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Highlights 

• We tested the reductionist assumption that risky choices and intertemporal choices are simply a

special case of risky intertemporal choices.

• In our conceptual replication of Luckman et al. (2018), we found that while a common value

function can accommodate both risky and intertemporal choices, the choice function does not.

• We observed significant differences between risky and intertemporal choices at both the group

and individual levels.

• At the group level, there is no significant difference between the choices made by participants

paid a flat incentive versus those paid under a random incentive system.

• Order effects matter for intertemporal choices, but not for risky choices.
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Abstract 

Luckman et al. (2018) experimentally tested the conjecture that a single model of risky intertemporal 

choice can account for both risky and intertemporal choices, and under the conditions of their 

experiment, found evidence supporting it. Given the existing literature, that is a remarkable result which 

warrants (conceptual) replication. Following a tradition in psychology, Luckman et al. (2018) had first-

year psychology students participate that were rewarded with non-monetary course credits (see also 

Luckman et al., 2020). Proper incentivisation is a long-standing bone of contention among 

experimentally working economists and psychologists, last but not least when it comes to the elicitation 

of preferences of any kind. Another reason to be sceptical is that the experiment was not properly 

powered up; the no-difference results reported by the authors might be spurious. In our conceptual 

replication of Luckman et al. (2018), we find significant differences between the risky and intertemporal 

choices at both the group and individual level. We find further that there is no significant difference 

between choices made by participants that are paid a flat incentive and participants that are paid under 

the random incentive scheme, at the group level. We find that order effects matter for intertemporal 

choices, but not for risky choices. At the individual level, we find evidence in favour of the model that 

assumes a common value function, but separate choice functions. This result is robust across our 

incentive systems, and order of presentation, but sensitive to different prior distributions.    

Keywords: experimental practices, replication, risky intertemporal preferences, risk preferences, time 

preferences 

JEL Classification: C11, C52, C91, D01, D81, D90 
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Risky intertemporal choices have a common value function, but a separate choice function  

The relation between risk and time preference remains one of the most topical and important 

research questions in economics, psychology, and other social sciences. The reason for this ongoing and 

growing interest potentially lies in the welfare effects produced by risk and time preferences (Harrison, 

2011; Charness & Viceisza, 2016). We document below that there is at best mixed evidence in favour of 

the claim made by Luckman et al. (2018) that pure risky decisions and pure intertemporal decisions are 

just a special case of risky intertemporal choice (i.e., the reductionist assumption). Considerable 

evidence suggests that monetary incentives matter especially when it comes to the elicitation of risk 

preferences. Many studies, notably Holt and Laury (2002) and Harrison et al. (2005a), suggest that 

outcomes of risky choices are different when participants face real monetary consequences rather than 

hypothetical payoffs, especially when such monetary consequences are substantial. Meanwhile, the 

replicability of experimental findings remains a challenge, as demonstrated by what is widely considered 

a replication crisis in the social sciences (Ortmann, 2021). The replication crisis, and research such as 

Ioannidis et al. (2017), have highlighted the need for experiments to be properly powered up following 

the well-known exhortation of Cohen (1962) that researchers should only conduct studies with sufficient 

statistical power to detect true effects. 

Below we report the results of our attempt to replicate Luckman et al. (2018) – who, as did 

Luckman et al. (2020) which draws significantly on the earlier study, used non-monetary incentives 

(credit points) — in both non-incentivised and incentivised laboratory settings, and with a larger sample 

to boot. We check for the (conceptual) replicability of the original study and test whether a single model 

that captures both risky and intertemporal decisions by a single value and a single choice parameter 

outperforms other models. For reasons explained below, a direct replication was not possible.  
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We address the following research questions: 1) can we replicate the results in Luckman et al. 

(2018) in a non-incentivised laboratory setting; 2) do monetary incentives shift risky and intertemporal 

choices; and 3) can a single model account for both risky and intertemporal decisions once choices are 

incentivised? 

We failed to replicate the results from Luckman et al. (2018) at the group level in both 

incentivised and non-incentivised laboratory settings. Moreover, we found order effects of 

administering the experimental tasks for intertemporal choices but not for risky choices.  

Specifically, we find that there are statistically significant differences between risky and 

intertemporal choices, as measured by the number of safer choices in the Risky Task and the number of 

sooner choices in the Intertemporal Task. Contrary to our expectations (as specified in our pre-

registration at the OSF), we failed to find (strong statistical) evidence in favour of the hypothesis that 

monetary incentives matter for risky choices and intertemporal choices at the group level. This is in line 

with Hackethal et al. (2023) who also report statistically insignificant differences for risky choices 

between, and within, participants in their incentivised and non-incentivised schemes. Similarly, the main 

takeaway message from Brañas-Garza et al. (2023) is that paid and hypothetical intertemporal choices 

are mostly the same. Drawing on the results reported by Holt and Laury (2002) and Harrison et al. 

(2005a), we conjecture that these previous findings, and our results, are vulnerable to the stakes being 

used. 

At the individual level, we found that the overwhelming majority of participants’ decision-

making can be explained by a semi-nested model with a common value power function but with 

separate choice (logit) functions. More details are available in the section Results. In other words, we 

found that one common value function accounts for both risky and intertemporal choices but the choice 

functions for risky and intertemporal choices differ. This result is robust across the two incentive 
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systems we use, and the order of presentation. However, other semi-nested models are sensitive to 

incentives and order effects. 

It is important to understand under what design and implementation choices data were 

generated before we can have confidence in evaluations and comparisons of models of risky 

intertemporal choices. Any such horse race is a function of those design and implementation choices. 

We motivate, and elaborate on, our experimental design and implementation choices in section 

Experiment, and discuss our estimation strategy in section Estimation Strategy. We next present results 

from the estimation. Lastly, we connect our work to the related literature, summarise our findings, 

discuss the limitations of our replication, and sketch out a research agenda. 

Experiment 

Following Luckman et al. (2018), we had two main tasks in the experiment: one task involved 

risky choices [Risky Task] and the other involved intertemporal choices [Intertemporal Task]. 

Participants were asked to make a choice between two options with different probabilities in the Risky 

Task and to make a choice between two options with delayed times in the Intertemporal Task. Both 

Risky Task and Intertemporal Task involved 130 choices followed by comprehension questions and three 

scales about confidence, effort, and complexity. The latter is particularly important because the 

reliability of the elicitation procedures hinges heavily on the level of comprehension (Charness et al., 

2013). 

Going beyond Luckman et al. (2018), we added the standardised version of the Berlin Numeracy 

Test [BNT] (Cokely et al., 2012) to gauge risk literacy and probability understanding of our participants, 

and we added questions from the Big-5 test on key financial literacy concepts used in the Household, 

Income and Labour Dynamics in Australia [HILDA] survey (Wilkins & Lass, 2018) which draws on Lusardi 

and Mitchell (2011). It involves questions that test the understanding of the compounding of interest 
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rates, inflation rate, risk diversification, risk and return, and money illusion. We also included an Exit 

Survey [ES] through which we collected information regarding socio-demographic and personal 

characteristics that are relevant and might affect risk-preference and the time-preference estimates. We 

collected, in the background, information about participants’ response time (Spiliopoulos & Ortmann, 

2018). 

The authors of the original study could not retrieve the original instructions, so we re-

engineered them [Appendix E] based on information from Luckman et al. (2018) and our 

communication with them. The Risky Task and Intertemporal Task, BNT survey, Big-5 survey/test, ES are 

included in Appendix F, Appendix G, Appendix H, and Appendix I, respectively. 

Sample Size, Transparency and Openness 

Given the importance of effect size in replication projects, we followed the 2.5 rule of thumb 

proposed by Simonsohn (2015), and considering the treatments in our study, our experiment needed 

180 participants per (non-)incentivised group. 

The total sample size for the project was 360 participants. This sample size was necessitated by 

the following samples for each of our two participant groups (and therein for three subgroups, or cells 

each, to be discussed below): 1) Participant Group I [FLAT/participants were paid under a flat incentive 

scheme (180 participants)]; 2) Participant Group II [RANDOM/participants were paid randomly selected 

choices/Random Incentive System (180 participants)]. The sample sizes for each of the cells (and the 

groups) are sufficient to answer our research questions based on Simonsohn (2015); they also 

correspond to sample power calculations based on the Bayes Factor Design Analysis (elaborated on in 

detail in Appendix J). 
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Participants were recruited through Online Recruitment System for Economic Experiments 

[ORSEE] (Greiner, 2015) from an existing database of volunteers at the Business Experimental Research 

Laboratory [BizLab] of the UNSW (180 participants) and from the Prolific platform (180 participants). 

Following best research practices (Christensen et al., 2019), we pre-registered the main 

hypotheses of the experiment before data were collected. 

Design and Incentives 

The design of the experiment is 2𝑥3 factorial: apart from varying the incentive system, following 

Luckman et al (2018), we vary the order of administering tasks for both incentive systems. Figure 1 

summarises the experimental design. 

Figure 1 
Experimental design 

Participants in the FLAT conditions (second and third level, left) were paid under a flat incentive 

scheme, in line with UNSW BizLab and Prolific guidelines. Those in the RANDOM conditions (second and 
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third level, right) were paid based on only one randomly selected choice1 from one randomly selected 

task [Risky Task and Intertemporal Task]. The RANDOM conditions correspond to the “pay one” system 

discussed by Charness et al. (2016), who suggests that it is an adequate and efficient system for the 

simple pairwise lotteries. The treatment cells on the third level constitute a between-subject design. 

The expected value of the RANDOM payments was calibrated to be roughly equal to the 

payment in the FLAT conditions. Participants paid under the RANDOM scheme could earn up to 𝐴𝑈$57 

in addition to a show-up fee of 𝐴𝑈$5. Average earnings in the experiment, as shown in Table K3 in 

Appendix K, were 𝐴𝑈$27 in the RANDOM condition and 𝐴𝑈$25 in the FLAT condition. 

In the replication project, we consider both horizontal [blocked] and vertical randomisation 

[mixed]. For both the FLAT conditions and the RANDOM conditions, the first group of randomly chosen 

participants made choices in the Risky Task first [RTF] while, to control for order effects, the second 

group of randomly chosen participants made choices in the Intertemporal Task first [ITF]. This 

corresponds to the blocked condition2 from the original study of Luckman et al. (2018), explained in 

1 We programmed three random devices. The first random device chooses one choice from the two tasks, the second random 

device chooses the pay-off relevant option from each of the two tasks and determined the potential earnings, and the third 

random device chooses the specific task – potential earnings from only one task has been selected – that determined the final 

earnings. 

2 Note that Luckman et al. (2018) ultimately collapsed the data. Nevertheless, we argue that the order effects are inextricably 

linked to the decision-making in the Risky Task and in the Intertemporal Task, particularly if we bear in mind that the 

participants are asked to make a large number of choices [130  pure risky choices and 130 pure intertemporal choices]. 

Moreover, since Luckman et al. (2018) presented both blocked choices [36 participants] and mixed choices [36 participants], 

they had 6 participants per order [36 participants in the blocked condition divided by 6 orders] which we believe to be 

insufficient to detect order effects if indeed they exist.  

Institute for Replication I4R DP No. 205

13



detail in his dissertation (Luckman, 2016) [Experiment 2.2]. Our Mixed [M] condition corresponds to 

Luckman et al. (2018, p.788) where the mixed section “contained a mixture of all choice types”. We 

recruited 120 participants each [60 participants in RANDOM condition and 60 participants in FLAT 

condition] for both the RTF and the ITF condition. Following Luckman et al. (2018), we call this the 

blocked or horizontal randomisation. For the M condition, we also recruited 120 participants [60 

participants in the RANDOM condition and 60 participants in the FLAT condition] . 

