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Abstract
From the inventory of the health insurer AOK in 2004, we draw a sample of a quar-
ter million people and follow each person’s health claims continuously until 2013. 
Our aim is to estimate the effect of a stroke on the dementia onset probability for 
Germans born in the first half of the 20th century. People deceased before 2004 are 
randomly left-truncated, and especially their number is unknown. Filtrations, mod-
elling the missing data, enable circumventing the unknown number of truncated 
persons by using a conditional likelihood. Dementia onset after 2013 is a fixed 
right-censoring event. For each observed health history, Jacod’s formula yields its 
conditional likelihood contribution. Asymptotic normality of the estimated intensi-
ties is derived, related to a sample size definition including the number of truncated 
people. The standard error results from the asymptotic normality and is easily com-
putable, despite the unknown sample size. The claims data reveal that after a stroke, 
with time measured in years, the intensity of dementia onset increases from 0.02 
to 0.07. Using the independence of the two estimated intensities, a 95% confidence 
interval for their difference is [0.053, 0.057]. The effect halves when we extend the 
analysis to an age-inhomogeneous model, but does not change further when we 
additionally adjust for multi-morbidity.
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1  Introduction

For Germany, Doblhammer et al. (2018) forecast an increase of up to 2.8 million 
people with dementia by 2050. One risk factor is a stroke, and we model life as 
a time-continuous, multi-state, Markovian history (see Fig. 1). The model is also 
called ‘disability model’ (see Hougaard 2001, Figure 1.6).

Note that ‘healthy’ exclusively stands for ‘neither having dementia nor hav-
ing had a stroke’. Dementia onset of a person after a stroke (or precisely, after 
the first one) is, ceteris paribus, governed by the onset intensity, named �S1D . We 
compare this intensity with the dementia onset intensity of a healthy person, �HD . 
By stroke effect on dementia onset, we refer to the difference (or the ratio) of 
these two intensities.

The population we will refer to are inhabitants of Germany born in the years 
1900 to 1954, which we call ‘the first half of the 20th century’ (see Fig. 2, top box). 
Drawing a simple random sample (size nall ) from that population and then truncat-
ing, i.e. not observing, persons deceased before 2004, is similar to drawing a simple 
random sample (size n) of all Germans alive at the beginning of 2004. The latter is 
our situation. Note that in the first design, the number of observations is random, 
and in the second design, the number nall is unknown. That people are missing in 
the data due to an earlier death is called left-truncation (see Fig. 2, middle box and 
Fig. 8) and is a typical design defect in disease state models (see e.g. Putter et al. 
2006). Ignoring truncation would lead to the ‘immortal time bias’ (see e.g. Hernán 
et al. 2016; Yadav and Lewis 2021).

Fig. 1   Disease states and transi-
tions
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Fig. 2   From population to the data of left-truncated persons subject to right-censoring (Population size: 
German Statistical Office (2004), without stillborn)
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Efficient estimation in large samples is usually achieved by the maximum likeli-
hood method. In order to render knowledge about truncated persons obsolete, mar-
ginalisation and conditioning are necessary here. We intend to do both a review of 
the methodological arguments and the application to a German data set. Right-cen-
soring will always be accounted for (see Fig. 2, bottom box), and explanation will be 
sparse, because there is already an extensive literature. Explaining how the method 
reduces information is easier when the state ‘being alive’ is not subdivided into sev-
eral disease states, and is presented in a lifetime state model (in the terminology of 
Hougaard, 2001) in Appendix A. Then, with all states of Fig. 1, Sect. 2 derives a 
confidence interval for the difference �S1D − �HD and a Wald-type test for the stroke 
effect. In the next Sect. 3, for two reasons, we allow intensities to depend on age. On 
the one hand, it enables a comparison of our case study with reputable international 
studies where age-inhomogeneous behaviour is routinely accounted for. On the other 
hand, we will see that accounting for age drastically changes the stroke effect, and is 
an insightful example of confounding. In Sect. 3 we additionally adjust for (vascu-
lar) multi-morbidity, in order to answer the question of whether the elevated demen-
tia risk by stroke could be anticipated for multi-morbid persons. Sections 2 and 3.1 
start with asymptotic theory, Section 2 continues with a Monte Carlo study to reveal 
that the asymptotic approximation with the normal distribution is adequate for our 
application. All sections end by fitting the model to the data of that section. Appen-
dix A contains modelling, asymptotic theory as well as Monte Carlo simulations, 
and fits the data.

1.1 � Data: AOK HCD

Although, for the purposes of our investigation, it would be ideal to have a sample 
from Germany in 2004, sampling is restricted to the 25 million members of Ger-
many’s largest public health insurance company ‘Allgemeine Ortskrankenkasse’ 
(AOK), made available to us by its scientific research institute (WIdO). Compared 
with other statutory health insurance funds, or private health insurance, disease 
rates for the AOK are slightly elevated (see Schnee 2008). We refrain from study-
ing selection bias in that respect, but as the AOK members represent one third of 
the population, results are expected to be representative. Also, a uniformly larger 
disease level, even when extending to incidences, will balance in the difference 
between the dementia incidences, with as compared to without a preceding stroke.

The AOK’s health claims data (HCD) include information on age, year of birth 
and date of exit (death or migration to another insurance company). From the insur-
ance inventory on 01/01/2004, a simple random sample of 250,000 people is drawn. 
The health histories of those persons until the end of 2013 are retrieved. We exclude 
4121 persons with implausible information on sex, birth year or region of living. 
In that form, the data are sufficient for the lifetime state model in Appendix A. The 
AOK HCD also contain information on outpatient and inpatient diagnoses for each 
insured person, with at least one day of insurance coverage, regardless of whether or 
not they sought medical treatment.
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Recall our main focus. By sampling in 2004, we cannot strictly sample from the 
defined population because people who died earlier are not selectable, i.e. are left-
truncated. We have argued why the second design effect resulting from the differ-
ence between the population in Germany and the insurants of the AOK is neglected 
by us. There is a third design effect which we now discuss briefly. In 2004 we draw 
only a sample of those persons aged 50 years or older. That age is typically the ear-
liest at which a stroke or dementia occurs. Of course, 50 is not the earliest age at 
which a person may die and, thus a person who dies before age 50 is additionally 
left-truncated. We suppress this truncation reason, i.e. assume that death before 50 is 
impossible, for two reasons, in order to simplify the model. On the one hand, only ≈ 
6.5% of the people die before age 50 in western civilisations.1 Hence assuming that 
rate to be zero will not distort the results by much. On the other hand, our data donor 
WIdO allowed sampling 250,000 people, and without the restriction to those over 
50 would have resulted in ≈ 50% younger,2 and they would mostly remain healthy 
over the 10 years of observation. Half of the sample size means an increase in stand-
ard errors by a factor of 

√
2 , i.e. by 40%.

In the AOK HCD, all diagnoses are coded in the International Statistical Clas-
sification of Diseases and Related Health Problems (ICD), revision 10, issued by 
the WHO. Dementia was defined as having at least one of the following diagnoses 
coded by ICD-10: G30, G31.0, G31.82, G23.1, F00, F01, F02, F03, and F05.1. Note 
that by sampling at the beginning of 2004, a person with dementia diagnosis at that 
time (technically in that quarter or the next) may not indicate a dementia onset, but 
can be a pending case. We exclude those persons and n = 236,039 remain. For them, 
the mean follow-up time is 7.3 years, resulting in 1.7 million person-years at risk. 
Additional descriptive cross-sectional statistics as of 2004 are provided in Table 1.

Important longitudinal information for the models will entail 34 thousand per-
sons who will experience dementia onset until 2013. Finally, in view of assessing 
the effect of a stroke (ICD-10: I63, I64) on dementia onset, 19,201 persons will have 
experienced a stroke by 2013. Additionally, due to the Markov property, the infor-
mation about a stroke for 5864 persons in 2004 is likely to be an incidence, because 
a stroke is not a chronic disease and also likely to be the first stroke. We did not 
remove these individuals.

Six diseases (other than stroke) are considered in Mangialasche et al. (2012) as 
potential vascular risk factors for dementia. Along with age in Section 3.1, we adjust 
for vascular predisposition in Section  3.2. Hypertension (ICD-10: I10-I15) is the 
most frequent condition, with a prevalence of approximately 90% in the data. Hence, 
hypertension alone does not stratify sufficiently, so that we use the ‘two out of six’ 
rule for (vascular) multi-morbidity including the five other factors ‘type 2 diabe-
tes’ (ICD-10: E11-E14), ‘ischemic heart diseases’ (ICD-10: I20-I25), ‘atrial fibrilla-
tion’ (ICD-10: I48), ‘hypercholesterolemia’ (ICD-10: E78.0) and ‘obesity’ (ICD-10: 
E66).

1  https://​www.​ssa.​gov/​oact/​STATS/​table​4c6.​html#​fn1.
2  https://​servi​ce.​desta​tis.​de/​bevoe​lkeru​ngspy​ramide/​index.​html.

https://www.ssa.gov/oact/STATS/table4c6.html#fn1
https://service.destatis.de/bevoelkerungspyramide/index.html
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1.2 � Literature review

Similar ideas of testing the effect of stroke on dementia are found in Desmond et al. 
(2002), Ivan et al. (2002), Reitz et al. (2008), Savva and Blossom (2010), Kuźma 
et  al. (2018), Kim and Lee (2018) and Hbid et  al. (2020). We now compare our 
contribution broadly to the adjacent literature, distinguishing between substantial 
and methodological similarities. Substantially, Vieira et al. (2013) report dementia 
incidences, as do Leys et al. (2005) after a stroke. Death incidences, after a stroke 
(van den Bussche et al. 2010) and with dementia (Garcia-Ptaceka et al. 2014), are 
of use to us, because they constitute elements of one of our models and will enter 
the calibration of simulations. Dementia prevalence is studied in Doblhammer et al. 
(2018), and risk factors are presented in Mangialasche et  al. (2012). Community-
based studies on the effect of a stroke on dementia include (Ivan et al. 2002) and 
(Reitz et al. 2008). Cerebrovascular processes are studied in more detail by Hu and 
Chen (2017). Statistical risk factors common to dementia and stroke are studied in 
Pendlebury and Rothwell (2009). With respect to the method, our work has con-
siderable similarity to the study ‘Mortality of Diabetics in the County of Fyn’ in 
Andersen et al. (1993), and Andersen et al. (1988, Section 4) in particular. However, 
our truncation model is slightly easier, and our simple random sample of HCD is 
considerable larger than the data there. We reduce the arguments to those neces-
sary for our model. We make considerable use of Fleming and Harrington (1991), 
even though the book does not cover left-truncation. Weißbach et  al. (2009) and 
Weißbach and Walter (2010) apply a similar Markovian multi-state model, but to 
an economic question, and especially need to reduce their population in order to cir-
cumvent left-truncation. Note that right-truncation requires another method (see e.g. 
Dörre 2020; Weißbach and Dörre 2022; Weißbach and Wied 2022, and references 

Table 1   Descriptive statistics for AOK insurants 50+ sampled in 2004, cross-section mid of 2004, except 
(longitudinally): mean follow-up time and person-years at risk

Variable Number % Variable Number %

Age group Sex
[50,55) 37,635 15.9 Men 101,779 43.1
[55,60) 29,002 12.3 Women 134,260 56.9
[60,65) 36,419 15.4 Stroke
[65,70) 42,398 18.0 No 230,175 97.5
[70,75) 33,411 14.2 Yes 5864 2.5
[75,80) 27,062 11.5 Multi-morbid
[80,85) 18,984 8.0 No 144,816 61.4
[85,90) 6318 2.7 Yes 91,223 38.6
[90,95) 4001 1.7
[95,100) 744 0.3 Total 236,039 persons
[100,105) 62 0.03 Mean follow-up time 7.31 years
[105,110) 3 0.001 Person-years at risk 1,724,296 years
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therein). Finally, Weißbach et  al. (2021) also analyse the same dataset and with 
dementia as the endpoint, but not using a multi-state model and with an emphasis on 
left-censoring.

