling, and manufacturing process
optimization. All maturity levels are reflected in the applica-
tion of data analysis in manufacturing. A lot of data-driven
approaches target the quality domain. Quality tasks can
be classified into the characterization of product and pro-
cess quality, quality prediction, classification of quality, and
parameter optimization (Köksal et al., 2011; Rostami et al.,
2015).

Decision support

The results of the cyber world techniques are utilized for
decision support for different stakeholders within a company
(e.g., production engineers, shop floor workers) or for auto-
matically controlling the technical systems. In both cases, the
feedback loop of the CPPS can be closed. The goal of pro-
duction engineering is to deploy the acquired knowledge and
improve themanufacturing system.To reach this goal, human
is required to remain in the loop.However, the extent towhich
the human is integrated ranges from active involvement in the
described elements to a supervisory role through appropriate
visualizations. The long-term goal is to develop fully-fledged
CPPS that “possess high self-adaptation capabilities, includ-
ing self-diagnosis, self-configuration, and self-optimization”
(Bergs et al., 2020b).

Planning and operation of quality management

Quality directly affects a manufacturing system’s productiv-
ity, especially in mass production, where quality deviations
lead to large amounts of scrap and rework. Quality is “the
degree to which a set of inherent characteristics or features
of an object fulfills requirements” (DIN En ISO, 2015).
Within quality management, these inherent characteristics
or features are set. It is based on four main elements or
phases: quality planning, quality assurance, quality con-
trol, and quality improvement (DIN En ISO, 2015). Specific
quality objectives are set within the quality planning, and
operational processes that prove these quality objectives are
put into place. However, quality assurance focuses on pro-
viding confidence that specific quality requirements, such as
quality attributes, are fulfilled. The proof that those previ-
ously set quality requirements are met is given throughout
the phases of quality control and improvements (DIN En
ISO, 2015).

Quality control is often performed offline in manufactur-
ing after a quality inspection (QI) completes an intermediate

product. This can be achieved by measuring certain qual-
ity features defined within the quality requirements of this
intermediate product, process parameters, or process require-
ments (e.g., process capability) (Wirtz et al., 1993). QI can
be characterized and designed based on the inspection tasks
performed. An inspection plan provides these tasks. Based
on (VDI, VDE & DGQ, 1985), inspection plans include the
following specifications:

• Relevant inspection characteristics (what)
• Inspection point (when)
• Inspection type (how)
• Inspection extend (how much)
• Inspection place (where)
• Inspection personnel (who)
• Inspection equipment (whereby)

During manufacturing, process parameter variations and
product feature deviations occur, leading to product-specific
conditions. However, these QI specifications are usually
defined before the start of production and are updated through
continuous processes, such as optimization workshops. This
causes a discontinuity between the planned specifications and
the real conditions during production operation.

The concept of quality gates (QG) was introduced for the
operation of quality inspections. The idea is to systematically
divide a defined process chain into different quality-relevant
decision points. Along these QG, the product’s perceived
quality is inspected, securing that defined quality attributes
are met before further progress (Wuest et al., 2014). The
quality gates aim to detect deviations early so that effec-
tive countermeasures can be initiated in time (Schmitt &
Pfeifer, 2015). A quality gate is a review inwhich the product
characteristics are measured and compared with the require-
ments placed on the attributes during the inspection planning
(Cooper, 2008; Prefi et al., 2014; Wildemann, 2010). How-
ever, the QG considers the past (through quality inspection)
andhe future by predicting future product characteristics and
including them in the decision (Stiller, 2015; Wildemann,
2010). This preview predicts the final product properties
based on data analytics. If a predicted final property does not
fulfill the requirements, the manufacturing cannot continue
as initially planned. A possible countermeasure is adapting
the followingmanufacturing processes tomanufacture a con-
forming product.Generally, physical and virtual quality gates
can be distinguished. In a physical QG, the quality inspec-
tion is performed based on physical principles, e.g., vision
inspections, to characterize the intermediate or final product.

Additionally, recent advancements toward digitalization
have made it possible to indirectly measure or infer the
quality of a product during manufacturing processes using
data-driven models, simulations, or soft sensors (Filz et al.,
2020a). In a virtual QG (VQG), the QI is performed by
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Fig. 2 PRISMA-chart of the structured literature review process based
on (Lame, 2019)

analyzing data, e.g., process parameters, disturbance vari-
ables, or data of previous intermediate products. In this way,
VQGs can improve inspection processes by reducing inspec-
tion times and increasing the accuracy and flexibility of
the inspection technology through near-real-time processing
(Filz et al., 2020a; Schnell & Reinhart, 2016). Thus, VQGs
can enable fast and comprehensive quality estimations of
parts, inline process control, process chain control, process
parameter adaption, and advanced tracking and tracing (Filz
et al., 2020a).