To summarise, all participants faced two tasks [Risky Task and Intertemporal Task] in all 

treatments but there were three conditions3: 

➢ RTF condition: 2 Tasks ([130 pure risky choices in the Risky Task] and [130 pure

intertemporal choices in Intertemporal Task]). The list of choices is fixed and static for

both tasks. The only difference is that the risky choices are the first task, and the

intertemporal choices are the second task.

➢ ITF condition: 2 Tasks ([130 pure risky choices in the Risky Task] and [130 pure

intertemporal choices in Intertemporal Task]). The list of choices is fixed and static for

both tasks. The only difference is that the intertemporal choices are the first task, and

the risky choices are the second task.

3 We initially considered varying the information set as well. Harrison et al. (2002 ), Harrison et al. (2005b), Andersen et al. 

(2008) and Andersen et al. (2014) provided participants with information about the annual implied rate in order to reduce 

comparison errors. They cite Coller and Williams (1999) who found that providing that information has a significant negative 

effect on discount rates. Therefore, we considered enriching the information set for our participants and to create an INFO and 

NOINFO condition. But such a design would have required us to recruit 720  participants, which was not feasible due to the very 

low response rate in our laboratory during the COVID pandemic  as well as our financial constraints. We did include 

comprehension questions and inserted some information from our initially planned INFO treatment into the instructions.  
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➢ M condition: 2 Tasks ([TASK 1 - 65 intertemporal & 65 risky choices] and [TASK 2 -

65 intertemporal & 65 risky choices]). In other words, both tasks contain a mix of both

risky and intertemporal choices. For example, in Task 1, the first choice is a pure risky

choice, the second choice is a pure intertemporal choice, and so on. Similarly, in Task 2,

the first choice is a pure intertemporal choice, the second choice is a pure risky choice,

and so on. The list of choices is fixed and static for both tasks.

Since we conducted the experiment online, we used PayID, a payment mechanism which all 

major banks in Australia offer, for all the payments of participants recruited through the ORSEE pool. 

Participants that were recruited from the Prolific pool were paid using the Prolific platform as required 

by the platform. The Prolific platform subsequently transferred these earnings through the PayPal 

system. Participants received their payoffs within hours – and on the same day – after the end of the 

(online) experiment in the FLAT treatment. Participants in the RANDOM condition were likewise paid 

within hours after the end for the Risky Task and based on the delay chosen in the randomly selected 

option in the Intertemporal Task. 

Tasks 

In the original study, Luckman et al. (2018) tested the reductionist assumption that pure risky 

choices and pure intertemporal choices are special cases of risky intertemporal choices. They did this by 

presenting a group of participants with both risky choices and intertemporal choices. They then 

compared the performance of a model fitted to both choice types simultaneously, with the performance 

of separate models fitted to the risky choice data and the intertemporal choice data, respectively. 

Participants were asked to make choices between two options [the LEFT option and the RIGHT 

option] with different probabilities in the Risky Task and between two options with different delays in 
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the Intertemporal Task [the LEFT option and the RIGHT option]. Both Risky Task and Intertemporal Task 

involved 130 choices and were related to each other, as follows (Luckman et al., 2018, p.787):  

— Risky Task: “The probability of gaining money ranged from 0.05 to 1 in increments of 

0.05, and the amount of money ranged from $50 to $475 in $25 increments. The probability of 

receiving $0 therefore ranged from 0 to 0.95 in increments of 0.05. Choices were generated by 

crossing 5 probability levels (very low [0.05 − 0.2], low [0.25− 0.4], moderate [0.45 − 0.6], 

high [0.65 − 0.8], very high [0.85− 1]) with 6 amount levels (very low [$50 − $100], low 

[$125 − $175], moderately low [$200 − $250], moderately high [$275 − $325], high [$350 −

$400], very high [$425 − $475]) for each of the two gambles, yielding 435 unique choice 

pairings. The specific outcome amount and probability for each option was then determined by 

drawing a value randomly from the appropriate range. Similar to Rieskamp (2008), we removed 

all choices in which one option either dominated the other or had twice the Expected Value of 

the other. This process resulted in 125 choices. Five dominated choices were then added to act 

as check questions.” 

— Intertemporal Task: “To create intertemporal choices, rather than generate a new 

choice set, we replaced each probability level in the risky choices with a matching delay and 

removed the $0 outcomes. Because we used Expected Value to reduce our risky choice set, we 

decided to match our risky and intertemporal choice sets by ensuring that the Discounted Value 

of the intertemporal options approximately matched the Expected Value of their corres ponding 

risky choice option. This required the setting of an exponential discount rate. We set the 

discount rate by fitting an Exponential Discount function to the mean intertemporal choice data 

from the experiments reported in Luckman, Donkin, and Newell (2015), where we had used a 

similar group of participants and similar ranges of amounts. The fitted rate was 0.053.” 
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We attempted to closely replicate the Luckman et al. (2018) study by replicating their 

Intertemporal Task and Risky Task. However, their time frame and incentivisation strategy, as well as our 

participant pool and lab guidelines required adjustments that are explained in more detail in the 

following subsection and in the Supplementary Materials. 

Adjustment Procedures 

In the Intertemporal Task constructed by Luckman et al. (2018), matching delays were linked to 

probabilities in the Risky Task. In the original version, the sooner option ranged from 0 [immediate] 

months to 42 months and the later (delayed) option ranged from 3 months to 54 months. The 

distribution of the delays in the options in the original experiment is shown in Figure 2a and Figure 2b. 

We tried to replicate the delays from the original settings, but for reasons elaborated in this section 

below, we had to make adjustments. 

Figure 2a and Figure 2b 
Delays in the LEFT option and in the RIGHT option in the Intertemporal Task 

Luckman et al. (2018) used the classical Exponential Model (Samuelson, 1937) with continuous 

compounding (see Doyle, 2013, for the review of discounting models), that accommodates consistent 

Institute for Replication I4R DP No. 205

17



preferences4, 𝑃 = 𝐴𝑒−𝜌𝑡, where 𝜌 and 𝑡 denote the discount rate and the delay, 𝐴 is the delayed 

amount at the second option [the RIGHT option], and 𝑃 is the delayed amount at the first option [the 

LEFT option]. In Luckman et al. (2018) a delay of 27 months was not converted to  
27

12
= 2.25 years but 

was expressed in months. Following Luckman et al. (2018), we calculated the net-present value [NPV] 

difference between the RIGHT and the LEFT option in this way: 

∆𝑁𝑃𝑉1 = 𝐴2𝑒−𝜌𝑡2 − 𝐴1𝑒−𝜌𝑡1  (1) 

where 𝐴2 and 𝐴1, and 𝑡2 and 𝑡1, are the amounts and the delays in the RIGHT option and the 

LEFT option, respectively. Based on their previous work (Luckman et al. 2015), Luckman et al. (2018) set 

the discount rate 𝜌 = 0.053. 

Further, they calculated the expected values of the corresponding options: 

∆𝐸𝑉1 = 𝑝2𝐴2 −   𝑝1𝐴1  (2) 

where 𝐴2 and 𝐴1, and 𝑝2  and 𝑝1, are the amounts and the probabilities in the corresponding the 

RIGHT option and the LEFT option, respectively. 

By using this design, they wanted to set 𝐴2𝑒−𝜌𝑡2 = 𝑝2𝐴2 and 𝐴1𝑒−𝜌𝑡1 =  𝑝1𝐴1, to ultimately

have  ∆𝑁𝑃𝑉1 ≅  ∆𝐸𝑉1. Since the amounts and probabilities were taken from predefined ranges, 

Luckman et al. (2018) had to round up some of them, which led to minor discrepancies. The differences 

in the net-present values (vertical axis) and the differences in the expected values (horizontal axis) are 

plotted and shown in Figure 3. The number of negative values is 75 and the number of positive values is 

55, as you can see in Figure A1 in Appendix A. 

4 The Exponential Model is highly correlated with the Hyperbolic Model (Mazur, 1987), if one does not construct stimuli that wi ll 

make them orthogonal (Doyle et al., 2011). Yet, the Hyperbolic Model produces rates steeper at short delays and flatter at lo ng 

delays (Kirby & Marakovic, 1996). 
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Figure 3 
The differences in the original net-present values and the differences in the original expected values 

From Figure 3, we see that indeed ∆𝑁𝑃𝑉1 ≅  ∆𝐸𝑉1. 

Because the options in the original study were hypothetical and involved timeframes that would 

be not-implementable/non-credible with incentivised choices, we had to make changes and 

adjustments (Figure 4). We faced several issues elaborated in more detail in Appendix D. 

Figure 4 
The differences in the non-adjusted net-present values and the differences in the non-adjusted expected 
values 
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Luckman et al. (2018) used the classical Exponential Model with continuous compounding 

(Doyle, 2013), as described in (1).  In contrast, the “workhorse” model in the economics literature is 

Exponential Discounting with linear instantaneous utility, elaborated below: 

𝐷𝑈2(𝐴2, 𝑡2) =
𝐴2

(1+𝜌)𝑡2/52
 (3) 

and 

𝐷𝑈1(𝐴1, 𝑡1) =
𝐴1

(1+𝜌)𝑡1/52
 (4) 

gives 

∆𝑁𝑃𝑉3  = 𝐷𝑈2(𝐴2, 𝑡2) − 𝐷𝑈1(𝐴1, 𝑡1) =
𝐴2

(1+𝜌)𝑡2 /52
 −

𝐴1

(1+𝜌)𝑡1/52
             (5) 

While we prefer the specification in (5) over (1), it produces many differences in the 

construction of the Risky Task and Intertemporal Task. (Ultimately, they are equivalent.) Therefore, we 

use the classical Exponential Model (1) with continuous compounding, from the same family of 

discounting models, to be consistent with the set-up of Luckman et al. (2018). 

There were several other problems. Specifically, we had to modify the Risky Task and the 

Intertemporal Task by implementing three main principles: i) ∆𝑁𝑃𝑉3 ≅  ∆𝐸𝑉3 ; ii) #(∆𝑁𝑃𝑉1) ≅

#(∆𝑁𝑃𝑉3), #(−∆𝑁𝑃𝑉1) ≅ #(−∆𝑁𝑃𝑉3),  #(∆𝐸𝑉1) ≅ #(∆𝐸𝑉3),  and #(−∆𝐸𝑉1) ≅ #(−∆𝐸𝑉3); and iii) 

𝑝1 > 𝑝2 , 𝑡2 > 𝑡1, and 𝐴2 > 𝐴1. Following Luckman et al. (2018), only five choices [125 − 130 in the 

Appendix F] deviated from these principles in (iii) and they are used as attention checks, i.e., we did not 

analyse the data points from participants who “failed” on these choices.  (A detailed elaboration on 

these principles is available in Appendix D.) Figure 5a, Figure 5b, Figure 6a, and Figure 6b illustrate that 

the implementation of these principles was successful and promised proper replication of Luckman et al. 

(2018) in line with their principles.  
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Figure 5a and Figure 5b 
The differences in the adjusted net-present values and the differences in the adjusted expected values 

Figure 6a and Figure 6b 
The differences ∆𝑁𝑃𝑉1 −  ∆𝐸𝑉1  and the differences ∆𝑁𝑃𝑉3 −  ∆𝐸𝑉3 (in dollars) respectively 

Display 

Participants in the Intertemporal Task, as well as in the Risk Task, faced two options, labelled "LEFT 

option" and "RIGHT option". To correspond to Luckman et al. (2018), choices were given in descriptive 

form i.e., in words and numbers. The task consisted of 131 choices, where the first choice was a practice 

round for participants to familiarise themselves with the task. In other words, we acknowledge the 

importance of gaining experience with the tasks (Charness & Chemaya, 2023; Charness et al., 2023), which 
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is why we included a practice round. However, we recognise that repeated and more extensive exposure 

is desirable and more meaningful, as it enhances consistency in decision-making (Charness & Chemaya, 

2023; Charness et al., 2023). Still, we did not want the experimental procedures to deviate substantially 

from the experiment we set out to replicate. 