2 � Univariate analysis of health states

The set of assumptions in the present section is to some extent educational, because 
the assumptions will be too restrictive for realistic results on the development of 
dementia. The results cannot be compared to the epidemiological literature. Sec-
tion 3.1 will present a first realistic model, requiring more notation. Here we only 
explain major modelling decisions. Following up on Sect. 1.1, let t count the years 
after a person’s 50th birthday, and we continue to call t ‘age’. The major method-
ological challenge is that people from our population of interest have died before 
2004, the year when we started to observe. Their health histories have been deleted 
after their deaths, i.e. we cannot observe any of those histories, even if some of these 
people would belong to a simple sample from that population. Methodological argu-
ments on how to proceed when drawing from the conditional population of alive 
people in 2004, are discussed in Appendix A in a lifetime state model with death 
being both the sole event of interest and the event of truncation. To augment the 
scope from mortality to morbidity, let here Xt indicate a person’s disease state, H, S1 
or D, or d, at the age of t (see Figs. 1 and 3). A healthy individual’s status is set to 
S1 at the time of the first stroke, and preserved (in the absence of further state tran-
sitions), also in cases of subsequent strokes. For a person with dementia we write 
Xt = D , irrespective of whether or not a stroke has preceded dementia onset at that 
age. A stroke after dementia onset is not recorded at all, as it is not relevant for 
the assessment of a stroke effect on dementia. Now, with the—in comparison with 

�
0 t
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�
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mortality analysis—two additional states, S1 and D, no transition into any other state 
than d before 2004 prohibits observing the health history from 2004 onwards. Only 
death truncates a person. We will often refer the reader to Appendix A for detailed 
analytical arguments, and amend arguments in this section only when the disease 
state model differs methodologically from the lifetime state model.

2.1 � Contribution of an observed person to inference

Roughly speaking, we aim at maximum likelihood inference. In the case of a simple 
sample, each randomly drawn person contributes with its density to the likelihood, 
and the estimation criterion is the maximisation of the joint density as a function 
of the parameter, i.e. the likelihood. We will see that people not observed do not 
contribute to our criterion function and we now derive the contribution for each 
observed history. We first collect all possible state transitions in the index set

Furthermore, universally for all persons, we do not follow a health history any 
further than � years. The continuous-time history X = {Xt, t ∈ [0, �]} , observed 
in full, in parts or not at all, defined on the probability spaces (Ω,F,P

�
) repre-

sent either the population or one random draw from it. The Markov property 
is assumed for X , so that the history is determined by the transition intensities 
�hj(t) ∶= lims↘0 P�

(Xt+s = j ∣ Xt = h)∕s . In this section, we model the population of 
Germany (at that time) as age-homogeneous, i.e. assume �hj(t) ≡ �hj . (The realisti-
cally age-inhomogeneous intensities follow in Sect. 3.1.) By parameter we mean the 
vector � ∶= (�hj, hj ∈ I)� . We consider a simple random sample of size nall persons 
drawn from the population (see Fig. 2). The generalisation, compared to the lifetime 
state model in Appendix  A, is less severe when we assume that all persons start 
in the same state, X0 = H , at the age origin, and all theoretical arguments assume 
alike. In practice, from those not truncated by death, with number denoted as n in 
Appendix A.2, X0 ∈ {S1,D} is known to be very rare (see e.g. Doblhammer et al. 
2018, Abb. 2.2). Moreover, excluding those exceptions from the data is impossible 
because, for example, for an observed person with Xu = D , X0 is unknown. For the 
applications, we condition on the distribution of X0 , which leaves the criterion as a 
function of � unchanged, if the distribution of X0 does not depend on � . Essentially, 
with L denoting the distribution, this is because we can decompose

(In the case of L
�
(X0) , efficiency gets lost.) Note that we again observe the same 

n < nall persons as in the lifetime state model of Appendix  A, with histories that 
occur—completely or in part—during our observation period between 2003 and 
2014 (see Fig. 2).

I ∶= {HS1, S1D,HD,Hd, S1d,Dd} (see ‘arrows’ in Figure 1).

L
�
(X) = L

�
(X ∣ X0)L(X0).
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For each observed history, the ‘age-at-study-begin’, U, is the time between the 
calendar dates of the 50th birthday and the study begin on 01/01/2004. In Appen-
dix A.2 we initially simplify to a non-random age-at-study-begin, u, and the age-
at-death T is reformulated as (jump-diffusion) process NT . Here we generalise and 
reformulate one history X in several Nhj(t) ∶=

∑
s≤t 1{Xs−=h,Xs=j}

 , the processes 
‘counting’ the transition between states, up to age t, and Yh(t) ∶= 1{Xt−=h}

 , indicat-
ing residence in state h, at the age of t. The counting processes are collected in the 
vector NX(t) ∶= (Nhj(t), hj ∈ I)� . Now, as usual, statistical statements about param-
eters are inferred from statements about the location (the ‘signal’) of the random 
experiment. In order to define a location for a stochastic process, probabilities may 
be calculated on a filtration Nt ∶= �{NX(s), 0 ≤ s ≤ t} . We can assume that NX(t) is 
adapted to it, because we theoretically assume X0 = H . We assume for the ‘true’, the 
population, parameter �0 (similar to Condition (A1) in Appendix A): 

	(B1)	 It is �hj0 ∈ Λhj ∶= [�hj;1∕�hj] for some small �hj ∈ (0, 1).

The compensator of NX , the location concept here, has an intensity (the deriva-
tive of the compensator) with respect to Nt and P

�
 of �(t) ∶= (Yh(t)�hj, hj ∈ I)� . 

(When only h appears, the first position of hj it meant. Especially h ≠ d , because 
death is absorbing.) Starting with deterministic u, a person is not left-truncated in 
the case of A ∶= {Xu ≠ d} . Different to the lifetime state model is that the history 
up to u is only known when Xu = H . If for instance Xu = S1 , the age-at-stroke is 
left-censored. This is an important incentive to start the observation only at u, i.e. 
uN(t) ∶= NX(t) − NX(t ∧ u) , where t ∧ u ∶= min(t, u) . Due to the Markovian prop-
erty it is adapted to the filtration uGt ∶= �{uN(s), u ≤ s ≤ t}.

Lemma 1  With respect to the probability measure PA
�
(F) ∶= P

�
(F ∩ A)∕P

�
(A) for 

F ∈ F  , the intensity of uN(t) is u�(t) ∶= 1{u<t}�(t).

The proof is as in Section A.1.1. Note that PA
�
 depends on the parameter � and 

on u. With uYh(t) ∶= 1{u<t}Yh(t) , the coordinates of u� are u�hj(t) ∶= uY(t)�hj . 
The observed left-truncated and right-censored counting process is 
uN

c(t) ∶= ∫ t

0
C(s)duN(s) , with C(t) ∶= 1{t≤u+10} and uY

c(t) ∶= C(t)uY(t) (compare 
Fleming and Harrington (1991), Example 1.4.2). It has intensity

with respect to PA
�
 and observed filtration uF

c
t
∶= �{uN

c(s), u ≤ s ≤ t} . For the dis-
tinction between observable and unobservable filtrations, see Section A.1.2. As uF

c
t
 

is a required self-exciting filtration, by Jacod’s formula (see Andersen et al. 1988, 
Formula 4.3), the contribution of a person (truncated or not) to the marginal likeli-
hood and its (natural) logarithm are:

(1)u�
c(t) ∶= 1{t≤u+10}u�(t) = 1{u<t≤u+10}�(t)
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Note u�c
⋅

(t) ∶=
∑

hj∈I u�
c
hj
(t) together with uNc

⋅

(t) ∶=
∑

hj∈I uN
c
hj
(t) . The product inte-

gral   is explained in Appendix A.1.1. Essentially, the discrete approximation of the 
history X is a collection of random increments. The probability function (pf) of this 
collection can be a product of the increments’ pf’s. Decreasing the grid spacing 
defines an integral. The double-use of the integration symbol dt in the first line is 
still different to the line above Formula (A1) (in Appendix  A.1.1), because Y(t) 
drops to zero after T, whereas Yh(t) is only one for a different state. The reason for 
the exponential function in the third line is explained shortly after Formula (A1). 
For the second equality, on the logarithmic scale, the logarithm of a product 
becomes a sum of logarithms, and no new integration for decreased grid spacing 
arises, the Stieltjes integration for discontinuous g ( ∫ fdg =

∑
fΔg ) suffices. Note 

(generally Δf (t) ∶= f (t) − f (t−) (see Andersen et al. 1993, Sect. II.2) that ΔuN
c
hj
(t) is 

only not zero if uNc
hj
(t) jumps. These jumps are of height one. Further note that ∫ u+10

u
 

can be replaced by ∫ �

0
 , because uYc

h
(t) already accounts for the limits, and similarly, 

in the product, [u, u + 10] is accounted for in uN
c(t) . Note that, because almost surely 

uN
c
hj
(u) = 0,

A truncated person does not contribute to the marginal likelihood, as argued in detail 
with Formula (A1) in Appendix A. As X is random, so too must be the age-at-study-
entry, U. Similar to Condition (A2) in Appendix A.1.2, together with independent 
truncation, we impose as additional assumption, that not everyone is dead, prior to 
2004: 

	(B2)	 U and X are independent, it is A ∶= {XU ≠ d} and 𝛽
�0

∶= P̃
�0
(A) > 0

The additional information by stopping time U, i.e. for (X,U) , and at the same time 
the loss in information by truncation, is reflected by including UY

c in the filtration 
uF

c
t
 , UF

c
t
∶= �{UN

c(s), UY
c(s), u ≤ s ≤ t} . Consult Appendix  A.1.2 to see that, 

(2)

(3)
�

��hj
ln dP =

uN
c
hj
(�)

�hj
− ∫

�

0
uY

c
h
(t)dt.
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similar to non-random truncation (2), conditional on the last two coordinates, by 
Jacod’s formula the logarithmic marginal density of (X,U,1A) up to � is

where U replaces u in the definitions of uNc
hj
(t) , uYc

h
(t) and u�c(t) of (1). The expres-

sion uses the Doob–Meyer decomposition of Nhj(t) , stacked to NX . Occasionally, we 
will denote the second term in (4), and in corresponding decompositions for more 
advanced models, the subtrahend, as ‘Y-term’. The first term, the minuend, will be 
denoted as the ‘N-term’, because Y will vanish after taking derivatives, essentially 
due to d

dx
∫ = ∫ d

dx
 and ln(ax) = ln(a) + ln(x) . The observed left-truncated and right-

censored versions thereof are

with C(t) being one, as long as the person is not censored, i.e. for t ≤ U + 10 and 
UN(t) ∶= NX(t) − NX(t ∧ U) . That the contribution of a truncated person is one, is 
argued in Appendix A.1.2, Formula (A2).

