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Abstract
This article introduces the new class of continuous set covering problems. These
optimization problems result, among others, from product portfolio design tasks with
products depending continuously on design parameters and the requirement that the
product portfolio satisfies customer specifications that are provided as a compact set.
We show that the problem can be formulated as semi-infinite optimization problem
(SIP).Yet, the inherent non-smoothness of the semi-infinite constraint function hinders
the straightforward application of standard methods from semi-infinite programming.
We suggest an algorithm combining adaptive discretization of the infinite index set
and replacement of the non-smooth constraint function by a two-parametric smoothing
function.Under few requirements, the algorithmconverges and thedistanceof a current
iterate can be bounded in terms of the discretization and smoothing error. By means
of a numerical example from product portfolio optimization, we demonstrate that the
proposed algorithm only needs relatively few discretization points and thus keeps the
problem dimensions small.

Keywords Semi-infinite programming · Continuous set covering · Product portfolio
optimization · Mathematical modelling · Optimization

1 Introduction

Continuous set covering problems describe the task to cover a given compact set
Y ⊂ R

m with a fixed number of adjustable objects, which themselves are compact
subsets of R

m . The objects depend on a parameter vector that can for example encode
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Fig. 1 Continuous set covering
task: Four parameterized objects
P1(x), . . . , P4(x) should cover
the rectangle Y in R

2

information about their size or location. If the objects are associated with some cost
function on the parameter vector, the goal is to find a configuration of objects such that
Y is covered and the cost is minimized. The following definition of the continuous set
covering problem represents this task in a set-theoretic formulation. We consider two
compact sets X ⊂ R

n and Y ⊂ R
m (n,m ∈ N). For a given number N ∈ N and all

x ∈ X , let Pi (x) ⊂ R
m , i = 1, . . . , N , be compact sets parameterized by x. Further,

let f : R
n → R be a continuous cost function. Then, the continuous set covering

problem (CSCP) is given by

CSCP : min
x∈X f (x) (1a)

s.t. Y ⊆ P(x) :=
N⋃

i=1

Pi (x). (1b)

Throughout this article, we assume that in any instance of CSCP (1), beyond being
compact, the set Y has infinite cardinality, |Y | = ∞. Furthermore, the compact sets
Pi (x), i = 1, . . . , N have a functional description, i.e.

Pi (x) := {y ∈ R
m |gi j (x, y) ≤ 0, j = 1, . . . , pi }, i = 1, . . . , N (2)

where pi ∈ N for i = 1, . . . , N , and the given functions gi j : R
n × R

m → R are
continuously differentiable. Figure 1 depicts the constraint (1b) for an instance of
CSCP where four parameterized objects cover a rectangle in R

2.
For the classical discrete set covering problem as defined by Garey and Johnson

(1990) a finite set is considered. The goal is to determine, if this set can be covered
by a fixed number of subsets which are chosen from a given collection. According to
Karp (1972) this problem remains NP-complete even if all subsets in the collection
consist of at most three elements. The continuous set covering problem as introduced
above differs in two ways from the classical discrete set covering problem: First, the
set to be covered Y and the covering sets Pi (x), i = 1, . . . , N have infinite cardinality.
Second, the covering sets are parameterized by a real-valued vector x ∈ X .

From a mathematical point of view, many special cases of (1) are well known
and thus much literature exists. The task of covering a continuous polygonal set by
one ellipsoid for example is solved by so-called minimum volume or Löwner-John
ellipsoids (see Gruber (2011) among others). An often considered geometric problem
isminimal ball covering, which appears in literature under different names such as disc
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Solving continuous set covering ... 41

covering or sprinkler problem in the two dimensional case. Different to the minimum
volume covering ellipsoid problem, minimal ball covering usually comprises more
than one covering object. Exemplary specifications of these problems can be found in
Jandl and Wieder (1988), Melissen and Schuur (2000), Galiev and Karpova (2010),
Kiseleva et al. (2009). The mathematical problem that comes closest to (1) is given
by Stoyan et al. (2011). The authors aim at covering a polygonal region by a certain
number of rectangles that can be moved in the plane. The applications behind this
problem are query optimization in spatial databases or shape recognition for robotics.
Stoyan et al. (2011) formulate the problem as a feasibility problem. Using �-function
techniques Bennell et al. (2010) end up with a covering constraint criterion that—
although they do not state this—resembles a semi-infinite constraint.

Problem instances of CSCP are suited to formulate certain product portfolio design
tasks that arise for example in engineering contexts. Optimal product portfolio design,
also known as product line or product family design, comprises an important issue a
company has to deal with: It is the task of deciding which and how many products to
produce and offer its customers. A conflict in this task is to satisfy as many customers
with high-quality products versus keeping production, storage, or maintenance costs
and thus portfolio size, low. The first to introduce the problem of optimal product port-
folio design were Green and Krieger (1985). They defined a product as a combination
of certain components, each of which could be chosen from a finite selection. The
resulting task is a linear optimization problem with binary decision variables. Due to
its combinatorial complexity, the problem was early proven to be NP-hard by Kohli
and Krishnamurti (1989).

Depending on the specific task, the problem was reformulated as mixed-integer
combinatorial optimization problem by Jiao and Zhang (2005), bi-level problem by
Du et al. (2014) and as multiobjective optimization problem by Du et al. (2019).
The variety of solution approaches ranges from the application of branch-and-bound-
method by van den Broeke et al. (2017) over evolutionary approaches by van den
Broeke et al. (2017) and Du et al. (2019) as well as their combinations with some
heuristic by Jiao et al. (2007) to data-driven decision tree classification in Tucker and
Kim (2009).

All these problems have in common that they aim at designing product portfolios for
discrete sets of customer demands. Further, the attributes of the products are selected
among sets of discrete options. Tsafarakis et al. (2013) state that in real life, many
product attributes are described in terms of continuous, real numbers such as weight,
length, speed, capacity, power, energy and time. The authors therefore consider product
portfolio optimization problems with continuous decision variables. Selecting only
few characteristic values in a possible interval of attribute realizations constitutes a
very restrictive assumption, which on one hand may reduce the problem’s complexity,
but on the other hand may also lead to less than optimal solutions. The new problem
class CSCP (1) introduced in this article allows us to consider real-valued decision
variables but also continuous sets of costumer demands that are to be covered.

While Tsafarakis et al. (2013) look at the optimization of a portfolio of industrial
cranes, these arguments directly transfer to other engineering portfolio optimization
tasks, such as optimizing the portfolio of machines. The sets Pi (x), i = 1, . . . , N in
this case represent the so-called operation areas of themachines. As the name suggests,
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42 H. Krieg et al.

these areas comprise the sets of all points at which the machines can be operated. With
regard to that, in Fig. 1 the operation areas of four transport pumps are sketched, see
also Sect. 4 and Appendix A for more information on this application.

In this article the set-theoretic formulation of CSCP is not solved directly. In Sect. 2
we show that the problem has a straightforward reformulation as semi-infinite opti-
mization problem (SIP). Semi-infinite optimization is a large research area. Being
by no means exhaustive, we suggest Hettich and Kortanek (1993), López and Still
(2007), Shapiro (2009) for comprehensive surveys on SIP. The monograph of Stein
(2003) provides insights into the field via exploitation of the bi-level structure of SIPs.
It turns out that the SIP associated with CSCP has an intrinsically difficult struc-
ture in that possible curvature properties of the basic functions gi j , j = 1, . . . , pi ,
i = 1, . . . , N , get lost and the semi-infinite constraint function is not continuously
differentiable, even if the basic functions are. Hence, the straightforward application of
standard methods from semi-infinite programming is difficult. We therefore develop
an algorithm that aims at finding approximate solutions for CSCP based on easier
finite and smooth nonlinear optimization problems (NLPs). To do so we combine two
techniques: Adaptive discretization of the infinite index set as introduced by Blanken-
ship and Falk (1976) is coupled with approximation of the non-smooth functions by
smooth ones. For the second step, it is of importance that the approximations converge
uniformly, the approximation error is known and that convergence can be steered by
some parameter. Background information of both approximating methods, as well as
literature, is given in Sect. 2.

The article is structured as follows: Sect. 2 provides the solution approach of CSCP
in form by means of a SIP. Further, the problem structure is analyzed and reasonable
approximating problems are introduced. The topic of Sect. 3 is our algorithm based on
adaptive discretization of the infinite index set and two variants of entropic smoothing
of the non-smooth constraint function, and its associated convergence results. Sec-
tion 4 provides some numerical studies on the algorithm’s performance. It further
demonstrates, that the presented solution approach for CSCP is capable to find solu-
tions for a certain product portfolio design task with continuously described products
taking manageable effort. Finally, a conclusion is drawn (Sect. 5).

2 Solution approach: consider CSCP as SIP

There are no optimization algorithms available that can directly operate on CSCP
in its set-theoretic formulation (1). However, given the functional description of the
sets Pi (x), i = 1, . . . , N in (2), CSCP can be equivalently formulated as standard
semi-infinite optimization problem

SIPCSCP : min
x∈X f (x) (3a)

s.t. min
1≤i≤N

max
1≤ j≤pi

gi j (x, y) ≤ 0 ∀y ∈ Y . (3b)
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Solving continuous set covering ... 43

Yet, the constraint function of SIPCSCP (3),

g : R
n × R

m → R

(x, y) 	→ min
1≤i≤N

max
1≤ j≤pi

gi j (x, y),
(4)

is a min-max function. In general, such a function is not continuously differentiable
everywhere, even if the basic functions gi j , j = 1, . . . , pi , i = 1, . . . , N , are differ-
entiable. The non-differentiable parts usually show up as "kinks" in the graph of the
constraint function (Fig. 2). They occur at locations where the function values of at
least two of the basic functions gi j , j = 1, . . . , pi , i = 1, . . . , N , coincide and rep-
resent the values of g. Note that the non-differentiability occurs in both, the decision
vector x and the index variables y.

Another unpleasant characteristic of (4) is that the combination of minimum and
maximum operator destroys any curvature property the basic functions might possess.
Thus, for given y ∈ Y , the covering constraint function in general is not convex in x
and therefore, SIPCSCP is a non-convex optimization problem and must be expected
to possess multiple local extrema.

To check the feasibility of a candidate solution x of SIPCSCP requires solving the
so-called lower level problem of SIPCSCP

Q(x) : max
y∈Y g(x, y) (5)

to global optimality on Y . However, the same arguments that attest non-convexity in
x also provide that the constraint function is not concave in the index variable y for
fixed x. Figure 2 illustrates that the kinks caused by the min-max function result in a
multi-extremal function structure. Together with its non-differentiability, this makes
finding global solutions difficult. Therefore, checking the feasibility of a candidate
solution for SIPCSCP is already a challenging problem itself. Although this topic is
worth to be further investigated, we will not go into further detail in this article.