An example of the Intertemporal Task is shown in Figure 7a, and an example of the Risky Task is 

shown in Figure 7b. 

Figure 7a and Figure 7b 
Intertemporal Task and Risky Task 

Surveys 

In the final part of the experiment, we went beyond replication and tried to identify the 

determinants of the decision-making in the Risky Task and the Intertemporal Task. We included three 

surveys: BNT, Big-5 survey of financial literacy, and the ES. The BNT and the Big-5 survey of financial 

literacy were meant to help us to peg the numeracy and literacy level of the participants in the 

experiment, whereas the ES helped us to collect information regarding socio-demographic and personal 

characteristics that are known to be relevant and potentially might affect risk-preference and time-

preference estimates. The BNT, the Big-5 survey of financial literacy, and the ES are available in 

Appendix G, Appendix H, and Appendix I, accordingly. The questions in the ES are based on a survey 
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that we used in an experiment approved by HREAP: F under HC190793 [reduced]; it contains 30 

questions, but it was necessary to slightly adjust it for the Prolific participants to answer their 

requirements. The BNT test contains 6 questions while the Big-5 survey of financial literacy contains 5 

questions. We also collected information about participants’ response time, as in Konstantinidis et al. 

(2020). 

All information collected was treated as private and confidential. Identifying information was 

replaced with codes that were randomly generated. Specifically, before the experiment started, every 

participant was randomly assigned a code [“Participant number”] that s/he was asked to enter in the 

experiment. The list connecting participant number and participant information is kept safely (accessible 

only to the researchers) and separately. 

Our replication experiment has both within-subject and between-subject design components, 

given that both of them have practical advantages and limitation (Charness et al., 2012), and it was 

conducted in an online environment to avoid potential COVID-19 disruptions and to address low 

laboratory response rates. The experiment was programmed and administered in z -Tree [Zurich Toolbox 

for Ready-made Economic Experiments] unleashed (Fischbacher, 2007; Duch et al., 2020) except for the 

“Withdrawal-of-Consent form” which was programmed in Qualtrics. The average completion time of the 

experiment was 54 minutes (median: 52 minutes, mode: 48 minutes), including the surveys (see more 

details in Table K3 in the Appendix K). 

Regarding the earnings, as shown in in Table K3 in the Appendix K, the participants paid under 

the flat incentive scheme received a fixed renumeration for their participation. On average, those 

participants recruited from the UNSW ORSEE pool, who were paid under the random incentive scheme, 

earned $27.60 (median: $28, mode: $10) [RTF], $24.07 (median: $23.50, mode: $10) [ITF], and $32.13 

(median: $31.50, mode: $10) [M]. For the participants recruited from the Prolific platform, the average 

earnings were $26.40 (median: $24, mode: $10) [RTF], $29 (median: $29, mode: $10) [ITF], and $24.87 
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(median: $18.50, mode: $10) [M]. In Fidanoski et al. (2024) are compared the choices of ORSEE and 

Prolific participants and established that there is no substantial difference in choice behaviour. 

Estimation Strategy 

Our estimation strategy follows Luckman et al. (2018) closely. We apply Bayesian Model 

Selection based on Bayes factors to discriminate between four competing semi-nested models that 

incorporate risky choices and intertemporal choices. Concretely, one model assumes a single value and 

choice function for both risky and intertemporal choices, another model assumes a separate value and 

choice function for each set of choices, and two intermediate models test whether one of these 

functions holds constant and the other varies. The models differed on whether the value function 

parameter, and the choice function parameter, were constrained to be the same for risky choices and 

intertemporal choices. 

Models 

We use Prospect Theory and the classical Hyperbolic Model in the estimation5. Luckman et al. 

(2018) relied on Prospect Theory because, if all outcomes occur immediately (pure risky choices), the 

5 Ahlbrecht and Weber (1997) suggest that the Exponential Model is valid and more accurate for pairwise choices (as in our 

experiment), whereas the Hyperbolic Model is more appropriate for price lists. Going beyond a simple replication, in the 

separate follow-up project we also apply the classical Exponential Model with continuous compounding (1) and the Exponential 

Model with a linear instantaneous utility (3) as well as the estimation of the parameters through the Hierarchical Bayes 

framework. This is important because we based the construction of the tasks on the Exponential Model with continuous 

compounding (1). 
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Probability and Time Trade-off model (Baucells & Heukamp, 2010), the Multiplicative Hyperboloid 

Discounting model (Vanderveldt et al., 2015), and the Hyperbolic Discounting model of Yi et al. (2006) 

can be approximated by Prospect Theory (Kahneman & Tversky, 1979). In other words, considering that 

these models in their reduced form converge and can be explained by Prospect Theory, Hyperbolic 

Discounting, or both, Luckman et al. (2018) implemented the principles of Prospect Theory for the Risky 

Task, and the principles of the Hyperbolic Model for the Intertemporal Task.  

Prospect Theory, Hyperbolic Model, Exponential Model with continuous compounding (1), and 

the Exponential Model with a linear instantaneous utility (3) are based on the evaluation of the 

respective utilities. Researchers in Prospect Theory are transforming the objective values into subjective 

values. Let us consider the amount for the LEFT option,  𝐴1. Exploiting Prospect Theory, we transform 

the objective amount 𝐴1 via value function 𝜈(𝐴1). The probabilities are also transformed into a decision 

weight by using a probability weighting function 𝑤. 

A parsimonious utility model which embodies the value function, the probability weighting 

function, and the choice function is implemented here. Since we want to be consistent with the original 

study, we use a general representation, i.e., we denote the amount(s)/outcome(s) as 𝑥, probabilities as 

𝑝, and the option as  𝑔. The corresponding utility of a particular option, in the general case, can then be 

expressed as: 

𝑈(𝑔) = 𝑤(𝑝)𝜈(𝑥)  (6) 

A standard assumption is that the value function is concave in shape. Accordingly, we define the 

value function in the following format: 

𝜈(𝑥) = 𝑥𝛼   (7) 

where 𝛼 is a parameter of interest estimated from the observed data points. The parameter  𝛼 

ranges from 0 to 1. This follows Luckman et al. (2018) who pointed out that the value functions are 
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typically assumed to be concave, thus giving a rise to the range values of the parameter of interest that 

is attached to the value function. 

Next, we need to stipulate a functional form for transforming the second component of the 

utility function in (6): probabilities. We assume that participants overweight small probabilities and 

underweight large probabilities which implies a 𝑆-shaped function. Specifically, we use Prelec’s 

specification (1998) of Prospect Theory: 

𝑤(𝑝) = 𝑒−(−𝑙𝑛𝑝)𝑟
 (8) 

where 𝑟 is the parameter estimated from the observed data. 

Luckman et al. (2018) were the first to include a choice or stochastic/noise function in the 

analysis of the risky intertemporal framework. The choices of participants do indeed exhibit typically 

stochastic patterns (see Harrison & Rutström, 2008, for more details). Luckman et al. (2018) analysed 

whether risky choices and intertemporal choices can be explained by a common choice function. 

Consequently, we also use a logistic choice function for the LEFT option (𝑔1) and the RIGHT option (𝑔2): 

𝑃(𝑔1 ,𝑔2) =
1

1 + 𝑒−𝑠(𝑈(𝑔1)−𝑈(𝑔2)  (9) 

where 𝑠 is the free parameter from the choice function that we infer from the data. 

Doyle (2013), in his exhaustive review, demonstrate that there are various models that explain 

time preferences. An important take-home message is that, by construction, most of the models share 

some common features: they consist of a value function, a discount function, and a choice function. We 

use the classical Hyperbolic Model to find an answer to our research questions. 

The discounting function in the classical Hyperbolic Model (Mazur, 1987) is: 

𝑑(𝑡) =
1

(1 + ℎ𝑡)
 (10) 

where 𝑡 denotes the time delay and ℎ is the parameter that is estimated from the data. 
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By the same token, we establish the value function as in (7), 𝜈(𝑥) = 𝑥𝛼, constraining 𝛼 to be 

larger than 0, which differs from previous work but is important for our research question. As in the case 

of the Risky Task, we evaluate the utility in the Intertemporal Task as: 

𝑈(𝑔) = 𝑑(𝑡)𝜈(𝑥)  (11) 

In the final step for the Intertemporal Task, we include the utilities in the logistic choice 

function, as we did in the Risky Task, that is same as the one in (9): 𝑃(𝑔1 ,𝑔2) =
1

1+𝑒−𝑠(𝑈(𝑔1)−𝑈(𝑔2)
.

Analysis/Methods 

We tested four semi-nested models on the data from the experiment. These models were 

identified by the two main parameters discussed in the previous sub-section: the parameter of the value 

function, 𝛼, and the parameter of the choice function, 𝑠. The difference is determined by the decision to 

either constrain these parameters to be the same for the risky and intertemporal choices or to let them 

be different. If the model is constrained to have a single-value parameter 𝛼 for both the Risky Task and 

the Intertemporal Task we call it the Common value [Cv] model, otherwise we call it the Separate value 

[Sv] model with 𝛼𝑟 and 𝛼𝑖  for the Risky Task and the Intertemporal Task, respectively. Analogously, if the 

model is constrained to have a single choice parameter 𝑠 for both the Risky Task and the Intertemporal 

Task is denoted as Common choice model [Cc]. The model that has separate choice parameter 𝑠𝑟 for the 

Risky Task and separate choice parameter 𝑠𝑖 for the Intertemporal Task is referred to as a Separate 

choice [Sc] model. The semi-nested models that we consider are thus Common-value Common-choice 

[CvCc], Common-value Separate-choice [CvSc], Separate-value Common-choice [SvCc], and Separate-

value Separate-choice [SvSc] model. 

Following closely the approach taken by Luckman et al. (2018), we select the most informative 

and best-fitting model via Bayes factors. Through our approach we identify the model that moderates 

the increased error variance from under- or over-identified models, accordingly. The model selection in 
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our study is based on Bayes factors which penalise extra parameters. We calculate the marginal 

likelihood of each semi-nested model and then transform these marginal likelihoods into a model 

probability, assuming that each of the four candidate models has a prior probability of 0.25. 

Model selection via Bayes factors requires setting up a prior distribution on the parameters of 

our models. Given that our study involves a replication of a previous experiment, we use the prior 

distribution for Luckman et al. (2018) which itself is informed by Luckman et al. (2015). Model selection 

via Bayes factors is appropriate in the current context because our models are not complex, i.e., they do 

not have many parameters that need to be estimated and compared. Hence our estimation procedure is 

not computationally expensive. 

Note that in the Intertemporal Task we use the difference between the two value parameters 𝛼𝐼  

and 𝛼𝑅 (𝛼𝐼 − 𝛼𝑅 ). Further, the marginal likelihood of each of the models described in the previous sub-

section is fitted to the data for every participant in the experiment by using the brute-force method 

(Vandekerckhove et al., 2015), as in Luckman et al. (2018). Concretely, we use 𝑁 samples from the prior 

distributions of each parameter 𝑝(𝑎) and 𝑝(𝑠), and for the weighted set of parameters 𝜃𝑖 we compute 

the probability of the data 𝑝(𝐷|𝜃𝑖) and we average over 𝑁 samples. One limitation of this model is that 

𝑁 should be large enough because the marginal likelihood is only true if 𝑁 converges to infinity. 