2.2 � Point estimates and their standard errors

As in Appendix A.1.3, i denotes the person in Xi , Ui , UNc
hji

 and UYc
hi

 and n =
∑nall

i=1
1Ai

 
with Ai as in Condition (B2). The truncated persons without contribution to the con-
ditional likelihood (marginalisation is not mentioned from now on) are sorted to the 
end of the unobserved sample, a convention already in Heckman (1976). All others 
contribute with (4) to

This requires Ui to be random as explained in Appendix  A.1.3. With 
UN

c
hj∙
(t) ∶=

∑n

i=1 UN
c
hji
(t) and UYc

h∙
(t) ∶=

∑n

i=1 UY
c
hi
(t) (sketched in Fig. 3 for nall = 4)

the unique root of the derivatives of (5) - and hence the point estimates—are, by 
(3) simply

One can avoid integration in the denominator in (6). Of the interesting states for h, H 
and S1 , rewrite e.g. for h = H:

(4)ln UL
c
�(X,U ∣ �) = ∫

�

0

∑
hj∈I

ln(UY
c
h
(t)�hj)dUN

c
hj
(t) −

∑
hj∈I

∫
�

0
UY

c
h
(t)�hjdt,

UN
c(t) ∶= ∫

t

0

C(s)dUN(s) and UY
c
h
(t) ∶= C(t)1{U<t}Yh(t),

(5)ln UL
c
�(data;�) =

n∑
i=1

ln UL
c
�(X

i,Ui ∣ �).

(6)𝜆̂hj =
UN

c
hj∙
(𝜏)

∫ 𝜏

0 UY
c
h∙
(t)dt

.
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Note that similar to (A5), by using the simple sample assumption, among those who 
survive Ui (i.e. 2003), the portion in the study period at age t in state h is asymptoti-
cally the same in the observed sample and in the entire population. By the LLN, for 
fixed t,

The latter will typically be positive, but for our parametric model, we only need to 
assume (compare Condition (A3)): 

	(B3)	 ∫ 𝜏

0

∑
h∈{H,S1,D} m

A
h
(t)dt > 0

By verifying regularity conditions, we arrive at the (joint) asymptotic distribution of 
the estimators 𝜆̂HD and 𝜆̂S1D by standard results on martingales. It depends on mA

h
(t) , the 

conditional prevalence of state h at age t in the population, and �
�0

 , the probability of a 
person from the sample to be observed, i.e. not to be truncated.

Theorem 1  Under Conditions (B1)–(B3) and mA
h
(t) defined in (7) it is �̂ , composed 

of (6), consistent and 
√
nall(�̂ − �0)

D
⟶N(0,�−1(�0)) with diagonal matrix �(�0) of 

diagonal elements

Roughly speaking, the arguments of the proof, given in Appendix  B, are similar 
to the case of the one-dimensional parameter space in Appendix A.1.3. Luckily, the 
multivariate parameter space here results in a diagonal matrix of asymptotic variance-
covariance matrix, and positive definiteness follows from the positivity of the diagonal 
elements.

It remains to consistently estimate �(�0) , in order to construct a confidence interval 
for the difference 𝜆̂S1D0 − 𝜆̂HD0 with the standard error. This then allows a Wald-type 
test for the effect of a stroke S1 on the intensity of dementia onset for the AOK HCD in 
Sect. 2.4. By Theorem 1, Var(�̂) = Var(

√
nall�̂)∕nall

⋅

=�−1(�0)∕nall , so that, for esti-
mating the asymptotic variance in Theorem 1, define −J�(�0) as

∫
�

0
UY

c
H∙
(t)dt =

n∑
i=1

∫
Ui+10

Ui

1{Xi
t−=H}dt

=

n∑
i=1

1{Xi
Ui
=H}

(
101{Xi

Ui+10
=H} + 1{Xi

Ui+10
∈{S1,D}}(sup

t

{Xi
t
= H} − Ui)

)

(7)UY
c
h∙
(t)

n

P
⟶mA

h
(t) ∶= P̃

�0
(Xt = h ∣ A).

�hj,hj(�0) ∶= �
�0 ∫

�

0

∑
hj∈I

mA
h
(t)

�hj0
dt, for hj ∈ I.

diag

(
�2

��2
hj

ln UL
c
�(data ∣ �) ∣

�=�0
;hj ∈ I

)
= −diag

(
UN

c
hj∙
(�)

�2
hj0

;hj ∈ I

)
.
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Now, as J�(�0)∕nall
nall→∞,P
⟶ �(�0) (see Andersen et al. 1993, Formula 6.1.11), it is

due to J−1
� (�0)hj,hj = �2

hj0
∕UN

c
hj∙
(�) , (6) and the CMT. The standard error of 𝜆̂hj is the 

square root thereof. Note that even though nall , and with it the asymptotic variance - 
as component of �(�0) -, is not observable, the standard errors are indeed observed.

2.3 � Finite sample properties

We conduct a Monte Carlo simulation, primarily to visualize the asymptotic results 
on consistency, measured in (root) mean squared error, and on normality for small 
sample sizes, as indicated by Theorem  1. In particular, we find that the asymp-
totic approximation is rather precise for our statements on basis of the AOK HCD. 
Appendix A.1.4 does alike for the lifetime state model. We refrain from indicating 
the true parameter by the sub/superscript and drop 0 in this section. We arrange � as 
generator (left side):

Here, the small dot signals summation over the respective index 
∑

j.

2.3.1 � Algorithm for simulating a history

We simulate a disease state history with the description in Albert (1962). As dis-
cussed in Sect.  2.1, we assume X0 = H , so that Xt ≡ H on [0, T1) with T1 having 
the cumulative hazard function AH⋅

(t) = �H⋅
t (i.e. T1 ∼ Exp(�H⋅

) ). Then, in t = T1 , 
X migrates from H to j ∈ {S1,D, d} with pHj = P̃

�
(XT1

= j ∣ XT1−
= H) , with 

pHj = �Hj∕�H⋅
 . Finally, (if XT1

≠ d ), Xt ≡ j on [T1, T2) with T2 (and j ∈ {S1,D} ) 
having cumulative hazard function Aj⋅(t + T1) − Aj⋅(T1) = �j⋅t (i.e. T2 ∼ Exp(�j⋅) ). 
In t = T2 , X migrates from j to k ∈ {D, d} with pjk . Then (if XT2

≠ d ), Xt ≡ D on 
[T2, T3) with T3 having cumulative hazard function ADd(t + T2) − ADd(T2) = −�Ddt 
(i.e. T3 ∼ Exp(�Dd)).

2.3.2 � Selection of true parameter, sample size and birth distribution

For a true parameter � in a realistic region of the parameter space, intensities from 
the literature are reconciled with results the AOK HCD, anticipating Sect.  2.4. 
The theoretical relation between incidences and intensities is given by P(t) = etQ 
(see e.g. Weißbach et  al. 2009, Formula 2), where P(t) denotes the matrix of 

(8)
�
Var(𝜆̂hj) = J−1

𝜏 (�̂)hj,hj =
UN

c
hj∙
(𝜏)

(∫ 𝜏

0 UY
c
h∙
(t)dt

)2 ,

(9)Q ∶=

⎛⎜⎜⎜⎝

−𝜆H⋅
𝜆HS1 𝜆HD 𝜆Hd

0 − 𝜆S1⋅ 𝜆S1D 𝜆S1d
0 0 − 𝜆Dd 𝜆Dd
0 0 0 0

⎞⎟⎟⎟⎠
=

⎛⎜⎜⎜⎝

−0.086̄ 1∕30 0.02 1∕30

0 − 0.17 0.07 1∕10

0 0 − 0.1 1∕10

0 0 0 0

⎞⎟⎟⎟⎠
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t-year probabilities P(Xt = j ∣ X0 = h) . Similar to Section A.1.4, the approximation 
eQ ≈ I + Q (for Q ‘small’) allows simply replacing the one-year incidences for the 
intensities. For dementia onset after a stroke (Leys et al. 2005) find a one-year inci-
dence of 7%. The value �S1D = 0.07 will be confirmed for the AOK HCD in Sect. 2.4 
(Table 3). For dementia onset without a stroke, the AOK HCD result in �HD = 0.02. 
Similarly, Vieira et al. (2013) collect, but independent of whether a stroke preceded, 
one-year incidences of 0.008, 0.001 and 0.002 (dependent on the country and age 
range) for individuals below age 65. The AOK HCD value of 0.02 is larger, but aims 
at high ages as well and we stick to 0.02.

There are other parameters which are necessary for the simulation, but not of pri-
marily of interest for the main question and will thus not be reported in Sect. 2.4. 
However, we can still estimate them from the AOK HCD using (8) and compare 
with the literature. To start with, 𝜆̂S1d = 0.07; however, van den Bussche et al. (2010) 
find for Germany, also from some other HCD, that 17% of people die within one 
year after a stroke. We consider only the first stroke, which explains to some extent 
the smaller value. We use the value in between 0.1. From the AOK HCD, 𝜆̂Dd of 9%, 
whereas Garcia-Ptaceka et al. (2014) find for Sweden from registry data that 11% 
die each year with dementia. Of course, conceptionally, those that had died from 
other causes would need to be excluded, but we use as value in between 0.1. From 
AOK HCD, 𝜆̂HS1 = 0.02, whereas Garcia-Ptaceka et al. (2012) find incidences above 
0.01 only for French people above age 80 and for Italian and British above the age of 
75. We even opt to increase �HS1 slightly further to 1/30 ≈ 0.03. For the death inten-
sity without stroke or dementia �Hd , we did not find a relevant study. Our general 
death hazard from Appendix A.1.4 is � = 0.035 and we decrease slightly to 1/30. 
Our final choice is collected in (9) (right-hand side).

As sample sizes we let nall vary from one to five, ten, 20 (and later 100) thousand 
people. All are below the sample size latent to the AOK HCD. However, we will see 
convergence to kick in, so that more computational burden is unnecessary. For the 
distribution of the age-at-study-begin U, we follow (Weißbach and Wied 2022) and 
assume the distribution of U to be uniform.

The longer the birth period, the more people are left-truncated, our population is 
born within 54 years (see Fig. 2). However, to start with, we only use 30 years, i.e. 
U ∼ U[0, 30] . Combined with (9), on average, 48.7% in the simulated samples are 
unobserved due to left-truncation.

2.3.3 � Interpretation

The number of simulation replications is 10,000. The simulation results in Table 2 
(top) confirm consistency of �̂ . Especially the root mean squared error drops, as a 
function of the sample size. The simulation averages of 𝜆̂HD − 𝜆HD (and similarly for 
transitions S1D ) reveal a generally small bias.

