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Abstract
Offering Product-Service Systems (PSS) becomes an established strategy for companies to increase the provided customer
value and ensure their competitiveness. Designing PSS business models, however, remains a major challenge. One reason
for this is the fact that PSS business models are characterized by a long-term nature. Decisions made in the development
phase must take into account possible scenarios in the operational phase. Risks must already be anticipated in this phase and
mitigated with appropriate measures. Another reason for the design phase being a major challenge is the size of the solution
space for a possible business model. Developers are faced with a multitude of possible business models and have the challenge
of selecting the best one. In this article, a simheuristic optimization approach is developed to test and evaluate PSS business
models in the design phase in order to select the best business model configuration beforehand. For optimization, a proprietary
evolutionary algorithm is developed and tested. The results validate the suitability of the approach for the design phase and
the quality of the algorithm for achieving good results. This could even be transferred to already established PSS.

Keywords Product-Service Systems (PSS) · Business model prototyping · Simheuristics · Evolutionary algorithms ·
Metaheuristic optimization

Introduction

Due to globalization and high competition, manufacturers
transform their strategic alignment and offerings by focusing
on the customers’ needs. As a result, the product portfolio
gets expanded by combining products and services to
Product-Service Systems (PSS) with the aim of providing
a greater customer value (Moro et al., 2021). PSS are
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“characterized by the integrated and mutually determined
planning, development, provision and use of product and
services shares” (Meier et al., 2010). They enable producers
to introduce innovative business models such as use-oriented
or result-oriented. These business models focus on the ben-
efits generated by the product rather than on the product
itself. According to this the availability of a technical asset
is offered instead of the ownership. Providers conduct the
necessary services in order to realize the promised value
proposition. On the other side, customers pay e.g., a monthly
rate when the promised availability of the product is ensured
instead of making a large investment upfront. Consequently,
the majority of risks, e.g., technical risks are transferred from
the customers to the providers (Reim et al., 2015). This way,
manufacturers try to capture unique competitive advantages
by generating higher revenues and long-term relationships
with the customer (Li et al., 2020). Thus, in recent years,
many providers of conventional businessmodels have started
to establish customer benefit-generating offerings in the
form of PSS. Typical examples that can be noticed in daily
life are car- and bike-sharing models (Köster, 2015).

Besides these advantages, providers face particular chal-
lenges when designing and developing PSS. This is because
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not only the products or the combined services must be opti-
mized, but rather the combination of the two must create a
higher customer benefit than the individual components. This
requires detailed knowledge from various domains and sig-
nificantly increases the complexity of the optimization pro-
cess (Boßlau, 2021). This complexity of implementing PSS
and the limited experience with similar business models have
presented challenges in generating profits (Yan et al., 2021).
Consequently, despite the extensive development of various
approaches in the literature, the projected widespread adop-
tion of PSSmade in 2010 (Meier et al., 2010) has not yet been
achieved. A comprehensive review of these methodologies
reveals the necessity for novel approaches to design success-
ful PSS. Recognizing the research gap, the authors identify
the integration of data science and engineering design tech-
niques as a promising avenue recommending their combina-
tion to develop approaches that aim to achieve the optimal
configurations of PSS in given cases (Brissaud et al., 2022).

In alignment with these insights, the central hypothesis of
the presented work is that the profitability of PSS depends
mainly on the customer-oriented design and configuration of
the business model. Thereby, the profitability of the provider
is not the only target value in the development of PSS busi-
ness models. The satisfaction of the customers has also to
be considered in the business model configuration in order
to grant long-term success (Köster, 2015). To find the opti-
mum between these two concurring targets new quantitative
methods are needed. The presented work links data science
techniques with methods of engineering design to develop a
new approach to the design of PSS and contributes to this
research gap presented in (Brissaud et al., 2022).

To assess the achievement of these objectives by each
business model configuration, the use of computer simula-
tions has proven to be a valid methodology (Boßlau, 2021).
The determination of the optimal PSS businessmodel config-
uration, however, is a highly complex task since the solution
space is huge and each decision has to be aligned with
the others in order to reach the optimum of the conflicting
objectives profitability for the provider and the satisfaction
of the customers (Köster, 2015). One way to solve such com-
binatorial optimization problems is the use of metaheuristic
optimization. Metaheuristics are a subset of stochastic
optimization methods that primarily rely on the utilization of
random streams within the search mechanisms (Chih, 2023).
Metaheuristic optimization is applied to problems where
the solution space is so large that calculating every single
possible solution takes too long and is too costly. Mostly
inspired by natural phenomena, metaheuristic algorithms
provide optimal or good enough solutions in a short time
(Abualigah et al., 2022). Combining metaheuristics with
simulations to a simheuristic approach enables considering
uncertainties (Juan et al., 2015) which are immanent in the
design phase due to the long-term character of PSS and the

unpredictability of the future (Keine gen. Schulte & Steven
2012). Hence, this paper contributes to the design phase
of PSS a new quantitative approach, that combines meta-
heuristic optimization algorithmswith stochastic simulations
within a simheuristic framework in order to optimize the PSS
business model configuration upfront or even after deploy-
ment. Themain focus of this paper is on the development and
design of this optimization algorithm by following a two-
step approach. In the first step, a series of sub-studies and
experiments are conducted to create important insights into
the applicability of evolutionary algorithms (EA) in the PSS
domain. In addition, different required adaptation technics
are investigated. In the second step, based on these find-
ings a highly efficient optimization algorithm is developed,
applied, and validated to be suitable for optimizing PSS busi-
ness model configurations within a simheuristic framework
during the design phase. In contrast to existing qualitative
approaches, the presented approach promises optimized and
quantitatively evaluated business model configurations.

The rest of the paper is structured as follows. First, the
necessary foundations are laid in the Sect. "Foundations".
For this, the challenges in the decision-making during the
design and development of PSS are outlined. Based on
this, the use of simulations and heuristic methods as well
as the combination of both as a simheuristic are derived
as a potential solution approach. In the Sect. "Sub-study",
various properties of optimization algorithms are examined
and tested regarding their quality to derive requirements
and insights for the development of a combined algorithm.
The Sect. "Main-study" presents the developed optimization
algorithm and validates its performance by applying it to a
conceptual use-case. The results and findings are discussed
in the Sect. "Discussion". Finally, this paper finishes with
conclusions and an outlook for future work.

Foundations

Design and development of Product-Service
Systems

The design and development of PSS is a complex process
whereby the results of the decisions in this phase are only
revealed in retrospect and can only then be evaluated. Due to
the long-term character of PSS businessmodels, the return on
investment lies further in the future than in classical product
development. Thus, poor decisions in the early stages of the
design phase can lead to negative outcomes like decreased
customer satisfaction, lower sales, and increased costs (Keine
gen. Schulte and Steven 2012). In a recent keynote, Brissaud
et al. (2022) point out that the complexity of the design phase
is one of the main reasons why PSS are not as well spread in
the industry as expected ten years ago.
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Fig. 1 Variation strategies for PSS configurations according to Köster (2015)

The mentioned complexity in the design and development
phase is caused by a large number of decisions and their
range of definitions. The decision-making process itself is
associated with a high degree of uncertainty due to the unpre-
dictability of the future. These challenges of the design and
development of PSS can be illustrated by the variation strate-
gies (see Fig. 1) identified by Köster (2015). These strategies
are superordinate design decisions and by no means details
relating to the integrated service or product.