To sum up, the structural properties induced by the combination of the min andmax
operator in the constraint function prevent the straightforward usage of direct solution
methods for semi-infinite programs like the Reduction Ansatz, described for example
in the review fromHettich and Kortanek (1993). Mitsos and Tsoukalas (2015) provide
a global solution procedure for SIPs, which only requires continuity but not differ-
entiability of the objective and constraint functions. Beyond the few requirements on
structure, also the global solution part would be very attractive in view of the multi-
extremality of SIPCSCP. However, the global solution of the problem SIPCSCP with the
available global solvers can be problematic. First, not all global optimization solvers
can handle min and max operators directly. Such operators typically must be reformu-
lated at the cost of additional auxiliary binary variables. As the min and max operators
appear in the semi-infinite constraints this has to be done for every discretization point.
This leads to a strong increase of the problemdimension. Second, the problemSIPCSCP
often contains a strong symmetry. If we try to cover a set Ywith multiple parametric
bodies of the same shape, then each permutation of the covering bodies leads to the
same solution. We therefore refrained from global solution approaches and turned to
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Fig. 2 Graph of the constraint function g(x, ·) of a SIPCSCP with N = 2 for a fixed decision vector
x ∈ X . The two objects P1(x) and P2(x) are required to cover a rectangle (background) in R

2 – the shown
configuration thus is infeasible

faster, local methods for NLPs. To be able to apply these methods, we implemented
two possibilities to approximate the non-smooth SIPCSCP by finite, smooth NLPs

2.1 Approximations of SIPCSCP

Useful approximations for optimization problems ideally satisfy two goals: First, they
should be easier to solve, either due their problem structure or due to the existence
of suitable solution procedures. Second, the minimizers found for the approximating
problems should, at least in their limitswith respect to approximation quality, represent
minimizers of the actual problem. This section focuses on the first goal, the set up of
easier problems.

In this article, we focus on the successful approach of applying double entropic
smoothing and a variant thereof to SIPCSCP. Thereby we end up with smooth approxi-
mation problems which come at the cost of having to steer two smoothing parameters.
This can be tricky, as we discuss in Sect. 4. Yet, the size of the approximation problems
(decision space and number of constraints) remains the same as that of the original
problem. The double entropic smoothing is just one possibility to get approximation
problems for SIPCSCP. An overview—that makes no claim to be complete—of other
approximations and reformulations of SIPCSCP is given in the thesis of Krieg (2020).
There, it was found that non of the reformulations and approximations are for free.
Depending on the underlying basic functions of a particular SIPCSCP problem and the
availability of optimization software, some might be more advantageous than others.

In a first step, we use what Hettich and Kortanek (1993) designate as the simplest
way to approximate a SIP by a finite optimization problem: We replace the infinite

123
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index set Y by a finite set

Ẏ := {y1, . . . , yr } ⊂ Y

consisting of r ∈ N points. This results in the following finite nonlinear optimization
problem:

SIPCSCP(Ẏ ) : min
x∈X f (x)

s.t. g(x, yk) ≤ 0, k = 1, . . . , r .
(6)

Secondly, we apply regularization. This is a known means for tackling non-smooth
functions in optimization. Further information on themethod can be found for example
in the articles of Bertsekas (1975) and Chen (2012). Applying regularization meth-
ods to non-smooth optimization problems yields parametric optimization problems.
Their approximation quality ideally can be measured in terms of the regularization
parameters.

The regularization functions of our choice are so-called entropic smoothing func-
tions. They were employed by Li (1994), Chen and Templeman (1995), Li and Fang
(1997), Xu (2001), or Polak et al. (2003) in minimax optimization, for example. A
similar function, called cross-entropy was used by Zhang et al. (2009) and Ruopeng
(2009) to approximate the Lagrangian function of a minimax problem. In all these
cases, only one max operator had to be replaced by the regularization function to get
a smooth approximation. For the constraint function (4), we use the double entropic
smoothing approach for min-max functions that couples entropic smoothing with a
result of Schwientek (2013) who shows that a likewise function can also be used to
approximate a pointwise minimum of finitely many functions.We found this approach
also in an article of Tsoukalas et al. (2009) who reduce an unconstrained, finite min-
max-min problem to the task of minimizing a smooth function. The authors then use
a steepest descent algorithm to solve the resulting parametric optimization problems.
The latter is not directly applicable to our constrained optimization problem. Further,
the semi-infinite nature of SIPCSCP makes additional actions with respect to the infinite
number of constraints necessary.

In addition to the basic double entropic smoothing, we look at a second variant of
these regularization functions. By replacing the constraint function in (6) with either
the double entropic smoothing function gs,t or the shifted entropic smoothing function
g̃s,t (definitions below), we get the following parametric but smooth and finite NLPs:

SIPs,tCSCP(Ẏ ) : min
x∈X f (x)

s.t. gs,t (x, yk) ≤ 0, k = 1, . . . , r (7)

S̃IP
s,t
CSCP(Ẏ ) : min

x∈X f (x)

s.t. g̃s,t (x, yk) ≤ 0, k = 1, . . . , r . (8)
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2.1.1 The entropic smoothing-based regularization functions

Parameterized by s < 0 and t > 0, the double entropic smoothing function is given
by

gs,t : R
n × R

m → R

x 	→ 1

s
ln

⎛

⎝ 1

N

N∑

i=1

exp

⎛

⎝ s

t
ln

⎛

⎝
pi∑

j=1

exp(tgi j (x, y))

⎞

⎠

⎞

⎠

⎞

⎠ .
(9)

As the following results show, the double entropic smoothing function obeys mono-
tonicity with respect to the smoothing parameters and converges uniformly to the
min-max function g. Interested readers find the corresponding proofs in Appendix B.

Lemma 1 The family of double entropic smoothing functions {gs,t }s,t with s < 0 and
t > 0 is monotonically decreasing in (|s|, t).

The next result states the smoothing error that measures the distance between the
double entropic smoothing function and the function it approximates and can thus be
used to steer approximation quality.

Lemma 2 For arbitrary parameters s < 0 and t > 0 and any x ∈ R
n, y ∈ R

m,

0 ≤ gs,t (x, y) − g(x, y) ≤ 1

s
ln

1

N
+ 1

t
ln max

1≤i≤N
pi (10)

holds.

Remark 1 Note that the double entropic smoothing function is d-times continuously
differentiable, if all the basic functions gi j , j = 1, . . . , pi , i = 1, . . . , N , that define
the min-max function g, are d-times differentiable.

Translating the double entropic smoothing functions downwards by the smoothing
error, given in (10), yields the shifted entropic smoothing function.

g̃s,t : R
n × R

m → R

x 	→ 1

s
ln

⎛

⎝ 1

N

N∑

i=1

exp

⎛

⎝ s

t
ln

⎛

⎝
pi∑

j=1

exp(tgi j (x, y))

⎞

⎠

⎞

⎠

⎞

⎠

− 1

s
ln

1

N
− 1

t
ln max

1≤i≤N
pi .

(11)

The shifted entropic smoothing function is monotonically increasing in (|s|, t) for s <

0 and t > 0, as stated and proven in Lemma 4 in Appendix B. Due to the substracted
smoothing error, it approximates themin-max function from below. Finally, the shifted
entropic smoothing function also converges uniformly.
Sequences of regularization functions. In our solution procedure for SIPCSCP, we
will make use of sequences of successively better approximations. Thus, we consider
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families of functions of either smoothing type defined by sequences of parameters
{(sk, tk)}k∈N0 with sk < 0 and tk > 0 for all k ∈ N. Supposing that both parameter
sequences are monotonous and divergent with sk → −∞ and tk → ∞, as k →
∞, from Lemmas 1 to 2, the following properties can be derived for the families
of functions: The functions of the family of double entropic smoothing functions
{gsk ,tk }k∈N0 bound the min-max function g from above, whereas the family of shifted
entropic smoothing functions {g̃sk ,tk }k∈N0 is a family of lower bounds. Both sequences
of functions converge uniformly to the min-max function as k → ∞. Lemma 2
provides us with a smoothing error for these sequences of functions, in that

0 ≤ gsk ,tk (x, y) − g(x, y) ≤ err(k)

0 ≤ g(x, y) − g̃sk ,tk (x, y) ≤ err(k)

holds with

err(k) := 1

sk
ln

1

N
+ 1

tk
ln max

1≤i≤N
pi . (12)

For the interpretation of approximating solutions and their feasibility with respect to
the actual problem, it is useful to investigate the feasible sets of the problems and their
relations.

2.2 Feasible sets

To begin with, let us state that regularization of the constraint function is independent
of the index set and thus can already be applied to SIPCSCP. For the two entropic
smoothing-based regularization functions, this yields the following smooth SIPs

SIPs,tCSCP : min
x∈X f (x)

s.t. gs,t (x, y) ≤ 0, for all y ∈ Y
(13)

and

S̃IP
s,t
CSCP : min

x∈X f (x)

s.t. g̃s,t (x, y) ≤ 0, for all y ∈ Y .
(14)

In the following, the feasible set of SIPCSCP is denoted by M . The feasible sets of the
regularization-based approximating problems (13) and (14) are indicated by Ms,t and
M̃s,t . Whenever discretizations are considered, the feasible sets get the argument (Ẏ ).
The feasible sets of the problemswith both approximation types combined, (7) and (8),
are abbreviated in a straightforward manner by Ms,t (Ẏ ) and M̃s,t (Ẏ ), respectively.
Further, from now on, we look at sequences of approximation problems and explain
that, under certain conditions, they become successively better approximations for
SIPCSCP.
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Discretization. Let {Ẏk}k∈N0 be a sequence of finite subsets of the infinite index set
Y . Further, assume that the sequence is monotonically increasing with respect to
set inclusion, i.e. Ẏk ⊆ Ẏk+1 for all k ∈ N0. Then, the problems SIPCSCP(Ẏk) form
subsequently better outer approximations of SIPCSCP, i.e. their feasible sets are ordered
with respect to set inclusion as follows: For all k ∈ N0 it holds that

M ⊆ · · · ⊆ M(Ẏk+1) ⊆ M(Ẏk) ⊆ · · · ⊆ M(Ẏ0). (15)

Regularization. Let {(sk, tk)}k∈N0 be a sequence of smoothing parameters with the
property that for all k ∈ N0, sk < 0 and tk > 0 holds. Further suppose that both
parameter sequences are divergent and monotonically increasing in their absolute
values. The following result is formulated using the notion of set convergence and
set limits in the sense of Kuratowski-Painlevé. The corresponding definitions can be
found in the book of Rockafellar and Wets (2009).

Proposition 1 For all k ∈ N0, the following statements hold

1. Msk ,tk is closed.
2. M̃sk ,tk is closed.
3. The sequence of feasible sets {Msk ,tk }k∈N0 is monotonically increasing with

respect to set inclusion.
4. Msk ,tk ⊆ M for all k ∈ N0.
5. The sequence of feasible sets {M̃sk ,tk }k∈N0 is monotonically decreasing with

respect to set inclusion.
6. M̃sk ,tk ⊇ M for all k ∈ N0.
7. limk→∞ M̃sk ,tk = M.

Proof The closedness of the feasible sets of the approximating problems is given by
the fact that sublevel sets of continuous functions are closed and the two types of
regularization functions (9) and (11) are continuous, because the functions gi j are
continuous, for all i = 1, . . . , N , j = 1, . . . , pi by assumption.

Statements 3 and 4 are grounded on themonotonicity of the double entropic smooth-
ing with respect to the considered sequence of smoothing parameters (Lemma 1): For
all k ∈ N0 and all (x, y) ∈ X × Y , it holds that

g(x, y) ≤ gsk+1,tk+1(x, y) ≤ gsk ,tk (x, y). (16)

The same argument applies to statements 5 and 6 for the feasible sets of the problems
based on shifted entropic smoothing in reverse ordering.

Statement 7 holds true if the set of all limit points of the sets M̃sk ,tk , k ∈ N0 equals
the set of all cluster points of the sets M̃sk ,tk and both are equal to M .