The standard error (8) can also be suspected to be consistent (see Table 2, bot-
tom), without a formal proof in the above section. Simulations show similar behav-
iour for all other 𝜆̂hj (and their standard errors). The actual level of the confidence 
interval is close to the nominal.
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To mimic our population of birth cohorts 1900 to 1953, we now use U ∼ U[0, 54] , 
and again (9). We chose nall = 100,000, being still below the sample size behind 
the AOK HCD, and run (only) 2000 simulation replications now. The left and mid-
dle panel of Fig. 4 confirm the asymptotic normality of 𝜆̂HD and 𝜆̂S1D (of (6)) stated 
in Theorem  1. The theorem also states asymptotic independence of the two esti-
mators, which will be important when subsequently deriving a confidence interval 
for the difference. The simulated correlation corr(𝜆̂HD, 𝜆̂S1D) = -0.02 confirms the 
independence.

Table 2   Simulated bias (Bias) and root means squared error (rMSE) for (6) (top panel) and (8) (bottom 
panel) and actual level for confidence interval at the nominal level of 95% for �

HD
 and �S1D (top panel) 

(8) (n ≈ 0.513 × n
all

 , � of (9))

Estimator (6) of � (only transitions HD and S1D)

Bias ( × 102) rMSE ( × 102) act. level (in %)

n
all

�
HD

�S1D �
HD

�S1D �
HD

�S1D (%)

1000 −0.0008 0.0352 0.3029 1.1435 94.39% 94.88
5000 0.0003 0.0075 0.1345 0.5124 94.51% 95.20
10,000 −0.0009 0.0055 0.0947 0.3630 95.16% 94.82
20,000 −0.0005 −0.0013 0.0663 0.2562 95.20% 95.01

Estimator (8) of Var(�̂) (only transitionsHD and S1D)

Bias ( × 104) rMSE ( × 104)

n
all Var(𝜆̂

HD
) Var(𝜆̂S1D) Var(𝜆̂

HD
) Var(𝜆̂S1D)

1000 −0.0015 0.0415 0.0156 0.3022
5000 −0.0001 0.0025 0.0014 0.0262
10,000 0.0000 0.0005 0.0005 0.0092
20,000 0.0001 0.0004 0.0002 0.0033
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Fig. 4   Distribution of estimators (6) of dementia intensities �HD = 0.02 and �
S1D

 = 0.07 (left/middle, ≈ 
80% truncated units) and of estimator (A4) for death hazard �0 = 0.02 (right, 40,000 uncensored observa-
tions), kernel smoothed from 2000 simulated samples with each n = 250,000 observations (Explanation 
of panels and symbols is distributed over larger parts of text)
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2.4 � Result for AOK HCD

As the population, we consider the 76 million people born in Germany between 
01/01/1900 and 31/12/1954 (see Fig.  2). The data, i.e. the truncated sample, was 
described in Sect. 1.1. We only remind readers here on the number of observations n 
= 236,039, and on the maximally observed timespan � := 54+10 = 64 years (after a 
person’s 50th birthday). By doing so, n persons are at most followed until the age of 
114 (see Fig. 8). The least possibly observed lifetime is just above 50 years, for a person 
turning 50 shortly before 01/01/2004 and dying shortly thereafter. Preliminary results 
for the lifetime state model are in Appendix A.2, where the hazard rate of the lifetime 
has been modelled, and we expand our perspective now to the history of vascular dis-
eases. We start from the logarithmic conditional likelihood (5) for the model introduced 
during Sect. 2.1. In the disease history model pursued here, in contrast to ‘Mortality of 
Diabetics in the County of Fyn’ (see Andersen et al. 1993), the age-at-study-begin, U, 
is linked to the age-at-study-end by U + 10 (compare Andersen et al. 1993, Examples 
III.3.6, IV.1.7 and VI.1.4P). As in Hbid et al. (2020), we compare �HD to �S1D . The data 
cover the information relating 34,012 people with dementia onset in the monitoring 
period, split into 6275 after a stroke, and 27,737 not preceded by a stroke (see Table 3). 
Already with a stroke until 2004, 5864 persons (see Table 1) must be combined with 
19,201 with newly diagnosed strokes between the third quarter 2004 and the end of 
2013.

Point estimates (6) and standard errors (roots of (8)) are given in Table  3. Note 
that the 1,724,296 person-years at dementia risk of Table  1 are split into 85,645 
after at stroke and 1,638,651 without a stroke. Even though 6275 dementia cases 
after a stroke does not appear to be very large, compared to the overall 25 thousand 
stroke cases, we find that a stroke increases the intensity of suffering from dementia 
from 𝜆̂HD ≈ 0.02 to 𝜆̂S1D ≈ 0.07. Due to the asymptotic independence of both esti-
mators, by Theorem  1, it is Var(𝜆̂S1D − 𝜆̂HD) = Var(𝜆̂S1D) + Var(𝜆̂HD) and (see 
Table 3) estimated to be 0.000932 + 0.0001022 = 8.6 × 10−7 . Hence, approximately 
𝜆̂S1D − 𝜆̂HD ∼ N(𝜆S1D0 − 𝜆HD0, 0.000927

2) , so that an approximate 95%-confidence 
interval of the intensity difference is [0.055 ± 0.00181] = [0.053,0.057]. As the aim of 
the study is to determine whether having had a stroke has an effect on dementia onset, 
the corresponding Wald-test rejects, at the 5% level, because the confidence interval 
does not overlap with zero. This is equivalent to the statement that the absolute of the 

Table 3   Statistics, point estimates (6) and standard errors (SE, (8)) for age-homogeneous model

# ‘Dementia after stroke’ ‘Time after stroke’ Point SE

Un
c

S1D∙
(�) ∫ �

0 UyS1∙(t)dt 𝜆̂S1D
√

J−1
𝜏 (𝜆̂S1D)

6275 85,645 0.072 0.00092

# ‘Dementia without stroke’ ‘Healthy times’ Point SE

Un
c
HD∙

(�) ∫ �

0 UyH∙(t)dt 𝜆̂
HD

√
J−1
𝜏 (𝜆̂

HD
)

27,737 1,638,651 0.017 0.000102
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standardised intensity difference, as test statistics, exceeds the 97.5% quantile of the 
normal distribution. The generalisation to the age-inhomogeneous model, in Sect. 3.1, 
will build on the equivalent formulation, that the squared test statistic exceeds the 95% 
quantile of the �2

1
 distribution.

As a comparison, Desmond et al. (2002) reveal an increased relative risk (RR) for 
dementia of 3.8 after a stroke, adjusted for several demographic factors and cognitive 
status. Note that the similarity of incidences and intensities, argued in Sect. 2.3.2, ena-
bles comparing an RR, as the ratio of incidences, directly with a ratio of intensities. 
Our unadjusted intensity ratio is 0.072/0.017=4.2. Within the Framingham Study (Ivan 
et al. 2002), the adjusted RR of dementia with respect to stroke is estimated to be 2.0. 
The Rotterdam Study (Reitz et al. 2008) also indicates that a stroke doubles the risk 
of dementia (hazard ratio: HR=2.1). A systematic review and meta-analysis reveals a 
pooled HR of between 1.7 and 2.2 (Kuźma et al. 2018). Another result, but without 
multi-states, is that of Savva and Blossom (2010), who report a hazard ratio of 2. Based 
on South Korean HCD, and also using multi-state methods, Kim and Lee (2018) find 
a 2.4-fold risk of subsequent dementia after a stroke. Our intensity ratio of 4.2 exceeds 
the more recent studies, presumably because they adjust for covariates. We now, as the 
first covariate, adjust for age using age-inhomogeneous, namely piecewise-constant, 
intensities. We will see that the effect of a stroke on dementia onset becomes markedly 
smaller because of confounding and Simpson’s paradox: Simultaneously, intensities 
increase with age, and a stroke is more likely at higher ages.

3 � Confounders

In Sect. 2, the probability of suffering either event, stroke or dementia onset, has 
been equal for all ages and independent of any other factor. Morbidity intensities 
vary with age, and in order to compare our results for Germany later in Sect. 3.1.2 
internationally, we derive a model in Sect. 3.1 that adjusts for age inhomogene-
ity. Also, a risk-increasing effect of stroke on the dementia hazard might not be 
causal in the following sense. Assume that one group has a vascular predisposi-
tion and that a stroke (mainly) indicates the membership to that group. The infor-
mation about the predisposition could have been achieved earlier and a stroke 
should not trigger additional medical effort with regard to dementia prevention. 
We aim in Sect. 3.2 at classification according to vascular predisposition.

3.1 � Adjusting for age

We define (as in Weißbach et al. 2009; Weißbach and Walter 2010), for a parti-
tion 0 = t0,… , tb = � , X as a Markov process with piecewise constant intensities

(10)�hj(t) ∶=

b∑
l=1

1[tl−1,tl)
(t)�hjl.
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We do give neither the self-contained analysis of the lifetime state model of Appen-
dix A, nor the still complete analysis of the age-homogeneous disease state model 
in Sect. 2. We restrict the display to the statement of the conditional likelihood and 
derive the estimator. The asymptotic arguments are developed to the extent that the 
standard errors can be derived.

3.1.1 � Point estimate and standard error

The same two counting processes Nhj(t) and Yh(t) of Sect. 2.1, reformulate a his-
tory. When stacking �hj(t) to �(t) in the same way as Nhj to NX , NX has a compensa-
tor - with respect to Nt - with intensity �(t) ∶= (Yh(t)�hj(t), hj ∈ I)� . The compen-
sator is with respect to the probability measure P̃

�
 , where � ∶= (�HS11,… , �Ddb)

� 
collects the 6b parameters.

Theorem 2  For model (10) and under regularity assumption similar to Theorem 1, 
the conditional maximum likelihood estimators, similar to (6), for the time interval 
[tl, tl−1] are

with transition counts Ahj,l and time-at-risk Bh,l , per age-group:

Moreover, 
√
nall(�̂ − �0) converges in distribution to the central Gaussian distribu-

tion. The corresponding Hessian of the logarithmic conditional likelihood is a diag-
onal matrix with diagonal elements

Standard errors are hence similar to (8):

Proof  With little change, compared to (4), the conditional likelihood contribution is

(11)𝜆̂hjl = Ahj,l∕Bh,l,

Ahj,l ∶=

n∑
i=1

[tl,tl−1)∩[Ui,Ui+10)≠�

[
UN

c
hji
(Ui + 10 ∧ tl) − UN

c
hji
(Ui ∨ tl−1)

]

Bh,l ∶=

n∑
i=1

[tl,tl−1)∩[Ui,Ui+10)≠�
�

Ui+10∧tl

Ui∨tl−1

UYhi(t)dt

−J�(�0)hjl,hjl =
�2

��2
hjl

ln UL
c(data ∣ �) ∣

�=�0
= −Ahj,l∕�

2

hjl0
.