Based on these variation strategies, a car-sharing provider
could be confronted with the following questions and deci-
sions (see Fig. 2). Applying S1, a provider could think of the
integration of autonomous driving (in the future) as an alter-
native for driving by the customer.RegardingS2, the provider
could vary the areas served by the business model. Referring
to S3, a provider could vary the number of its employees,
vehicles, or parking spaces.With S4, the provider couldmake
decisions about the fueling policy. He could set incentives for
the customers who fuel the rented cars after driving. Deploy-
ing S5, the provider could enter into partnerships with park
space providers. Referring to S6, the provider could vary the
shares of the risks and decide if the customer is liable for
damages. Concerning S7, the provider could vary the rev-
enue models in such a way, that the customer would pay, for
example, for the minute or the kilometer, etc.

Considering these variation strategies, it gets evident that
the solution space in the design phase of a PSS is huge, and
finding the perfect match between provider objectives and
customer needs seems impossible. Every decision in one area
of the PSS and its business model is linked to a decision
in another area (Osterwalder & Pigneur, 2013). Increasing
the number of vehicles and widening the distribution of the
served area could lead to higher customer satisfaction, how-
ever, would also lead to higher costs and other challenges
e.g., ensuring the cleanliness of all vehicles. If the customer
will be integrated into the cleaning process, adjustments in
the revenue models must be made. Determining the rev-
enue model as Pay-per-minute could lead to faster-driving
customers which could result in careless driving or even acci-
dents. Thus, the providermust also adjust the risk distribution
and decide who will be liable for which damages.

These explanations lead to the conclusion that achieving
an optimal configuration of a PSS, where all decisions are

alignedwith each other and, at the same time, the profitability
of the business model can be predicted is impossible without
appropriate methodological support. This finding is in line
with the results of the extensive research of Brissaud et al.
(2022). After analyzing existing design methodologies, the
authors argue for linking data science methods with engi-
neering design and present the lack of global optimization
methods as a research gap.

To optimize a PSS configuration, different configuration
options must be evaluated according to the desired objective
e.g., minimum costs, maximum customer satisfaction, etc.,
or a combination of them. For this task, quantitative methods
are necessary that can deal with the unpredictability of the
future and thus the real behavior of PSS system components,
customers, and the environment during the operation phase.
To reduce the uncertainties and risks in this respect a realis-
tic simulation of the PSS environment is an obvious option
(Wrasse et al., 2015).

Simulation of Product-Service Systems

Computer simulations can be used as decision support sys-
tems for the PSS design and development phase as well as
for the operations phase of PSS as a controlling instrument.
The advantage of simulations in comparison to traditional
methods (e.g., the BusinessModel Canvas in (Osterwalder &
Pigneur, 2013) is that designers and developers receive quan-
titative feedback for their decisions which enables them to
rate and compare these decisions objectively (Boßlau, 2021).
In the context of PSS, simulationswere used in various issues
and on different abstraction levels. Kimita et al. (2012) use
simulations to estimate the costs of service processes.Medini
et al. (2015) present a simulation-based approach for the
evaluation of PSS value chain configurations. Boßlau (2015)
models and simulates PSS business models as a whole.
Thereby, it is investigated how different risk scenarios affect
the profits of the PSS provider. Alice et al. (2018) use simu-
lations for the assessment of service delivery processes in the
context of PSS. Alp et al. (2021) evaluate the use of remote
assistance in service delivery processes.

Musa et al. (2017) elaborate that the typical modeling
paradigms for the simulation are Discrete Event Simulation
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Fig. 2 Variation strategies for a car-sharing concept

(DES), System Dynamics (SD), and Agent-based Model-
ing (ABM). DES is characterized by a sequence of discrete
states in which the operations or state transitions are trig-
gered by events (Wrasse et al., 2015). SD is a modeling
paradigm for a holistic analysis of complex and dynamic
systems. Using SD, the system is viewed from a top-down
perspective. The detailed behavior of single elements is not
considered. Rather, it attempts to model the abstract system
behavior by identifying reinforcing or balancing loops in the
system (Bala et al., 2017). In ABM, agents act as distinctive
objects that operate in the simulated environment according
to certain rules (Helbing, 2012). Due to the complexity of
PSS as a sociotechnical system, Alp et al. (2023) argue for
the use of a multimethod approach, the combination of all
three methods, for the modeling and simulation of PSS busi-
ness models in order to achieve a better reflection of reality.

Heuristic optimization

For the optimization of many real-world problems, an
exhaustive search, where all possible solutions are evaluated
is not applicable, since the solution space is too large. Here,
optimization “can be thought of as the process of attempting
to find the best possible solution amongst all those available”
(Burke&Kendall, 2014).Oneway to copewith these kinds of
problems is the use of heuristic techniques. Heuristics can be
defined as “a technique which seeks good (i.e., near-optimal)
solutions at a reasonable computational cost without being
able to guarantee […] optimality” (Andrew, 1998). Better
results can be achieved by using metaheuristics. Metaheuris-
tics refer “to a master strategy that guides and modifies other

heuristics to produce solutions beyond those that are nor-
mally generated in a quest for local optimality” (Glover &
Laguna, 1999). The comprehensive reviewofAbualigah et al.
(2022) shows the application of these techniques for design
problems in the area of mechanical engineering and proves
their success in optimizing real-world problems. Most of the
classical metaheuristics are inspired by phenomena in nature
(Dokeroglu et al., 2019) such as the colony search opti-
mization algorithm (Wen et al., 2022), whale optimization
algorithm, artificial bee colony algorithm, cuckoo search,
firefly algorithm, or the gray wolf optimizer or such as evolu-
tionary algorithms (Abualigah et al., 2022). The inspiration
for EAs lies in the behavior and structure of living organisms
during biological evolution (Zhang et al., 2011). The main
components contained within an EA are listed and briefly
explained below in Fig. 3.

A general procedure for EAs is shown in Fig. 4. There,
a simplification of the real procedure is visible. Due to the
complexity and freedom in the design of EAs as well as the
variability of possible tasks, different strategies are applied in
practice to achieve the best possible optimization. However,
most of these can be traced back to slightly modified forms
of the general sequence from Fig. 4.

Furthermore, two main branches of EAs can be distin-
guished. On the one hand, genetic algorithms (GA) are
specially designed for optimization within discrete solution
spaces (Mitchell, 1997; Spears et al., 1993; Whitley, 2001).
On the other hand, evolution strategies (ES) usually per-
form optimizations on continuous solution spaces (Beyer
& Schwefel, 2002). Both types of algorithms come with
their ownmethods regarding the generations of offspring and
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Fig. 3 Main Components of EAs
(Weicker & Weicker, 2003)

Fig. 4 Simplified schematic
representation of an optimization
using EAs (Weicker & Weicker,
2003)

strategy adaptations. Regardless, the basics of environmental
selection are common for both. For this purpose, two strate-
gies have usually to be considered. First, the comma selection
[e.g. (μ,λ)-GA] where the new generation (here, λ denotes
the number of offspring generated per generation) is formed
solely out of the best newly generated offspring (Beyer &
Schwefel, 2002; Glasmachers, 2013; Spears et al., 1993).
Second, the plus selection [e.g. (μ + λ)-GA] whereby the
next generation consists of the best individuals of the total-
ity of the prior generation (here, μ denotes the number of
individuals within a population) and the generated offspring
(Bäck & Schwefel, 1993; Whitley, 2001).

Based on these building blocks, various algorithms for
diverse problems can be generated by sensible selection of
the parameters, offering different advantages and disadvan-
tages. The particularly used algorithms and varied building
blocks as well as the incorporated strategies for mutation and
inheritance are introduced briefly in the appropriate sections
(compare Sect. "General suitability of the different algo-
rithms").