State of research

Platform approaches offer the opportunity to integrate mul-
tiple CPPS into a single IT entity. In this way, interfaces for
data acquisition and means for visualization can be harmo-
nized. Against this background, the current state of research
on manufacturing analytics platforms and architectures is
investigated and extended with a particular focus on qual-
ity management (Fig. 2).

Background for selection and evaluation of existing
approaches

To review the current state of research on analytics platforms
in manufacturing, a structured literature review (SLR) was
conducted at the beginning of 2022. A structured literature
review aims to identify, evaluate and interpret all available
research concerning a specific research question (Kitchen-
ham et al., 2009; Lame, 2019; Tranfield et al., 2003). The
following search question is investigated in the present case:

Target

• Manufacturing
• Production

Action

• Analytics
• Machine Learning
• Smart

Methodology

• Platform
• Architecture+ +

1. “Manufacturing” AND “Analytics” AND “Platform”
2. “Manufacturing” AND “Analytics” AND “Architecture”
3. “Manufacturing” AND “Machine Learning” AND “Platform”
4. “Manufacturing” AND “Machine Learning” AND “Architecture”
5. “Manufacturing” AND “Smart” AND “Platform”
6. “Manufacturing” AND “Smart” AND “Architecture”

7. “Production” AND “Analytics” AND “Platform”
8. “Production” AND “Analytics” AND “Architecture”
9. “Production” AND “Machine Learning” AND “Platform”
10. “Production” AND “Machine Learning” AND “Architecture”
11. “Production” AND “Smart” AND “Platform”
12. “Production” AND “Smart” AND “Architecture

Block building

Search strings

Combinatorics

Fig. 3 Block building approach for search string identification

“What are existing manufacturing analytics platforms, and
what are constituting elements?”.

The block building approach by Guba (2008) is utilized to
derive search strings for a free text search. Three blocks were
identified, referring to the target, action, and methodology of
the reviewed research topic (c.f. Fig. 3).

The target is the system of interest, namely the manufac-
turing system. Data analytics is the action that is performed
regarding the target. Themethodology facilitates the applica-
tion of data analytics, which in this case is represented by the
platform approach. Synonyms for the described block topics
are considered.

Following a scoping study in SCOPUS database with
5,509 results, the search strings were limited to the most
relevant ones (c.f. bold search strings in Fig. 3 lead to
2429 results). After that, subject areas were limited. Due
to the interdisciplinary character of the analyzed field, a
comprehensive search of potential subject areas was cho-
sen. Considered subject areas include Computer Science,
Engineering, Decision Sciences,Mathematics, Energy, Busi-
ness, Management and Accounting, Materials Science, and
Environmental Science. The resulting 1725 research findings
form the literature base for this structured literature review.
16 additional publications are identified by other means, i.e.,
mostly found based on cross-references, own experience in
the area, and within grey literature. These publications were
added to the literature base.

For identifying the most relevant research, eligibility cri-
teria were defined:

• Content
• Publications focusing on discrete manufacturing
• Platform and its architecture constitute the core of the pub-
lication

• Data analytics forms themain action of the developed plat-
form

• Publication language
• English
• German
• Accessibility
• Publication is accessible online
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Publications are excluded from the SLR if focusing on
generic reference models for platforms (such as RAMI 4.0
(DIN, 2016) or the Industrial Internet ReferenceArchitecture
(Lin et al., 2019)). An additional exclusion criterion concerns
the scope of the developed platform approach: approaches
that consider manufacturing as only one potential target out
of several are to be excluded.

Using the above explained criteria, iterative filtering was
conducted by reviewing the abstracts and screening and
analyzing full texts (Moher et al., 2009). Ultimately, 21
publications are considered in the literature review and
assessment. Out of these 21 publications, 16 were identified
by the SLR, while five were among the added publications
(c.f. Fig. 2).

Evaluation of existing approaches

The selected approaches are evaluated against a set of criteria.
The criteria are clustered into scope, level of investigation,
and methodological aspects. Figure 4 provides an overview
of the current state of research on manufacturing analytics
platforms (Al-Gumaei et al., 2019; Angione et al., 2019;
Arantes et al., 2018; Bao et al., 2017; Beecks et al., 2018;
Bousdekis et al., 2019; Gramegna et al., 2020; Gröger, 2015,
2018; Gröger et al., 2016; Gyulai et al., 2019; Illa & Padhi,
2018; Jun et al., 2019;Kassner et al., 2017;Liu&Jiang, 2016;
O’Donovan et al., 2016; Sarnovsky et al., 2018; Tao et al.,
2018;Wang&Luo, 2021;Wei et al., 2019;Woo et al., 2018).
A heatmap is used for visualization. A red field within the
heat map indicates that a criterion is fulfilled to no degree. In
contrast, a green field means full criteria fulfillment. Partial
fulfillment is also possible.