(12)�
Var(𝜆̂hjl) = Ahj,l∕B

2
h,l
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Note that there are five possibilities for the intersection of [tl, tl−1) with 
[U,U + 10) (see Fig.  5), so that for the N-term (with a ∨ b ∶= max(a, b) ) for 
[tl, tl−1) ∩ [U,U + 10) ≠ � (0 else)

and for the Y-term

Again by (4) with � , and comparable to (5), it is ln UL
c(data;�) the sum of the con-

tributions (13), so that (�∕��hjl) ln UL
c(data ∣ �) = Ahj,l∕�hjl − Bh,l , by interchanging 

differentiation and summation. For the multi-state Markov model with right-censor-
ing (but without left-truncation), the proof of the asymptotic normality (assuming 
consistency) for the piecewise constant-intensity model (10) is found in Weißbach 
and Walter (2010). A simplified proof for consistency is found in Weißbach and 
Mollenhauer (2011). It is to be expected that the proofs easily generalise to the case 
of left-truncation, because, similarly, a Doob–Meyer decomposition of the counting 
process into compensator and martingale is applied and enables the martingale limit 
theorem. 	�  ◻

(13)

ln UL
c(X,U ∣ �) =∫

U+10

U

∑
hj∈I

(ln UYh(t) + ln �hj(t))dUN
c
hj
(t)

−
∑
hj∈I

∫
U+10

U
UYh(t)�hj(t)dt.

∫
U+10

U

𝜕

𝜕𝜆hjl
ln

�
b�
l̃=1

1[tl̃−1,tl̃)
(t)𝜆hjl̃

�
dUN

c
hj
(t)

= ∫
U+10

U

1[tl−1,tl)
(t)

∑b

l̃=1
1[tl̃−1,tl̃)

(t)𝜆hjl̃
dUN

c
hj
(t)

= ∫
U+10∧tl

U∨tl−1

1

𝜆hjl
dUN

c
hj
(t) =

1

𝜆hjl
[UN

c
hj
(U + 10 ∧ tl) − UN

c
hj
(U ∨ tl−1)]

−
𝜕

𝜕𝜆hjl

∑
hj∈I

∫
U+10

U
UYh(t)

(
b∑
l̃=1

1[tl̃−1,tl̃)
(t)𝜆hjl̃

)
dt

= −∫
U+10

U
UYh(t)1[tl−1,tl)

(t)dt = −∫
U+10∧tl

U∨tl−1

UYh(t)dt.

U U + 10

tl−1 tl tl−1 tl tl−1 tl tl−1 tl tl−1 tl

κκ κ

Fig. 5   Possible intersections of [t
l
, t
l−1) and [U,U + 10) , possible situation for � in Sect. 3.2.1
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3.1.2 � Result for AOK HCD

The population and data, including the number of observation n, all remain the same 
as in the age-homogeneous model of Sect. 2. Section 2.4 revealed an effect of stroke 
on dementia onset that by far exceeds findings in contemporary epidemiology. An 
age-inhomogeneous dementia intensity has already been confirmed for the AOK 
HCD in Weißbach et al. (2021) and we now apply the piecewise constant intensi-
ties (10). Table 4 and Fig. 6 exhibit point estimates, standard errors and confidence 
intervals, due to (11), (12) and the generalisation of Theorem 1 with age intervals 
covering five years, i.e. with b = 12 pieces (see Table 4, column (1)).

For instance, in the age-group with the most dementia events, namely from 80 to 
85 years, the dementia intensity after a stroke of 𝜆̂S1D7 = 0.117 exceeds that without 
a stroke of 𝜆̂HD7 = 0.047 (see framed numbers in Table 4). The ratio of 2.5 is now 
two thirds of the ratio 0.072/0.017 = 4.2 of Table 3, and more in line with the recent 
literature, e.g. of 2.4 for Korea, as reported by Kim and Lee (2018). The reason is 
Simpson’s paradox; the age-homogeneous 𝜆̂S1D ≈ 0.07 of Sect. 2.4 is implicitly an 
average over a later part of the time span [0, �] where dementia onset is generally 
more likely. That is, a stroke generally occurs at higher ages, so that the denomina-
tor in the stroke-specific point estimator (6), starts accumulating ‘time at risk’ at a 
high age. The higher dementia intensity at such ages then results in many events in 
the numerator of point estimator (6), not attributable to the stroke event. This defect 
is resolved by the age-specific ratios in (11). And the defect does not balance when 
calculating the relative risk, because the defect does not affect the healthy persons’ 
intensity 𝜆̂HD.

The aim of the study is to determine whether a stroke has an effect on demen-
tia. Following up on the arguments in Sect. 2.4, consider the squared test statis-
tics for each of the b = 12 time intervals, and add those. Thus the sum for the 
12 differences is distributed as �2

12
 , due to the independence between estimation 

differences, which must also hold in analogy to Theorem 1 for age-inhomogene-
ity, as the proof of Weißbach and Walter (2010, Theorem 1) suggests. The 95% 
quantile of the �2

12
-distribution is 21.026 and the test statistic (using (12))

so that the test is significant.
In order to explore the role of age further, we may notice a decreasing stroke-

effect in age, measured in ratios. In the age group of the 55–60 year olds, the 
intensity ratio is 9.4 (see last column in Table 4). The higher the age, the smaller 
the intensity ratio. This coincides with the Framingham Study (Ivan et al. 2002) 
where the adjusted RR was higher for those younger than 80 (RR=2.6), com-
pared to those aged 80 or older (RR=1.6). The b = 12 age-specific Wald-type 
tests for pairwise differences (suppressed here) show that there is no significant 
difference in the risk of dementia between persons with and without a stroke for 

b�
l=1

⎛⎜⎜⎜⎝

𝜆̂S1Dl − 𝜆̂HDl�
�

Var(𝜆̂S1Dl) +
�

Var(𝜆̂HDl)

⎞⎟⎟⎟⎠

2

= 2413,
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the highest age groups (90 years and older). Similarly, the systematic review by 
Savva and Blossom (2010) also does not find an excess risk of dementia after a 
stroke in those aged 85 years or older.

3.2 � Adjusting for multi‑morbidity

Classification according to multi-morbidity at the time origin, i.e. at the age of 50, 
would impose a random dichotomous Z, but is not observed as some people are 
older in 2004. Moreover, multi-morbidity is age dependent, as acquisition of the first 
and second vascular disease could take place at any age after age 50. A time-depend-
ent covariate Z(t) = 1{[age at the second disease onset,�)}(t) is necessary. For a dichotomous 
covariate, the additive model 𝜆wo

hjl
+ 𝛽hjlZ(t) , as in Kremer et al. (2014, Formula 5), or 

the multiplicative �wo
hjl
e�hjlZ(t) (Andersen et al. 1993, Formular 7.6.2) are equal and we 

may write the model as piecewise constant. Theory for an additive model and a fixed 
z is derived in Kremer et al. (2014), for a lifetime state model with left-censoring. 
For the multiplicative model and right-censoring, Borgan (1984, Theorem 2) derives 
the asymptotic distribution of the estimator. The full theory for left-truncation will 
not be reported here, only the point estimator and standard error shall be given. 
Observable data require a random Z, as usual, and we assume that the distribution of 
Z does not depend on � and condition again (after conditioning on U, 1A and X0 ) on 
Z. For the ease of notation, define the age of multi-morbidity onset as 
� ∶= min{t ∶ Z(t) = 1} . We refrain from developing an age-homogeneous model 
and directly follow up on Sect. 3.1 model age-inhomogeneously.

Fig. 6   Age-inhomogeneous intensity from stroke ( S1 ) to dementia onset (D) 𝜆̂
S1D

(t) (top, grey) and 
healthy (H) to dementia onset (D) 𝜆̂HD(t) (bottom, black) on 5-year intervals: Point estimate ((11), solid 
line) and 95% confidence interval ((12), dashed line)
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3.2.1 � Point estimate and standard error

For each person only one additional split on one of the constant intensities pieces is 
necessary. For � before U or after U + 10, no further distinction is necessary (see 
Fig. 5). The idea is that a person now contributes to the estimation of a set of param-
eters without multi-morbidity, �wo

hjl
 , , i.e. to the transition counts and the at-risk-times, 

until that � . After the split, a set of parameters with multi-morbidity, �w
hjl

 , is esti-
mated. All parameters are collected in � . In detail, conditional on Z = z we define

Theorem 3  For model (14) and under regularity assumption similar to Theorem 2, 
the conditional maximum likelihood estimators are

with event counts Awo
hj,l

∶=
∑n

i=1
(UN

c
hji
((�i ∧ tl) ∨ tl−1) − UN

c
hji
(tl−1)) and 

Aw
hj,l

∶=
∑n

i=1
(UN

c
hji
(tl) − UN

c
hji
((tl−1 ∨ �i) ∧ tl)) , as well as times at risk 

Bwo
h,l

∶=
∑n

i=1
∫ (tl∧�i)∨tl−1
tl−1 UYhi(t)dt and Bw

h,l
∶=

∑n

i=1
∫ tl
(tl−1∨�i)∧tl U

Yhi(t)dt.

The proof is in Appendix  C. The squared standard errors are, similar to (12), 
Awo
hj,l
∕(Bwo

h,l
)2 and Aw

hj,l
∕(Bw

h,l
)2.

3.2.2 � Result for AOK HCD

Incorporating multi-morbidity by model (14), two tables that are similar to the 
unstratified Table 4, for the two groups with and without multi-morbidity are now 
given jointly in Table 5. Comparing the fourth and seventh columns, the dementia 
onset intensity is again larger when having had a stroke, as in the age-homogeneous 
model (of Sect. 2) and in the age-inhomogeneous model (of Sect. 3.1). Comparing 
the first and second rows, multi-morbidity does increase the dementia intensity, but 
by much less than a stroke does.

The graphical analysis of the estimates (15) and confidence intervals (compare 
to Fig. 6 for age-inhomogeneous model) are displayed in Fig. 7. If multi-morbidity 
were a predominant predictive factor, a stroke would now not increase the dementia 
incidence. This is not the case, as the middle panel shows. The two panels (left and 
middle) reveal little differences between the stroke effect, comparing the strata (apart 
from larger confidence intervals, because group sizes are smaller than in Fig. 6). The 
differences �wo

S1Dl
− �wo

HDl
 and �w

S1Dl
− �w

HDl
 appear to be equal, and also equal to the 

unstratified difference �S1Dl − �HDl (right panel), hereby strongly suggesting that a 
stroke is a risk factor irrespective of multi-morbidity. It is tempting to construct a �2

-test for the global hypothesis that a stroke is a significant risk factor, similar to that 

(14)�hj(t, z(t)) ∶=

b∑
l=1

1[tl−1,tl)
(t)
(
1[0,�)(t)�

wo
hjl

+ 1[�,∞)(t))�
w
hjl

)
.

(15)𝜆̂wo
hjl

= Awo
hj,l
∕Bwo

h,l
and 𝜆̂w

hjl
= Aw

hj,l
∕Bw

h,l
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at the end of Sect. 3.1.2. However, it is not clear that the diagonal structure of the 
asymptotic variance-covariance matrix holds. Recall that in the linear regression, a 
regressor introduces dependence between the parameter estimators (see e.g. Bley-
müller et al. 2020, Sect. 21.2 or 23.3).