Generalizability and theoretical motivation

In principle, a simulative/theoretical study can naturally not
be transferred 1 to 1 to real-world applications, however, EAs
show very good properties in terms of invariance and gen-
eralizability. Those invariant properties allow the transfer of
different characteristics when solving benchmark problems

to optimization tasks of a similar type. Depending on the type
of EA, the algorithm is invariant under strictly monotonous
transformations of the fitness function aswell as rotations and
translations of the search space, if the initial search points are
changed identically. Besides, scale invariance and invariance
against invertible linear transformations of the search space,
with corresponding modifications to start points and covari-
ance matrix, can be achieved (Glasmachers, 2017; Hansen,
2006; Mersch et al., 2006).

Further research demonstrates additional invariance prop-
erties in different application areas of EAs (Salimans et al.,
2017). Those promising characteristics of EA motivate the
initial general investigation of different EA strategies for the
optimization of PSS, as the stated generalizability indicates
a reasonable degree of transferability to dedicated already
implemented or proposed PSS.

Simheuristics

The simheuristic approach integrates “simulation and opti-
mization techniques to efficiently tackle a combinatorial
optimization problem characterized by stochastic compo-
nents” (Gok et al., 2020). By this extension, metaheuristics,
which are predominantly designed for solving deterministic
problems, can additionally be used for coping with optimiza-
tion problems under uncertainty. Thus, simheuristics allow
the consideration of e.g., random customer demands while
optimizing the problem towards a given objective. In contrast
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Fig. 5 Framework of the simheuristic approach adopted from Juan et al.
(2015)

to the use of analytical models, the integration of validated
simulationmodels enables a better representation of the com-
plexity of the problem (Chica et al., 2017).

A general framework for the simheuristic approach is
visualized in Fig. 5. The complexity and uncertainty of
a decision are transformed into an optimization problem
whereby a simulation model represents the stochastic and
complex nature of the problem, and the metaheuristic algo-
rithm is used for its optimization with the aim of obtaining
an optimal solution. In detail, the metaheuristic algorithm
generates solutions, that serve as input for the stochastic
simulation. The simulation is first run with a low number
of replications to estimate the quality and feasibility of the
solutions and rank them regarding their proximity to the
optimization target. The best solutions are then used to run
a large number of simulations, analyze their outputs, and
select the best solution (Juan et al., 2015).

The application fields of the simheuristic approach are
manifold. Calvet et al. (2016) propose the combination
of metaheuristics with simulation for solving distributed
scheduling problems with stochastic processing times. The
simheuristic approach optimizes starting times of each task
while minimizing completion time or accumulated devi-
ations with respect to the deadline (Calvet et al., 2016).
Reyes-Rubiano et al. (2017) propose a simheuristic approach

for solving the capacitated vehicle routing problem, consid-
ering sustainability indicators and stochastic traveling times.
Through computational experiments, the authors demon-
strate the ability of the approach to provide high-quality
solutions within a short computational time (Reyes-Rubiano
et al., 2017). Wang et al. (2018) present a simheuristic
approach for optimizing the allocation and scheduling of
reversible lanes at a container terminal gate. The objective
of their approach is to improve service level and maximize
resource utilization while considering the constraints of lim-
ited space and imbalance traffic volumes (Wang et al., 2018).
Panadero et al. (2020) consider the routing of drones in a
team being utilized for surveillance. The authors propose a
simheuristic approach to solve the stochastic team orienteer-
ing problem (Panadero et al., 2020). Bi et al. (2020) present a
two-level principal-agent model for controlling the schedule
risk of IT outsourcing projects. The model utilizes a genetic
algorithm based simheuristic approach for providing deci-
sion support to scheduling IT outsourcing projects (Bi et al.
2020). Yazdani et al. (2020) use the simheuristic approach
for optimizing evacuation strategies by determining the right
number of buses and routes for picking up passengers.
Caldeira and Gnanavelbabu (2021) developed a simheuristic
approach for the flexible job shop problem with stochas-
tic processing times. Their approach is capable of obtaining
acceptable solutions for large-size problems in a short com-
putational time (Caldeira & Gnanavelbabu, 2021). Yan et al.
(2023) introduce a multi-objective model for fair relief mate-
rial distribution during disasters using a hybrid metaheuristic
algorithm. Through a case study on Covid-19 logistics in
Wuhan, it demonstrates the algorithm’s efficiency and com-
petitiveness compared to other methods (Yan et al. 2023).

The wide range of applications of the simheuristic
approach shows its strength for the optimization of complex,
stochastic problems to which the design and development
of PSS can be added. To use the simheuristic approach for
the design and development of PSS, different algorithms
must be tested for their suitability for the optimization of
PSS. Further, the best-suited algorithms need to be adapted,
further developed, and tested to be used in PSS design and
development as an optimization tool in the future.

Design of a simheuristic approach
for the optimization of PSS

The selection, adaption, and application of the right algo-
rithm for the optimization of PSS business models during
the design and development phase pose a great challenge.
There are various reasons for this. One reason lies in the con-
version of the PSS concept into a parameterized simulation
model, which allows it to be manipulated by an optimization
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algorithm. Thereby, the parameters that need to be varied
during the optimization can be very heterogeneous. Besides
discrete, direct parameters like e.g., the number of vehicles,
indirect parameters like e.g., the revenue model, the type
of service provision, and similar have to be translated into a
form that can be considered by the optimization algorithm. In
particular, the modeling of dependent and independent vari-
ables, which are defined in the PSS business model concept
as decisions such as maintenance strategy dependent number
of employees, in away that optimization can take place, turns
out to be a complex task. In addition to these exemplary chal-
lenges in the translation of the PSS business model concept
to a simulation model, algorithm-specific components must
also be further detailed during the development, adaptation,
and application of an algorithm. In evolutionary algorithms,
these are, for example, the size of the population or the selec-
tion strategy for evolving a new generation. Furthermore, the
question arises of how the stochastic properties influence an
evaluation of PSS business models in a fitness function and
how this noise has to be taken into account when evaluating
the performance of an algorithm.

Methodology

In this paper, a new EA-based optimization algorithm is
developed based on the characteristics of the decisions in
the design and development of PSS. The methodology for
the approach is visualized in Fig. 6.

Due to the fact, that there are several interlinked chal-
lenges to the optimization of PSS concepts, we conduct six
sub-studies in the first place.Within each sub-study, we high-
light one challenging sub-aspect (listed in Fig. 6) and analyse,
which strategies and characteristics of the individual com-
ponents of the algorithm are best suited for the particular
optimization challenge. Based on these insights a new opti-
mization algorithm is synthesized. In the Sect. "Main-study",
the design, application, and performance of the new algo-
rithm are shown. This approach allows a significant reduction
of complexity by considering the sub-issues individually.
Without this individual consideration of the sub-issues, the
complexity of the optimization of the algorithm itself would
grow exponentially due to the combinatorial combination of
different building blocks for each issue. Handling this is not
feasible, especially against the background of the long simu-
lation runtimes for themain. Additionally, a dedicated tuning
of the hyperparameters would be necessary to optimize the
optimization algorithm. Thiswould further increase the com-
plexity in the algorithm design search space and would make
it impossible to realize an in-depth study on this topic with
the available computational resources. Therefore, for the ini-
tial study on this topic, the first step is to investigate what

independent insights can be gained concerning the individual
sub-aspects. Then the results can be combined to demon-
strate that the methods show certain generalizability and no
incompatibilities or unpredictable degradations in the overall
algorithm performance occur due to the combination of the
individual findings. Therefore, a faster and easier-to-solve
simulation setup is used for the sub-studies, in order to be
able to carry out a larger number of examinations. By com-
bining the findings within one optimized approach for the
main-study, which has a significantly higher complexity, the
generalizability of the individual findings and their combin-
ability can then be verified.