By statement 6, we have that

M ⊆ lim inf
k→∞ M̃sk ,tk ⊆ lim sup

k→∞
M̃sk ,tk

Hence, we need to show that lim supk→∞ M̃sk ,tk ⊆ M holds. To do so, for x̄ ∈
lim supk→∞ M̃sk ,tk , consider a sequence of points {xkl }l∈N0 , x

kl ∈ M̃skl ,tkl for all l ∈
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N0, that converges towards x̄. Next we make use of continuity of the functions g(·, y)
on X for all y ∈ Y , feasibility of the points xkl for the corresponding approximating
problem, and uniform convergence of the shifted entropic smoothing function. Then,
for all y ∈ Y , we have

g(x̄, y) = lim
l→∞ g(xkl , y) ≤ lim

l→∞

(
g(xkl , y) − g̃skl ,tkl (xkl , y)

)

≤ lim
l→∞ err(kl) = 0.

Hence, x̄ ∈ M holds. ��
Statements four and six of Proposition 1 state that regularization based on double

entropic smoothing leads to inner approximations of SIPCSCP, i.e. these problems
are stricter than the original problem. In contrast to this, regularizations with shifted-
entropic smoothing yield outer approximations, i.e. relaxed problems.

For the problems SIPCSCP and their shifted entropic smoothing-based approxima-
tions, the convergence of the feasible sets given in statement 7 of Proposition 1 is
equivalent to epiconvergence of the sequence of problems {S̃IPsk ,tkCSCP}k∈N0 towards
SIPCSCP. The concept of epiconvergence was used by Polak (1997) to show that the
minimizers of approximating problems in the limit represent the minimizers of the
actual problem. The feasible sets of a sequence of problems of type SIPs,tCSCP does not
converge towards the feasible set of SIPCSCP in general. The reason for this are points
on the boundary of the feasible set, that can never be reached by these so-called inner
approximations. To ensure convergence of minimizers of double entropic smoothing-
based approximations towards minimizers of SIPCSCP, we have to require additional
structure from SIPCSCP. We will return to this issue in Sect. 3.
Discretization and Regularization. Under the same assumptions on the sequences of
discretization sets {Ẏ }k∈N0 and the sequences of smoothing parameters {(sk, tk)}k∈N0

as in the previous paragraphs,we can retrieve some interesting properties of the feasible
sets of the approximating problems (7) and (8).

Proposition 2

1. The sequence of feasible sets { M̃sk ,tk (Ẏk) }k∈N0 is monotonically decreasing with
respect to set inclusion.

2. M̃sk ,tk (Ẏk) ⊇ M for all k ∈ N0.
3. M̃sk ,tk ⊆ M̃sk ,tk (Ẏk) for all k ∈ N0.
4. Msk ,tk ⊆ Msk ,tk (Ẏk) for all k ∈ N0.

Proof The proofs of the first and second statement are combinations of (15) and
Proposition 1, statements 5 and 6, respectively. The third and fourth statements are
obvious, as discretization of the infinite index set leads to a relaxed problem, no matter
which constraint function is considered. ��

Figure 3 depicts the relations between the feasible sets of SIPCSCP and its different
types of approximating problems for an example instance of the problem with two
decision variables.
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Fig. 3 Relationship between
feasible sets of CSCP and
approximating problems

Note that the combination of regularization with double entropic smoothing (9)
and discretization destroys the set-inclusion properties of either of the two approx-
imation techniques: While discretization results in an outer approximation of a SIP,
regularization of less-or-equal constraints by double entropic smoothing yields an
inner approximation of the feasible set with respect to set inclusion. Thus, in general,

Msk ,tk (Ẏk) � M and Msk ,tk (Ẏk) � M (17)

hold. This situation can be seen in the lower left panel of Fig. 3. The sequence of
feasible sets {Msk ,tk (Ẏk)}k∈N0 must not even be monotonous. Nevertheless, we will
see that this type of approximation can still be used for SIPCSCP and the numerical
study in Sect. 4 will show that it is worth to be used.

We think the insight gained into the relationships between the feasible sets of
SIPCSCP and its different types of approximating problems is of benefit for under-
standing the convergence results for the solution method presented in the following
section.

3 An adaptive discretization and smoothing-based algorithm for
SIPCSCP

In this section, we present an algorithm that finds approximate solutions to SIPCSCP
by solving sequences of problems of type SIPs,tCSCP or S̃IP

s,t
CSCP, respectively. The main

ingredients of the algorithm are adaptive discretization of the semi-infinte index set,
as introduced by Blankenship and Falk (1976), and a strategy to update the parameters
of double or shifted entropic smoothing, s and t , such that the approximating quality
of the substitute problems becomes successively better.
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Since its introduction in 1974, adaptive discretization formed the base of many
solution methods for semi-infinite programs. We mention just a few to illustrate the
range of concerns these methods focused on. Seidel and Küfer (2020), for example,
combined adaptive discretization with bi-level techniques. Thereby, they could reach
a quadratic rate of convergence under adequate problem structure. One inherent prob-
lem of all discretization methods was tackled by Tsoukalas and Rustem (2011): the
approximate solutions usually are infeasible for the original SIP. To solve this prob-
lem, the authors enhanced the adaptive discretization method with a procedure to get
ε-optimal, but feasible solutions. This method was further extended by Djelassi and
Mitsos (2017) in order to find global solutions of SIP. Adaptive discretization is also
used in solution techniques for generalized semi-infinite programs. These problems
provide difficulties for adaptive discretizationmethods as the infinite index set depends
on the decision variables. This was overcome by Schwientek et al. (2020) by trans-
forming the generalized SIP into a standard one whenever a new discretization point
should be found. Mitsos and Tsoukalas (2015) developed a global solution method
for generalized semi-infinite programs. In this method, they make use of adaptive
discretization for defining bounding problems.

Our adaptive discretization and smoothing based-approach is stated in Algorithm 1.
This variant aims at solving problems (7). By replacing line 3 with the alternative

3: compute a solution xk+1 of S̃IP
sk ,tk
CSCP(Ẏk) using xk as starting point,

the same procedure can also be applied to the outer approximations (8) of SIPCSCP. In
this case, all problems considered in the algorithm are outer approximations and the
requirement Ms0,t0 = ∅ is not needed.

Algorithm 1 Solution procedure based on adaptive discretization and double entropic
smoothing

input: x0 ∈ R
n , Ẏ0 := {y1, . . . , yr0 } ⊂ Y , s0 < 0, t0 > 0 such that Ms0,t0 = ∅

1: Set k = 0
2: while ¬ stopping criteria satisfied do
3: compute a solution xk+1 of SIP

sk ,tk
CSCP(Ẏk ) using xk as starting point

4: if discretization update criteria satisfied then
5: compute a global solution yk+1 of Q(xk+1), (5)
6: set Ẏk+1 := {yk+1} ∪ Ẏk
7: else
8: set Ẏk+1 := Ẏk
9: end if
10: if smoothing parameter update criteria satisfied then
11: (sk+1, tk+1) :=UpdateParameters
12: else
13: (sk+1, tk+1) := (sk , tk )
14: end if
15: k = k + 1
16: end while
output: {xi }ki=0, {Ẏi }ki=0

All convergence results presented in Section 3.1 are essentially valid if the algorithm
constructs and solves problems that become successively better approximations over
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the iterations. To guarantee these improvements, the realization of the algorithm must
satisfy the following requirements, which we assume to hold for the remainder of the
article.

Assumption 1 (Requirements on Algorithm 1)

1. The discretization update criteria (step 4 of Algorithm 1) has to be chosen in such
a way that it is dismissed only finitely often, if

g(xk+1, yk+1) > 0.

2. The method UpdateParameters (step 11 of Algorithm 1) constructs smoothing
parameters (sk+1, tk+1) that satisfy the properties of a so-called approximating
sequence of smoothing parameters, i.e.

0 > sk ≥ sk+1 for all k ∈ N0, and sk ↘ −∞, k → ∞,

0 < tk ≤ tk+1 for all k ∈ N0, and tk ↗ ∞, k → ∞.

Such a sequence is called feasible approximating sequence of smoothing parame-
ters if the initial parameters (s0, t0) satisfy

Ms0,t0 = ∅.

Asweonly add points to the discretization, the sequence {Ẏk}k∈N0 is (not necessarily
strict) monotonically increasing with respect to set inclusion. The first assumption is
needed to guarantee the feasibility of a limit point.While the second assumptionmakes
sure that the difference between the smoothed and the original problem becomes small.

In the next two subsections we investigate the convergence of Algorithm 1.We will
first show that the sequence of solutions produced by either variant of Algorithm 1
converges towards a feasible solution of the underlying problem SIPCSCP. Further, we
show that the limit point is the same type of minimizer (global or local) as the approx-
imating solutions. In the second part of the investigation we will bound the distance
of a current iterate to the limit point in terms of the smoothing and discretization error.

3.1 Convergence of the algorithm

In this section, we show that our approximating problems, and the proposed algorithm
reach the second goal for reasonable approximations for optimization problems men-
tioned in Sect. 2.1: The convergence of global and local solutions of the discretized
and smoothed approximating problems {SIPsk ,tkCSCP(Ẏk)}k∈N0 and {S̃IPsk ,tkCSCP(Ẏk)}k∈N0 to
feasible minimizers of the corresponding types for SIPCSCP is proven.

For the convergence results when local solutions are considered, we have to make
sure that the considered sequences of approximate solutions are solutions within a cer-
tain neighborhood that is not shrinking to the limit point. Such solutions are classified
by the following definition.

123



Solving continuous set covering ... 53

Definition 2 (Uniform local minimizers Polak (1993)) Consider a sequence of opti-
mization problems {Pn}n∈N0 . A sequence {xn}n∈N0 of localminimizers of the problems
Pn consists of uniform local minimizers if there exists a radius of attraction ρ > 0
such that fn(xn) ≤ fn(x) for all x feasible for Pn with ||xn − x|| ≤ ρ, where fn is the
objective function of the nth problem.

The sequence consists of uniformly strict local minimizers, if fn(xn) < fn(x) for
all x feasible for Pn , x = xn , with ||xn − x|| ≤ ρ.

We begin with the outer approximations {S̃IPsk ,tkCSCP(Ẏk)}k∈N0 .

Theorem 1 Consider sequences {(sk, tk)}k∈N0 , {xk}k∈N0 , index points {yk}k∈N0 and
{Ẏk}k∈N0 that are calculated according to Algorithm 1.

Then, the following holds:

1. Any sequence {xk}k∈N0 of global solutions of {S̃IPsk ,tk
CSCP(Ẏk)}k∈N0 possesses an

accumulation point x∗ ∈ M. Each of these accumulation points is a global solution
of SIPCSCP and f (xk) ↗ f (x∗), as k → ∞.

2. Any sequence {xk}k∈N0 of uniform localminimizers of {S̃IPsk ,tk
CSCP(Ẏk)}k∈N0 possesses

an accumulation point x∗ ∈ M. Each of these accumulation points is a local
minimizer of SIPCSCP.

Proof The existence of an accumulation point x∗ is ensured by the compactness of
X . We first show that this point is feasible. By the compactness of Y we can choose
subsequences such that

lim
l→∞ xkl = x∗ and lim

l→∞ ykl = y∗ ∈ Y

hold. To prove the feasibility of x∗ for SIPCSCP, we need to make a case distinction,
which separates the situation where all but finitely many approximate solutions are
also feasible for SIPCSCP from that where infinitely many approximate solutions are
not feasible for the original problem.

First case: There are only finitely many l ∈ N0 with g(xkl , ykl ) > 0.
In this case there is an l0 ∈ N0 such that for l ≥ l0

g(xkl , ykl ) ≤ 0.

By construction the following is true for any y ∈ Y

g(x∗, y) = lim
l→∞ g(xkl , ykl ) ≤ 0,

and hence x∗ ∈ M .
Second case: There are infinitely many l ∈ N0 with g(xkl , ykl ) > 0.