4 � Discussion

In principle, left-truncation can be avoided by starting the observation period at 
the starting date of the population (as described in Weißbach et  al. 2009). In the 
current context, this translates into defining the population as all people born after 
01/01/1954. However, not only will the (many) events of stroke and dementia-onset 
for people born before 1954 be then un-analysed, the population will also not be 
of current interest, because dementia is a disease of old-age. More critical is that 
the similarity of the stroke effect from Sect. 3.1 to that of the related study in Kim 
and Lee (2018) for South Korea is authoritative, because the latter study takes more 
covariates into account. Multicollinearity can change the effect sizes. In addition, 
integrating exogenous continuous covariates in our left-truncated event history 
analysis other than the dichotomous covariate we considered, poses analytically and 
algorithmically new questions (see e.g. Kim et  al. 2012). Also critical is that we 
assume three sorts of independence. First of all, we assume it within pairs (Ti,Ui) , 
even though this is likely to be untrue in our case study, because U is an affine trans-
formation of the birthdate. Demographers typically assume younger cohorts to tend 
towards higher life expectancy. Theory about dependent truncation is currently 
developed in Emura and Pan (2020); Tanzer et al. (2021); de Uña-Álvarez and van 
Keilegom (2021); Rennert and Xie (2021). For dependent truncation, the trunca-
tion time distribution is essential, and different distributions are studied in Weißbach 
and Dörre (2022). Second, we can assume independence between pairs (Ti,Ui) , due 
to our data being a sample. However, for an observational study of event histories, 
stochastic independence must be concluded from irrelevance of the birthdate, as do 
Kaplan and Meier (1958). Third, close to longitudinal independence, probably the 
most critical assumption of our modelling strategy seems to be the Markovian. This 
is especially the case, as Pendlebury and Rothwell (2009) and Corraini et al. (2017) 
claim that the time elapsed since a stroke is a risk factor for the intensity of dementia 
onset. Such duration-dependence especially violates the assumption of multiplica-
tive intensities (B8) and thus requires a different approach (see e.g. Weißbach and 
Schmal 2019). Another critical point is that, after the first age axis (time-since-birth) 
and the second axis (time-since-observation-start), a potential third time-dependent 
component is the cohort trend, found in Weißbach et al. (2021) for the same data, or 
in Kremer et al. (2014), for another dataset. Assuming steady health progress, here 
for Germany, the given intensity estimates must be interpreted as intensities aver-
aged over cohorts, and are too high for today and are presumably lower for current/
future cohorts. Differences, and hence the stroke effect, could still be valid.
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Appendix A: Lifetime state model

The population, the sample of size nall , and among those, the n people not trun-
cated, are as described in Sect. 2. Death before age 50 is considered impossible, 
i.e. has hazard zero. Let t, as in Sect. 2, count the years after a person’s 50th birth-
day. Of interest is the lifetime T after the 50th birthday, called ‘age-at-death’ in 
the following (see Fig. 8). Assume hazard rate �E(⋅) ≡ � (i.e. T is Exponentially 
distributed) and CDF FE(⋅).

For a person randomly drawn from the population, T is defined on the prob-
ability space (Ω,F,P�) . 

	(A1)	 It is for the true parameter �0 ∈ Λ ∶= [�;1∕�] for some small � ∈ (0;1).

The population is further described as second measurement, by the time elapsed for 
a person since the age of 50 at study begin, U, denoted ‘age at study begin’ (see 
Fig. 8). It is an affine transformation of the birthdate. The distribution of U will not 
be important. We observe over 10 years.

A.1 Filtration and conditional likelihood contribution

It is well-known for a simple random sample, that the maximum likelihood estima-
tor for � is a ratio, where each person contributes a numerical one to the numerator 
and the observed time at risk, T, to the denominator. To be at risk or not, at a spe-
cific age, is formally Y(t) ∶= 1{T≥t}.

A.1.1 Non‑random left‑truncation and right‑censoring

To start with, we assume u to be deterministic and known for any person in the 
sample. This is unrealistic for the AOK HCD and will be relaxed in Section A.1.2. 
Left-truncation means for an observable person (top path in Fig. 8) to be observably 

Fig. 7   Estimates (15) for intensity model (14) as in Table 5 without multi-morbidity (left) from stroke 
( S1 ) to dementia onset (D) �wo

S1Dl
 (top, grey) and healthy (H) to dementia onset (D) 𝜆̂wo

HDl
 (bottom, black), 

intensity with multi-morbidity �w
S1Dl

 and 𝜆̂w
HDl

 (middle) - (dashed: confidence intervals); and differ-
ences thereof �wo

S1Dl
− �wo

HDl
 (right, dashed), �w

S1Dl
− �w

HDl
 (right, dotted), combined with un-stratified from 

Table 4�
S1Dl

− �
HDl

 (right, solid)
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at risk of death only from 01/01/2004 on, i.e. T − u = 34–29 = 5 years. The person 
should now contribute to the numerator of � estimator still with a numerical one, 
but to the denominator no longer with T, but only with T − u . Observing a person at 
all (whatever u), is indication of a small � and not observing a person is indication 
of a larger � . Hence any left-truncated person (middle path in Fig. 8) must enter the 
likelihood, although we do not see its measurement T. Note that by assumption we 
still know how many, nall − n , there are. The full maximum likelihood approach is 
worked out in Weißbach and Wied (2022).

Instead, we decide now to start observation at the age of u. When we express 
the lifetime T by the counting process NT (t) ∶= 1{T≤t} (for t ∈ ℝ

+ ) (similar for X 
in Sect. 2.1), this means we use the probability measure of NT after u, namely use a 
marginal likelihood (see Gouriéroux and Monfort 1995, Definition 7.2(i)).

In addition to F  , which describes the possible outcomes of T, potential out-
comes of NT may use ‘being in t’, i.e. knowing the path until t, and require age-
specific sigma-algebras, i.e. a filtration Nt ∶= �{1{T≤s}, 0 ≤ s ≤ t}.

Reducing attention, in the stochastic process corresponds to a coarser filtration. 
(Increasing the filtration will be necessary when the random U introduces more 
information.) By starting attention at the age of u, earlier outcomes are deleted 
from the model, formally {�, 0 ≤ s < u} . The remainder and observed filtration is 
now

For T < u a person is truncated (middle path in Figure  8), i.e. NT (u) = 1 , and 
no observable development will occur after u. Observable is, truncated or not, 
uNT (t) ∶= NT (t) − NT (min(t, u)) , i.e. uNT is NT if u ≤ T  and constantly zero other-
wise. Note that uGt = �{uNT (s), u ≤ s ≤ t}.

A likelihood is a density, similarly, the marginal likelihood is the marginal den-
sity starting from u, with respect to some dominating measure. (The marginal den-
sity is then evaluated at the observed data.) The NT , but also uNT , can be regarded 

uGt ∶= �{1{u≤T≤s}, u ≤ s ≤ t}.

�

01/01/2004
31/12/2013

01/01/1950

��
︷ ︸︸ ︷

age-at-death T = 34

��
︷ ︸︸ ︷

T = 35

︸ ︷︷ ︸

age-at-study-begin u (or U) = 39

��
︷ ︸︸ ︷

T = 50

︸ ︷︷ ︸

age-at-study-end u (or U) + 10 = 49

Fig. 8   Three cases of the date of birth (white bullet), date of death (black circle), observed duration 
(solid line) and unobserved duration (dashed line). Top (observed person): Path for person born 1/1/1925 
with death 01/01/2009, i.e. with T = 84–50, u (or U) ≤ T ≤ u (or U) +10 Middle (un observed person): 
Path for person born 1/1/1915 with death 01/01/2000, i.e. with T = 85–50, T < u (or U), u (or U) = 
89–50 Bottom (partially observed person): Path for person born 1/1/1915 with death 1/1/2015, i.e. with T 
= 100–50, T ≥ u (or U) + 10, u (or U) + 10 = 99–50 (Explanation of graphs and symbols is distributed 
over larger parts of text)
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as collection of Bernoulli increments (simplifying multinomial increments of X in 
Sect. 2.1). The random measure of an experiment will usually contain the location, 
and for a Bernoulli-experiment, only the expectation. Over infinitely short intervals, 
expectations of the increments define the intensity process. After a deterministic u, 
intuitively, the expected increase of uNT over an interval of length dt, at age t, is �dt 
if death is not reached, i.e. t ≤ T  , and if the person is no left-truncated, i.e. in case of 
A ∶= {T > u} . Else it is zero. We assume P𝜆(A) > 0 . Formally, the intensity process 
of uNT (t) after u is u𝛼(t) ∶= 1{u<t≤T}𝜆 , with respect to the dominating probability 
measure

that conditions on A. Due to the zero-intensity of a truncated person (Fig. 8, middle), 
the marginal likelihood contribution is one, i.e. ineffective. Hence even not observ-
ing the person, as will be the realistic case of the random U in Section A.1.2, still 
renders the marginal likelihood observable. That the dominating measure depends 
on � can be interpreted as information loss (for the untruncated person), ‘remaining’ 
in the dominating measure. For a proof that uNT , reduced by ∫ t

u u�(s)ds , really is a 
(P�(A), uGt)-martingale, with deterministic u, see Proposition 4.1 in Andersen et al. 
(1988).

Extending uGt to censoring will end this section, and is needed in our case 
study. Right-censored is the age-at-death if it occurs after 2013, or after hav-
ing left the AOK (see Figs. 2 and 8, bottom). As in Andersen et al. (1993, Exam-
ples III.3.6, IV.1.7 and VI.1.4) we superimpose right-censoring on left-truncation. 
The observed left-truncated and right-censored counting process is the Stieltjes 
integral uN

c
T
(t) ∶= ∫ t

0
C(s)duNT (s) = 1{u≤T≤min(t,u+10)} with C(t) ∶= 1{t≤u+10} 

(compare Fleming and Harrington 1991,  Example 1.4.2). It has intensity 
u�

c
T
(t) ∶= �1{u≤t≤min(T ,u+10)} with respect to PA

�
 and observed filtration

The uF
c
t
 is self-exciting (see Andersen et al. 1988, p4), as required (see Andersen 

et al. 1988, p23), so that the density is determined by Jacod’s formula (see Andersen 
et  al. 1988, Formula 4.3), (see also Andersen et  al. 1993, Formula 2.7.2” (and in 
extension 3.2.8)):

PA
�(F) ∶=

P�(F ∩ A)

P�(A)
, for F ∈ F,

uF
c
t
∶= �{uN

c
T
(s), u ≤ s ≤ t} = �{1{u≤T≤min(s,u+10)}, u ≤ s ≤ t}.

(A1)
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For an explanation of the second and third line, see page 24 and, respectively, Exam-
ple 2.2 in Andersen et al. (1988). For the first line note that whatever process Z, one 
defines dZ(t) ∶= Z(t) − Z(t − dt) for some ‘small’ dt (see Fleming and Harrington 
1991, Section 1.4), here duNc

T
(t) ≡ 0 . And also 1{u≤T≤min(t,u+10)} ≡ 0 . Note that the 

exponential function arises similar to ex = limdt→0(1 + xdt)dt
−1.

Independent persons are, due to different ui , not identically distributed. Each den-
sity is a Radon-Nikodym derivative with respect to a different measure, all of which 
are even dependent on the parameter, PAi

�
 . Even worse, measures are conditional on 

observation. That the density for a collection of independent persons is the product 
of the persons’ densities (see e.g. Bleymüller et al. (2020, Sect. 8.2) or Feller (1971, 
Sect. III.1.Example(a))), relies on the equal (and parameter-independent) dominat-
ing measure (usually being Lebesgues). To achieve equal dominating measures for 
all persons, we will and can follow Examples IV.1.7 and VI.1.4 of Andersen et al. 
(1993) in using a random U. Also, if T is considered random, U should equally be, 
as already argued after (3).