Otherwise, it would be inefficient and would not approximate the true state6 (Farrell & Lewandowsky, 

2018). Therefore, Luckman et al. (2018) proposed to set 𝑁 = 600.000. We adjust the estimate of the 

marginal likelihood to the posterior model probability, assuming 0.25 for each model. Strictly speaking, 

this transformation is calculated for each of the four 𝑗 models described above by applying the following 

formula: 

6 In that case, it is recommended to implement the importance sampling model (Farrell & Lewandowsky, 2018).  
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𝑝(𝑀𝑗|𝐷) =
𝑚(𝐷|𝑀𝑗)

∑ 𝑚(𝐷|𝑀𝑘)𝑘
 (12) 

Given that we assign an equal prior probability to each of the four models, a model probability 

higher than 0.25 indicates that the data identifies that particular model as more parsimonious. We do 

this calculation for every individual that participated in our experiment, excluding those who chose 

dominated choices, in order to test the degree of support for each model described above. 

Luckman et al. (2018) observed that the behaviour and choices of 20 out of 66 participants 

cannot be explained by the CvCc model (but for 46 participants it could be explained). The information 

we collected through the standardised version of the BNT test, and the Big-5 survey of financial literacy, 

was meant to help dig deeper into the reasons and unpack why participants in the experiment make 

choices that cannot be explained by the CvCc model or vice versa. 

Results 

Our analysis of the data points is conducted in RStudio (R Development Core Team, 2021) and 

Python. We exclude from the main analysis those participants in the experiment who fail on more than 

one of the attention-check questions. 

Group Choice 

This part of the analysis corresponds to the section “Group choice” from the original study 

(Luckman et al., 2018). (The analyses we conducted go beyond the original one. Specifically, we discuss 

the safer decisions in the Risky Task and sooner decisions in the Intertemporal Task in Appendix K.) 

In line with the original study, we calculated the proportion of the participants who chose the 

safe option (LEFT option) for every choice in the Risky Task and the proportion of participants who chose 

the sooner option (LEFT option) for every choice in the Intertemporal Task. This replicates the group-

level analysis in Luckman et al. (2018, p.789) which is presented in Figure 1 of their study. 
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The ALL condition is based on data from all 360 participants. To illustrate how we calculated the 

proportions, take the responses from Choice 1 of the Risky Task: 193 out of 360 participants in our 

experiment chose the safer option (LEFT option). Therefore, we have 
193

360
= 0.536111111111111. This 

is the first data point of the ALL condition for the Risky Task. By the same token, for the other 

129 choices in ALL (Risky Task) and the 130 choices in ALL (Intertemporal Task), we used the following 

equations, respectively: 

𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑝𝑎𝑟𝑡𝑖𝑐𝑖𝑝𝑎𝑛𝑡𝑠  𝑡ℎ𝑎𝑡 𝑐ℎ𝑜𝑠𝑒 𝑡ℎ𝑒 𝑠𝑎𝑓𝑒𝑟 𝑜𝑝𝑡𝑖𝑜𝑛

360
 (13𝑎)  

and 

𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑝𝑎𝑟𝑡𝑖𝑐𝑖𝑝𝑎𝑛𝑡𝑠  𝑡ℎ𝑎𝑡 𝑐ℎ𝑜𝑠𝑒 𝑡ℎ𝑒 𝑠𝑜𝑜𝑛𝑒𝑟 𝑜𝑝𝑡𝑖𝑜𝑛

360
 (13𝑏)  

Further, for the signifiers FLAT or RANDOM, the equations are the same, but instead of 360 

participants, we have 180 participants. Yet again, for each of these 180 participants, we have 130 

choices and thus 130 data points. For instance, for FLAT or RANDOM, we apply the following equations: 

𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑝𝑎𝑟𝑡𝑖𝑐𝑖𝑝𝑎𝑛𝑡𝑠  𝑡ℎ𝑎𝑡 𝑐ℎ𝑜𝑠𝑒 𝑡ℎ𝑒 𝑠𝑎𝑓𝑒𝑟 𝑜𝑝𝑡𝑖𝑜𝑛

180
 (14𝑎)  

and 

𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑝𝑎𝑟𝑡𝑖𝑐𝑖𝑝𝑎𝑛𝑡𝑠  𝑡ℎ𝑎𝑡 𝑐ℎ𝑜𝑠𝑒 𝑡ℎ𝑒 𝑠𝑜𝑜𝑛𝑒𝑟 𝑜𝑝𝑡𝑖𝑜𝑛

180
 (14𝑏)  

Lastly, for the signifiers ITF, RTF or M, the equations are the same, but we have 120 participants 

and 130 choices and thus have 130 data points. Formally, for the RTF treatment (and likewise for the 

treatments labelled ITF and M) we used the following equations: 

𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑝𝑎𝑟𝑡𝑖𝑐𝑖𝑝𝑎𝑛𝑡𝑠  𝑡ℎ𝑎𝑡 𝑐ℎ𝑜𝑠𝑒 𝑡ℎ𝑒 𝑠𝑎𝑓𝑒𝑟 𝑜𝑝𝑡𝑖𝑜𝑛

120
 (15𝑎)  

and 

𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑝𝑎𝑟𝑡𝑖𝑐𝑖𝑝𝑎𝑛𝑡𝑠  𝑡ℎ𝑎𝑡 𝑐ℎ𝑜𝑠𝑒 𝑡ℎ𝑒 𝑠𝑜𝑜𝑛𝑒𝑟 𝑜𝑝𝑡𝑖𝑜𝑛

120
 (15𝑏)  

We now move to the analysis of choices that were made by the participants in the Risky Task 

and in the Intertemporal Task, at the group level. 
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Figure 8 contains the boxplots of the Risky Task and the Intertemporal Task, respectively. These 

boxplots represent the distribution of the proportion of participants who have chosen the safer option 

(LEFT option) in the Risky Task for each of the 130 choices and the distribution of the proportion of 

participants who have chosen the sooner option (LEFT option) in the Intertemporal Task for each of the 

130 choices. The long black line indicates the median value for each group, whereas the red circle 

indicates the mean values for each group. Recall that 𝑝𝑟𝑜𝑝.𝐴𝐿𝐿 is based on the decisions made by 360 

participants in 130 risky choices and 130 intertemporal choices. 

Figure 8 
Boxplot of the Risky Task and the Intertemporal Task 

Similarly, INCENTIVE SYSTEM contrasts the outcomes of the FLAT and RANDOM (performance-

based) payment schemes whereas TREATMENT captures the results of RTF, ITF, and M treatments, i.e., 

the order in which we administered Risky and Intertemporal Task. (They are calculated in accordance 

with 14𝑎, 14𝑏, and 15𝑎 and 15𝑏, respectively.) Boxplots in the Online Materials contain information 

about the proportions of participants that have chosen the safer option in the different conditions 
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(FLAT, RANDOM, RTF, ITF, and M) and the proportion of participants that have chosen the sooner option 

in the different conditions (FLAT, RANDOM, RTF, ITF, and M), respectively.  

We infer from Figure 8 that the distributions of risky and intertemporal choices differ. We 

observe that the span of the most frequent concentration as well as the median line for the 

Intertemporal Task are substantially below the span of the most frequent concentration and the median 

line for the Risky Task. Further, we observe that both median and mean values differ considerably across 

both the Risky and the Intertemporal Task. We conclude that the distribution of the proportions of 

participants that have chosen the safer option differs from the proportion of participants that have 

chosen the sooner option. The various boxplots in the Online Materials illustrate that these differences 

are robust across the different conditions. 

In the last section, we provide a wider theoretical discussion about the parameter of the utility 

curvature for the Risky Task and Intertemporal Task, which implies that the two tasks differ. As a 

consequence, our analysis is not as robust as would be desirable, but it is informative when the stimuli 

(and the corresponding decisions) are analysed, and when one recall that identification between the 

stimuli in the Risky Task and the Intertemporal Task is almost perfect. 

We have also created scatterplots that mimic those in the original study (Figure 1 from Luckman 

et al., 2018), Figure 9a, for the Risky Task, and Figure 9b for the Intertemporal Task. 

The visual inspection of the group choices suggests that the intertemporal choices (almost all of 

which lie below 0.8), are noisier, and their distribution less concave than the risky choices. This indicates 

that risky choices are not the same as intertemporal choices and unlikely to be explainable by a single 

model on the aggregate level. Note that, both visually and from a qualitative perspective, they might 

look similar to the reader but there are distinct quantitative differences. Additional scatterplots are 

available in the Online Materials. They suggest that the normality assumption is violated. 
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The first two tables in the Online Materials contain information about the proportion of the 

participants that have chosen the safer option in the different conditions, and the proportion of the 

participants that have chosen the sooner option in the different conditions, respectively. These tables 

informed the other parts of our analysis. 

Figure 9a and Figure 9b 
Scatterplot of the Risky Task (proportion of safe choices)  and of the Intertemporal Task (proportion of 
the sooner choices) at the group level 

We now move to a formal statistical analysis of the data points from the experiment. 

Firstly, we ran a Wilcoxon test (paired [Wilcoxon signed-rank test] and unpaired [Wilcoxon rank 

sum test or Mann-Whitney test]) as a non-parametric alternative to the t-test (t-test statistics are 

available in the Supplemental Materials) when the data are not normally distributed, as in our case. As 

a bonus, the Wilcoxon test does not lose relevance when extreme values (outliers) are present. The null 

hypothesis of the Wilcoxon test is that the median of the considered variable is the same for the two 

compared groups. 

Feltovich (2003) tested a modification of the Wilcoxon-Mann-Whitney test, an allegedly more 

robust alternative proposed by Fligner-Policello, and concluded that it should be used instead of the 

Wilcoxon-Mann-Whitney test if the population dispersions are different, when the exact critical values 

for the robust rank-order test are available, and when the sample sizes are large (40+). The null 

hypothesis is the same as for the Wilcoxon-Mann-Whitney test. While the Fligner-Policello test does not 
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assume that the shape of the distribution is similar for the two groups, it does assume that the 

distributions of the variables or groups of interests are symmetric.  

In Table 1 we present the results that we obtained from the Wilcoxon (paired and unpaired) and 

Fligner-Policello tests. (Nota bene, we show the results in the first part for the Fligner-Policello test in 

order to be consistent in our presentation. This test is not specifically designed to compare central 

tendences of paired data, but it is an alternative to the Wilcoxon-Mann-Whitney test i.e., it is adequate 

for unpaired [independent] data. Therefore, these results should be treated with caution.) 

Table 1 
Wilcoxon, and Fligner-Pollicello, tests of risky choices and the intertemporal choices 

Note. ***, **, * indicates a statistical significance at 1%, 5%, and 10%, respectively. 

Comparing Table 1 and Table K6 (from the Appendix K), we observe that the statistically 

significant findings in the first part of the tables, across the various treatments, and the incentive 

systems, are robust and identical. Moreover, there are no statistically significant differences between 

the results from the Wilcoxon test and those from the Fligner-Policello test. 

We highlight the statistically significant differences in the median values from the proportion of 

the participants that have chosen the safer option (Risky Task) and the median values from the 

WILCOXON TEST FLIGNER-POLICELLO TEST 

ALL 8152*** -10.19888***
FLAT 8243.5*** -9.468542***
RANDOM 8280*** -10.77485***
RTF 8180*** -11.56998***
ITF 7504*** -6.51648***
M 8360.5*** -12.64584***

RISKY TASK 
INCENTIVES 8845.5 -0.6570591
RTF – ITF 8685 -0.391574
RTF – M 8891.5 -0.7408341
ITF – M 8648.5 -0.3311087

INTERTEMPORAL TASK 
INCENTIVES 9622.5** -1.941453**
RTF – ITF 6091*** 3.923049***
RTF – M 9151 -1.149128
ITF – M 11165*** -4.521599***
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proportion of the participants that have chosen the sooner option (Intertemporal Task). This difference 

is robust across incentive systems and treatments for both tests.  