Sub-study

As outlined, there are many challenges in implementing
developing, adapting, and applying optimization algorithms
on PSS configurations. In this Section, the following sub-
aspects/research questions are further analysed in the context
of PSS optimization:

1. How to deal with discrete validity ranges?
2. How to optimize setups with noisy fitness functions?
3. Which EA approaches are in general best suited as initial

building blocks for the optimization of PSS?
4. How to optimize PSS setups with dependent vari-

ables/design decisions?
5. How to deal with various variable types during the opti-

mization?
6. What is the best method to perform multi-objective opti-

mization for PSS based on EA?

For the investigation of the sub-aspects, a simplified
version of the Power-by-the-Hour PSS from Rolls Royce
is modelled in a simulation. With Power-by-the-Hour, the
aircraft turbine manufacturer Rolls-Royce established a
performance-based business model in 1962 in which the
value-adding activities of its customers were systematically
taken over. Instead of the turbines, Rolls-Royce sells flight
hours generated by their products. To this end, Rolls-Royce
monitors the technical availability of the turbines using sys-
tematic monitoring of the turbine’s health condition and
performs the necessary maintenance required to fulfil the
promise of customer value. This allows customers to focus
on their core competencies and only pay for performance that
adds value. (Friedrich, 2016; Köster, 2015; Smith, 2013).

The business model described above is transferred to a
simulation environment. This simulation can be adapted by
varying parameters like the number of aircraft, the number
of service stations in different airports, and the number of
technicians for each service station. Thus, the simulation
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Fig. 6 Methodology for the development of a new optimization algorithm

model provides a 9-dimensional solution space with approx.
3.9·1011 possible PSS configurations.1 Considering all com-
binatorial solution possibilities for the sub-aspects is not
feasible without further ado. Due to the huge size of the
solution space and long simulation times for each fitness
evaluation, finding the optimal configuration following the
Brute-Force method (simulation of every single possibility)
is not applicable.

To investigate the different sub-research questions, the
optimization parameters of the simulation are changed or
adapted to the respective objectives. The sub-research ques-
tions investigated in the sub-studies are briefly presented
below and the investigated approaches are briefly explained.
The overall findings of this first investigation stage to develop
an optimization algorithm suitable to add significant benefit
in the development of PSS are summarized all together at the
end of this Section while further relevant plots can be found
in the appendix.

Sub-study: optimization of discrete validity ranges

Considering real-world PSS setups, it is possible that the
optimization parameters may only lie within a certain value
range. Furthermore, no unrealistically large values should be
considered within the optimization of PSS configurations.
Therefore, it is necessary to observe the case of exist-
ing parameter constraints. Several ways to deal with such
constraints include (Coello Coello, 2002; Michalewicz &
Schoenauer, 1996; Rodrigues et al., 2014; Salcedo-Sanz,
2009; Woldesenbet et al., 2009):

1 The varied parameters and validity ranges for each parameter are
listed for the different sub-studies in each case as a table together with
the result plots—to be found in the Appendix.

– Decoding of feasible solutions
– Resampling
– Repair of infeasible points
– Penalties

Each of these methods can affect the optimization dif-
ferently. Especially in combination with step size control the
choice of the procedure and the style of implementationmust
be chosen reasonably. In real-world applications, it cannot
be assumed that all restrictions are always well-known. For
example, a combination of two parameters can generate a
singularity within the simulation. In this case, neither a map-
ping to valid areas, a penalty at the level of the violation, nor
a repair of the search points can be used. Therefore, at first,
only relatively generally applicable methods should be con-
sidered. This includes the resampling of a search point and
the death penalty. However, the latter can strongly influence
the step size control and lead to a rapid convergence of the
optimization if used incorrectly. Therefore, for the practical
application due to the black-box representation and its possi-
bly unknown constraints, the resamplingmethod to deal with
infeasible search points is primarily chosen.

Sub-study: optimization of noisy fitness functions

In general, itmust always be assumed that PSS simulations do
not exactly reflect the real behaviour of the business model.
It is not possible to predict the individual behaviour of each
customer, product, and service in detail. Random deviations
in the functionality of the product, the behaviour of cus-
tomers, or significant environmental influences (car sharing:
for example, a road closure) influence the PSS. Therefore, in
manycases, itmakes sense to consider stochastic components
when modelling the PSS. To achieve this, random events are
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modelled in the corresponding simulations. Thus, a search
point does not behave identically in every fitness evalua-
tion. Rather, two consecutive fitness calculations of the same
point can result in very different fitness values. In this case,
the search point may only be optimized for a very specific
fixed sequence of events within the simulation and delivers
significantly worse results faced with the smallest random
deviations of the events. To deal with fitness noise gener-
ated this way, the re-evaluation method is chosen, in which
the fitness evaluation is directly performed several times on
different seeds and the results are averaged to generate the
overall fitness. This method is used because it allows a stable
and robust optimization to be expected and additionally guar-
antees the comparability of all investigatedmethods. It is also
possible to dynamically adjust the number of re-evaluations
to the search space and the level of fitness noise in order to
reduce the required simulation budget (Hansen et al., 2009).

Sub-study: general suitability of the different algorithms

To rate the overall suitability of different EA configurations,
first, a meaningful benchmark must be defined. Random
Search (RS), gradient descent (GD), and the package pycma
developed by Hansen et al. (2022) are therefore investigated
in terms of their suitability to represent a competitive bench-
mark.

Random search: RS is a common benchmark for black-box
problems with huge and inhomogeneous fitness landscapes.
In addition, RS is the only meaningful baseline to compare
different algorithms and approaches along a wide range of
applications due to its general applicability and fairness in
terms of tuned hyperparameters.

Gradient descent: GD is used to investigate, whether
gradient-based methods are well suited to find meaningful
results for the optimization of PSSs. Due to the black-box
nature of the task, GD must manually compute the gradient
from multiple fitness evaluations for each optimization step.

Pycma:The library pycma contains several implementations
of Covariance-Matrix-Adaptation (CMA)-ES algorithms,
which are designed for difficult optimization tasks in con-
tinuous search spaces. Therefore, this library is used as a
further reference to the approaches presented in this work.

The performance results of the different benchmark
approaches (compare Sect. "Summary of the findings from
the presented sub-studies") are on the one hand used to under-
stand the performance of different EA approaches and also
compared to a valid baseline. On the other hand, the best
benchmark will be defined as the reference approach for the
main-study.

To evaluate the basic suitability of different algorithm
types for the optimization of PSS and to get a general
understanding of the optimization behavior of EA within
the context of PSS optimization, the following general
approaches are compared:

Basic (1+1)-ES: The (1+1)-ES algorithm is one of the sim-
plest forms of EAs. Basically, a new search point y is
determined from a search point x by mutation via a Gaussian
distribution and a variable step size σ. In the case of gaining
better fitness with the new point compared to the old one, it
will be adopted—otherwise, xwill remain the current search
point. This property makes it a classical hill climber.

(1+1)-ES with step size fitting: This EA is also a (1+1)-ES.
The main difference from the basic version is the sampling
approach for search points. Since there are significant differ-
ences in the validity ranges of the individual parameters in
the PSS used, the step size is adapted to the individual param-
eters. This is done by an elementwisemultiplication of σwith
a vector that contains the valid range of each parameter.