Figure 4 shows significant red spaces within evaluation
categories and for single criteria. Notwithstanding, most cri-
teria are (at least to some degree) accounted for by multiple
approaches. The results of the category scope show that
none of the approaches fulfills all criteria. Some approaches
address the control of manufacturing systems. However,
these do not address the planning of manufacturing sys-
tems simultaneously. An apparent research demand for an
approach covering the planning and operation of manufac-
turing systems together can be identified. Moreover, almost
no approach addresses quality management and the integra-
tion of humans in the proposed solution.

The evaluation results for the level of investigation clearly
show that the analyzed approaches focus on one level instead
of multiple levels simultaneously. This allows no or only
very few analyses and modeling of interactions between the
different levels to be considered.

The category focusing on the methodological aspects
shows that some approaches consider isolated methodologi-
cal aspects. However, none of the approaches comprehen-
sively considers the various aspects. However, to answer

various data analytics questions in manufacturing, the flexi-
ble use of one or more of these methods is needed.

Overall, no single approach fulfills all evaluation criteria to
a sufficient degree. In summary, there is a research demand
for an approach that covers all or at least most criteria in
combination. Based on the evaluation and analysis of the
literature research, the following detailed research demand
was identified:

D1. Development of a platform architecture that enables
the application of solution modules with different
scopes (e.g. quality management).

D2. Development of a platform approach that supports
both planning and operation of quality management
in manufacturing systems.

D3. Development of an approach that considers the manu-
facturing levels of product, process, andprocess chain.

D4. While the consideration of manufacturing processes
appears to be well established, product and process
chain perspectives must be fostered towards holistic
analytics processes that account for interactions and
dependencies.

D5. The concept shall integrate different data sources
into one central database. This includes integrating
state-of-the-art data acquisition and data management
methods and enabling all four analytics maturity lev-
els.

D6. The concept should be applicable for multiple data
analytics use cases in different manufacturing indus-
tries.

D7. Development of a platform architecture that enables
continuous model updates.

D8. Platforms must incorporate a frontend that allows for
human-machine interaction and comprises compre-
hensive visualizations.

D9. There is a lack of continuously integrating humans
into the platform for leveraging expertise and cogni-
tive abilities.

D10. There is a need to account for different user
roles—e.g., shop floor workers, manufacturing engi-
neers, quality engineers- and customize the user
experience based on individual needs.

Development of manufacturing analytics
platform

To detail the development of a manufacturing analytics plat-
form, a general framework to structure its core elements and
functionalities is proposed in subchapter 4.1. Thereon, amore
detailed architecture is given in subchapter 4.2.
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Fig. 4 Heatmap evaluating the state of research on manufacturing analytics platforms

Manufacturing analytics platform framework

The current research state shows a need to develop an archi-
tecture for a manufacturing analytics platform. Therefore, a
logical framework for such a manufacturing analytics plat-
form is proposed in Fig. 5. The platform encompasses three
horizontal layers: data management, modeling, and visu-
alization. The platform is seen as a link between various
business objectives and the physical manufacturing system.
To address various challenges and solve existing problems in
the manufacturing system, various solution modules (mod-
ules 1-n) are launched vertically on the platform, each
specifically accessing the different layers and elements indi-
vidually. The solutionmodules can be expanded if necessary.

The platform architecture is framed bottom-up by the
manufacturing system encompassing production and man-
agement (Segreto et al., 2019). The holistic understanding of
production is based on the different levels of investigation:
product level, process level, and process chain level. Raw
materials are transformed into final products in the manufac-
turing process to add value (Schenk et al., 2014;Westkämper,
2006). Process parameters define the processes.Multiple pro-
cesses are connected by a material flow to form a process
chain (Tönshoff&Denkena, 2011).During this gradual trans-
formation, products between the initial and the final state
are called “intermediate products” (Wengler, 1996). Both
intermediate and final products can be characterized by their
product features on the product level. Planning, adaption,
and control concern the management of the manufacturing

system. In this regard, planning relates to all procedures
concerning the organizational processes and the physical
design of the manufacturing system conducted in advance
(Caggiano et al., 2019; D’Addona et al., 2019). In contrast,
control and adaption target the manufacturing system’s life-
cycle operational phase.

Control has a retrospective character by adjusting manu-
facturing after incidents and events. For example, the process
parameters of a machine are adjusted after consistently pro-
ducing defects, or inventory is refilled once reaching the
safety stock. In contrast, adaption proactively adjusts plans
based on changing circumstances and aligns them with real-
time insights into the manufacturing system (in line with
(Mourtzis & Vlachou, 2018; Niehues, 2016; Peruzzini &
Pellicciari, 2017)). This variation of replanning is triggered
by continuous monitoring, requiring data-driven approaches
(Monostori et al., 2010; Mourtzis & Vlachou, 2018; Zhang
et al., 2017). For example, a product is detected to be out-
side the tolerance limits. Then the process parameters of
the subsequent manufacturing step could be adjusted, and
the allocation of remaining quality inspections. However,
the distinction between planning, control, and adaption, and
management of manufacturing systems requires extensive
interaction and feedback.