In terms of the Risky Task (second part of Table 1), we see no statistically significant difference, 

which implies that the median values from the proportion of the participants that have chosen the safer 

option in the Risky Task is robust across the incentive systems and treatments. However, this is not the 

case for the Intertemporal Task (third part of Table 1) where statistically significant differences in the 

median values from the proportion of the participants that have chosen the sooner option in the 

incentive systems, ITF treatment and RTF treatment, and ITF treatment and M treatment are evident. 

We also ran a Kolmogorov-Smirnov test which is used to test whether the compared groups 

come from the same distribution i.e., the Kolmogorov-Smirnov helps us to evaluate the equivalence in 

distribution between pairs of data. The null hypothesis of the Kolmogorov-Smirnov test states that the 

two groups of interest come from the same distribution. The results that we have obtained from the 

Kolmogorov-Smirnov test for different incentive systems and treatments are available in Table 2. 

Table 2 
Kolmogorov-Smirnov test of the risky choices and the intertemporal choices 

TEST STATISTICS 
Risky Task and Intertemporal Task Risky Task Intertemporal Task 

ALL 0.50769*** - - 
FLAT 0.5*** - - 

RANDOM 0.51538*** - - 
RTF 0.55385*** - - 
ITF 0.36923*** - - 
M 0.58462*** - - 

INCENTIVES - 0.069231 0.14615 
RTF –  ITF - 0.069231 0.34615*** 
RTF –  M - 0.092308 0.12308 
ITF –  M - 0.069231 0.4*** 

Note. ***, **, * indicates a statistical significance at 1%, 5%, and 10%, respectively.  

Table 2 reveals the substantially different distributions of the proportion of safe choices (Risky 

Task) and the proportion of sooner choices (Intertemporal Task). We find thus additional empirical 

evidence that the distribution of the risky choices is different from the distribution of the intertemporal 
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choices. Note that this result is robust across different incentive systems, and treatments. This finding is 

not a strong indication/proof because the Kolmogorov-Smirnov test is (typically) designed for treating 

independent samples, hence the results should be taken with caution when the paired data points are at 

stake. Regarding the tasks, the results for the Risky Task (second column in Table 2) indicate that there is 

no statistically significant difference between the distribution of the proportion of safe choices across 

the different incentive systems, and treatments. Contrary to this, for the Intertemporal Task (third 

column in Table 2), we find that the distribution of the proportion of sooner choices is different when 

ITF treatment and RTF treatment, and ITF treatment and M treatment, are compared. 

We also did standard correlation, distance covariance, and distance correlation analyses. The 

results are presented in Table 3. 

Table 3 
Correlation analysis at the group level 

Pearson Kendall Spearman Distance covariance Distance correlation 
ALL 0.7542031*** 0.6301602*** 0.8187256*** 0.1272244 0.7588383 

FLAT 0.7563575*** 0.6279718*** 0.8161688*** 0.1280777 0.7551156 
RANDOM 0.7465259*** 0.6255179*** 0.814139*** 0.1256091 0.7559091 

RTF 0.7148516*** 0.5880296*** 0.7827983*** 0.1195607 0.7244985 
ITF 0.7359897*** 0.6197614*** 0.8052184*** 0.1366098 0.7270352 
M 0.7240589*** 0.6452266*** 0.8246188*** 0.1242993 0.7905518 

RISKY TASK 
INCENTIVES 0.98713*** 0.9071996*** 0.9856662*** 0.1605975 0.9831464 

RTF – ITF 0.9797498*** 0.8733356*** 0.9726318*** 0.1630992 0.9764242 
RTF – M 0.9184689*** 0.817559*** 0.9376408*** 0.1550841 0.9311492 
ITF – M 0.9117114*** 0.8152373*** 0.9297886*** 0.1518415 0.9285239 

INTERTEMPORAL TASK 
INCENTIVES 0.9866689*** 0.9080653*** 0.9860413*** 0.1700116 0.9853431 

RTF – ITF 0.9650496*** 0.8961066*** 0.9810819*** 0.1805017 0.9723378 
RTF – M 0.952854*** 0.8078461*** 0.9469225*** 0.1458684 0.9363104 
ITF – M 0.9094369*** 0.8068737*** 0.9481342*** 0.1654296 0.9156839 

Note. ***, **, * indicates a statistical significance at 1%, 5%, and 10%, respectively.  

From Table 3, we see that there is a moderate to strong positive correlation between the 

proportion of the safe choices for every choice (Risky Task) and the proportion of the sooner choices for 

every choice (Intertemporal Task). This result is robust across the different correlation coefficients as 

well as across the different treatments, and incentive systems. We also found a positive, almost perfect, 
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correlation between the proportion of the safe choices (Risky Task) in the pairwise comparison of the 

incentive systems, and treatments. A strong positive correlation is also found in the Intertemporal Task 

across the incentive systems, and treatments. Nevertheless, given the possibility of non-linear affine 

transformations of risky and intertemporal choices we must be cautious when drawing general 

conclusions from the correlation analysis. 

Individual Choice 

After the descriptive analysis and the analysis of the data at the group level, we move to the 

analysis at the individual level. See section Estimation Strategy for motivation and theory. 

We exclude from this analysis the participants who failed to choose the dominant option on 

more than one of the five check questions in either choice sets. (See the Supplemental Materials). 

In this last part of our analysis, we identify the best semi-nested model at the individual level by 

using Bayesian statistics. To define, “the Bayesian inference is reallocation of credibility over 

possibilities. In model comparison, the focal possibilities are the models, and Bayesian model 

comparison reallocates credibility across the models, given the data” (Kruschke, 2015, pp. 265-266). 

Bayesian model comparison/selection helps us to determine, based on the data that we have, which 

model performs better relative to others. 

A key to Bayesian model comparison/selection is the Bayes factor.  The popularity of the Bayes 

factor is perhaps due to the fact that it does not require parameter estimation. Rather it provides 

relative evidence in favour of the predictive performance of one model over another i.e., it tells us 

whether the observed data are (relatively) more probable under one over another model. It does not 

depend on a single value parameter but rather the entire prior distribution of the parameter and the 

actual data are considered in the unique framework simultaneously. 
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Formally, we write Bayes factors as: 𝐵𝐹12 =
𝑃(𝐷|𝑀1 )

𝑃(𝐷|𝑀2 )
or 𝐵𝐹12 =

𝑝𝑜𝑠𝑡𝑒𝑟𝑖𝑜𝑟12

𝑝𝑟𝑖𝑜𝑟12
.  Note that Bayes 

factors7 are related to the Akaike Information Criterion approach to approximately calculate the 

posterior probability. More precisely, “the Bayes factor is the factor by which a rational agent changes 

her prior odds in the light of observed data to arrive at the posterior odds. More intuitively, the Bayes 

factor quantifies the strength of evidence given by the data about the models of interest. It expresses 

this evidence in terms of the models’ relative prior predictive accuracy” (Franke, 2021).  

Given there is no substantial computational burden involved in estimating Bayes factors via 

brute-force (or grid search) in our case, and because it is the methodology that was applied in Luckman 

et al. (2018), we proceeded with this approach which allows us to systematically evaluate the semi-

7 Concretely, “the Bayes factors (and posterior model probabilities) tell us how much evidence the data (and priors) provide in  

favour of one model or another. That is, they allow us to perform inferences on the model space, i.e., to learn how much each  

hypothesis is consistent with the data” (Nicenboim et al., 2022). Analytically, we define the Bayes factor as the ratio of margi nal 

likelihoods — which is the likelihood of the observed data given the model specification — derived from Bayesian updating or 

as the degree of shift in prior beliefs about the relative credibility of the two models (Makowski et al., 2019). In contrast, 

frequentist statistics evaluates a model by computing the maximum likelihood, that is, the likelihood of the data given the b est-

fitting model parameter relative to the data points. Yet, it does not take into account the uncertainty associated with the 

estimates, and it could lead to a situation of Lindley's paradox. Bayesian inference attempts to quantify this uncertainty i. e., it 

helps to evaluate the marginal likelihood that entails the likelihood given all plausible values and thus the uncertainty for t he 

model parameters. The marginal likelihood is not a function which means that it does not depend on the model parameters as 

they are marginalised. Concretely, the likelihood is evaluated for every possible parameter value, weighted by the prior 

plausibility and summed along. Hence, the prior distribution is inevitably vital for the procedure. Nevertheless, note that t he 

marginal likelihood is based on the data observations (Nicenboim et al., 2022).  
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nested models and to check which of them outperforms other models. An advantage of this approach, 

beyond its simplicity, is the possibility to visually represent the results 8. 

In order to identify the best model at the individual level, we computed the Bayes factor of each 

semi-nested model for each individual. In our case, with 4 semi-nested models and (planned) 360 

participants, that requires a total of 1340 Bayes factors at the individual level (we have calculated the 

Bayes factors for 10 participants that failed on more than one checker too but excluded them from the 

subsequent analysis). 

In our estimation we used the prior distribution from Luckman et al. (2018) which helps us to 

overcome issues that arise when uninformative priors would be attached. Moreover, we also applied 

alternative prior specifications that help us to avoid these issues, and that relate to the other 

comparisons in the Supplementary Materials of Luckman et al. (2018). We have provided an additional 

comparison, based on “CUSTOM” priors. Concretely, the prior distributions for the parameters of the 

models which were used in Luckman et al. (2018) in their Comparison 1 (used in the main manuscript) 

included gamma distributions for the value parameters with relatively big scale and shape parameters. 

These gamma distributions produced samples of value parameters with a mean around 12. This is an 

enormous value for these parameters since they are used as exponents in the subjective value function 

which results in choice function probabilities of either 0 or 1 due to underflow or overflow of the 

exponent function in the logistic function. As explained by Luckman et al. (2018), the subjective value 

function is concave for the values in the parameter range [0,1]. The sampling of the value parameter 

8 Yet, Kangasrääsiö et al. (2019) noted that the method is less efficient and very expensive when the dimensionality of the spa ce 

is high and when we need to infer multiple parameters simultaneously. Fortunately, we do not face those challenges and 

obstacles in our estimation. 
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using gamma distributions with mean bigger than 12 produces almost no samples in the considered 

range i.e., it results in a “typical” misleading bias. This is why we additionally employed the “CUSTOM” 

set of prior distributions which contains the same priors for all parameters except for the value, for 

which we have chosen a uniform distribution in the range of [0,1]. Finally, considering that “large 

sample studies, and/or replication studies can lead to reliable inferences from empirical data in the 

cognitive sciences” (Nicenboim, et al., 2022), we believe that the Bayesian inference in our case provides 

credible evidence. 

Following the estimation strategy of Luckman et al. (2018), we have not estimated the best 

fitting parameters for each of the semi-nested models at the aggregate and at the individual level. 

Instead, at the individual level, we used the brute-force method. This methodology enables us to 

calculate the marginal likelihood for each model for each participant separately. This analysis relies 

heavily based on the information regarding the prior distributions available in the Supplementary 

Materials in Luckman et al. (2018) and the “CUSTOM” priors as explained above. The last analysis is 

done at the level of individual participants. 

Following Luckman et al. (2018), the basic procedure/algorithm that we implement is: 1) choose 

a participant and a particular semi-nested model; 2) draw a set of parameter values for that model from 

its priors reported in the Supplementary Materials in Luckman et al. (2018) 9; 3) calculate the likelihood 

9 The prior distributions are obtained from the dataset with responses from a separate set of participants to a similar set of 

choices (Luckman et al., 2015). Luckman et al. (2015) fitted the semi -nested models to the dataset, and by using the Maximum 

Likelihood Estimation they estimated best parameters for each of the semi-nested models, for each participant in their 

experiment separately. Then, Luckman et al. (2015) looked at the distribution of values across participants for each paramete r. 

Ultimately, they removed the top and bottom most extreme two percent of the of values, and fitted a distribution to these 

(uniform, lognormal, normal etc.), depending upon restrictions on the parameters and the distribution. 