(1 + 1)-GA: The (1 + 1)-GA is the equivalent to the (1 +
1)-ES in the GA domain. Again, one new point y is gener-
ated based on a search point x. However, this is done by a
different mutation method. For each parameter with a certain
probability, it is decided, whether its value is changed or not.
This probability is defined by themutation rate. At amutation
rate of 10%, every tenth parameter is mutated on average. If a
parameter is mutated, the new value is randomly taken from
a discrete uniform distribution U (x_mind ; x_maxd) of the
valid value range for the according dimensiond. The selec-
tion of the old value is also permissible here. Afterwards, the
fitness of the two search points is compared and the one with
the higher fitness is stored for the next iteration. An adjust-
ment of themutation rate in contrast to the already introduced
ESs does not take place.

(1 + 1)-GA: The (1 + 1)-GA is the equivalent to the (1 +
1)-ES in the GA domain. Again, one new point y is gener-
ated based on a search point x. However, this is done by a
different mutation method. For each parameter with a certain
probability, it is decided, whether its value is changed or not.
This probability is defined by themutation rate. At amutation
rate of 10%, every tenth parameter is mutated on average. If a
parameter is mutated, the new value is randomly taken from
a discrete uniform distribution U (x_mind ; x_maxd) of the
valid value range for the according dimensiond. The selec-
tion of the old value is also permissible here. Afterwards, the
fitness of the two search points is compared and the one with
the higher fitness is stored for the next iteration. An adjust-
ment of themutation rate in contrast to the already introduced
ESs does not take place.
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(1+1)-ES/GA: This algorithm is a hybrid between a con-
ventional (1+1)-ES and a GA. The special characteristic of
this algorithm is the type of mutation. The mutation is car-
ried out via a hybrid approach of ES and GA where the ES
part determines the interval around the parent value in each
dimension and the sampling is done by the GA part with a
uniform distribution within this interval.

(μ,λ)-GA: (μ,λ)-GAs have a similar structure to the (1+1)-
GA. The main differences, however, are the number of
individuals in the generation of parents and offspring and
the additional use of crossover operators for inheritance. In
addition, a comma selection is performed.

(μ,λ)-GA plus elitism: This algorithm corresponds in its
basic structure to the (μ,λ)-GA. The only difference is that a
weak form of elitism is used. For each group of offspring, the
best individual from the parent generation is copied before
any offspring are generated.

(μ+λ)-GA: As described in Sect. "Heuristic optimization"-,
plus selection represents a strong form of elitism. This char-
acteristic is the biggest difference to the (μ,λ)-GA. After the
successful generation of the offspring, the population of the
next generation (iteration) is formed from the altogether best
individuals of the old population X and the offspring Y .

(μ,λ)-ESwithCMA:The class of (μ,λ)-ESwith CMAused
here is inspired by algorithms of (Hansen, 2006; Krause
& Glasmachers, 2015). The biggest difference to the GAs
is the inheritance strategy. The generation of the offspring
population occurs through a Gaussian distribution centred
around the centre of gravity of the previous population X
and described by the optimized covariance matrix derived
from the CMA.

(μ+λ)-ES with CMA: This algorithm combines the invari-
ant properties of the CMAwith the selection pressure of plus
selection.

Sub-study: optimization of dependent variables

PSS configurations can be based on different sets of param-
eters where some parameters depend on the chosen overall
strategy – which may also be subject to optimization (and
therefore be represented as an optimization parameter).
Therefore, an optimization of dependent variables and sets
may be necessary. The two strategies that are examined to
solve this issue effectively are explained below:

Loop—Here the PSS configuration types are optimized in
loops over a fixed number of iterations. The parameters of the
inactive configuration type remain unchanged. Afterwards,

either the configuration type can be changed to optimize the
other parameter set or a further loop can be started.

Holding—This procedure only changes those parameters
that are assigned to the currently active configuration. All
other parameters are transferred from one generation to the
following without any modification. Compared to the loop
strategy the parameter which determines the configuration
type is also subject to optimization. Therefore, it can change
during every evolution step for every new sample.

Sub-study: optimization with various variable types

PSS configuration parameters can be characterized by dis-
crete as well as continuous variables. Traditionally EA focus
on one of the two possibilities. To optimize PSSwith an inho-
mogeneous variable configuration, several approaches are
investigated.All algorithms used are based on the approaches
already presented in the Section about general suitability and
are extended by different strategies. Each of these strate-
gies is applied to the (1 + 1)-ES and to the (μ + λ)-ES.
Only the offspring generation is changed. Additionally, the
population-based algorithms use CMA besides the online
step size adaptation to adjust themselves to the solution
space:

The first strategy (ES) applied is the simplest one possible,
since it only rounds the parameters generated by the normal
distribution and step size σ.
The second strategy (GA/ES) varies the real-valued param-
eters according to the rules of the ES and mutates the integer
parameters according to the mutation rule of the (1+1)-GA.
This represents amixed form of the two basic EA approaches
GA and ES. Although not all variables are changed simul-
taneously due to the characteristics of the GA, the integer
variables might be mutated over the whole validity range.

The third strategy (ES/GA interval) is based on the muta-
tion approach used in the algorithm (1+1)-ES/GA. The
real-valued parameters continue to be mutated according to
the rules of the respective ES, whereas the integer parameters
are mutated using the hybrid approach. For the mutation, a
range is given, depending on the step size and the validity of
the parameters, fromwhich the new parameters are randomly
drawn. Thus, in each step, all integer parameters change to a
greater or lesser extent (depending on the current step size).
This contrasts with the mutation of a classical GA.
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Sub-study: multi-objective optimization

The domain ofmulti-objective optimization (MOO) is highly
relevant to PSS optimization. Since, especially for PSS, sev-
eral target values may be available, it is important to find
algorithms that can efficiently optimize more than one fit-
ness value at the same time. However, to be able to compare
individuals in the presence of more than one fitness value,
concepts are needed that allow the optimization of several
target values. In this regrade, to enable individuals in a MOO
to be compared with each other the concept of Pareto dom-
inance is introduced. An individual x1is Pareto dominant �
(here, the aim is to maximize fitness) compared to another
individual x2if it fulfils the following condition (Glasmach-
ers et al., 2014; Narzisi et al., 2006):

x1 � x2 i f f

{
fi (x1) ≥ fi (x2) ∀ i ∈ {1; ...; k}
∃ j ∈ {1; ...; k} f j (x1) > f j (x2)

}
(1)

To divide the individuals of a population into ranks regard-
ing their Pareto dominance, the condition given in Eq. (1) is
checked in pairs for all individuals of the population.All indi-
viduals that are not dominated belong to the first rank of the
population. All individuals which do not dominate any other
individual belong to the last rank. This leads to the formation
of so-called Pareto fronts. Within a Pareto front, the individ-
uals cannot directly be compared by means of this primary
sorting criterion, since no Pareto dominance exists. To still
find the worst individuals within a front, the so-called hyper-
volume indicator can be used as a secondary sorting criterion.
It determines the hypervolume of the fitness values, the so-
called contributed hypervolume, which is dominated solely
by the respective point. The larger the contributed hypervol-
ume, the better the individual is compared to its neighbours
in the same Pareto front (Loshchilov & Glasmachers, 2016;
Narzisi et al., 2006; Suttorp et al., 2009). According to this
metric, the selection pressure can be implemented. During
this investigation, different approaches are compared while
the most relevant findings are presented in the next Section.

For all investigations whenever possible, the same set of
hyperparameters is chosen to perform the analysis. If this
is not possible, common values for the hyperparameters are
used. No hyperparameter training is performed on any of the
algorithms to ensure comparability to non-tuned algorithms.

Sub-study: summary of the findings from the presented
sub-studies

The experiments regarding the general suitability of the dif-
ferent algorithms, presented in Fig. 7, show, that the cma.fmin
by pycma performs significantly worse than GD and RS.
While GD rarely converges to comparably better optima

than RS, RS shows a much more stable and overall advanta-
geous performance andwill therefore be used as a benchmark
for further investigations. The performance of the cma.fmin
algorithm also leads to the conclusion, that general EA need
further adaptation to be well-suited for the optimize of PSS
configurations.