From the top down, the manufacturing analytics plat-
form is subject to business objectives. The target system is
traditionally composed of quality, cost, and time (Schmitt
& Pfeifer, 2015). Additionally, environmental aspects are
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Fig. 5 Conceptual framework of a manufacturing analytics platform

becoming increasingly important due to legislation, reg-
ulation, and customer demand (Hauschild et al., 2019a;
Herrmann, 2010;Moltesen et al., 2019). In general, data ana-
lytics is not self-fulfilling. Instead, it must serve the business
objectives and support a value proposition. Therefore, con-
sidering business objectives is essential for assessing data
analytics results and derived modifications to the manufac-
turing system. Moreover, these objectives and the existing
manufacturing system define the different solution modules
launched based on the platform.

Datamanagement as a first layer comprises “the practices,
architectural techniques, and tools for achieving consistent
access to and delivery of data” required for applications
and business processes (Gartner, 2021). Thereby, it covers
the fields of action of data scientists and data engineers.
These two user groups are data experts. A dedicated envi-
ronment is required because a heterogeneous landscape of
data sources and data management techniques requires spe-
cialist knowledge (Beecks et al., 2018; Gröger, 2021). For
data management, a single source of truth shall be consti-
tuted by storing and providing all relevant dataas suggested
by e.g., (Schuh et al., 2020)). This data storage integrates a

large amount of historical data and continuously expands it
with real-time data. Based on this data, batch data analytics
can be conducted to support use cases with analytics models.

The modeling layer supports manufacturing and qual-
ity engineers as data analytics practitioners. They combine
extensive knowledge of manufacturing systems with a lim-
ited understanding and knowledge of data analytics. Against
this background, these user groups are primed for translating
data analytics results intomodifications of themanufacturing
system. Therefore, they are involved in building and training
the analytics models. Thereby, they can build on the previ-
ous activities described for datamanagement. In this way, the
domain experts are enabled to build the models with limited
to no user inputs.

The resulting model either acts as visual decision support
or is to be deployed for real-time operation in the manu-
facturing system (Cui et al., 2020). In the case of decision
support, the existing domain knowledge of the experts is suc-
cessfully integrated into a data-driven approach. The results
and impacts on the manufacturing system must be evaluated
for both possible model outcomes. This could be achieved by
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integrating a simulation environment (as suggested by e.g.,
(Kibira et al., 2015; Qi & Tao, 2018)).

The visualization layer supports achieving user-centricity.
Different user disciplines are primarily differentiated by their
specific user roles. To this end, each discipline serves the
needs of dedicated users, integrates their user stories, and
reflects the underlying technical entities and processes.Addi-
tionally, the proximity to the manufacturing system is varied.
This differentiation is derived from different latency require-
ments: operational tasks might require real-time processing.
Therefore, different visualization solutions must be provided
for different user groups. This can range from simple graphi-
cal plots to direct interactionwith the user, e.g. through visual
analytics.

However, it must be noted that the subdivision is carried
out for structuring purposes only—no isolated subsystems
are intended. Instead, all entities should be flexibly com-
bined and follow a microservices approach. A microservice
is a small, autonomous service that provides a single business
function, is technically self-contained, and is deployed inde-
pendently (Knoche & Hasselbring, 2019; Newman, 2015;
Taibi et al., 2018). Each microservices is an independent
development, deployment, versioning, scaling, and operation
under a cross-functional, autonomous team (Jamshidi et al.,
2018; Knoche & Hasselbring, 2019). Microservices aimo
develop flexible, scalable, and modular information systems
that can evolve over time (Bogner et al., 2019). In this con-
text, microservices deal as solution modules to improve the
manufacturing system.

Time-sensitive tasks such as the real-time operation of a
data analytics model cannot be realized in a central entity,
for instance, a cloud-based platform. Consequently, manu-
facturing system operation is proposed to be implemented
on the edge level, i.e., in proximity to the entities of the
manufacturing system (Zietsch et al., 2019). In this position,
it acts as a real-time collector and real-time pre-processor
of process data and a real-time executor of the developed
analytics models. In this regard, the manufacturing system
operation will primarily operate autonomously. Its predomi-
nant users, manufacturing engineers and shop floor workers,
serve as data analytics consumers. In their work, they benefit
from data-driven decisions and data-driven decision support.
Besides consumption, they must also monitor and supervise
the platform’s operation.