By selecting again a subsequence, we can assume that for all l ∈ N0

g(xkl , ykl ) > 0.
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Statement 1 in Assumption 1 then provides the existence of l0 ∈ N0 such that for all
l ≥ l0, the iterate ykl is added to the discretization and we have:

g̃skl ,tkl (xkl+1 , ykl ) ≤ 0

By Lemma 2 for an ε > 0 there is l̃0 ≥ l0 such that, for every l ≥ l̃0, the following
holds:

g(xkl+1 , ykl ) − g̃skl ,tkl (xkl+1 , ykl ) ≤ ε.

For every y ∈ Y and l ≥ l̃0 we receive, using the above inequalities,

g(x∗, y) = lim
l→∞ g(xkl , y)

≤ lim
l→∞ g(xkl , ykl )

= lim
l→∞ g(xkl+1 , ykl )

≤ lim
l→∞ g̃skl ,tkl (xkl+1 , ykl ) + ε

≤ ε.

As ε > 0 was chosen arbitrarily we must have g(x∗, y) ≤ 0, which proofs the
feasibility of x∗.

We can now turn to the optimality of x∗. By Proposition 2 we have:

M̃s0,t0(Ẏ0) ⊇ M̃s1,t1(Ẏ1) ⊇ M̃s2,t2(Ẏ2) ⊇ · · · ⊇ M (18)

If every iterate xkl is a global solution of S̃IP
skl ,tkl
CSCP(Ẏkl ), we have f (x) ≥ f (xkl ) for

every x ∈ M . By continuity of f we also have limk→∞ f (xk) = f (x∗). This shows
that x∗ is a global solution of SIPCSCP. Equation (18) provides that the convergence
of the function values is monotone.

The convergence of a subsequence of uniform local minimizers towards a local
minimizer of SIPCSCP can be done similar to the previous proof by restricting the
problems not to the compact set X but to a compact subset of the ball B (

x∗, 1
2ρ

)
of

radius 1
2ρ, where ρ is chosen according to Definition 2, around the accumulation point

x∗ of SIPCSCP under consideration. ��
For the problems SIPsk ,tkCSCP(Ẏk) the situation becomes more complex. As stated in

Sect. 2.2, we no longer have an ordering of the feasible sets as in Eq. (18). For a similar
statement as Theorem 1 we will need the following additional assumption on the local
structure of the feasible set.

Assumption 3 We consider a point x∗ ∈ M . If maxy∈Y g(x∗, y) = 0, assume that
there exist ε, t0, β > 0 and v ∈ R

n such that:

max
y∈Y g(x + tv, y) ≤ max

y∈Y g(x, y) − βt,

123



Solving continuous set covering ... 55

x + tv ∈ X (19)

for all x ∈ X with ‖x − x∗‖ ≤ ε and t ∈ [0, t0].
We will state a possibility to ensure Assumption 3 after the proof of the next theorem.

Theorem 2 Consider sequences {(sk, tk)}k∈N0 , {xk}k∈N0 , index points {yk}k∈N0 and
{Ẏk}k∈N0 that are calculated according to Algorithm 1.

1. Any sequence {xk}k∈N0 of global solutions of {SIPsk ,tk
CSCP(Ẏk)}k∈N0 possesses an

accumulation point x∗ ∈ M. If there is at least one global solution x̄∗ of SIPCSCP

that satisfies Assumption 3, then each of these accumulation points is a global
solution of SIPCSCP.

2. Any sequence {xk}k∈N0 of uniform localminimizers of {SIPsk ,tk
CSCP(Ẏk)}k∈N0 possesses

an accumulation point x∗ ∈ M. If x∗ satisfies Assumption 3, then this accumulation
points is a local minimizer of SIPCSCP.

Proof The existence of accumulation points and the feasibility of them is completely
analogous to the proof of Theorem 1.We next show the global optimality in Statement
1 of an accumulation point x∗ = liml→∞ xkl . Consider an arbitrary global solution
x̃∗ ∈ M that satisfiesAssumption 3. ByLemma2 andAssumption 1 there is a sequence
{εk}k∈N0 such that

0 ≤ gsk ,tk (x, y) − g(x, y) ≤ εk and lim
k→∞ εk = 0

for every x ∈ X and y ∈ Y . We distinguish two cases that the global solution x̃∗ can
exhibit.

First case: Suppose that maxy∈Y g(x̃∗, y) = 0. In this case, we make use of
Assumption 3. Choose β, t0 > 0 and an v ∈ R

n according to Assumption 3. Let
x̃kl := x̃∗ + εkl

β
v. For sufficiently large l and y ∈ Ẏkl we have

gskl ,tkl (x̃kl , y) ≤ max
y∈Y g(x̃kl , y) + εkl

≤ −β
εkl

β
+ εkl = 0,

which means that x̃kl is feasible for SIP
skl ,tkl
CSCP(Ẏkl ). As the iterates x

kl are global solu-
tions we have

f (xkl ) ≤ f (x̃kl ).

Taking the limit of the converging subsequences yields f (x∗) ≤ f (x̃∗). Together with
the feasibility of x∗ this shows global optimality.

Second case: If g(x̃∗, y) =: −δ < 0, the point x̃∗ is already feasible for all

SIP
skl ,tkl
CSCP(Ẏkl ) with εkl ≤ δ. Thus, the arguments of the first case apply directly to x̃∗.
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The convergence of a subsequence of uniform local minimizers towards a local
minimizer of SIPCSCP can be done similar to the proof above for a global minimizer.
First one restricts the problems to the compact setB (

x∗, 1
2ρ

)
such that for large l a local

solution is a global solution of the restricted problem. For each x ∈ M ∩ B (
x∗, 1

2ρ
)

with ‖x∗ − x‖ ≤ ε, with ε chosen according to Assumption 3, we can use the same
argument as above to show f (x) ≥ f (x∗). ��

It remains to provide requirements on the structure of SIPCSCP under which
Assumption 3 holds. Again let us state that this assumption is necessary for Theorem 2,
where the combination of stricter and relaxed approximation problems destroys clear
set-theoretic relationships between the feasible sets of approximating and original
problem (see (17)).

Remark 2 Assumption 3 follows from the following structural properties of the cover-
ing constraint function (4): First, it must be Lipschitz continuous on Y with a common
Lipschitz constant Lg that is valid for all x ∈ X . Second, the basic functions gi j ,
j = 1, . . . , pi , i = 1, . . . , N , that constitute the min-max function have to be contin-
uously differentiable on X × Y . Then, Assumption 3 holds for all x ∈ X that satisfy
the following MFCQ-like condition: There exists a neighborhood N (x) ⊂ R

n of x
and a vector v ∈ R

n such that for all active indices y ∈ Y0(x) := {y ∈ Y |g(x, y) = 0}
and for all basic functions gi j that are active for g on N (x) × Y0(x),

∇xgi j (x, y)T v < −1

holds.

To sum up, we have shown that for sequences of global or local solutions of the
adaptive discretization and smoothing-based approximating problems produced with
Algorithm 1, any accumulation point is a minimizer of the same type for SIPCSCP. The
only requirements on the algorithm are stated inAssumption 1. The constraint function
in turn has to satisfy Assumption 3, at least as far as problems of type SIPs,tCSCP(Ẏ ) are
considered.

3.2 Rate of convergence

Aim of this section is to bound the distance of the current iterates for Algorithm 1 in
both variants to a limit point. The result is motivated by a convergence rate result for
local solutions of SIPs shown by Still (2001). There, a linear up to quadratic rate of
convergence is given for a solution method where SIPs are approximated by priorily
known, successively refined grids on the infinite index set. As we do not work with
a fine discretization, we will use the violation of the current iterate to measure the
error induced by the discretization. At the end of this section we will give a worst-case
number of discretization points needed to guarantee a small violation of the current
iterate. However, the method shows to be generally faster in practice, as it generates
less discretization points and thus leads to smaller approximating problems. Another
difference of the analysis compared to the statement by Still is that the CSCP implies
that the constraint function of SIPCSCP is not continuously differentiable. To resolve
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this problem for gradient-based optimization methods, we apply regularization as a
second approximation technique which necessarily shows up in the convergence rate.

For our convergence rate result, we make the following assumption:

Assumption 4 Assume the sequence {xk}k∈N0 is generated by Algorithm 1 and the
iterates converge, i.e.

x∗ := lim
k→∞ xk .

All elements of the sequence {xk}k∈N0 and also their limit point x∗ are uniform local
minimizers of the current approximate problems S̃IP

sk ,tk
CSCP(Ẏk) / SIP

sk ,tk
CSCP(Ẏk) and SIP,

respectively, with common radius of attraction ρ > 0.

Still (2001) does not assume that there exists a common radius of attraction. Schwien-
tek et al. (2020) showed by means of a counterexample that without this assumption
the statements are wrong.

As we approximate the problem in two ways, we can also measure two different
types of deviations to the original problem. For k ∈ N0 let

τk := max
y∈Y |g(xk, y) − gk(xk, y)|,

where gk is either gskl ,tkl or g̃skl ,tkl , depending on which problem is solved to obtain
xk . With τk we can measure the error made by the smoothing procedure. Uniform
convergence of both smoothing functions provide that

τk ≤ err(k)

where err(k) is the smoothing error given in (12). As by Assumption 1 the smoothing
parameters diverge, we have

lim
k→∞ τk = 0. (20)

The second approximation is done via the discretization. Because we only respect
the indices in Ẏk , the current iterate xk may violate the remaining indices Y\Ẏk . This
violation is denoted by

δk := max
y∈Y max{gk(xk, y), 0}. (21)

We will discuss the approximation errors, and especially that due to adaptive dis-
cretization, further at the end of this section. But note that as τk converges towards 0
and the limit point x∗ is feasible, we already know that

lim
k→∞ δk = 0. (22)
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We need to assume that the limit point is a strict local minimum. This can be done by
assuming an order of the minimum.

Definition 5 The point x∗ ∈ M is a local solution of order p of SIPCSCP, for p = 1 or
p = 2, if there exists γ > 0 and a neighborhood U of x∗ such that for all x ∈ M ∩ U ,
the following relation holds:

γ ||x∗ − x||p ≤ f (x) − f (x∗). (23)

We can show the following result regarding the rate of convergence.

Theorem 3 Suppose that Assumptions 3 and 4 hold for x∗. Further, assume that f is
locally Lipshitz continuous around x∗ and x∗ is a local minimizer of SIPCSCP of order
p ∈ N0. Then, the following holds:

1. If g(x∗, y) < 0 for all y ∈ Y , there exists k ∈ N0 such that xk = x∗.
2. If g(x∗, y) = 0 for some y ∈ Y , then there exists a constant c > 0 and k∗ ∈ N0

such that for all k ≥ k∗ the following holds:

||x∗ − xk || ≤ c (τk + δk)
1
p .

Proof The first statement follows directly from Assumption 4 and the convergence of
the sequence of iterates : In a neighborhood of x∗, g(x, y) ≤ 0 holds for all y ∈ Y .
Hence, as soon as the iterate xk enters this neighborhood, it is feasible for SIPCSCP.
On the other side, because of the convergence of the double entropic smoothing, also
x∗ is feasible for S̃IPsk ,tkCSCP(Ẏk) and SIP

sk ,tk
CSCP(Ẏk). If the distance of x

∗ and xk becomes
smaller than the radius of attraction in Assumption 4 they have the same function
value. As locally x∗ is the unique minimizer, they must be equal for all k large enough.