Considering the combined findings of all experiments
within the sub-studies, GA have shown to be superior to ES
in many aspects when aiming to optimize PSS. For example,
in the investigation regarding general suitability, the fitness
progressions of GA show, that they have better properties for
the treatment of local optima.Whereas the (1+ 1)-ES, in par-
ticular, is more capable of converging into the local optima
of an attractor using a lower optimization budget. However,
the ES cannot benefit from the CMA. The reason for this
is probably the relatively low number of fitness evaluations
available and the highly inhomogeneous fitness landscape of
the PSS simulations. Altogether the plus selection has clearly
superior properties compared to the comma selection and is
particularly necessary for the Pareto optimization.

More attention should be paid to finding attractors of a
good optimum than to strict convergence into an already
found bad attractor. This is particularly important regarding
more complex optimization tasks with even more irregular
fitness landscapes. However, the algorithm should also be
able to converge on promising attractors. To achieve this
behaviour, population-based algorithms like the classic (μ +
λ)-GA and variations are used, as they represent the desired
behaviour in the best possible way. Their fitness progres-
sions clearly show that they change the attractors of the
optima much more frequently than, for example, the (1 +
1)-ES, to achieve further fitness progress. This is particu-
larly advantageous for complex problems. Furthermore, the
(μ + λ)-GA achieves the highest final fitness value of all
algorithms and fits the other advantageous properties due to
the above-mentioned characteristics.

When optimizing dependent variables, the holding
method offers better properties regarding more continuous
optimization progress while using population-based algo-
rithms. Therefore, and because of the higher fitness values
achieved, this method is preferred to the loop method.

The optimization of different variable types likewise
shows that population-based algorithms have better proper-
ties for more complex tasks. Thus, this sub-study also argues
for the use of (μ + λ)-algorithms. ES and ES/GA com-
pete when deciding which method to use to handle different
types of variables. However, due to the significantly better
properties of GA regarding population-based algorithms, the
decision is made in favour of the algorithms with the larger
proportion of GA. This contrasts the fact that the ES achieves
higher overall fitness values with slightly greater variance.

In addition to the basic benefits of GA, they show supe-
rior suitability for the MOO (see Fig. 8). In this context, ES
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Fig. 7 Results of the sub-study
regarding the general suitability
of the different algorithms; each
algorithm is ten times evaluated;
all algorithms had the same
fitness-evaluation budget; for
each algorithm, the cross marks
the mean, while the horizontal
line within the box represents the
median of each ten individual
runs

Fig. 8 Results of the sub-study
regarding the Pareto
optimization—showing a clear
advantage in favor of GA
compared to ES while both
steady state (μ + 1) algorithms
and (μ + λ) algorithms perform
reasonably. The fitness on the
vertical axis is computed based
on the inverse of the repair cost
to state the task as a positive
maximization problem and
scaled to level the importance
within the hypervolume
calculation

should be usually avoided for PSS optimizations, since even
the use of a normalized secondary sorting criterion cannot
compensate for the fundamental disadvantages of ES identi-
fied in terms of MOO. Regarding the optimization of more
complex PSS simulations, a decision must be made whether
there is a greater interest in better-optimized fitness values or
in a broader distribution across the Pareto front. Depending
on this, steady-state or conventional population-based GA
should be used. For the latter, a normalization of the con-
tributed hypervolume provides a further improvement of the
MOO results.

Main-study

To exploit the findings from the sub-studies and to verify
the compatibility of the individual methods, a much more
complex PSS simulation is modeled. Furthermore, this study
investigates whether the difference in the results between the
benchmark and the final algorithm is significantly greater
than in the sub-studies. And thus, whether the combination
of optimized methods provides an additional benefit in PSS
optimization. First, the simulation is briefly presented. Sec-
ond, the combined algorithm is introduced, and built upon
this the experiments and findings are presented and dis-
cussed.
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Table 1 Design choices for the combined algorithm (bold are the chosen
options)

Basic strategy GA

ES

Selection from the previous generation Centre of gravity

Parental selection

Offspring generation Inheritance

Mutation

Population size μ = 1

λ = 1

μ ≥ 1

λ ≥ 1

Environmental selection Plus

Comma

Dependent variables Holding

Loop

Various variable types ES + round

ES/GA

ES/GA interval

MOO Yes

No

Strategy adaptation Yes

No

Main-study: simulation model

To realize this study, a PSS simulation of a car-sharing busi-
ness model is set up. This simulation does not claim to be a
perfect illustration of a possible real car sharing concept.
It contains the elementary structures of car-sharing with-
out being oriented toward an actual scenario. As already
explained earlier, the basic suitability of EA algorithms
as black-box optimization tools for PSS is to be exam-
ined in the context of this work, which is carried out on
abstract PSS. Due to the invariance properties of the algo-
rithms, it is assumed, that the findings can be transferred
to real-world inspired simulative setups. Nevertheless, the
car-sharing model used is geared as closely as possible to
real implementations. It still offers a much larger extent and
a much greater optimization difficulty than all the models
used in the sub-studies.

The simulation uses a combination of all the modelling
approaches for PSS presented in the Sect. "Simulation of
product-service system". The basic processes of the sim-
ulation are mapped using an SD approach. This approach
controls, for example, the movements of the vehicles within
the model. However, since the entities used in this model are
not all identical but have their own state variables that influ-
ence their behaviour and interaction with the environment,
an ABM strategy is also pursued. Additionally, parts of DES

can be found mainly in the modelling of vehicle relocation
strategies.

The simulation offers the possibility to combine all sep-
arately investigated challenges of PSS optimization within
one model and has a solution space of approximately 5.5 ×
1031 without considering continuous variables. A broad rep-
resentation of the overall structure of the simulation can be
found in the appendix.

Main-study: combined optimization framework

Based on the findings a new algorithm—the MO-GA-ES-
MEESS – is developed which has the following parts and
properties (Table 1).

The first step to construct the algorithm is to decide which
basic type of algorithm should be used. The choice is between
GA and ES. Both have shown that they can achieve good
results in terms of basic PSS optimization, especially in a
hillclimber (μ = 1; λ = 1) configuration. However, it should
be noted that following the results presented in Fig. 7, GA
showed to be more suitable in terms of avoiding convergence
to poor local optima compared to ES when μ > 1 and λ

> 1. As independent of the type of environmental selection
GA outperformed their respective ES counterpart. This alone
justifies using GA as a basis only in part. Another crucial
reason is the much better suitability of GA in MOO. Since
it cannot be generally assumed that a PSS will only be opti-
mized considering one target variable, the findings of the
sub-studies are elementary for PSS optimization. The pre-
sented algorithm is capable of finding Pareto fronts within
three dimensions.2 Also, the population type is determined
by general consideration and the findings of the sub-studies.
Since a completely new algorithm should not be developed
for every application, as the effort to design new algorithms
for each use-case is very high depending on the application
and knowledge of the user, the algorithm presented in this
chapter should be able to fulfil different optimization tasks
after a small adaptation/hyperparameter tuning to the appli-
cation. Therefore, the population type is fixed to a (μ +
λ)-strategy, since additionally, it can function as a (1 + 1)-
strategy as well as a steady-state (μ + 1) strategy. Further
findings from the sub-studies concern the handling of depen-
dent variables. As already mentioned, the holding method is
used for this purpose. The main reason for this is the better
optimization result of this procedure. However, this method
is additionally modified. As further findings show, PSS can
suffer from the fact that some configuration types are signifi-
cantly less suitable for certain objectives than others. To save
optimization budget, a change of the configuration type is no