Platform architecture

Derived from the conceptual framework proposed in
Sect. “Manufacturing analytics platform framework”, the
conceptual architecture is presented in Fig. 6. The boxes
depict the platformentities and processes,whereas the arrows
represent their relations.Vertically, the architecture is divided
into four layers: data acquisition layer, data storage layer,

data analytics layer, and data visualization layer. Further-
more, data governance ranges across all layers. Horizontally,
twomain branches can be identified to allow hybrid data pro-
cessing. The entities and processes are either assigned to a
centrally managed infrastructure (e.g. a cloud environment)
for batch data processing or an edge-level infrastructure for
real-time data processing.

The left branch comprises entities and processes of a cen-
trally managed infrastructure. It allows batch data analytics
based on historical data from various heterogeneous data
sources acquired within the data acquisition layer. Typical
sources can be user-generated data, such as lab protocols.
Automated data ingestion processes enterprise data (e.g.,
PLM, ERP, SCM) or the manufacturing system has acquired
data directly from the manufacturing system. This data
may originate from machines (e.g., process parameters) or
inspection stations (e.g., inspection results). This data can
be available in real time. The communication between the
shopfloor and data ingestion can be carried out by using a
gateway.

For the development of the analytics models, the process
of “Knowledge Discovery in Databases (KDD)” introduced
by Fayyad et al. (1996) is followed. It comprises data
selection, data preprocessing, data transformation, data min-
ing, and interpretation (Fayyad et al., 1996). Currently, this
can be achieved by assigning data-heavy aspects to data
experts. Additionally, domain experts are responsible for
model building and training using visual analytics where
data experts support them. However, as a target vision, the
entire model development process might be automated by
an AutoML solution. Building on the analytics models, its
implications for the manufacturing system can optionally be
validated in a multi-level manufacturing simulation.

The right branch, in contrast, should be realized on an edge
level. Hence, the platform entities are distributed close to the
manufacturing entities, enabling the execution of real-time
tasks. These real-time tasks range across all four layers: from
automated, real-time data ingestion of machine and inspec-
tion data through real-time data preprocessing and real-time
data analytics to visualizations of real-time data and results.

Connections between the branches are realized in two
ways. First, data that is preprocessed in real-time is not only
used for real-time data analytics but also ingested automat-
ically into a data lake. Data lakes handle large volumes of
data without changing the formats (Miloslavskaya & Tol-
stoy, 2016). Therefore, it is well suited for big data such as
manufacturing process data or inspection data. In this way,
the database is constantly increased, and the need for manual
data ingestion is reduced once a connection is implemented.
Secondly, the models for real-time data analytics are devel-
oped based on historical batch data but deployed on the edge
level. In this regard, it is essential to define rules for the
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Fig. 6 Conceptual backend architecture

retraining and updating of analytics models to ensure high
performance (Amini & Chang, 2020).

In addition, data governance spans across all layers.
Data governance generally involves organizational structures
treating data as an enterprise asset (Abraham et al., 2019). To
maximize the value of this asset, data governance provides a
framework for decision-making rights and responsibilities
in terms of the use of data in an enterprise (Otto, 2011;
Weber et al., 2009). The main aspects of data governance
concern data quality, security, and privacy. High data quality
is essential for success in data analytics approache(Gröger
et al., 2016; Kotsiantis et al., 2007; Thoben et al., 2017).
Data quality is vital across all layers. Data ingestion and pre-
processing steps have a central role because data quality can
be increased there (e.g., outlier detection or handlingmissing
values).

The conceptual architecture forms the starting point for
implementing the proposed manufacturing analytics plat-
form. A microservices approach is well-suited for imple-
mentation as it represents the de facto industry standard.
Following the microservices architecture paradigm , mod-

ularity, flexibility, and platform distribution are ensured. In
this way, the novel concept represents a counterpoint to the
existing, predominantly isolated applications. In this con-
text, however, it should be noted that the architecture cannot
be understood as complete but can be flexibly extended or
adapted as required.

Case study: data-driven quality
management in electronics production

This case study gives an architecture to track and analyze
the product property propagation along the manufacturing
system. Therefore, in subchapter 5.1, a description of the
case study is performed. This is followed by the case study-
specific design of the platform architecture in subchapter 5.2.
Finally, exemplary modeling results are shown in subchap-
ter 5.3. This case study is to be understood as an example of
possible applications in the context of the platform. Further
applications can be found in further publications. For more
details, see (Filz et al., 2020a, 2020b, 2021).
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Fig. 7 Process chain for PCB assembly (picture by (Kitchenham et al.,
2009))

Case study description

The use case covers the printed circuit board (PCB) assem-
bly in electronics production. PCBs are produced in discrete
manufacturing systems with multiple manufacturing pro-
cesses and inline quality inspections (May & Spanos, 2006).
The adopted process chain is shown in Fig. 7.