The second statement is proven in amore technical way. In the proof, the ordering of
the feasible sets of purely smoothing-based approximations as stated in Proposition 1
is exploited. First we use the feasible direction given by Assumption 3 to construct
a point that is feasible for SIPCSCP and either for the associated smoothing-based
approximation S̃IP

sk ,tk
CSCP or SIP

sk ,tk
CSCP, respectively (see Fig. 4). Second, with the help of

the newly constructed point, we establish an ordering between the objective function
value of iterate and limit point and bound these values by the smoothing and the
discretization error. For the outer approximation problems S̃IP

sk ,tk
CSCP(Ẏk), the ordering

of the feasible sets M̃sk ,tk (Ẏk) ⊇ M̃sk ,tk ⊇ M directly leads to an ordering of objective
function values of the points xk , x̃k and x∗. For the problems SIPsk ,tkCSCP(Ẏk), there is no
such ordering of feasible sets. Therefore, the minimizer x̄k of SIPsk ,tkCSCP is introduced
in order to establish an ordering of function values (Fig. 4). Finally, the statement is
shown using the order of the minimizer x∗.

1. Construction of feasible points:
Let ε, t0, β > and v ∈ R

n be chosen as in Assumption 3. We define

x̃k := xk + δk + τk

β
· v.
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First, the case of S̃IP
sk ,tk
CSCP(Ẏk) is considered. Using Assumption 3 together with

the definition of δk and τk , we receive for sufficiently large k:

max
y∈Y g(x̃k, y) ≤ max

y∈Y g(xk, y) − (δk + τk) ≤ δk + τk − (δk + τk) = 0.

This shows that x̃k is feasible for SIPCSCP and because of the outer approximation
also for S̃IP

sk ,tk
CSCP.

In the case of problem SIPs,tCSCP(Ẏ ) we have for sufficiently large k

max
y∈Y gsk ,tk (x̃k, y) ≤ max

y∈Y g(x̃k, y) + τk

≤ max
y∈Y g(xk, y) − (δk + τk) + τk

≤ max
y∈Y gsk ,tk (xk, y) − δk

≤ 0.

This means that x̃k is feasible for SIPsk ,tkCSCP. As this is an inner approximation, the
point x̃k is also feasible for SIPCSCP.

2. Bounds on function values:
Again, we begin with the case of problem S̃IP

sk ,tk
CSCP(Ẏk). Both, δk and τk , are null

sequences. Hence, k can be chosen large enough such that x̃k, xk ∈ B(x∗, ρ),
i.e. the iterate and the newly constructed point are within the radius of attraction
around x∗. As this problem is an outer approximation,

f (xk) ≤ f (x∗) ≤ f (x̃k)

follows. By Lipschitz continuity of the objective function it holds:

f (x̃k) − f (xk) ≤ L‖x̃k − xk‖ = L
‖v‖
β

· (δk + τk)

This means that there is a constant K > 0 such that

0 ≤ f (x̃k) − f (x∗) ≤ K (δk + τk).

The situation for the case of problem SIPsk ,tkCSCP(Ẏk) is more complex. Here, choose
k large enough such that xk, x̃k ∈ B(x∗, ρ

2 ). Due to the combination of inner and
outer approximation techniques, we do not know the order of the function values
between xk and x∗. Therefore, we consider a third point x̄k ∈ Msk ,tk ∩ B(x∗, ρ

2 )

such that

f (x̄k) = min
x∈Msk ,tk∩B(x∗, ρ

2 )

f (x).
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(a) ˜SIP
sk,tk
CSCP(Ẏk) (b) SIPsk,tk

CSCP(Ẏk)

Fig. 4 Construction of points x̃k that are feasible for SIPCSCP and the smoothed approximations S̃IP
sk ,tk
CSCP

(left) or SIP
sk ,tk
CSCP (right), respectively

Analogous to the previous case we receive a K1 > 0 such that:

0 ≤ f (x̃k) − f (x̄k) ≤ K1(δk + τk)

The point x∗ + τk
β
v can be shown to be feasible for SIPsk ,tkCSCP similarly as this is

done in Step 1. This yields another ordering of objective values:

f (x∗) ≤ f (x̄k) ≤ f

(
x∗ + τk

β
v
)

.

Again we can find a K2 > 0 such that:

0 ≤ f (x̄k) − f (x∗) ≤ K2(δk + τk)

Combining both inequalities and letting K := K1 + K2 yields

0 ≤ f (x̃k) − f (x∗) ≤ K (δk + τk)

3. Using the order of the minimum:
Using (23), we have for both types of problems, SIPs,tCSCP(Ẏ ) and S̃IP

s,t
CSCP(Ẏ ), that

‖x̃k − x∗‖ ≤ 1

γ
( f (x̃k) − f (x∗))1/p ≤ 1

γ
(K (δk + τk))

1/p

holds. For large k we can thus find c > 0 such that:

‖xk − x∗‖ ≤ ‖xk − x̃k‖ + ‖x̃k − x∗‖
≤ δk + τk

β
‖v‖ + 1

γ
(K (δk + τk))

1/p

≤ c(δk + τk))
1/p

��
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Before we turn to the numerical examples, we study the influence of the adaptive
discretization compared to a fix discretization along one example.

The adaptive nature of the Algorithm.

The approximation error δk (21) is caused by the adaptive discretization of the infi-
nite index set. We have already stated that this error in the limit approaches zero (22).
Togetherwith the smoothing error (20), this forms ameasure for the convergence of the
algorithm. Yet, we must admit that we cannot speak of a rigorous rate as the sequence
{δk}k∈N0 must not be monotonous. This is the main difference between adaptive dis-
cretizationmethods and thosemethods for SIPs that operatewith a-priorily determined
discretizations of the infinite index set. Nevertheless, given a certain threshold δ > 0
for the maximum allowed constraint violation of an approximate solution, there is a
maximum iteration number k(δ) < ∞, at which Algorithm 1 at the latest produces an
iterate xk(δ) with

max
y∈Y g(xk(δ), y) ≤ δ.

The following example illustrates that this iteration number would be quite large, if
Algorithm 1 would select the new discretization indices the most unfortunate way.
However, we will also see that the realized effort to get a sufficiently good solution is
far away from the worst case. The example further demonstrates that the "worst-case"
iteration number k(δ) only depends on Y and g, i.e. the problem structure, but not on
the sequence of approximate solutions.

For better illustration, we measure grid distance in the example with respect to the
maximum norm. This has the advantage that the maximum number of discretization
points for a givenmesh size is reached for a regular grid. To exclude smoothing-effects,
which are not topic of this example, we omit regularization by smoothing, although the
constraint function is not continuously differentiable. Hence,we compute approximate
solutions by a purely adaptive discretization-based variant of Algorithm 1. For this
algorithm, a similar convergence rate result as given in Theorem 3 holds, see Krieg
(2020).

Example 1 We consider the CSCP of covering the unit square with three identical
circles such that their radius is minimized on the interval

[ 1
3 , 1

]
(Fig. 5):

SIPcircles : min
x∈X x7

s.t. min
1≤i≤3

gi (x, y) ≤ 0 ∀y ∈ Y
(24)

where

gi (x, y) := (x2i−1 − y1)
2 + (x2i − y2)

2 − x27 , i = 1, 2, 3,
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Y = [0, 1]2 and X = [0, 1]6 × [ 1
3 , 1

]
. We look for approximate solutions xδ that

satisfy

max
y∈Y g(xδ, y) ≤ δ := 2−7. (25)

The common Lipschitz constant of the parabolas g(x, ·) on Y for all x ∈ X is
Lg = 2

√
2. The Lipschitz constant determines the maximum growth of the constraint

function g on Y .
Let us state the following observations:

1. Adaptive discretization in its worst case. Suppose that in each iteration of Algo-
rithm 1, the most unfortunate point would be added to the discretization of Y , and
the function would exhibit the slope given by Lg everywhere on Y . From Lipschitz
continuity of g(x, ·) on Y , we know that (25) is satisfied, if for all y ∈ Y there is a
point ẏ in the discretized index set for which

Lg||y − ẏ|| ≤ δ

⇐⇒ ||y − ẏ|| ≤ δL−1
g

holds. Hence, a discretization set of mesh size δL−1
g would guarantee that any

solution of the approximate problem fulfills the covering constraint on Y with
respect to the threshold δ. To find such a discretization on the unit square, at most

k(δ) =
(⌊

2
√
227

⌋
+ 1

)2 = 131, 769

points had to be added to the discrete index set.
2. Adaptive discretization algorithm in practice. Figure 5 shows an approximate solu-

tion and its associated discretization points of problem (24) found by Algorithm 1
without smoothing starting at

x0 =
(
0.1, 0.5, 0.7, 0.7, 0.2, 0.3,

1

3

)T

,

The algorithm reaches δ within eight steps. This means, the algorithm solved eight
finite optimization problems with one to eight constraints to find this solution.

4 Numerical examples

Algorithm 1 is rather a template than a fully defined numerical procedure. There are
many possibilities for realizing several steps in the algorithm. Such steps are the update
and stopping criteria, and the updatemethod of the smoothing parameters for example,
but also the applied methods for solving the NLPs SIPsk ,tkCSCP(Ẏk) and S̃IP

sk ,tk
CSCP(Ẏk). The

following examples are by no means comprehensive in realizing the variability that
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Fig. 5 Approximate solution of
the three circles CSCP (24) that
satisfies the constraint violation
threshold δ = 1

27
. Red points:

adaptively added discretization
points generated by Algorithm 1
(variant without smoothing)

−0.5 0 0.5 1

0

0.5

1

is incorporated in Algorithm 1. Their purpose is to demonstrate how the effects of
adaptive discretization and smoothing manifest themselves in evaluations. However,
all presented realizations of Algorithm 1 fulfill Assumption 1.

4.1 Example instances of CSCP from product portfolio optimization

We demonstrate the capabilities of Algorithm 1 to solve continuous set covering prob-
lems for the task of designing an optimal portfolio of fluid transport pumps. In the
following, the problem is described in a condensedmanner. The interested reader finds
more details on the application in Krieg (2020). Unless stated otherwise, the portfolios
to be designed consist of N = 4, 5, 6 pumps.

Any pump in the portfolio can be identified with its so-called operation area. This
is a set inR

2+ that comprises all combinations of flow and head (a pressure-equivalent)
at which a pump can be operated. The area is bounded by given minimum and max-
imum speeds, and a certain minimum efficiency ηmin. Our goal is to maximize this
lower efficiency bound. Hence, the operation area for each pump under consideration
corresponds to a compact set Pi (x), i = 1, . . . , N . All operation areas together should
cover a given set of expected customer demands. In pump industry, the customers
usually select their pump according to a certain operation point at which they ideally
want to operate it. When implemented in the real transport system, the pump will
not constantly operate on that ideal point but it will exhibit some fluctuations around
this point. Therefore, customer satisfaction is higher if the pump’s efficiency does
not decrease much in a neighborhood of their required operation point. This is why a
continuous set Y should be covered with an efficiency that is as high as possible.

In its SIPCSCP formulation, the pump portfolio optimization problem for N pumps
is given by

SIPpump : min
x∈X −x2N+1

s.t. min
1≤i≤N

max
1≤ j≤3

gi j (x, y) ≤ 0 ∀y ∈ Y
(26)

where for i = 1, . . . , N and j = 1, . . . , 3 the functions gi j are continuously differ-
entiable on R

2N+ × [0, 1] × R
2+. The parameters x1, . . . , x2N define the locations of

the N pumps in the portfolio. The last decision variable is the minimum efficiency
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of the portfolio, i.e. ηmin := x2N+1. Details on the pump model, chosen parameters
and initial values of the examples are given in Appendix A. We consider a rectangular
customer set in R

2+,

Y := [500, 5000] × [100, 500].