2 In a three-dimensional optimization, no secondary sorting criterion
is used to avoid favouring too strong preferences towards certain target
values/areas.
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Table 2 Pseudocode of the developed algorithm
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Fig. 9 Experiment-Framework

Table 3 Hyperparameters of the
experiment Dimensions Mutation rate in % Inheritance rate in % Tournament size σ μ λ

One 30 50 6 1 15 5

Two 30 50 – 1 100 5

Three 30 50 – 0.8 100 5

longer always made with a static chance but now depends on
the mutation rate of the algorithm. This increases the chance
that once the algorithm has decided on a meta configura-
tion type, the optimization will then be more targeted. Of
course, this carries the risk of getting stuck in local optima
caused by the different meta configurations. Given the very
high complexity and the inherently good characteristics of
GA to avoid such a situation, this procedure nevertheless
seems to be meaningful to avoid wasting optimization bud-
get. Due to the previous decision for a primary GA-based
optimization, it is not reasonable to use the strategy of the (μ
+ λ)-ES for the simultaneous optimization of different vari-
able types. Therefore, the ES/GA-strategy is used, in which
the optimization of real-valued and integer variables takes
place independently of each other. However, it is significant
that theGAcharacter of the optimization ismaintained by the
fact that a change of the real-valued variables by the standard
normal distribution is additionally dependent on themutation
and inheritance properties of the algorithm. The pseudocode
for the combined approach can be found in Table 2.

Main-study: experiment

Figure 9 shows the experiment framework.Themultimethod-
simulation model is used to optimize decision variables

like the number of cars, the number of service employees,
payment strategy, transfer strategy, etc. using the MO-GA-
MEESS algorithm. The algorithm’s hyperparameters were
set according to Table 3.

For the one-, two- and three-dimensional optimization, a
budget of 1.000 fitness evaluations is granted where each fit-
ness value is re-evaluated 10 times to deal with fitness noise.
As the time needed for each fitness evaluation is several mag-
nitudes greater than the computation time of each evolution
loop, the wall clock time for the optimization of EA and ran-
dom search are roughly similar. Therefore, the benchmark
results are generated with the same fitness budget and re-
evaluation metrics to guarantee a fair comparison. This is
also aligned with most real-world optimization problems,
where the fitness evaluation takes several minutes while the
computation effort for the calculations of the EAs is handled
in milliseconds.

The hyperparameters for the combined algorithm are not
tuned to the needs of this specific scenario, as the goal is to
find a general approach suitable for optimizing PSS with-
out too much overhead. Therefore, the performance must be
sufficient without extensive hyperparameter tuning for each
individual PSS development.
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Fig. 10 Comparison of the final fitness; standard deviation forMO-GA-
ES-MEESS is 6,991; standard deviation for random search is 10,842

Main-study: results

The results are compared to an RS as a benchmark, as the
sub-studies showed, that PSS optimization problems with
such high solution spaces cannot be solved efficiently and
stable by e.g., gradient descent/ascent or general CMA-ES
approaches.

The in-detail investigation of the optimization behaviour
shows in general that the search points of the new algorithm
are only at the start of the optimization in the same region
as the majority of RS solutions. During the optimization, the
search predominantly moves into areas with profit. Never-
theless, points with heavy losses are still frequently found,
which shows that there are many unprofitable configurations
in the direct neighbourhood of profitable configurations. This
increases the difficulty of optimization as the fitness land-
scape is highly inhomogeneous. Further, it becomes apparent
that the algorithm is quite capable of finding different attrac-
tors based on the current population, which improves its
ability to escape bad local optima. Figure 10 shows the final
results. To assess the optimization behaviour of the proce-
dures on a broad basis, the results of ten individual runs are
presented. The generally achieved fitness level of the EA-
based optimization is significantly higher than that of the
benchmark. Furthermore, the achieved variance of the results
is considerably lower. Both characteristics argue for a suc-
cessful optimization which is superior to the RS.

The optimization results of the two-dimensional optimiza-
tion are presented in Fig. 11. The best configurations from
all ten individual runs of each method are compared. It is
noticeable that the MO-GA-ES-MEESS also offers clear
advantages over the RS in the domain of two-dimensional

optimization. Thus, the final Pareto front of the algorithm is
significantly better than that of the benchmark in almost all
areas of the front. Especially in those areas where the PSS is
profitable, the algorithm achieves significantly higher cus-
tomer satisfaction. Furthermore, the MO-GA-ES-MEESS
achieves much higher profits for almost all separate config-
urations with matching customer satisfaction found by the
benchmark, which suggests that its optimization is signif-
icantly better adapted to the conditions of the PSS. Only if
customer satisfaction exceeds 230 theRS can find somemore
profitable configurations. However, these occur in compara-
tively small numbers and are of no interest within a decision
process due to the extreme loss associated with it.

Within the framework of three-dimensional optimization,
the results of the ten runs are summarized in one chart to
ensure clarity. Since three-dimensional optimization requires
a three-dimensional representation of the results, Fig. 12
shows a three-dimensional plot of the Pareto fronts achieved
over the ten runs of benchmark and MO-GA-ES-MEESS.
The points of the benchmark are marked with a cross, while
those of the algorithm are represented by a circle. To make
the three-dimensional representation more tangible to the
viewer, the points are colour coded. This is based on profit
and goes from dark grey (loss) to light grey (profit) for the
benchmark and from dark cyan (loss) to light cyan (profit) for
the algorithm. Since the third fitness value for this optimiza-
tion corresponds to the number of dissatisfied customers to
be minimized, the best possible configurations point is indi-
cated by the red star.

The results shown are comparable to those of two-
dimensional optimization. In configurations with high prof-
its, the algorithm is always characterized by better customer
satisfaction and fewer dissatisfied customers aswell as higher
profits. Here the front is much better covered and much more
optimized, which can be seen from the fact that the points
of the MO-GA-ES-MEESS clearly dominate the RS in all
perspectives.

Discussion

In a final evaluation of the optimization behaviour and
optimization results of the MO-GA-ES-MEESS (also in
comparison to the benchmark), it is noticeable that the advan-
tages of EA-based optimization are generally enhanced by
the greater complexity of thePSS.Both the results of themain
study and further experiments based onmodified simulations
show that the optimization results are significantly better than
those of the benchmark. Compared to the results from the
sub-study according to the general suitability of different
algorithms, the difference in the optimization result between
RS and EA-based optimization significantly increases for the
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investigated applications. While the RS achieves compara-
ble fitness in some runs of the sub-studies, the results of the
main-study show a completely different picture. The RS does
not achieve configurations as nearly as good as the algorithm.
This can be determined for both single-objective and multi-
objective optimization. One reason for this is the increasing
complexity of the optimization task. The greater the difficulty
of finding good configurations, the greater the advantages
of targeted optimization. A second conducted experiment

supports this assumption. Here, the probabilities of finding
profitable configurations are reduced, which is proven by
the performance of the RS. Basically, the algorithm contin-
ues to act very well when faced with this optimization task,
which shows that it can deal with even more difficult fitness
landscapes. However, increased complexity also increases
the probability of convergence into poor local optima. It is,
therefore, to be expected that the performance of EA-based
algorithmswill decline again in comparison to the benchmark

Fig. 11 Comparison of the Pareto optimization in twodimensions—The
customer satisfaction is simulated based on the average waiting time of
the customers, the number of unsatisfied customers, the type/quality of
vehicle used within the PSS, the average aversion of the customers due
to e.g., dirty cars and the current level of the pricing model compared to

other providers. This function is not intended to provide a completely
correct representation of customer satisfaction, but merely to pick up
the trends resulting from the input variables and make them accessible
for simulation and optimization

Fig. 12 Results of the three-dimensional optimization; the results of the benchmark are represented by crosses, those of the MO-GA-ES-MEESS
by circles; a lower coloration implies a higher profit; the ideal direction of the optimization is marked with a red star (Color figure online)
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for extremely inhomogeneous problemswith small attractors
that do not show any tendencies in their fitness landscape.
However, this is to be expected for almost all black-box opti-
mization problems, since no targeted optimization can take
placewithout recognizable tendencies or sufficient attractors.
In such cases, an algorithm will usually not perform better
than an RS.