It is based on surface-mounted technology (SMT). Fol-
lowing this method, the electrical components are placed
directly onto the surface of a PCB and soldered conductively
in an oven. Depending on the PCB type, components might
be soldered to both sides of the board. If this is the case, the
process chain is passed through twice.

In the first step, the solder paste is applied to the surface
of the unassembled PCB during the stencil printing process.
This is followed by solder paste inspection (SPI), a visual
inspection that checks the solder paste position. A defined
amount of solder paste is required for a reliable connec-
tion of the components, and fluctuations in the solder paste
volume must be minimized. Subsequently, the products are
transferred to the pick&place (P&P)machine. In several suc-
cessive steps, the P&P places the individual components (e.g.
resistors, capacitors, microchips) on the liquid solder. Once
all components are placed onto the PCB, it passes through a
reflow oven. The solder is melted, and the components are
soldered to the PCB. The automated optical inspection (AOI)
finally checks the quality of soldered PCBs. It concerns the
position of the components aswell as the connection of solder
pins.

A large production volume and a low takt time character-
ize PCB assembly. Therefore, the production processes and
material flows are fully automated.Moreover, PCB assembly
poses high-quality standards. Consequently, defect rates are
low. This results in a small number of analyzable defect com-
ponents and, thus, a high-class data imbalance.This datamust
be labeled according to the inspection results as either data of
a conforming or non-conforming product. However, pseudo
errors present a significant challenge: conforming products
are regularly classified as non-conforming by automated
quality inspections. Therefore, a manual re-classification of
non-conforming products is often necessary.

It is necessary to consider the complete process chain
instead of single and isolated processes to improve the overall

quality and reduce scrap and rework. Therefore, it is essential
to understand the dynamics and interdependencies within the
manufacturing system. Knowledge about defects’ propaga-
tion and early detection is essential to derive proper QM
strategies. Concerning data acquisition, two areas can be
identified that pose particular challenges. First, eachmachine
and inspection station records its respective data, whichmust
be tracked automatically and stored in a central database.
Secondly, attention must be given to the uniform labeling of
data. Tracking and tracing individual PCBs and components
is ensured during production, especially for product property
propagation analysis.

Architecture for product property propagation
analysis

Reiterating the current quality management situation, it must
be noted that expert-driven improvements still play a sig-
nificant role. The limits of human capabilities come with a
lack of consideration of interactions within the manufactur-
ing system and a lack of flexibilization of quality inspections.
Moreover, quality is reviewed in the form of product and pro-
cess conformity instead of being actively produced. Against
this background, approaches have been developed that aim at
data-driven planning, operation, and flexibilization of entire
manufacturing systems. These approaches are referred to as
“data-driven quality management”. This includes the intro-
duction of virtual quality gates, the data-based characteriza-
tion of products, and the derivation of inspection strategies.
However, it thus far remains unclear how to implement and
deploy these approaches in manufacturing systems. While
current IT systems are predominantly isolated, rigid, and
area-specific applications, itwas elaborated that today’s com-
plex and connected manufacturing requires holistic analytics
applications. A manufacturing analytics platform follows
exactly such a holistic analytics approach. Therefore, the
generic platform architecture (c.f. Sect. “Development of
manufacturing analytics platform”) is adapted to data-driven
product property propagation analysis. The application of
the architecture is within the use case of PCB assembly. The
resulting architecture is shown in Fig. 8.

The architecture comprises the development of three types
of data analytics (DA) models that support the product prop-
erty propagation analysis:

1. DA models are developed for clustering similar PCBs at
a given quality gate (e.g. SPI and AOI) into intermediate
product classes (IPC).

2. The propagation of IPC affiliation across different quality
gates to analysis the product property propagation.

3. A classification model enables a specific PCB’s assign-
ment based on its real-time properties.
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Fig. 8 Backend architecture for the implementation of data-driven quality management

The development of the analytics models is subject to the
central entity. It is based on historical data. This includes
user-generated inspection data (from SPI and AOI) and
operational data from enterprise systems. Additionally, the
database is constantly extended by automatically adding fur-
ther inspection data from the manufacturing system. Data
from all the described sources is ingested into one database.
For effective data management, the assignment of IDs for
identification is an essential step. Regarding the described
use case of PCB assembly, new IDs must be created. Each
panel of four PCBs has a distinct barcode in the physical
assembly process. Each PCB, however, consists of multiple
components that each havemultiple pins. Therefore, defining
IDs for each PCB on a panel is necessary, e.g. by appending
a position code to the barcode. The required data is extracted
from the database in batches for model development. Here,
domain knowledge might be necessary to assess data valid-
ity, e.g., because of technical changes in the PCBs or the
manufacturing system. As described above, three models

are considered. The development of these models could be
achieved following a variety of methods.