Institute for Replication I4R DP No. 205

40



of the observed data for that participant and for the selected semi-nested model using the sampled set 

of parameter values; 4) repeat 600.000 times, i.e., randomly draw 600.000 sets of parameters, and 

calculate the likelihood of that participant’s data for each set, to calculate the marginal likelihood; 4) 

repeat this procedure for each of the other semi-nested models for the participants; and 5)  repeat this 

procedure for the other participants from the experiment. See more details in Appendix K. 

We replicate Figure 2 from Luckman et al. (2018) [Comparison 1]10. Concretely, we produce a 

violin plot of the posterior model probabilities of the four semi-nested models for each individual in the 

experiment, excluding those who failed on more than one dominated choice. The results are available in 

Figures 10a-10g, where Figure 10a corresponds to Figure 2 from Luckman et al. (2018). Note that we 

present the results in dollar amounts, as we did not find substantial differences between the dollar 

amounts and talers. 

An important note, the white dot in Figures 10a-10g represents the median, whereas the bold 

line shows the span of the most frequent distribution of the model probabilities. 

10 We replicated other figures reported in the Supplementary Materials of Luckman et al. (2018) in our Online Materials, as 

Comparison 2, Comparison 3, Comparison 4, as well as more added and created figures for the Comparison CUSTOM. We 

found that the results in Comparison 2 (152 participants, 272  participants, 162  participants and 159  participants), Comparison 

3 (341  participants, 52 participants, 229  participants, and 64 participants), Comparison 4 (344  participants, 101  participants, 

289 participants, and 0 participants) and Comparison CUSTOM (350  participants, 7 participants, 209  participants, and 

0 participants) differed in the number of participants where the model probability is greater than 0.25 for the four semi-nested 

models, accordingly: CvCc, CvSc, SvCc, and SvSc. 
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Figure 10a 
Model probabilities for ALL (350 participants) 

Figure 10b and Figure 10c 
Model probabilities for FLAT treatment and RANDOM treatment 

Figure 10d, Figure 10e, and Figure 10g 
Model probabilities for RTF treatment, ITF treatment, and M treatment 
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From Figure 10a, which corresponds to Figure 2 reported in Luckman et al. (2018), we learn that 

the CvSc model has the largest model probability for the majority of the participants in the experiment. 

Our result differs from Luckman et al. (2018) who found evidence in favour of the CvCc model for 46 out 

of 66 participants, i.e., for about 7 out of 10 participants. Instead, we found evidence in support of the 

CvSc model for 317 out of 350 participants, i.e., for about 9 out of 10 participants. Thus, we identify 

CvSc as the best model to accommodate risky and intertemporal choices. 

An important difference is that the model probabilities in our study span from 0.20 to 0.30, 

which is different from Luckman et al. (2018) where they span from 0 to almost 1. This differs across the 

different treatments, as one can see it in the Online Materials. While the span of the model probability 

is slightly different for our various comparisons, overall, it does not differ much. It just moves around 

substantially the number of participants for which the model probability for the different semi-nested 

model is larger than 0.25. 

We do not have a good and reasonable explanation for the (substantially) different ranges of 

model probabilities in our study and that of Luckman et al. (2018). An obvious guess is — priors. Namely, 

the parameters of the same underlying construct for which improper priors are imposed are (usually) 

identical across models. The original priors (Luckman et al., 2018) are obtained from a 2015 experiment 

where the participants were “paid” with credit points. It could be that these priors are not the most 

adequate ones for our conceptual replication (but, since no better candidate was suggesting itself, and 

because we did a conceptual replication, we relied on them). 

Our result seems to be robust across the incentive systems (FLAT and RANDOM) and order of 

presentation of the tasks (RTF, ITF, and M). That said, from the visual inspection of Figures 10a-10g, we 

observe that for the other semi-nested models, there are some differences across incentive systems and 

orders of presentation. Therefore, we provide descriptive statistics in Tables 4a-4c that facilitate 

understanding of the model probabilities of the semi-nested models. 
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Table 4a 
Descriptive statistics for model probabilities for ALL (350 participants) 

MODELS MODEL PROBABILITY 
(LARGER THAN 0.25) 

LARGEST MODEL PROBABILITY 

CvCc 92 (26.29%) 46 (13.14%) 
CvSc 317 (90.57%) 286 (81.71%) 

SvCc 138 (39.43%) 17 (4.86%) 

SvSc 167 (47.71%) 1 (0.29%) 

Table 4b 
Descriptive statistics for model probabilities for FLAT (left) and RANDOM (right) treatments 

Table 4c 
Descriptive statistics for model probabilities for RTF (left), ITF (center), and M (right) treatments 

Table 4a confirms our conclusion that the CvSc model accommodates the decisions of the 

overwhelming majority of the participants in the experiment (317 out of 350 participants). The second-

most preferred semi-nested model, the SvSc model, is found to have a probability greater than 0.25 for 

167 out of 350 participants. The SvCc semi-nested model has a model probability greater than 0.25 for 

138 out of 350 participants, and the CvCc model for 92 out of 350 participants. We conclude that the 

CvCc model – contrary to the findings in Luckman et al. (2018) -- is not the best model to account for 

risky and intertemporal choices in a unified framework. Indeed, when we rank the model probabilities 

for each of the 350 participants, we find that the model probability of the CvSc model is largest for 286 

MODELS FLAT RANDOM 

MODEL PROBABILITY 
(LARGER THAN 0.25) 

LARGEST MODEL 
PROBABILITY 

MODEL PROBABILITY 
(LARGER THAN 0.25) 

LARGEST MODEL 
PROBABILITY 

CvCc 38 (21.71%) 19 (10.86%) 54 (30.86%) 27 (15.43%) 

CvSc 161 (92%) 148 (84.57%) 156 (89.14%) 138 (78.86%) 

SvCc 60 (34.29%) 8 (4.57%) 78 (44.57%) 9 (5.14%) 

SvSc 93 (53.14%) 0 74 (42.29%) 1 (0.57%) 

MODELS RTF ITF M 
MODEL 

PROBABILITY 
(LARGER THAN 

0.25) 

LARGEST MODEL 
PROBABILITY 

MODEL 
PROBABILITY 

(LARGER 
THAN 0.25) 

LARGEST 
MODEL 

PROBABILITY 

MODEL 
PROBABILITY 

(LARGER THAN 
0.25) 

LARGEST MODEL 
PROBABILITY 

CvCc 35 (29.91%) 19 (16.24%) 15 (12.50%) 7 (5.83%) 42 (37.17) 20 (17.70%) 
CvSc 103 (88.03%) 92 (78.63%) 113 (94.17%) 109 (90.83%) 101 (89.38%) 85 (75.22%) 
SvCc 52 (44.44%) 6 (5.13%) 28 (23.33%) 3 (2.5%) 58 (51.33%) 8 (7.08%) 
SvSc 53 (45.30%) 0 77 (64.17%) 1 (0.83% 37 (32.74%) 0 
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out of 350 participants, with 46 participants for the CvCc model, 17 participants for the SvCc model, and 

1 out of 350 participants for the SvSc model. 

As regards incentive systems (Table 4b), the performance of the CvSc model is consistent across 

them. We do find differences in proportion for the other semi-nested models. The number of 

participants from the FLAT treatment where the model probability is greater than 0.25 is different from 

the number of participants from the RANDOM treatment where the model probability is greater than 

0.25. This difference is larger than 10 participants for the CvCc model (16 participants), the SvCc model 

(18 participants), and the SvCc model (19 participants). Regarding the number of participants and semi-

nested models with the largest model probability, we observe a difference of 10 participants for the 

CvSc model (148 participants in the FLAT treatment and 138 participants in the RANDOM treatment.) 

We do not observe a difference larger than 10 participants for the other semi-nested models. 

In Table 4c, we have excluded 10 participants who violated the dominance principle, which 

leaves us with 117 participants in the RTF treatment, 120 participants in the ITF treatment, and 113 

participants in the M treatment. Yet again we find that the CvSc model has the dominant model 

probability of greater than 0.25 for the RTF (88.03%), ITF (94.17%), and M (89.38%) treatments. This 

is more or less consistent across different orders of presentation. Yet, that is not the case for the other 

semi-nested models. For instance, the CvCc model is found to have a probability greater than 0.25 for 

RTF (29.91%), ITF (12.50%), and M (37.17%) treatments. Further, the SvCc model is found to have a 

probability greater than 0.25 for RTF (44.44%), ITF (23.33%), and M (51.33%) treatments. The SvSc 

model is found to have a probability greater than 0.25 for RTF (45.30%), ITF (64.17%), and M 

(32.74%) treatments. Finally, regarding the largest model probability, for the four respective semi-

nested models in Table 4d, we find that the percentage of the participants for the RTF treatment are 

16.24%, 78.63%, 5.13%, and 0%, percentage for the ITF treatment are 5.83%, 90.83%, 2.5%, and 
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0.83%, and percentage for the M treatment are 17.70%, 75.22%, 7.08%, and 0%. The bottom line 

from this simple (descriptive) analysis is that order effects matter. 

We now move to the formal analysis of the individual choices in the experiment, which goes 

beyond Luckman et al. (2018). We ran three logit regressions where the binary outcome variable is 

whether the CvCc model has a model probability greater than 0.25 (the outcome variable is 1) or 

otherwise (the outcome variable is 0). The first logit regression (“DETERMINANTS”) contains the 

predictors form the surveys in the experiment. The second logit regression (“EXPERIMENT”) contains the 

predictors relevant for the experiment, and the third logit regression “TASK ATTRIBUTES” contains the 

predictors from the task features and attributes. Table 5 shows the results. We note that we controlled 

multicollinearity by applying the Variance Inflation Factor (VIF) and we found that there are no 

predictors that potentially undermine the results from our logit regressions. As an important caveat, 

recall that large standard errors affect statistical significance, but that is not the case for all of the 

coefficients in the subsequent analyses. 

From the first column in Table 5, which corresponds to the first logit regression, we found that 

only the BNT score (risk numeracy) has a statistically significant effect on the binary outcome variable (at 

the 10% level of statistical significance). In other words, for every one-unit change in BNT score (risk 

numeracy), the log odds that the CvCc has a model probability larger than 0.25 increases by 0.176339. 

Other predictors in the first logit regression are not statistically significant.  

Regarding the second logit regression, which corresponds to the predictors related to the 

experiment (second column in Table 5), we find that when the incentive system is RANDOM, instead of 

FLAT, the log odds that the CvCc has a model probability larger than 0.25 increases by 0.4683. This 

result is statistically significant at the 10% level. For the other predictors we fail to find a statistically 

significant relationship with the binary outcome variable.  
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Table 5 
Logit model of the CvCc semi-nested model 

Note. ***, **, * indicates a statistical significance at 1%, 5%, and 10%, respectively. Standard errors are 
reported in brackets. 