Thedecisionvariables are the designpoints of the N pumps,which are located centrally
in the operation area, and their common minimum efficiency. Hence, the smallest of
our considered problems has 9 decision variables. They are restricted to

X := Y N × [0.1, ηmax],

where ηmax ≤ 1 is the largest efficiency the pumps can assume.

4.2 Details of implementation

All presented variants of Algorithm 1 are implemented in MATLAB R2018b. The
finite nonlinear problems of the types SIPs,tCSCP(Ẏ ) and S̃IP

s,t
CSCP(Ẏ ) are solved locally

using the SQP method (see e.g. Nocedal and Wright (2006)) which is implemented in
the solver fmincon from the Optimization Toolbox, v. 8.2. First order derivatives are
supplied for the smooth NLPs. The arguments of the exponentials in the smoothing
functions (9) and (11) can be quite large. Therefore we apply the trick of "adding
zeros" to stabilize the numerical evaluation as described in Appendix C (see (28) for
the numerically stable description of the double entropic smoothing function). The
computations are done on a Windows notebook with Intel Core i7-5600U 2.6 GHz
processor and 8 GB RAM.
Evaluation. In the following, we present tables summarizing some key figures on the
performance of our algorithm for the shown examples. These comprise cpu time (cpu
time) in seconds until the stopping criteria are met. Further, the number of iterations
(# iterations), i.e. the approximating NLPs solved by a procedure, and the (maximum)
number of discretization points (# disc. points) are given. The later represents the
size of the largest NLP that has to be solved by the procedure. For the last approxi-
mate problem, the smoothing error (err(kfinal)) and the objective value of its solution
(ηmin(kfinal)) are stated.
Discretization update. Instead of solving the lower level problem at the current iterate
solution of the upper level, we evaluate the constraint function on a fine reference grid
of the infinite index set and select the point with largest function value. If this value
is positive, the point is added to the discretization set. The reference grid is equally
spaced and consists of 200 × 200 grid points.
Smoothing parameter update. The smoothing parameters are initiated with s0 = −10
and t0 = 10. As realization for the method UpdateParameters in Algorithm 1, we
choose a geometrical parameter update by the factor of 5 percent. In each iteration
k > 0 the smoothing parameters are updated according to the rule

sk := 1.05sk−1 tk := 1.05tk−1.
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As Schwientek (2013) states, smoothing-based approaches are parametric procedures
for which it is not clear at all what good initial values are. Numerical tests with our
procedure (not shown) concerning initial smoothing parameters and also update of
smoothing parameters confirm this. Yet, the presented strategy seemed to perform
well for the example cases.
Discretization and smoothing update criteria. The update criteria for updating the
adaptive discretization set or the smoothing parameters, respectively, are empty con-
ditions in the shown examples. This means, there is an update of the smoothing
parameters in every iteration of Algorithm 1 and an update of the adaptive discretiza-
tion set whenever the current solution violates the constraint function at some point on
the reference grid. Updating the approximation problems in every iteration satisfies
Assumption 1.
Stopping criteria. In approximative solution procedures, stopping criteria usually guar-
antee a certain quality of the final approximation. In this sense, we force the algorithm
to run until the smoothing error (12) falls below the threshold errstop := 0.01. We
further require that the iterate xkfinal fulfills each constraint resulting from the points in
the updated adaptive discretization set within a tolerance of 10−6, which corresponds
the standard tolerance values of the used NLP-solver. As we take the candidate points
of the adaptive discretization sets from an auxiliary reference grid instead of solving
the lower level problem exactly, the constraint violation can be larger than the tol-
erance at some point y ∈ Y that is not part of the reference grid. This means that
the approximation error due to discretization δk (21) becomes larger. The maximum
possible violation depends on the Lipschitz constants of the functions gi j , 1 ≤ j ≤ pi ,
1 ≤ i ≤ N and the grid size, and can be calculated as in Still (2001).

4.3 Method performance

When considering method performance, the effects of two approximation strategies
have to be considered: The adaptive discretization of the infinite index set and the
smoothing of the non-smooth constraint function.

The effect of adaptive discretization

Discretization of the infinite index set is a classical procedure.We compare the adaptive
variant used in our solution approachwith optimizing finite approximations of SIPpump
on a fixed grid and on a sequence of fixed grids with an a-priori known successive
refinement.

The shown examples use a grid consisting of 65 times 65 regularly spaced grid
points in the fix grid approach. In the successively refined grid approach, we solve

several optimization problems on successively finer grids with
(
2k + 1

)2
grid points

in each step, from k = 1 up to k = 6. Note that the grid is rougher than the reference
grid (200 x 200 points) on which we evaluate the constraint function in order to
find new points in the discretization update. This is due to the fact that the grid size
for a fix discretization method directly transforms into the size of the optimization
problem whereas in the adaptive discretization method the constraint function is only
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Fig. 6 Solutions of SIPpump for N = 6 and the final discretization of the infinite index set (red points)
using either adaptive discretization (left) or fix discretization with a 65× 65 points comprising grid (right)

evaluated once per iteration on the reference grid for the discretization update.All finite
optimization problems are solved using double entropic smoothing, i.e. problems of
type SIPs,tCSCP(Ẏ ). The results are shown in Table 1 and Fig. 6.

When comparing the methods with respect to the iteration numbers, there is hardly
any difference. Hence, all methods solve a similar number of optimization problems.
This means that none of the methods has difficulties with establishing feasibility. Yet,
the solved optimization problems differ significantly in size: for the adaptive dis-
cretization based approach, a maximum of 32 nonlinear constraints for N = 5 pumps
has to be considered, whereas the fixed and successively refined grid variants have
to solve optimization problems comprising 4225 nonlinear constraints. This clearly
affects computation time.

Figure 6 shows the final configuration for N = 6 pumps, including the final dis-
cretization points. One easily sees that adaptive discretization chooses the points only
in placeswhere they are needed, for examplewhere two operation areas touch,whereas
the grid by definition cannot take the structure of the intermediate solutions into
account. In consequence, much computational effort is spent on index points that
already fulfill the constraints.

The final optimal values of the adaptive discretization methods are better than those
for the grid-based methods. Although the sample of three problems is rather small,
there seems to be a tendency that the difference in optimal values increases with
portfolio size. Note that the size of the product portfolio determines the number of
decision variables in SIPpump. Hence, the adaptive discretization method outperforms
the variants with a-priori determined grid even more for larger portfolio size.

The effects of monotonous versus non-monotonous approximation

Combining shifted entropic smoothing and adaptive discretization results in opti-
mization problems with feasible sets that form monotonously decreasing outer
approximations which limit in the feasible set of SIPCSCP (see Sect. 2.2). Double
entropic smoothing instead destroys any monotony or set-inclusion properties for the
feasible sets of discretized SIPs (Fig. 3). This made the development of convergence
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Table 1 Key figures of optimizations using different types of discretization

cpu time # iterations # disc. points ηmin(kfinal)

N = 4

adaptive disc. 29.141 70 26 0.668

fix disc. 8877.580 70 4225 0.666

succ. refined disc. 548.812 70 4225 0.637

N = 5

adaptive disc. 32.526 71 32 0.658

fix disc. 6478.940 71 4225 0.657

succ. refined disc. 728.494 71 4225 0.644

N = 6

adaptive disc. 32.058 72 29 0.752

fix disc. 29359.076 69 4225 0.708

succ. refined disc. 1587.357 72 4225 0.666

results in Sect. 3 for those problems more technical. In the following we give some
insight on the differences in method performance when using Algorithm 1 either to
solve approximations of type S̃IP

s,t
CSCP(Ẏ ) or SIPs,tCSCP(Ẏ ).

InFig. 7 the locally optimalminimumefficiencyvalues of the approximate problems
computed during a run of Algorithm 1 for SIPpump with 6 pumps are shown for
both smoothing strategies. The optimal values of the outer approximation problems
S̃IP

sk ,tk
CSCP(Ẏk) are declining as the problems get stricter whereas those of the non-

monotonic problems SIPsk ,tkCSCP(Ẏk) are increasing. Observe that in this situation, the
second variant behaves rather like an inner approximation, at least in the initial iteration
steps. Table 2 allows a more precise comparison of the algorithm performance under
the two smoothing strategies.

Except for the case of 5 pumps, the inner smoothing method yields better results.
The final problem size in each algorithm variant is represented by the total number
of points that discretize the infinite index set. Hence, when using the shifted entropic
smoothing variant, problems with around three times as many nonlinear constraints
have to be solved compared to the double entropic smoothing variant.

For the inner smoothing method, the final smoothing error is only slightly smaller
than the stopping criterion errstop = 0.01 requires. The three examples therefore
suggest that establishing feasibility with respect to the non-smooth constraint func-
tion on the reference grid is rather easy when using the approximating problems
SIPsk ,tkCSCP(Ẏk). This is different for the outer approximation approach where the finally
reached smoothing errors are much smaller than the required smoothing quality. The
reason for this is that in the stopping criteria, we look at the original constraint func-
tion of SIPCSCP. However, the smoothed constraint functions of our approximation
problems S̃IP

s,t
CSCP(Ẏ ) are relaxed versions of the original constraint. Hence, if they

are active at some discretization point, then the original constraint needs not yet to
be satisfied at this point. Hence, establishing feasibility with respect to the original
covering constraint requires more effort. Figure 7b shows the struggle for feasibility
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Fig. 7 Objective values ηmin (a) and convergence of the iterates (b) for SIPpump with N = 6 pumps for the
approximating problems solved by Algorithm 1 with double entropic smoothing (blue) or shifted entropic
smoothing (red, dashed). The horizontal axes are normed to the total number of iterations of each algorithm
run. The figures contain the initial values

Table 2 Key figures of running Algorithm 1 on problems SIPs,tCSCP(Ẏ ) and S̃IPs,tCSCP(Ẏ ) for N = 4, 5 and
6 pumps

cpu time # iterations # disc. points err(kfinal) ηmin(kfinal)

N = 4

SIPs,tCSCP(Ẏ ) 29.141 70 26 0.008 0.668

S̃IPs,tCSCP(Ẏ ) 37.191 244 69 1.679 10−6 0.659

N = 5

SIPs,tCSCP(Ẏ ) 32.526 71 32 0.008 0.658

S̃IPs,tCSCP(Ẏ ) 632.241 244 88 1.830 10−6 0.688

N = 6

SIPs,tCSCP(Ẏ ) 32.058 72 29 0.009 0.752

S̃IPs,tCSCP(Ẏ ) 1353.200 244 78 1.953 10−6 0.725

of the outer smoothing method: the algorithm comes close to its final solution within
less then 50 percent of its total number of iterations. Afterwards, the optimal value
declines only slightly (Fig. 7a) in the intent to make the solution feasible for the actual
covering constraint function on the reference grid. When using outer approximations
in Algorithm 1, one has either to accept larger iteration numbers or should think of
another stopping criterion concerning feasibility.
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Fig. 8 Trade-off between portfolio size N and portfolio quality in the form of the minimum efficiency the
product portfolio exhibits on Y

4.4 The product portfolio optimization trade-off

Last but not least, let us state that Algorithm 1 in both variants is able to represent
the inherent trade-off in optimal product portfolio design where products, as the fluid
transport pumps, are defined upon continuous decision variables: Fig. 8 shows the
minimum efficiencies computed with Algorithm 1 for pump portfolios consisting of
up to 20 pumps. Again, the problem data can be found in Appendix A. For each
N ∈ {4, . . . , 20}, we solved the associated SIPpump separately. Thereby, the solution
of the (N − 1)st problem was extended by one pump placed at the center of the
rectangle Y before being used as warm start for the N th solution procedure. As a
result of the multiple local optima of the problems, it can occur that the resulting
solution of our local procedure for portfolio size N has worse objective value than the
prior portfolio of size N−1. In order to keep the problems small, the final discretization
of the (N − 1)st problem was discarded and the optimization of the pump portfolio
of size N started with a smaller set of discretization points. This means a relaxation
and the solver could leave the initial solution behind in favor of a better one. In later
iterations of the solution procedure, when the discretization set had grown again, this
"improvement" of the solution might get corrected and the solver ends in another,
worse local optimum. This is the case, for example for S̃IP

s,t
CSCP(Ẏ ) and N = 14.