In the first step, the models for identifying IPCs at a spe-
cific quality gate (DAmodel 1 for e.g. SPI and AOI) and their
propagation across different quality gates (DAmodel 2)must
be developed. They enable the domain experts, i.e., quality
engineers and manufacturing engineers, to plan product phe-
notypes (deployment I) and adaptive inspection strategies
(deployment II). Thereby, analytics models 1 and 2 provide
decision support. Visualizations appear to be well suited to
convey this decision support. For example, the propagation of
product properties can be visualized using a Sankey diagram.
Moreover, the DAmodels themselves can be explored by the
users. In general, the planning of the domain experts leads to
modifications of the manufacturing system. Therefore, these
modifications should be evaluated to ensure effectiveness.
Evaluation options can be pursued here, e.g., data-driven,
probability-based validation.

Furthermore, a model for classifying PCB phenotypes is
developed (DA model 3). In contrast, this model must allow
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Fig. 9 Frontend of the web application for data-driven quality manage-
ment

real-time execution and deployment on the edge-level enti-
ties for manufacturing adaption (deployment III). However,
domain experts are still involved in exploring and evaluating
the model, e.g., via visualization of the model.

The deployment of the classification model is carried out
on an edge device. It uses real-time streaming data from
the machines and quality inspections to classify PCBs auto-
matically as phenotypes. In this way, an adaption of the
corresponding inspection strategy is performed.

A configurable and web-based dashboard provides manu-
facturing engineers and operators with the required insights
for monitoring and supervising the process.

The web application is developed in the Anaconda 3 dis-
tribution of Python 3.9. The frontend was built with the
Streamlit 1.10.0 framework shown in Fig. 9. It consists of
two areas. On the left-hand side, the module selection area
allows the user to choose between different modules related
to the data analytics and visualization layers in Fig. 8. The
interaction and visualization area enables user interactions
with and visualization of the data and results.

The web application dashboard can be used by different
stakeholders, such as data scientists and engineers, process
experts, and operators, because the functionality ranges from
data analytics-related model deployment to process decision
support. Data engineers can define the model structure based
on the underlying data acquisition and preprocessing. Pro-
cess experts can use thismodel structure in different analytics
modules to extract cross-process-interrelationships. Addi-
tionally, operators can use the model for direct decision
support on the shop floor and for predicting later product
features during production.

Data governance is essential across all steps described
above. Ensuring high data quality is essential. This is because
high-quality data is both the foundation and prerequisite for
high-quality data analytics and hence also for high-quality
planning and operation of the PCB assembly. Moreover, data
security and privacy must be guaranteed.

Cluster-based product property propagation
analysis

To improve the overall quality and reduce scrap and rework
it is necessary to consider the overall process chain instead of
single and isolated processes. Hence, understanding dynam-
ics and interdependencies within the manufacturing system
is essential. To derive proper QMmeasurements, knowledge
and transparency about the propagation and the detection of
intermediate product features (IPF) changes along the pro-
cess chain, intermediate product states (IPS), intermediate
product classes (IPC), and product phenotypes is essential.
Figure 10 gives a graphical overview of these terms in the
context of a manufacturing system.

An IPF is a quantitative (e.g., temperature) or qualita-
tive (e.g., material composition) description of the product
and definable and deterministic measurements. An IPS com-
bines IPFs that characterize an intermediate product at a
specific observation point along the manufacturing process
chain. (Filz et al., 2020b;Wuest, 2015;Wuest et al., 2014) To
analyze the propagation of different products along the man-
ufacturing process chain, IPFs are clustered to define IPCs
(see Fig. 10a).

A data-driven analytics approach is chosen to identify
IPC using unsupervised machine learning. This approach
enables decision support by describing the propagation and
analyzing interdependencies of the IPC within the manufac-
turing process chain. Based on this, the behavior of different
products within a manufacturing system can be tracked, and
specific control strategies can be derived based on product
phenotypes. The implementation within the web application
representing the clustering results of different IPC is shown
in Fig. 11.

The concept of product phenotype has been introduced
to track and trace the propagation of intermediate products
along the manufacturing system. Product phenotypes are
defined by a combination of different IPC along the process
chain that describes the characteristics of a particular product
within the manufacturing system (see Fig. 10b). (Filz et al.,
2021).

To gain insight into the characteristics of IPCs within the
process chain, the propagation from the AOI and SPI inspec-
tion target to the final product quality can be visualized in the
interaction and visualization area of the developed dashboard
(Fig. 12).