CVCC (BINARY) DETERMINANTS EXPERIMENT TASK ATTRIBUTES 

AGE 0.039160 
(0.110599) 

GENDER -0.009463
(0.245911)

EDUCATION -0.038118
(0.187686)

INCOME -0.013847
(0.090691)

JOB 0.020882
(0.105954)

BNT SCORE 0.176339*
(0.095291)

HILDA SCORE 0.256938
(0.168186)

POOL 0.1120 
(0.2450) 

INCENTIVES 0.4683* 
(0.2464) 

ORDER 0.1784 
(0.1513) 

COMPREHENSION 
(INTERTEMPORAL TASK) 

0.367549** 
(0.174703) 

COMPREHENSION 
(RISKY TASK) 

0.508299*** 
(0.181268) 

RESPONSE TIME -0.019504**
(0.009685)

CONFIDENCE LEVEL 
(INTERTEMPORAL TASK) 

0.221741*
(0.134606)

CONFIDENCE LEVEL 
(RISKY TASK) 

0.038405
(0.141165)

EFFORT LEVEL 
(INTERTEMPORAL TASK) 

-0.573859***
(0.118825)

EFFORT LEVEL 
(RISKY TASK) 

0.380083***
(0.128887) 

COMPLEXITY LEVEL 
(INTERTEMPORAL TASK) 

0.082968 
(0.116824) 

COMPLEXITY LEVEL 
(RISKY TASK) 

-0.026875
(0.116156)
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Lastly, the third column in Table 5 corresponds to the logit regression where the predictors are 

specific task attributes and features. We find that the task understanding, which is particularly 

important for the choice function (n.b., relative performance of the model is not fully dependent on the 

task scores, but understanding the task, which is one potential attribute, could potentially direct the 

drive wheel), indicated by the comprehension score, has a statistically significant effect on the binary 

outcome variable for both tasks at the statistical significance level of 1%. In particular, the log odds that 

the CvCc has a model probability larger than 0.25 increases by 0.367549 and 0.508299 for every one 

unit increase in the comprehension score for the Intertemporal Task and the Risky Task, respectively.  

Further, from the third column in Table 5, we found that the log odds that the CvCc has a model 

probability larger than 0.25 decreases by 0.019504 for each one instantaneous increase in the response 

time (statistically significant at 5%). The reported confidence level is found to be statistically significant 

only for the Intertemporal Task (statistically significant at 10%). In other words, the log odds that the 

CvCc has a model probability larger than 0.25 increases by 0.221741 for every one unit increase in the 

confidence level for the Intertemporal Task. Interestingly, we found opposite effects for the reported 

effort levels in the Intertemporal Task and Risky Task. More precisely, the log odds that the CvCc has a 

model probability larger than 0.25 decreases by 0.573859 for every one unit increase in the stated 

effort level for the Intertemporal Task. Alas, log odds that the CvCc has a model probability larger than 

0.25 increases by 0.380083 for every one unit increase in the stated effort level for the Risky Task. The 

results are statistically significant at 1%. 

Next, we move to the analysis of the marginal effects (Table 6.). The marginal effects show the 

direction and magnitude of the change in probability when the predictor increases by one unit. The 

results from the three respective logit regression models that we discussed are available in Table 6. (In 

Appendix M are reported available relative risk [odds] ratios from this analysis.) 
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Table 6 
Marginal effects of the CvCc semi-nested model 

Note. ***, **, * indicates a statistical significance at 1%, 5%, and 10%, respectively. Standard errors are 
reported in brackets. 

CVCC (BINARY) DETERMINANTS EXPERIMENT TASK ATTRIBUTES 

AGE 1.039937 
(0.115016) 

GENDER 0.990581 
(0.243594) 

EDUCATION 0.962599 
(0.180666) 

INCOME 0.986248 
(0.089443) 

JOB 1.021101 
(0.10819) 

BNT SCORE 1.192842* 
(0.113667) 

HILDA SCORE 1.292965 
(0.217458) 

POOL 1.11855 
(0.27402) 

INCENTIVES 1.59730* 
(0.39357) 

ORDER 1.19535 
(0.18091) 

COMPREHENSION 
(INTERTEMPORAL TASK) 

1.4441904** 
(0.2523043) 

COMPREHENSION 
(RISKY TASK) 

1.662462*** 
(0.3013518) 

RESPONSE TIME 0.9806847** 
(0.0094978) 

CONFIDENCE LEVEL 
(INTERTEMPORAL TASK) 

1.2482479* 
(0.1680211) 

CONFIDENCE LEVEL 
(RISKY TASK) 

1.0391517 
(0.1466914) 

EFFORT LEVEL 
(INTERTEMPORAL TASK) 

0.5633473*** 
(0.06694) 

EFFORT LEVEL 
(RISKY TASK) 

1.4624056*** 
(0.1884849) 

COMPLEXITY LEVEL 
(INTERTEMPORAL TASK) 

1.0865066 
(0.12693) 

COMPLEXITY LEVEL 
(RISKY TASK) 

0.9734825 
(0.1130761) 
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From the first logit regression from Table 6, again, the only statistically significant predictor is 

the BNT score (statistically significance at 10%). Yet, the interpretation is different now. A one unit 

increase in the BNT score is associated with a 1.192842 increase in the probability of a CvCc model 

larger than 0.25, ceteris paribus. The second logit regression from Table 6 indicates that when the 

incentive system is RANDOM, it is associated with a 1.59730 increase in the probability of a CvCc model 

larger than 0.25 (statistical significance of 10%), ceteris paribus. 

In the last part of this analysis at the individual choice level, we implement a standard ordered 

logit model (Table 7). An important note, instead of a variable with binary outcome, in the standard logit 

model we have a dependent variable that is categorical. More precisely, when the model probability for 

the CvCc outperforms other semi-nested models — it is the largest model probability — we have that 

dependent categorical variable is 1. By the same token, the dependent categorical variable is 2 when 

the model probability of the CvSc model is largest, 3 when the model probability of the SvCc model is 

largest, and 4 when the model probability of the SvSc model is largest. 

Interestingly, from the first standard ordered logit model, reported in first column in Table 7, we 

did not find any statistically significant result. The same holds for the second column in Table 7. Alas, we 

found that four predictors in the third standard ordered logit model (third column in Table 7) are 

statistically significant: comprehension score for the Intertemporal Task (5%), comprehension score for 

the Risky Task (5%), confidence level for the Risky Task (10%), and effort level for the Intertemporal 

Task (5%). So, for the comprehension score from the Intertemporal Task, we would say that for a one 

unit increase in the comprehension score, we expect a 0.4175823 decrease in the logarithm odds that 

CvSc, SvCc or SvSc models have the largest model probability, ceteris paribus. The result is identical for 

the comprehension score from the Risky Task. Yet, the magnitude is to some extent smaller in the 

confidence level from the Risky Task, but it is opposite in the reported effort level for the Intertemporal 

Task. 
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Table 7 
Standard ordered logit model for the semi-nested models 

Note. ***, **, * indicates a statistical significance at 1%, 5%, and 10%, respectively. Standard errors are 
reported in brackets. 

MODEL (CATEGORICAL) DETERMINANTS EXPERIMENT TASK ATTRIBUTES 

AGE 0.012654 
(0.124911) 

GENDER 0.15461 
(0.279567) 

EDUCATION -0.295182
(0.211701)

INCOME 0.017595
(0.101131)

JOB -0.094551
(0.119144)

BNT SCORE -0.165319
(0.108285)

HILDA SCORE 0.199661
(0.161571)

POOL -0.336210
(0.278429)

INCENTIVES -0.213279
(0.276700)

ORDER 0.010873
(0.171515)

COMPREHENSION 
(INTERTEMPORAL TASK) 

-0.4175823**
(0.1777004)

COMPREHENSION 
(RISKY TASK) 

-0.4462661**
(0.1894606)

RESPONSE TIME 0.0070909
(0.009548)

CONFIDENCE LEVEL 
(INTERTEMPORAL TASK) 

-0.1512953
(0.1394044)

CONFIDENCE LEVEL 
(RISKY TASK) 

-0.2743219*
(0.149921)

EFFORT LEVEL 
(INTERTEMPORAL TASK) 

0.2721057**
(0.1206402)

EFFORT LEVEL 
(RISKY TASK) 

-0.1884949
(0.1292943)

COMPLEXITY LEVEL 
(INTERTEMPORAL TASK) 

-0.0135722
(0.1246107)

COMPLEXITY LEVEL 
(RISKY TASK) 

-0.0459158
(0.122188)
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It is not straightforward to interpret the coefficients from the standard ordered logit model. 

Therefore, we have calculated the marginal effects for these models. The results are reported in the 

Online Materials. 

Discussion and Concluding Remarks 

We present a brief review of related studies. We also summarise the key results of the 

experiment. 

A Brief Review of Related Literature 

We discussed some relevant literature in the first two sections when motivating our experiment. 

Here we complete this review. 

The need for replication studies has increasingly been acknowledged due to the part they play in 

restoring confidence in the scientific enterprise (Anderson & Maxwell 2016; see also Ioannidis et al. , 

2017; Ortmann 2021; Brodeur et al., 2024). The focus of our replication study is on risk [risky choices] 

and time preferences [intertemporal choices] and their interaction. Anderhub and Güth (2001) reported 

that risk-averse participants discount the future more heavily than participants classified as risk-neutral 

and risk-seeking. Andersen et al. (2008) found that the joint elicitation of risk and time preferences 

results in significantly lower discount rates than separate elicitation. Somasundaram and Eli (2022) 

found similar results. Cheung (2020) suggests that the utility function elicited directly from choices over 

time is concave, but far closer to linear than the utility function that is  elicited under risk, whereas 

Abdellaoui et al. (2013) found that utility functions tend to be concave for risky choices and linear for 

intertemporal choices. Andreoni and Sprenger (2012) identified a significant difference between risk and 

time preferences. Ioannou and Sadeh (2016) found no correlation between risk and time preferences 

within the monetary and environmental domains. 
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In the context of risky intertemporal choices, Ahlbrecht and Weber (1997) implemented both 

matching task and choice task and tested the short-term/long-term asymmetry for certain and risky 

future outcomes for both gain and losses, the certainty/risk asymmetry for short-term and long-term 

decisions and for both gain and losses, the gain/loss asymmetry for certain/risky future outcomes, both 

for short-term and long-term decisions. When the matching task was implemented, they found evidence 

in favour of the short-term asymmetry which states that individual discount rates are higher for the 

short-term than the long term both for the case of certainty and the case of risk. They did not find 

empirical evidence that supports the gain/loss asymmetry, but they found that risky choices are 

discounted less than equally attractive certain choices in the matching task. Nevertheless, asymmetries 

were not observed once the choice procedure was established. Although these results are of interest for 

the literature on risky intertemporal choices, they are based on participants’ response to hypothetical 

outcomes. 

Similarly, Sun and Li (2010) presented experimental evidence that rejects the “reductionist 

assumption” underlying the Luckman et al.  (2018) study when risk is induced in intertemporal choices 

through the standard choice titration procedure. Specifically, in two experiments they found that risk 

and time delay had opposite effects on the decision-making in an intertemporal context, i.e., the level of 

risk increased the degree of discounting and resulted in a lower discount factor, while the opposite 

effect was true for time delay. Yet, their study also involves hypothetical outcomes, and the authors 

stressed that it is important to test the effects of real incentives in this setting. Using real payoffs, 

Anderson and Stafford (2009) posited a relationship between risky choices and intertemporal choices 

which suggests that risk-taking behaviour is conditional on time. While only a small number of 

participants were found to exhibit consistent risky decision making, imposing risk on intertemporal 

choices seems to result in decreased patience levels regardless of the delay length. Implementing 

multiple price lists, Holt and Laury (2002) and Noussair and Wu (2006) found that more than 38% of 
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their participants tend to be risk-loving for choices that offer amounts that are realised in the distant 

future. In other words, they found that the level of risk aversion falls as delays of the options increase.  

Önçüler and Onay (2009), conducting three experiments with which they tested path 

dependency in decision processes for risky intertemporal settings, found that the Discounted Expected 

Utility model is not the most appropriate specification because it assumes independent time and risk 

preferences. However, they suggested that, in the setting of the risky intertemporal choices, there is a 

two-stage decision process where the participants first discount the future by calculating the net -

present value and then they evaluate the certainty equivalent. Moreover, Ferecatu and Önçüler (2016) 

reported a negative correlation between risk and time preferences. 