For this example task, both variants of the algorithm show similar performance for
larger portfolios. Yet, the double entropic smoothing version yields better results for
medium-sized portfolios. Note that in both cases we used local methods to solve the
occurring NLPs. The larger the portfolio size, the more local optima the problem has.
Therefore, the leveling out of the slope of the minimum efficiency curve over portfolio
size might be a hint that the procedure gets stuck and is not able to leverage the full
potential of the portfolios anymore. Here, adequate globalization strategies have to
be developed. Nevertheless, the algorithm in general detects the trade-off between
high-quality covering and size of the portfolio.
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5 Conclusion

With the continuous set covering problem, we introduced a new class of optimization
problems founded in the requirement that a compact set is covered by the union of
several other, compact sets. Thereby, the characteristics of these covering sets can be
steered via a vector of parameters. On the one hand, CSCP is the generalization of
several covering problems that have been investigated for a long time. On the other
hand, it has practical relevance in that it can be used to formulate product portfolio
optimization tasks for products described by continuous parameters. Such problems
occur in many engineering contexts. One example studied in this paper consists in the
determination of an optimal portfolio of fluid transport pumps.

As shown in this work, a CSCP can be reformulated as a semi-infinite optimiza-
tion problem. However, the covering constraints lead to a semi-infinite constraint
that is a min-max over finitely many functions. In general this will be a non-smooth
constraint. To overcome this, we introduced two smooth functions that approximate
the non-smooth semi-infinite constraint from above and below. We then combined
the smoothing procedure with an adaptive discretization algorithm. For the proposed
algorithm convergence results hold under mild assumptions. If the iterates are local or
global minimizers of the approximate problems, any accumulation point is a local or
global solution of CSCP. Furthermore, the distance of a current iterate to a limit point
can be bounded in terms of the discretization and the smoothing error.

In numerical examples the algorithm was able to find an optimal portfolio of fluid
transport pumps for up to 20 pumps. The experiments showed that much less dis-
cretization points are needed to reach a small discretization error, if the points are
chosen adaptively compared to a fix discretization. As the arising problems have less
constraints, the overall time needed to solve the problems is much smaller.

There are different interesting aspects for future investigations. In our final exam-
ple, we figured out the trade-off between product portfolio quality and size by solving
SIPCSCPs for portfolios of several sizes separately. Yet one could also formulate min-
imizing portfolio size as further goal of the design task. As a result, CSCP would turn
into a mixed-integer, multicriteria optimization problem. One topic that is not tackled
in detail in this article is checking the feasibility of a candidate solution for SIPCSCP.
This is a challenging problem itself as it is necessary to find global solutions for the
finite max-min-max problem in the lower level of SIPCSCP. Specialized routines could
improve the performance of the proposed algorithm.
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A Pumpmodel

For the numerical examples in Sect. 4, we use the following simplified model of the
operation area of a transport pump:

gi1 : X × Y → R

(x, y) 	→ nmin − n(x2i−1, x2i , λ, y1, y2) (27a)

gi2 : X × Y → R

(x, y) 	→ n(x2i−1, x2i , λ, y1, y2) − nmax (27b)

gi3 : X × Y → R

(x, y) 	→ x2N+1 − η(x2i−1, x2i , λ, y1, y2) (27c)

The functions gi1 and gi2 are the speed-dependent bounds on the operation areas,
whereas gi3 is the efficiency bound. Correspondingly, the function ni provides the
speed of the i th pump at a certain operation point in Y and the function ηi its efficiency,
i = 1, . . . , N .

ni :R2+ ×
[
0,

1

3

]
× R

2+ → R

(x2i−1, x2i , λ, y1, y2) 	→ − 3λ − 1

2(1 − λ)
y1

+
√

(λ + 1)2

16(1 − λ)2

y21
x22i−1

+ y2
2(1 − λ)x2i

ηi :R2+ ×
[
0,

1

3

]
× R

2+ → R

(x2i−1, x2i , λ, y1, y2) 	→ − ηmax

n2i (x2i−1, x2i , λ, y1, y2)x22i−1

y21

+ 2
ηmax

ni (x2i−1, x2i , λ, y1, y2)x2i−1
y1.
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A.1 Parameter values for the numerical examples

The parameters for the examples in Sect. 4.3 are set to the following values:

ηmax = 0.9 λ = 0.2

nmin = 0.7 nmax = 1.2

X = [100, 5000] × [100, 500]N × [0.1, 0.9] Y = [100, 5000] × [100, 500]
x0(N = 4) ≈ [1256, 138, 3155, 190, 1256, 362, 5000, 500, 0.5]T

x0(N = 5) ≈ [792, 138, 3155, 138, 792, 362, 1991, 500, 5000, 362, 0.6]T

x0(N = 6) ≈ [792, 138, 1991, 190, 5000, 138, 792, 362, 1991, 500, 5000, 362, 0.7]T

The parameters for the examples in Sect. 4.4 are set to the following values:

ηmax = 0.9 λ = 0.2

nmin = 0.7 nmax = 1.2

X = [100, 10000] × [100, 500]N × [0.1, 0.9] Y = [100, 10000] × [100, 500]
x0(N = 4) ≈ [631, 138, 10000, 138, 631, 313, 10000, 362, 0.2]T

The initial values x01 , . . . , x
0
2N are rounded to integers; the initial value x02N+1 is exact.

B Entropic smoothing functions - missing proofs

To make the proofs better readable, the entropic smoothing functions are considered
to be functions in the variables x only instead of (x, y) as in the text.

Proof of Lemma 1. The proof is splitted in showing the monotonicity behaviour for
a pair of parameters 0 < t1 < t2 and a pair of parameters 0 > s1 > s2 under the
assumption that the other parameter s < 0 or t > 0, respectively, is fixed. The parts
of the proof are further segmented into steps.

Let 0 < t1 < t2 and s < 0 be given.

1. Define

fi (t) :=
⎛

⎝
pi∑

j=1

exp
(
tgi j (x)

)
⎞

⎠

1
t

Then, for any i ∈ {1, . . . , N } the following holds

fi (t2)

fi (t1)
=

(∑pi
j=1 exp

(
t2gi j (x)

)) 1
t2

(∑pi
j=1 exp

(
t1gi j (x)

)) 1
t1
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=

⎡

⎢⎢⎣

∑pi
j=1 exp

(
t2gi j (x)

)

(∑pi
j=1 exp

(
t1gi j (x)

)) t2
t1

⎤

⎥⎥⎦

1
t2

=

⎡

⎢⎢⎢⎢⎢⎣

pi∑

j=1

⎛

⎜⎜⎜⎜⎝

exp
(
t1gi j (x)

)
(∑pi

k=1 exp (t1gik(x))
)

︸ ︷︷ ︸
≤1

⎞

⎟⎟⎟⎟⎠

t2
t1

⎤

⎥⎥⎥⎥⎥⎦

1
t2

t2
t1

>1

≤
⎡

⎣
pi∑

j=1

exp
(
t1gi j (x)

)
(∑pi

k=1 exp (t1gik(x))
)

⎤

⎦

1
t2

= 1

Hence, fi (t2) ≤ fi (t1) for all i ∈ {1, . . . , N }.
2. By s < 0, it further holds for any t > 0 that

fi (t)
s = 1

fi (t)|s|

and therefore, together with step 1 fi (t2)s ≥ fi (t1)s .
3. As the first two steps hold for all i ∈ {1, . . . , N },

1

N

N∑

i=1

fi (t1)
s ≤ 1

N

N∑

i=1

fi (t2)
s

4. By the same argument as in the second step, the inequality is reversed due to
negativity of s:

(
1

N

N∑

i=1

fi (t1)
s

) 1
s

≥
(
1

N

N∑

i=1

fi (t2)
s

) 1
2

5. Last but not least, monotonicity of the logarithm yields

gs,t1(x) ≥ gs,t2(x)

Thus, {gs,tk }k∈N is monotonically decreasing with respect to t .
For the second part, let 0 > s1 > s2 and t > 0 be given.

1. For i ∈ {1, . . . , N }, define

yi := 1

t
ln

⎛

⎝
pi∑

j=1

exp
(
tgi j (x)

)
⎞

⎠
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and

h(s) :=
(
1

N

) 1
s
(

N∑

i=1

exp(syi )

) 1
s

Then for any i ∈ {1, . . . , N } the following holds

h(s2)

h(s1)
=

( 1
N

) 1
s2

( 1
N

) 1
s1

(∑N
i=1 exp(s2yi )

) 1
s2

(∑N
i=1 exp(s1yi )

) 1
s1

=
(
1

N

) 1
s2

− 1
s1

(∑N
i=1 exp(s2yi )

) 1
s2

(∑N
i=1 exp(s1yi )

) 1
s1

=
(
1

N

) 1
s2

− 1
s1

⎡

⎣
N∑

i=1

(
exp(s1yi )∑N
k=1 exp(s1yk)

) s2
s1

⎤

⎦

1
s2

2. Define y0 := min1≤i≤N yi and for i ∈ {1, . . . , N },

ai :=
(
exp(yi )

exp(y0)

)s1

Then

h(s2)

h(s1)
=

(
1

N

) 1
s2

− 1
s1

⎡

⎢⎢⎣
N∑

i=1

⎛

⎜⎝
exp(s1y0)

(
exp(yi )
exp(y0)

)s1

∑N
k=1 exp(s1y0)

(
exp(yk)
exp(y0)

)s1

⎞

⎟⎠

s2
s1

⎤

⎥⎥⎦

1
s2

(�)

3. For all i ∈ {1, . . . , N }, yi ≥ y0 and there is k ∈ {1, . . . , N } with yk = y0. These
relations are still true when applying the exponential function. However, as s1 < 0,
we have

exp(yi )
s1 ≤ exp(y0)

s1

and therefore, for all i ∈ {1, . . . , n}, ai ∈ [0, 1] and ak = 1 for one of them.
4. As s2

s1
> 1, the auxiliary result 3 can be applied to (�), which results in

N∑

i=1

⎛

⎜⎝
exp(s1y0)

(
exp(yi )
exp(y0)

)s1

∑N
k=1 exp(s1y0)

(
exp(yk)
exp(y0)

)s1

⎞

⎟⎠

s2
s1

≥ N
1− s2

s1
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5. Applying the previous step and remembering s2 < 0 leads to

h(s2)

h(s1)
=

(
1

N

) 1
s2

− 1
s1

⎡

⎢⎢⎣
N∑

i=1

⎛

⎜⎝
exp(s1y0)

(
exp(yi )
exp(y0)

)s1

∑N
k=1 exp(s1y0)

(
exp(yk)
exp(y0)

)s1

⎞

⎟⎠

s2
s1

⎤

⎥⎥⎦

− 1
|s2 |

≤
(
1

N

) 1
s2

− 1
s1

(
1

N
1− s2

s1

) 1
|s2 |

= 1

Hence, h(s2) ≤ h(s1) for all i ∈ {1, . . . , N }
6. Finally, again the monotonicity of the logarithm yields

gs2,t (x) ≤ gs1,t (x)

Thus, {gs,t }s<0 is monotonically increasing with respect to s.
The statement of the second part can be reversed to {gs,t }−|s|>0 is monotonically

decreasing with respect to |s|, which together with the first part is the claim of the
lemma. ��

In the previous proof, the following result from Tsoukalas et al. (2009) is used:

Lemma 3 For all b > 1, 0 ≤ ai ≤ 1, i ∈ {1, . . . ,m}, we have
(

1

1 + ∑m−1
i=1 ai

)b

+
m−1∑

i=1

(
ai

1 + ∑m−1
k=1 ak

)b

≥ m1−b

Proof of Lemma 2. The proof is done in several steps. To simplify the expres-
sions, for i ∈ {1, . . . , N } define p := max1≤i≤N pi and the functions gi (x) :=
max1≤ j≤pi gi j (x). Let x ∈ R

n be arbitrary.
Claim 1: For all i ∈ {1, . . . , N } and t > 0, the following holds:

gi (x) ≤ 1

t
ln

⎛

⎝
pi∑

j=1

exp
(
tgi j (x)

)
⎞

⎠ ≤ 1

t
ln p + gi (x).