The resulting Sankey diagram can be used in different
ways. For example, a shop floor worker can, e.g., use visual-
ization to identify defective parts that can be removed from
the manufacturing system. Moreover, quality engineers can
use visualization to analyze and understand the interdepen-
dencies of process–product relationships along the process
chain to improve the overall performance of the manufactur-
ing system.
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Fig. 10 a Characterization of intermediate product states and b product phenotypes within a manufacturing system (May & Spanos, 2006)

Fig. 11 IPC definition within the developed web application

Fig. 12 Visualization of product phenotype propagation within a
Sankey diagram in the web application

The visualization shows one dominant product propa-
gation from “SPI-bot: 0”, “AOI-bot: 1”, “SPI-top: 1”, and
“AOI-top: 2” to a “good” final product quality. Based on
these propagation results, different QM strategies can be
derived. For example, all products following the highlighted
path will have a high chance of being good products. Hence,

the inspection strategy of these products could be adjusted
by lower the number of inspections to reduce the overall
inspection effort.

Conclusion

A novel approach for a manufacturing analytics platform
was proposed to overcome the described research gap. It
combines state-of-the-art concepts of IT with procedures for
the planning and operating quality management measure-
ments in multi-stage manufacturing systems. The definition
of concept objectives described the underlying vision, and
the derived concept requirements guided the development
process. Thereon, a conceptual framework was introduced.
It integrates the platform into business objectives and the
manufacturing system.

Additionally, the platform can integrate different solution
modules to support manufacturing systems’ overall qual-
ity management and improvement process. Here, the focus
lies mainly on the requirements to track and trace prod-
ucts along the manufacturing process chain. Finally, the
technical architecture for implementing the manufacturing
analytics platform was developed. Vertically, it consists of
four layers: data acquisition layer, data storage layer, data
analytics layer, and data visualization layer. Moreover, data
governance ranges across all layers. Horizontally, two main
branches can be identified to allow hybrid data processing.
The entities and processes are either assigned to a centrally
managed infrastructure (e.g., a cloud environment) for batch
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data processing or an edge-level infrastructure for real-time
data processing.

The concept is distinguished from existing approaches
by the following characteristics: Considering an edge-level
implementation to complement a central entity enables
real-time capabilities. Moreover, users are continuously
integrated into the processes, leading to a human-centric
approach. Finally, the approach emphasizes deploying gen-
erated knowledge about the manufacturing system. This
is achieved by integrating the approach into the exist-
ing processes for managing manufacturing systems. Here,
data-driven planning and control of quality management is
considered. Additionally, a multi-level manufacturing simu-
lation can be integrated to evaluate findings. Applying this
to a case study on electronics production has demonstrated
that the developed platform concept and the corresponding
architecture allow for different analytics tasks shown based
on an analysis of product property propagation along the
manufacturing process chain.

The provided architecture significantly enhances tradi-
tional quality management towards flexible, iterative, and
data-driven quality management.

Outlook

As outlined in the previous sections, significant contributions
could be made compared to the state of research. Neverthe-
less, there are diverse opportunities for future research to
extend the contributions of the present work:

Application to other industrial sectors and use cases

The concept is tailored to the needs of discrete manufactur-
ing in multiple stages. To this end, it was applied to quality
planning and operation in PCB assembly. Future research
should transfer the application to other industrial sectors. An
extension towards other analytics use cases, such as process
optimization or predictivemaintenance, is also necessary. For
comparability, the variation of either the industrial sector or
the use case is suggested.

Quantitative concept validation

The developed concept of a manufacturing analytics plat-
form was validated qualitatively in the present work. There
is a need to extend validation quantitatively by developing a
platform prototype. To this end, a user interface to facilitate
model development and visualizations is particularly inter-
esting.

Implementation with commercial software
frameworks

Despite the need for a prototypical implementation in gen-
eral, an implementation based on commercial big data
frameworks could be investigated. Such frameworks are e.g.,
Apache Hadoop, Apache Spark, and Storm (Govil, 2019).
This way, it can focus more on integrating IT into manufac-
turing engineering and processes for planning and operation.
Furthermore, the scaling of the platform approach from pro-
totype to commercial application appears to be simplified.

Integration of further solutionmodules

The developed concept proposes the integration of differ-
ent solution modules. Potential solution modules must be
identified, implemented, and validated in future work. In
this context, exploiting the platform’s advantages using data
along the entire process chain is essential. Here, the imple-
mentation of VQG bears excellent potential to improve
quality inspection strategies or adopt process parameters to
“save” products.

Integration of environmental evaluation
towards life cycle assessment (LCA)

Data-driven approaches can contribute toward sustainability
in manufacturing. In this regard, the importance of envi-
ronmental sustainability is ever-increasing. Consequently,
environmental KPIs are considered in the business objec-
tives of the developed framework. Hence, there is a need to
integrate Life Cycle Assessment for evaluation against envi-
ronmental impact categories (Hauschild et al., 2019b).
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