Cohen et al. (2011) conducted three experiments that involved students, participants from the 

general population, and portfolio managers and tested the relationship between risk, time/patience, 

and ambiguity/imprecision. Based on the results of their experiments, they stress that it is important to 

consider at least three different parameters for risk preferences, time preferences, and ambiguity 

preferences since they find no correlation between them in their experiment. They suggest that 

decision-making in these three areas differs and thus cannot be evaluated through a 

unifying/reductionist concept. 

Reeck et al. (2017) elaborated that there is a comparative or integrative search in the decision 

processes that involve intertemporal choices. Therefore, the examination of the search processes is an 

important research avenue. Besides the fact that there are related studies in the literature of risky 

intertemporal choices (Wall et al., 2018)11 and risky choices (Hey & Orme, 1994) in which also many 

choices are presented to the participants, it would be interesting to cross -validate the results by using 

11 Our access to these stimuli on the OSF was approved by Daniel G. Wall on 04 -Sep-2021. 
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the choices/stimuli based on price lists, convex budgets, or Bayesian adaptive design. The context for 

elicitation of risk preferences and time preferences in a unique framework is of importance as suggested 

by the findings in Ahlbrecht and Weber (1997). 

Luckman and his colleagues wrote a series of related papers in order to address the limitations 

of Luckman et al. (2018). Specifically, drawing heavily on their design and implementation choices in in 

Luckman et al. (2018), they evaluated different models of risky intertemporal choices (Luckman et al., 

2020) and in another project, conducted around the same time as Luckman et al. (2018), they included a 

titration procedure, testing of the magnitude and peanut effects, and “Risk vs Delay” choices (Luckman 

et al., 2017). Additionally, Konstantinidis et al. (2020) as well as Fitch and Kvam (2024) analysed 

cognitive process models and heuristics in decision making in risky choices and the intertemporal 

choices. The research of decision heuristics is important in the context of risky intertemporal choices 

because experimental participants make decisions in experiments that test the reductionist assumption 

through a large number of choices [e.g., 130 risky choices and 130 intertemporal choices]. Our caveats 

regarding design and implementation choices and the proper powering up of studies pertain with might 

to Luckman et al. (2020). 

In the existing setting of pure risky choices and pure intertemporal choices, we removed the 

delays in Risky Choices and added temporal trade-offs in Intertemporal Choices. Hence, it would be 

interesting to make contextual changes and conduct an analysis when these effects are separated and 

observed in isolation.  Relatedly, Chung et al. (2019) analysed these effects in the context or risk 

preferences. In other words, they observed stark differences between the riskless utility that is 

estimated for choices over bundles, and the risky utility. 

An important issue in the relation between risky and intertemporal choices is the utility 

curvature. The identification of the curvature of utility functions in time-preference elicitation has 

gained only recently an attention in the literature relative to the long-standing interest for identification 
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of the curvature of utility functions for risk-preference elicitation. The curvature of the utility function is 

a concern because in the literature of risky intertemporal choices it is unclear how the utility function is 

identified given that the effect is not isolated. When the utility function is concave in the Intertemporal 

Task, it behaviourally indicates that there is a preference to smooth payoffs over time, and in the Risky 

Task it means that there is a preference for equal rather than unequal payoffs across different states of 

the nature and implies risk aversion. When doing these kinds of experiments, it is hence necessary to 

compare the utility (curvature) elicited under risk to the utility elicited over time, without interacting 

with the two of them. When there is an interaction, we have to deal with correlation aversion, an effect 

that is particularly relevant for the mixture setting of “Risk vs Delay” choices (Cheung, 2016). Luckman et 

al. (2018) found, using Maximum Likelihood Estimation, that the utility function for intertemporal 

choices was closer to linear than the utility function for risky choices, yet concave. 

From a theoretical and empirical perspective, we conclude that the evidence provided by the 

existing theoretical and experimental studies regarding the relation of the risk preferences and time 

preferences is contradictory. Theoretically, it can be argued that the risk and time preferences have a 

one-to-one relationship within the discounted-utility model, given that the intertemporal elasticity of 

substitution can be used (though imperfectly) to define the inverse curvature of the utility function. 

Another view holds that the risk and time preferences are ingredients of a multi-attribute utility 

function, which gives rise for the careful analysis of the correlation aversion. 

There are limitations of our study as well as of the original study (Luckman et al., 2018). First, 

the number of choice decisions (which is, as you will recall, large) might induce heuristics. Second, using 

the power value function, and constraining the parameter of interest, imposes limitations on the results. 

Other functional forms, other decision theories, and other choice models  are bound to lead to different 

results and are worthy of investigation. As pertaining to our conceptual replication, we tried to stay as 

close as possible to the original. For instance, the attribute-wise model of Dai and Busemeyer (2014) or 
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some other models of time preferences (see Frederick et al., 2002) and risk preferences (see Wu et al., 

2004) which are also discussed by Luckman et al. (2018) could potentially better, and in a more 

adequate way, explain some important attributes and phenomena such as magnitude effects and 

peanut effects. In other words, alternative characterisation of value function and choice function, as 

well as applying other decision theories, will strengthen the analysis. Although we examined the 

evolution of the decision-making process across the choices, it still remains an open question to 

determine the decision patterns and cues. Namely, there are differences between the first and second 

half of the choices both within the same task and when both tasks are compared. Importantly, we did 

not make a correction for multiple testing, because the tests in the main analysis are powered enough 

according to our calculation attached to the replication of the main findings from Luckman et al. (2018). 

Yet, we strongly encourage those who will use the additional analysis from the Supplemental Materials 

and Online Materials, to correct for multiple testing. Lastly, a direct estimation of the parameters can 

explain (potentially) why the choice parameter is different in our study for the risky choices and 

intertemporal choices. Yet, instead of using the traditional Maximum Likelihood Estimation approach, 

we believe that Hierarchical Model Estimation is more appropriate in this setting. Furthermore, 

extracting different Bayesian prior distribution that could potentially explain the sensitivity of our results 

vis-à-vis results from Luckman et al. (2018) is another avenue of interest. Nevertheless, one of the main 

reasons why we did not extend our analysis along the lines just discussed is that the purpose of our 

study was replication of the main findings presented in Luckman et al. (2018). Therefore, we followed 

the approach and structure of that paper. Doing things different from the models or estimation 

approach that Luckman et al. (2018) implemented would move us even further from the (conceptual) 

replication that we set out to do. 
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Summary of the Results and Outlook 

We have studied decision-making in related Risky and Intertemporal Tasks and tested the 

reductionist assumption which suggests that risky choices and intertemporal choices are special cases of 

risky intertemporal choices, as reported by Luckman et al. (2018) under the conditions of their 

experiment. 

In the Introduction we identified our three research questions: 1) can we replicate the results in 

Luckman et al. (2018) in a non-incentivised laboratory setting; 2) do monetary incentives shift risky and 

intertemporal choices; and 3) can a single model account for both risky and intertemporal decisions 

once choices are properly incentivised? 

Overall, we believe to be on safe grounds saying that the answers to 1) and 3) are negative, and 

that there is considerable evidence that the answer to 2) is broadly positive, although some such 

assessment warrants differentiated argumentation. 

At the group level, we do not find evidence that pure risky choices are the same as pure 

intertemporal choices. While we have not observed differences in decision-making in the Risky Task 

between participants paid under the flat incentive scheme and those paid under the random incentive 

scheme, we observe some such differences in the Intertemporal Task. The proportion of the participants 

that have chosen the sooner option (for every choice) is larger in the FLAT condition than the RANDOM 

condition. Therefore, regarding our second research question, monetary incentives are important for 

the Intertemporal Task (but not for the Risky Task). This contradicts our priors, and we conjecture that 

stakes have to be considerably higher for their importance to show in the Risky Task (e.g., Holt & Laury 

2002; Harrison et al., 2005a). Regarding the first research question, while we were able to replicate the 

results from the Risky Task, we failed to do so for the Intertemporal Task. 

We have also performed a Kolmogorov-Smirnov test of the choices at the group level. From this, 

we found substantially different distributions of the proportion of the safe choices for every choice 
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(Risky Task) and the proportion of the sooner choices made for every choice (Intertemporal Task). In 

other words, we found additional empirical evidence — albeit not produced by a strong test — that the 

distribution of risky choices differs from the distribution of intertemporal choices. 

At the group level, we have detected statistically significant differences in the median values of 

the proportion of the participants that have chosen the safer option for every choice in the Risky Task 

and the median values from the proportion of the participants that have chosen the sooner option for 

every choice in the Intertemporal Task. This difference is found to be robust across the incentive 

systems and treatments. 

At the individual level, we failed to find evidence in favour of the CvCc model – the 

overwhelming model of choice by about two thirds of the participants in Luckman et al. (2018). Instead, 

we found that the decision-making for the majority of the participants in our experiment can be 

accommodated by the CvSc model. Based on the existing literature, we expected to find evidence that 

the most adequate model for the majority of the participants would be the SvSc semi-nested model (a 

pre-registered hypothesis). Our result is robust across the different treatments. In other words, we find 

that a common value function accommodates both risky and intertemporal choices, but the choice 

function does not. 

 Our result is sensitive to the prior distribution (see the Online Materials). Further, we found 

some evidence that monetary incentives (and order effects) matter for the other semi-nested models, 

particularly for the CvCc model. A case in point: when the participants are remunerated under the 

random incentive system, it is 0.09 times more likely that the CvCc model to has the model probability 

larger than 0.25 (as reported in Appendix M). 

In addition to the analysis that is informed by Luckman et al. (2018), we also analysed  in more 

detail the safer options (LEFT option) for the Risky Task, and the sooner options (LEFT option) for the 

Institute for Replication I4R DP No. 205

59



Intertemporal Task12 as well as the overlap of the preferred options in both tasks. Specifically, we 

calculated — at the individual/participant level — the proportion of safer decisions (LEFT option) for the 

Risky Task out of 130 choices, and the proportion of sooner decisions (LEFT option) for the 

Intertemporal Task out of 130 choices. The main takeaway from our analysis of left choices is in line 

with the results reported in the body of the text: decision-making in the Risky Task does not correspond 

to decision-making in the Intertemporal Task, under the conditions of our experiment. In addition to 

this, we found statistical evidence that order effects matter for the Intertemporal Task. These results 

strengthen our previous conclusion that the Risky Task and Intertemporal Task cannot be 

accommodated by the same model, and that order effects have an important effect for decision-making 

with delayed option. Details of this analysis may be found in Appendix K. 

Finally, to stress again, as with other research avenues, research of the same or different models 

and the same tasks in different domains of decision-making such as environment, transportation, health 

and so on seems desirable. (Again, context modification of the tasks, i.e., using a graphical presentation, 

allowing losses (Shelley, 1994), or using some other standardised instruments like price lists, adaptive 

methods, or convex budgets, might be interesting.) Conducting a re-tests session in a multi-period 

setting can be used as an indicator of the temporal stability of the conclusion and can further confirm 

the reliability of the results. Also, given that the elicitation mechanisms from the laboratory do not 

accurately explain field behaviour (Charness et al., 2020), this is an important limitation of our study that 

should be addressed in future projects. Going beyond the estimation strategy in Luckman et al (2018), in 

order to select among the models at the group levels, it is also relevant to apply two metrics, the group 

Bayes factor and the pooled Bayes factor (Regenwetter et al., 2018).  Other characterisations of the 

12 We thank Sandro Ambuehl for suggesting this analysis.  
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value function and choice function as well as applying other decision theories, particularly the 

exponential model, will be of particular relevance for related studies. An important open issue that we 

address in a follow-up project is the estimation of the risk preference parameter and time preference 

parameter, as well as the respective choice parameters, through Maximum Likelihood Estimation and 

Hierarchical model. Testing of these tasks in the artefactual experimental setting could additionally 

strengthen the conclusions drawn from the experiment because decision-making in the time preference 

could be different when the general population is tested (Sun & Li, 2010; Cohen et al., 2011; Charness et 

al., 2020). 
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