A.1.2 Random left‑truncation and conditional right‑censoring

Let the probability space for (T, U) be denoted as (Ω,F, P̃𝜆) , where the distribution 
of U will not be important and we suppress its parameter (and indicate the difference 
to P� with the tilde instead). 

	(A2)	 U and T are independent and 𝛽𝜆0 ∶= P̃𝜆0
(A) > 0 with redefined A ∶= {T > U}.

Defer censoring as in Section  A.1.1. As is the case for the AOK HCD, we 
observe durations U and T in the case of A, and neither measurement U 
nor T - nor the person at all - when T < U (see again Fig.  8). The filtration 
Gt ∶= �{1{T≤s},1{U≤s}, 0 ≤ s ≤ t} is unobservable. We may still start from the 
Gt-intensity, with respect to P̃𝜆 of the bivariate (NT (t),1{t>U}) (see Andersen 
et  al. 1993,  Example III.3.2), being �1{T≥t} because U is independent of T. To 
be at risk after study begin is now formally UY(t) ∶= Y(t)1{t>U} = 1{T≥t>U} . 
The intuition is for univariate UNT (t) ∶= NT (t) − NT (t ∧ U) is unchanged 
as compared to that for the fixed u. Due to U being a Gt-stopping time, now 
UFt ∶= {UNT (s), UY(s),U ≤ s ≤ t} , is an observable filtration. Precisely, the inten-
sity process of UNT (t) is U𝛼T (t) = 1{U<t≤T}𝜆 , with respect to UFt and the probability 
measure P̃A

𝜆
(F) ∶= P̃𝜆(F ∩ A)∕P̃𝜆(A) , for F ∈ F  , by optional stopping. Left-trunca-

tion thus preserves the multiplicative intensity form (see Andersen et al. 1988, Prop-
osition 4.1). Now, as UFt is self-exciting, we may again apply Jacod’s formula (see 
Andersen et al. 1988, Formula 2.1) in order to determine a conditional version of the 
marginal likelihood (see Andersen et al. (1988), Formula 4.3). It is for T ≤ U one 
and else (see Andersen et al. (1988, Example 4.1) or Andersen et al. (1993, Formula 
3.3.3 with Δ instead of d)) 

.
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For acknowledging censoring, first note that now T > U + 10 is known, 
conditionally on A, because U is observable. The deterministic censor-
ing renders unnecessary a further increase in filtration. Hence, similar to Sec-
tion  A.1.1, we apply Definition III.2.1 in Andersen et  al. (1993), with UNT 
in the role of N, (UFt) in the role of (Ft) , U�T in the role of �� and P̃A

𝜆
 in the 

role of P�� . Being conditionally deterministic, C(t) ∶= 1{t≤U+10} is independ-
ent and predictable. We define UYc(t) ∶= C(t)UY(t) = 1{U≤t<min(T ,U+10)} , so that 
U
N

c

T
(t) ∶= ∫ t

U
C(s)d

U
N

T
(s) = 1{U≤T≤min(t,U+10)} has intensity U𝛼c

T
(t) = 1{U<t≤min(T ,U+10)}𝜆 , 

with respect to the observable filtration UF
c
t
∶= {UN

c
T
(s), UY

c(s+),U ≤ s ≤ t} and 
conditional distribution P̃A

𝜆
 (see Andersen et al. 1993, Section III.2.2). By Formula 

3.2.8 in Andersen et al. (1993), the conditional (marginal) likelihood is for T ≤ U 
again one and otherwise:

For the second line, similar to ΔUN
c
T
(t) from Section  2.1, dUNc

T
(t) is only one if 

uN
c
T
(t) jumps.

A.1.3 Large sample properties and standard error

We now combine the contribution (A2) for each person i (truncated or not) to 
the conditional likelihood (‘marginalisation’ will not be mentioned from now on) 
for the (latent) simple sample of size nall . The number of observations is n := ∑nall

i=1
1Ai

 (see Fig.  2 and Condition  (A2)). Again, those truncated are sorted to 
the end of the sample. Due to the assumption of a simple sample, the logarith-
mic conditional likelihood for the data is the sum of logarithms for contributions 
(A2) (including zeros for the truncated). We denote by Ncens := 

∑n

i=1
1{Ti>Ui+10}

 
the number of right-censored and by Nuncens := n - Ncens = 

∑n

i=1
1{Ui<Ti≤Ui+10}

 the 
number of neither truncated nor censored people and can write ln UL

c

�(�) as

so that the unique estimator (if in Λ , see Condition (A1)) becomes

For our parametric model, we assume 

(A2)

(A3)
n∑
i=1

ln UL
c
�(�)i = Nuncens ln(�) − �

n∑
i=1

1{Ui≤Ti≤Ui+10}
(Ti − Ui) − 10�Ncens,

(A4)𝜆̂ = argmax𝜆∈Λ ln UL
c

𝜏(𝜆) =
Nuncens∑n

i=1
1{Ui≤Ti<Ui+10}

(Ti − Ui) + 10Ncens

.
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	(A3)	 ∫ 𝜏

0
P̃𝜆(U < t ≤ min(T ,U + 10) ∣ A)dt > 0.

Theorem  4  Under Conditions  (A1)-(A3) it is 𝜆̂ of (A4) consistent and √
nall(𝜆̂ − 𝜆0)

D
⟶N(0, 𝜎−1(𝜆0)) , for nall → ∞ , with

Proof  Due to the uniqueness of 𝜆̂ , for both consistency and asymptotic normality, 
we need to verify Conditions (A)-(E) of Andersen et al. (1993, Theorems VI.1.1+2). 
In order to map the notations, note that n becomes nall , an ∶=

√
nall , � becomes � 

and h is redundant. The �(t;�) becomes, by interchanging conditional expectations 
with summation, the multiplicative intensity process of UNc

T∙
(t) ∶=

∑n

i=1 UN
c
Ti
(t) , 

namely U𝛼c
∙
(t;𝜆) = 𝜆

∑n

i=1
1{Ui<t≤min(Ti,Ui+10)}

 . By Condition (A1), (A) is fulfilled for 
intensity U�c

T
(t) and therefore for U�c

T∙
(t;�) and the logarithm of the likelihood (see 

Formula (A2)). For (B), because by the LLN, for fixed t ∈ [0, �] , for the portion in 
the study period alive at the age t and observed it is

due to the simple sample assumption. Furthermore n∕nall
P

⟶P̃𝜆0
(A) = 𝛽𝜆0 , so that Slutz-

ky’s Lemma and the CMT yield n−1
all

∫ 𝜏

0
((d∕d𝜆) ln 𝜆)2�𝜆=𝜆

0
𝜆
0

∑n

i=1
1{Ui<t≤min(Ti ,Ui+10)}

dt

= (n∕n
all
)n−1

∑n

i=1
∫ 𝜏

0
(1∕𝜆2

0
)𝜆

0
1{Ui<t≤min(Ti,Ui+10)}

dt → 𝜎(𝜆
0
) . For (C), because (i) n 

≤ nall , (ii) 1∕(n�0)
P
−→0 by Condition (A1) and n

P
−→∞ (due to n following a Binomial 

distribution with parameters nall and the selection probability ��0 ) and (iii) Condi-
tion (A3), we have

For (D), by Condition (A3), it is �(�0) positive. Condition (E) consists of six con-
ditions: For the first four, note that sup𝜆 �(𝜕3∕d𝜆3)(𝜆∑n

i=1
1{Ui<t≤min(Ti,Ui+10)}

)� = 0 , 
sup𝜆 |(𝜕3∕d𝜆3) ln(𝜆)| = sup𝜆 ∣ 𝜆

−3∕2 ∣=∶ H < ∞ and (∫ �

0
Hdt)∕nall → 0 . For 

the fifth, note (A6) (and also Condition  (A1)). For the sixth, note (A6) and then 
H∕

√
nall

P
−→0 . 	�  ◻

It remains to consistently estimate �(�0) , in order to construct a confidence inter-
val. To start with, −J�(�0) ∶= (d2∕d�2) ln UL

c

�(�)|�=�0 = −Nuncens∕�
2
0
 by Formula 

(A3). By Andersen et  al. (1993, Formula 6.1.11) it is J�(�0)∕nall
P

⟶�(�0) , for 

𝜎(𝜆0) ∶=
𝛽𝜆0
𝜆0 �

𝜏

0

P̃𝜆0
(U < t ≤ min(T ,U + 10) ∣ T > U)dt.

(A5)
1

n

n∑
i=1

1{Ui<t≤min(Ti,Ui+10)}

P
⟶P̃𝜆(U < t ≤ min(T ,U + 10) ∣ A),

(A6)

n

nall

1

n �
𝜏

0

(
d

d𝜆
(ln 𝜆)|𝜆=𝜆0

)2

1{| 1
n

d

d𝜆
(ln 𝜆)|𝜆=𝜆0 |>𝜀}𝜆0

n∑
i=1

1{Ui<t≤min(Ti,Ui+10)}
dt

=
n

nall

1

𝜆2
0

1{|1∕(n𝜆0)|>𝜀}𝜆0 �
𝜏

0

1

n
1{Ui<t≤min(Ti,Ui+10)}

dt
P
−→0.
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nall → ∞ . As a consequence, J−1
� (�0) = Nuncens∕�

2
0
 and nallJ

−1
� (�0)

⋅

=�−1(�0) . Hence 
by (A4) and the CMT, as 𝜆̂ is consistent:

Note that even though Var(𝜆̂) = Var(
√
nall𝜆̂)∕nall

⋅

=𝜎−1(𝜆0)∕nall , by Theorem  4, 
Var(𝜆̂) formally depends on the unobservable nall , the standard error of 𝜆̂ (SE), as the 
square root of (A7), is still observable.

A.1.4 Finite sample properties

We visualise now consistency and asymptotic normality stated in Theorem  4, as 
does Section 2.3 for Theorem 1. We again find the approximations suitable for the 
AOK HCD data of n ≈ 250,000 observations in the next Section A.2.

We select the parameter for the Exponential distribution of T empirically, sim-
ilar to Sect.  2.3.2. To this end, note first that P(T ≤ 1) = 1 - e−�0 ≈ �0 for small 
�0 (by the well-known ex ≈ 1 + x, for small x). For a contemporaneous one-year 
death incidence (and hence intensity) in Germany, approximately 0.96 mio. dead in 
2020, restricted to the over 50 year-old’s (DeStatis 2021b), are to be set in relation to 
35.5 mio. alive over 50 year old’s in 2019 (DeStatis 2021a), i.e. FE(1) ≈ �0 ≈ 0.035. 
The point estimate in the case study (applying estimator (A4)) will be 𝜆̂ = 0.0353. 
Because smaller parameters are more difficult to estimate we use �0 = 0.02.

In order to mimic the portion of uncensored lifetimes in our case study, we sim-
ulate, independent of T, U ∼ Exp(0.004) , so that (on average) from n = 250,000 
observations nuncens = 40,000. For different sample sizes and 2,000 simulation 
replication each, Table  6 shows that the mean squared error. As to be expected, 
it decreases with increasing sample size, and reaches an irrelevant magnitude far 
below the size of the AOK HCD.