Fix i ∈ {1, . . . , N }. By definition, gi (x) ≥ gi j (x) for all j ∈ {1, . . . , pi }with equality
for at least one index j . As t > 0 and the exponential function is strictly monotonous
and assumes only positive values,

exp(tgi (x)) ≤
pi∑

j=1

exp(tgi j (x)) ≤ pi exp(tgi (x))
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holds. By applying the also monotonous logarithm function, the claim is proven:

tgi (x)) ≤ ln

⎛

⎝
pi∑

j=1

exp(tgi j (x))

⎞

⎠ ≤ ln pi + tgi (x) ≤ ln p + tgi (x).

The last inequality results from the definition of p.
Claim 2: For all i ∈ {1, . . . , N }, t > 0 and s < 0, the following holds:

exp
( s
t
ln p

)
exp (sgi (x)) ≤ exp

⎛

⎝ s

t
ln

⎛

⎝
pi∑

j=1

exp
(
tgi j (x)

)
⎞

⎠

⎞

⎠ ≤ exp(sgi (x)).

The statement follows directly from the first claim under the following operations:
First, multiply the inequalities by the negative scalar s. This reverses their order.
Afterwards apply the exponential function which keeps the order upright due to its
monotonicity.

Claim 3: For all s < 0, the following holds:

exp (sg(x)) ≤
N∑

i=1

exp (sgi (x)) ≤ N exp (sg(x)) .

By definition, g(x) ≤ gi (x) for all i ∈ {1, . . . , N }. As s < 0, this is equivalent to
sg(x) ≥ sgi (x). Combining this with the fact that

exp(sg(x)) ≤
N∑

i=1

exp(sgi (x))

yields

exp(sg(x)) ≤
N∑

i=1

exp(sgi (x)) ≤ N exp(sg(x)).

To get the final result, for t > 0 and s < 0, combine claims 2 and 3 to get

exp
( s
t
ln p

)
exp (sg(x)) ≤

N∑

i=1

exp

⎛

⎝ s

t
ln

pi∑

j=1

exp(tgi j (x))

⎞

⎠ ≤ N exp (sg(x)) .

Dividing by N and applying the monotonous logarithm yields

ln
1

N
+ s

t
ln p + sg(x) ≤ ln

⎛

⎝ 1

N

N∑

i=1

exp

⎛

⎝ s

t
ln

pi∑

j=1

exp(tgi j (x))

⎞

⎠

⎞

⎠ ≤ sg(x).
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Under multiplication with s < 0, the inequalities turn and the claim of the lemma
results, when g(x) is subtracted :

1

s
ln

1

N
+ 1

t
ln p ≥ 1

s
ln

⎛

⎝ 1

N

N∑

i=1

exp

⎛

⎝ s

t
ln

pi∑

j=1

exp(tgi j (x))

⎞

⎠

⎞

⎠ − g(x) ≥ 0.

��
The next result is similar to Lemma 1 provides the monotonicity of the shifted

entropic smoothing function (11) with respect to the smoothing parameters.

Lemma 4 The family of shifted entropic smoothing functions {g̃s,t }s,t with s < 0 and
t > 0 is monotonically increasing in (|s|, t).
Proof As it is done for Lemma 1, this proof is splitted in showing the monotonicity
behavior for a pair of parameters 0 < t1 < t2 and a pair of parameters 0 > s1 > s2
under the assumption that the other parameter s < 0 or t > 0, respectively, is fixed.
The parts of the proof are further segmented into steps.

First, let 0 < t1 < t2 and s < 0 be given.Using the notation that p := max1≤i≤N pi ,
the shifted entropic smoothing function can be restated as follows:

g̃s,t (x) = 1

s
ln

⎛

⎝ 1

N

N∑

i=1

exp

⎛

⎝ s

t
ln

⎛

⎝
pi∑

j=1

exp
(
tgi j (x)

)
⎞

⎠

⎞

⎠

⎞

⎠ − 1

s
ln

1

N
− 1

t
ln p

= 1

s
ln

⎛

⎜⎝p
|s|
t

N∑

i=1

⎛

⎝
pi∑

j=1

exp
(
tgi j (x)

)
⎞

⎠

s
t
⎞

⎟⎠ − ln pt .

We make the following observations:

1. For 0 < t1 < t2,

p
|s|
t1 ≥ p

|s|
t2

2. For all i ∈ {1, . . . , N }, and all j ∈ {1, . . . , pi },

0 ≤ exp
(
t1gi j (x)

) ≤ exp
(
t2gi j (x)

)

3. For all i ∈ {1, . . . , N },
pi∑

j=1

exp
(
t1gi j (x)

) ≤
pi∑

j=1

exp
(
t2gi j (x)

)

⇐⇒
⎛

⎝
pi∑

j=1

exp
(
t1gi j (x)

)
⎞

⎠
−1

≥
⎛

⎝
pi∑

j=1

exp
(
t2gi j (x)

)
⎞

⎠
−1
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4. For all i ∈ {1, . . . , N },
⎛

⎝
pi∑

j=1

exp
(
t1gi j (x)

)
⎞

⎠
− |s|

t1

≥
⎛

⎝
pi∑

j=1

exp
(
t2gi j (x)

)
⎞

⎠
− |s|

t2

5.

N∑

i=1

⎛

⎝
pi∑

j=1

exp
(
t1gi j (x)

)
⎞

⎠
− |s|

t1

≥
N∑

i=1

⎛

⎝
pi∑

j=1

exp
(
t2gi j (x)

)
⎞

⎠
− |s|

t2

6. Combining 1. and 5., we get

p
|s|
t1

N∑

i=1

⎛

⎝
pi∑

j=1

exp
(
t1gi j (x)

)
⎞

⎠
− |s|

t1

≥ p
|s|
t2

N∑

i=1

⎛

⎝
pi∑

j=1

exp
(
t2gi j (x)

)
⎞

⎠
− |s|

t2

7. Applying the monotonous logarithm function does not change the relationship
given in 5.

8. Finally, we use s < 0 and get

1

s
ln

⎛

⎜⎝p
|s|
t1

N∑

i=1

⎛

⎝
pi∑

j=1

exp
(
t1gi j (x)

)
⎞

⎠
− |s|

t1

⎞

⎟⎠

≥ 1

s
ln

⎛

⎜⎝p
|s|
t2

N∑

i=1

⎛

⎝
pi∑

j=1

exp
(
t2gi j (x)

)
⎞

⎠
− |s|

t2

⎞

⎟⎠

This shows that the shifted entropic smoothing function is increasing in t > 0.
Second, let 0 > s1 > s2 and t > 0 be given. In this situation, we investigate the

parts of another equivalent reformulation of (11):

g̃s,t (x) = 1

s
ln

⎛

⎜⎝
N∑

i=1

⎛

⎝
pi∑

j=1

exp
(
tgi j (x)

)
⎞

⎠

s
t
⎞

⎟⎠ − ln pt .

Here, we make the following observations:

1. For 0 > s1 > s2, and i ∈ {1, . . . , N },
⎛

⎝
pi∑

j=1

exp
(
tgi j (x)

)
⎞

⎠

s1
t

≤
⎛

⎝
pi∑

j=1

exp
(
tgi j (x)

)
⎞

⎠

s2
t
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2. As a direct result,

N∑

i=1

⎛

⎝
pi∑

j=1

exp
(
tgi j (x)

)
⎞

⎠

s1
t

≤
N∑

i=1

⎛

⎝
pi∑

j=1

exp
(
tgi j (x)

)
⎞

⎠

s2
t

3. Again, the monotinicity of ln holds the relation upright, i.e.

ln

⎛

⎜⎝
N∑

i=1

⎛

⎝
pi∑

j=1

exp
(
tgi j (x)

)
⎞

⎠

s1
t
⎞

⎟⎠ ≤ ln

⎛

⎜⎝
N∑

i=1

⎛

⎝
pi∑

j=1

exp
(
tgi j (x)

)
⎞

⎠

s2
t
⎞

⎟⎠

⇐⇒ − ln

⎛

⎜⎝
N∑

i=1

⎛

⎝
pi∑

j=1

exp
(
tgi j (x)

)
⎞

⎠

s1
t
⎞

⎟⎠ ≥ − ln

⎛

⎜⎝
N∑

i=1

⎛

⎝
pi∑

j=1

exp
(
tgi j (x)

)
⎞

⎠

s2
t
⎞

⎟⎠

4. Finally, we get from |s1| < |s2|,

− 1

|s1| ln
⎛

⎜⎝
N∑

i=1

⎛

⎝
pi∑

j=1

exp
(
tgi j (x)

)
⎞

⎠

s1
t
⎞

⎟⎠ ≥ − 1

|s2| ln
⎛

⎜⎝
N∑

i=1

⎛

⎝
pi∑

j=1

exp
(
tgi j (x)

)
⎞

⎠

s2
t
⎞

⎟⎠

This shows that the shifted entropic smoothing function is monotonous decreasing as
0 > s → −∞.

Bringing both parts of the proof together, shows the claim. ��

C Numerical handling of the double and shifted entropic smoothing

In order to stabilize the numerical evaluations of the exponential functions in the
double and shifted entropic smoothing functions, we use the trick of "adding zeros"
as follows: Let zi ∈ R for 1 ≤ i ≤ n, n ∈ N and c ∈ R be real numbers. Then the
following terms are equal:

ln

[
n∑

i=1

exp (zi )

]
= ln

[
n∑

i=1

exp (zi − c)

]
+ c

We apply this "addition of zero" twice to the double entropic smoothing function used
in our numerical experiments: First, we reduce the arguments of the inner exponentials
by the constants

c1,i (x, y) := max
1≤ j≤pi

gi j (x, y), i = 1, . . . , N .
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Then, we use the minimum of the reduced inner terms as reduction constant for the
outer N exponentials:

c2(x, y) := min
1≤i≤N

1

t
ln

⎡

⎣
pi∑

j=1

exp
(
t
(
gi j (x, y) − c1,i (x, y)

))
⎤

⎦ + c1,i (x, y)

To sumup,weget the followingnumerically stable double entropic smoothing function
(9):

gs,t (x)

= 1

s
ln

⎡

⎣ 1

N

N∑

i=1

exp

⎛

⎝s

⎛

⎝1

t
ln

⎡

⎣
pi∑

j=1

exp
(
t
(
gi j (x, y) − c1,i (x, y)

))
⎤

⎦

+ c1,i (x, y) − c2(x, y)
))]

+ c2(x, y).

(28)
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