The reproducibility of the optimization behaviour and the
optimization results are quite stable. Therefore, it can be
assumed that comparably good configurations are always
found with a similar probability by the algorithm. Together
with the general invariance properties of EA algorithms and
the additional invariance indicated by the second setup for the
main experiment, the algorithm is expected to achieve simi-
larly good results on comparable, less or even more complex
tasks. This suggests a broad scope for EA-based PSS opti-
mization, where the algorithms are clearly superior to RS
optimization. Finally, the use of an EA-based approach for
PSS optimization can be recommended.

Conclusions and future work

In this article, the development of a new approach for the
optimization of PSS business model configurations during
the design phase has been presented. For this, first, the
suitability of different basic algorithms and strategies was
separately tested in a simheuristic framework regarding their
performance to optimize PSS business model configura-
tions. These insights were joined to design and develop
a new optimization algorithm called MO-GA-ES-MEESS.
This algorithm is a multi-objective-focused genetic algo-
rithm that aims to solve the major challenges in the design
of optimization strategies for the development and improve-
ment of PSS. Therefore, it considers the huge solution
space, multi-objective optimization, heterogenous optimiza-
tion parameters, and direct dependencies on design decisions
and corresponding variables,which belong to the challenging
nature of the PSS design phase. For validation and perfor-
mance measurement purposes, the new algorithm was then
appliedwithin a simheuristic approach for the businessmodel
optimization of a car-sharing concept. The results for the
single objective optimization exceeded the benchmarks by
a significant margin. Also, in the context of multi-objective
optimization, clear advantages measured by multiple fitness
functions are achieved by the algorithm compared to the
benchmark results. Our experiments show in the first place
that the simheuristic approach and the new optimization
algorithm are suitable for the design and development of
PSS. Secondly, it gets evident, that the two-step develop-
ment approach for the new algorithm was suitable to reduce
the overall complexity in the algorithm design. In addition,

the combination of the independent findings during the sub-
studies proved to be possible in general. However, proof of
optimality for the chosen constellation for the new algorithm
concerning other possible combinations of different investi-
gated building blocks cannot be provided and would be the
subject of future work.

The simheuristic approach developed in this study offers
significant advantages, primarily in two aspects. Firstly,
it automates and optimizes the complex decision-making
process during the design of PSS business models. Sec-
ondly, these decisions are tested and quantitatively evaluated
through realistic simulation experiments that forecast the
use-phase of the PSS. This forecasting capability reduces
the uncertainties associated with costs and profitability, pro-
viding valuable insights for decision-makers and thus goes
beyond qualitative design methodologies that end with a
mentally evaluated concept of a business model. While the
simheuristic approach offers numerous benefits, it does come
with a few drawbacks. One such drawback is that its effec-
tive implementation often requires a high level of expertise
in simulation modelling and optimization algorithms. Addi-
tionally, the calculations for assessing the fitness of each
configuration can be time-consuming. However, this draw-
back is not critical since the design phase primarily involves
strategic decisions, which are typically less time-sensitive
than those made in the operational phase.

The presented approach serves as a theoretical contri-
bution to the research need of linking data science with
engineering methods for the design and optimization of PSS
business models. Its generality and adaptability offer the
opportunity to adapt to new PSS business models. Hence,
for practitioners like PSS designers, the presented approach
could be used to optimize their businessmodel configurations
and may thereby lead to better-suited configurations soon.

This article paves the way for further work. First, the
application of this approach is not limited to the design
and development phase. Rather, it could be used to optimize
existing business models in the operational phase. Thereby,
knowledge and empirical data could be used to restrict the
stochastic nature of the simulation model as well as to model
the customer perception more precisely. Further, the use of
the simheuristic approach could also be applied to other PSS-
related aspects for example service delivery planning which
could lead to the generation of more robust plans. Moreover,
this approach could be integrated into a bigger risk manage-
ment process for PSS design and development. Insights from
risk management could reduce the possible number of sen-
sible solutions even before the application of this approach.
Additional potential for the future development of the current
work lies in the further elaboration of the underlying algo-
rithms. The metaheuristic algorithm developed in this work
could be evolved into a hyper-heuristic approach. By doing
this, the algorithm would not search in the solution space but
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in a heuristic space to find the best heuristic to generate the
optimal solution, whereby the strategies presented in Section
Sub-study could be implemented as these heuristics. Finally,
the results of this optimization approach can be compared to
other optimization techniques e.g., reinforcement learning.
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regarding the optimization of
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Fig. 15 Structure of the car sharing simulation based on MATLAB
Simulink

Table 4 Parameter overview of the PSS simulation to determine the
general suitability of different algorithms

Parameter Explanation Range of
values

Planes Number of aircraft initialized at the
beginning

{1; 2; …;
100}

S_L Number of service stations in
London

{1; 2; …;
5}

T1_L Number of technicians per station in
London

{1; 2; …;
50}

S_M Number of service stations in Madrid {1; 2; …;
5}

T1_M Number of technicians per station in
Madrid

{1; 2; …;
50}

S_F Number of service stations in
Frankfurt

{1; 2; …;
5}

T1_F Number of technicians per station in
Frankfurt

{1; 2; …;
50}

S_P Number of service stations in Paris {1; 2; …;
5}

T1_P Number of technicians per station in
Paris

{1; 2; …;
50}

Table 5 Parameter overview of the PSS simulation for dependent opti-
mization – PM stands for predictive maintenance

Parameter Explanation Range of
values

overwatch 0 = not using PM
1 = using PM

{0; 1}

T1 Number of technicians in
London without PM

{1; 2; …;
50}

T2 Number of technicians in
Madrid without PM

{1; 2; …;
50}

T3 Number of technicians in
Frankfurt without PM

{1; 2; …;
50}

T4 Number of technicians in Paris
without PM

{1; 2; …;
50}

T5 Number of technicians in Rom
without PM

{1; 2; …;
50}

O1 Number of technicians in
London with PM

{1; 2; …;
50}

O2 Number of technicians in
Madrid with PM

{1; 2; …;
50}

O3 Number of technicians in
Frankfurt with PM

{1; 2; …;
50}

O4 Number of technicians in Paris
with PM

{1; 2; …;
50}

O5 Number of technicians in Rom
with PM

{1; 2; …;
50}
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Table 6 Parameter overview of the PSS simulation to investigate strate-
gies for different variable types; real-valued variables are float

Parameter Explanation Range of
values

Planes Number of aircraft serviced {1; 2; …;
100}

S_L Number of service stations in
London

{1; 2; …;
5}

T1_L Level of maintenance per station in
London

(0; 50]

S_M Number of service stations in
Madrid

{1; 2; …;
5}

T1_M Level of maintenance per station in
Madrid

(0; 50]

S_F Number of service stations in
Frankfurt

{1; 2; …;
5}

T1_F Level of maintenance per station in
Frankfurt

(0; 50]

S_P Number of service stations in Paris {1; 2; …;
5}

T1_P Level of maintenance per station in
Paris

(0; 50]
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