For the assessment of normality, n = 250,000 observations correspond in this 
simulation model to a sample size of nall = 1.5 million. Figure  4 (right panel) 
plots the empirical distribution of (A4) and supports the normal shape.

A.2 Result for AOK HCD

As the population, we aim at Germans born in the first half of the 20th century, as 
in the univariate model of Section 2.4, see first line in Fig. 2. For ease of argu-
mentation, we retain the assumption of Sect. 2.4, that a person cannot die before 
age 50. Again the same n = 236,039 people from AOK HCD 2004 are not trun-
cated. We monitor histories for transitions up to 31/12/2013, so that the maxi-
mally observed timespan is � := 54 + 10 = 64 years (after a person’s 50th birth-
day). The conditional likelihood contributions are given in Formula (A3). Within 

(A7)Var(𝜆̂)
⋅

=J−1
𝜏 (𝜆̂) = N−1

uncens

(
n∑
i=1

1{Ui≤Ti<Ui+10}
(Ti − Ui) + 10Ncens

)2
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the observation period 2004 until 2013, nuncens = 64,442 persons, out of the n, die 
(see Table 7).

For the Exponentially distributed age-at-death, T, according to (A4), point esti-
mation of �0 divides nuncens by the observed time at the risk of dying. Each per-
son surviving 2013 has been 10 years at risk in the observation period. For an 
observed death, the person contributes with the residual lifetime to the time at 
risk. The two contributions are listed in Table 7 and add up to 1.8 million years, 
i.e. 𝜆̂ = 0.035. Note that the person-years at dementia risk in Table 1 are by defi-
nition smaller. Recall that neither for the point estimate (A4) nor for its stand-
ard error (A7) is the knowledge of nall necessary. Theorem  4 yields the confi-
dence interval 𝜆̂ ± z1−0.025

√
𝜎−1(𝜆0)∕

√
nall , with 97.5% quantile of the standard 

Gaussian distribution z 1−0.025 , being very narrow due to a small standard error 
J−1∕2
𝜏 (𝜆̂) = [nall𝜎(𝜆̂)]

−1∕2 by (A7) (see again Table  7). The expected lifetime is 
1/0.035 ≈ 28 (plus 50) years, which may not be appropriate, due to the assump-
tion of a constant hazard and by the impossibility of death before age 50 in this 
model. An age-inhomogeneous increase in the hazard is well-documented, and in 
basic demography, usually modelled as a Gompertz distribution. Piecewise con-
stant hazards would be as in Sect. 3.1.

Appendix B: Proof of Theorem 1

Due to the uniqueness of �̂ , for consistency (see Andersen et al. 1993, Theorem 
VI.1.1) and asymptotic normality (see Andersen et  al. 1993,  Theorem VI.1.2), 
we need to verify their Condition VI.1.1. Specifically, to map the notations, n 
becomes nall , an ∶=

√
nall , � becomes � , h becomes hj and �h(t;�) becomes

because by interchanging conditional expectations, the multiplicative intensity pro-
cess of UNc

hj∙
(t) is the sum of the compensators for each person’s counting process.

(B8)U�
c
hj∙
(t;�) = �hjUY

c
h∙
(t), hj ∈ I,

Table 6   Mean squared error 
(MSE, × 102 ) for estimator (A4) 
of death hazard �

0
= 0.02

n
all

 = 100 n
all

 = 1,000 n
all

 = 10,000 n
all

 = 100,000

MSE 0.017 0.0016 0.00016 0.000016

Table 7   Statistics (as counts # , or in years) for point estimate (A4) and standard error (SE) by (A7) for 
death hazard, 

∑nuncens
i=1

 requires corresponding ordering

# ‘Survivors’ # ‘Deaths’ ‘Time at Risk’ (for dead) Point SE
ncens nuncens

∑nuncens
i=1

1{ui≤ti<ui+10}(ti − ui) 𝜆̂
√

J−1
𝜏 (𝜆̂)

171,617 64,442 110,940 0.0353 0.00014
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The fulfilment of Condition VI.1.1.’s (A) is now as in Theorem 4 of Appen-
dix A.1.3. For (B), note first that for mixed derivatives, terms are only non-zero 
when h1j1 = h2j2 = h3j3 due to (B8). In that case 
n−1
all

∫ �

0

∑
hj∈I[(�∕��hj) ln U�

c
hj∙
(t;�

0
)]2U�

c
hj∙
(t;�

0
)dt = (n∕nall)n

−1 ∫ �

0

∑
hj(1∕�

2

hj0
)�hj0

UY
c
h∙
(t)dt → �hj,hj(�0) , because, by the LLN, for fixed t ∈ [0, �] , (including Slutz-

ky’s Lemma, the CMT, and (7) (as in Theorem 4)) it is n∕nall
P

⟶𝛽
�0

> 0 by Con-
dition (B2). For (C),

because 1∕
√
nall → 0 and 𝜆hj0 > 0 due to Condition (B1). For (D), �(�0) is diagonal 

with 𝜎hj,hj(�0) > 0 due to Conditions (B2) and (B3). Now in (E), generally (first line) 
and if h1j1 = h2j2 = h3j3 (second line), it is sup

�∈� |(�3∕��h1j1
��h2j2��h3j3 )�hjUY

c
h∙
(t)| = 0 and sup

�∈� |(�3∕(��h1j1��h2j2��h3j3 ) ln(U�c
hj∙
(t;�))|

= sup�hj∈Λhj
2�−3

hj
 . Now 1∕(2𝜆3

hj
) ≤ 1∕(2𝜀3

hj0
) < ∞ by Condition (B1). (This explains 

the third and fourth requirement.) For the fifth, n−1
all

∫ �

0

∑
hj∈I[(�

2∕��2
hj
)

ln U�
c
hj∙
(t;�

0
)]2U�

c
hj∙
(t;�

0
)dt = (n∕nall)n

−1 ∫ �

0

∑
(h,j) �

−4
hj0
�hj0UY

c
h∙
(t)dt → �hj,hj(�0

)∕�2
hj0

 . 
The latter are finite due to Conditions (B1) and (B3). The sixth is fulfilled with the 
same argument as in (C). 	�  ◻

Appendix C: Proof of Theorem 3

Obviously, generalising (4), as in (13), the logarithmic conditional likelihood 
contribution is

Now, in extension to Sect. 3.1.1, for � ∈ [U,U + 10) , the derivative with respect to 
�wo
hjl

 of the N-term of ln UL
c(X,U,Z ∣ �) is

1

nall ∫
𝜏

0

�
hj∈I

�
𝜕

𝜕𝜆hj
ln U𝛼

c
hj∙
(t;�0)

�2

1�����
1√
nall

𝜕

𝜕𝜆hj
ln U𝛼

c
hj∙
(t;�0)

����>𝜀
�
U𝛼

c
hj∙
(t;�0)dt

=
1

nall ∫
𝜏

0

�
hj∈I

1

𝜆2
hj0

1������
1√
nall

1

𝜆
hj0

�����
>𝜀

�𝜆hj0UY
c
h∙
(t)dt → 0,

(C9)

ln UL
c(X,U,Z ∣ �) =∫

U+10

U

∑
hj∈I

(ln UYh(t) + ln �hj(t, z(t)))dUN
c
hj
(t)

−
∑
hj∈I

∫
U+10

U
UY

c
h
(t)�hj(t, z(t))dt.
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and with respect to �w
hjl

 it is:

 For � ≥ U + 10 , the N-term in �

��wo
hjl

ln UL
c(X,U,Z ∣ �) is 

(�wo
hjl
)−1(UN

c
hj
(tl) − UN

c
hj
(tl−1)) and taking derivative with respect to �w

hjl
 becomes zero. 

For 𝜅 < U , the N-term after taking the derivative with respect to �wo
hjl

 is zero and with 
respect to �w

hjl
 it is (�w

hjl
)−1(UN

c
hj
(tl) − UN

c
hj
(tl−1)).

Now, the derivative with respect to �wo
hjl

 of the Y-term in ln UL
c(X,U,Z ∣ �) is, in 

extension to Sect. 3.1.1:

 With respect to �w
hjl

 it is:

�
U+10

U

𝜕

𝜕𝜆wo
hjl

ln

�
b�
l̃=1

1[tl̃−1,tl̃)
(t)
�
1[0,𝜅)(t)𝜆

wo

hjl̃
+ 1[𝜅,∞)(t)𝜆

w

hjl̃

��
dUN

c
hj
(t)

= �
U+10

U

1[tl−1,tl)∩[0,𝜅)
(t)

∑b

l̃=1
1[tl̃−1,tl̃)

(t)
�
1[0,𝜅)(t)𝜆

wo

hjl̃
+ 1[𝜅,∞)(t)𝜆

w

hjl̃

�dUNc
hj
(t)

=

⎧⎪⎨⎪⎩

0 if 𝜅 ≤ tl−1
1

𝜆wo
hjl

∫ U+10

U
1[tl−1,tl)

(t)dUN
c
hj
(t) =

1

𝜆wo
hjl

(UN
c
hj
(tl) − UN

c
hj
(tl−1)) if 𝜅 ≥ tl

1

𝜆wo
hjl

∫ U+10

U
1[tl−1,𝜅)

(t)dUN
c
hj
(t) =

1

𝜆wo
hjl

(UN
c
hj
(𝜅) − UN

c
hj
(tl−1)) if 𝜅 ∈ [tl−1, tl]

�
U+10

U

𝜕

𝜕𝜆w
hjl

ln

�
b�
l̃=1

1[tl̃−1,tl̃)
(t)
�
1[0,𝜅)(t)𝜆
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hjl̃
+ 1[𝜅,∞)(t)𝜆

w
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��
dUN

c
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U+10

U
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(t)
�
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hjl̃
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w
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�dUNc
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(t)

=

⎧⎪⎨⎪⎩

1
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U
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1
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(tl) − UN
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(tl−1)) if 𝜅 ≤ tl−1

0 if 𝜅 ≥ tl
1
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hjl

∫ U+10

U
1[𝜅,tl)

(t)dUN
c
hj
(t) =

1

𝜆w
hjl

(UN
c
hj
(tl) − UN

c
hj
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𝜕

𝜕𝜆wo
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�
hj∈I

�
U+10

U
UYh(t)

�
b�
l̃=1

1[tl̃−1,tl̃)
(t)
�
1[0,𝜅)(t)𝜆

wo

hjl̃
+ 1[𝜅,∞)(t)𝜆
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��
dt

= �
U+10

U
UYh(t)1[tl−1,tl)∩[0,𝜅)

(t)dt

=

⎧⎪⎪⎨⎪⎪⎩

0 𝜅 ∈ [U,U + 10) and 𝜅 ≤ tl−1∫ 𝜅

tl−1 UYh(t)dt if 𝜅 ∈ [U,U + 10) and 𝜅 ∈ [tl−1, tl]

∫ tl
tl−1 UYh(t)dt if 𝜅 ∈ [U,U + 10) and 𝜅 ≥ tl

0 if 𝜅 < U

∫ tl
tl−1 UYh(t)dt if 𝜅 ≥ U + 10
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 These summarized, as in (5), to ln UL
c
�(data;�) =

∑n

i=1
ln UL

c
�(X

i,Ui,Zi ∣ �) must be 
set to zero. 	�  ◻
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