Dekel, Eddie; Feinberg, Yossi

Working Paper
A true expert knows which question should be asked.

Discussion paper // Center for Mathematical Studies in Economics and Management Science, No. 1385

Provided in Cooperation with:
Kellogg School of Management - Center for Mathematical Studies in Economics and Management Science, Northwestern University

Suggested Citation: Dekel, Eddie; Feinberg, Yossi (2004) : A true expert knows which question should be asked., Discussion paper // Center for Mathematical Studies in Economics and Management Science, No. 1385, Northwestern Univ., Kellogg Graduate School of Management, Center for Mathematical Studies in Economics and Management Science, Evanston

This Version is available at:
http://hdl.handle.net/10419/31221

Terms of use:
Documents in EconStor may be saved and copied for your personal and scholarly purposes.

You are not to copy documents for public or commercial purposes, to exhibit the documents publicly, to make them publicly available on the internet, or to distribute or otherwise use the documents in public.

If the documents have been made available under an Open Content Licence (especially Creative Commons Licences), you may exercise further usage rights as specified in the indicated licence.
A True Expert Knows which Question Should be Asked.*

Eddie Dekel† and Yossi Feinberg‡

June 2004

Abstract

We suggest a test for discovering whether a potential expert is informed of the distribution of a stochastic process. In a non-Bayesian non-parametric setting, the expert is asked to make a prediction which is tested against a single realization of the stochastic process. It is shown that by asking the expert to predict a “small” set of sequences, the test will assure that any informed expert can pass the test with probability one with respect to the actual distribution. Moreover, for the uninformed non-expert it is impossible to pass this test, in the sense that for any choice of a “small” set of sequences, only a “small” set of measures will assign a positive probability to the given set. Hence for “most” measures, the non-expert will surely fail the test. We define small as category 1 sets, described in more detail in the paper. **JEL Classification:** D83, C14, C50

*We would like to thank Alvaro Sandroni, Eilon Solan and Bob Wilson for helpful comments. The first author gratefully acknowledges the support of the NSF. The second author gratefully acknowledges the support of the Center for Electronic Business and Commerce.

†Department of Economics, Northwestern University, Evanston, USA and Tel-Aviv University, Tel-Aviv, Israel. e-mail: dekel@northwestern.edu

‡Stanford Graduate School of Business, Stanford CA 94305-5015. e-mail: yossi@gsb.stanford.edu
1 Introduction

We consider the problem of testing an expert in an uncertain environment. A decision maker named Alice is trying to decide whether Bob, who is potentially an expert, is informed about the distribution governing a stochastic process. For example, Alice may want to know if Bob is a qualified economist, where an expert economist would know the distribution of a stochastic process governing key economic indicators. Alice herself is not an expert and we assume that she is completely uninformed and non-Bayesian, in the sense that she does not have a prior distribution over the possible distributions that govern the stochastic process, nor does she have a prior over the probability that Bob is an expert. The question is to what extent, in this non-Bayesian and non-parametric setting, Alice can “test” whether Bob is an expert.

The tests we permit are comprised of a question, an answer and a grade. The grade depends on the answer and the information available to the grader. In our case, a question asks Bob for a prediction and the grade that Alice assigns has to be based on the prediction and the realization of the stochastic process. The grade is either pass or fail. Our main result states that there is a good test such that if Bob is an expert and knows the distribution governing the process, then Bob passes the test with probability one, and, if Bob has no information about the distribution, then it is practically impossible for him to pass the test.

We say a test is good if it satisfies the following two properties

1. A good test must yield a passing grade with probability one whenever Bob is an expert that makes the prediction based on the distribution used for the realization.

2. Bob must fail a good test when he is uninformed. Hence Bob should be asked for a prediction that would be practically impossible to make when he is uninformed.

Property 1 asks that the realization fall into the prediction that Bob makes with probability one (according to the actual distribution used, assuming it is known to Bob). Hence we wish to avoid a type I error of rejecting the hypothesis that Bob is an expert when he actually is. Property 2 requires that the realization does not fit the prediction if Bob does not know the distribution that is actually used. Hence we wish to avoid type II errors of accepting the hypothesis that Bob is an expert when he is not. We cannot satisfy property 2 for all guesses an uninformed Bob might make; instead we ask that this hold for a large set of such guesses.
The existing literature provides a collection of troubling negative results for this framework. The notion of calibration was suggested by Dawid (1982) for a non-Bayesian non-parametric setting and extensively studied in Dawid (1985). Based on this notion, Foster and Vohra (1998) were first to show that a test requiring Bob to be calibrated with respect to sequential forecasts, is not a good test. While, as Dawid showed, if Bob is an expert he will pass the test satisfying property 1 above, Foster and Vohra demonstrated that an uninformed expert has a randomized strategy that will assure calibrated forecasts with probability one (with respect to the randomized strategy) no matter what the realization of the process. Hence a test that is based on probabilistic predictions as the realization unveils measured against the empirical distribution conditional on the predictions, fails property 2 and does not distinguish an expert from a fraud. This result has been extensively generalized for elaborate calibration tests that are allowed in addition to depend on the sequence of realizations and that are chosen at random; Kalai, Lehrer and Smorodinsky (1999), Fudenberg and Levine (1999), Lehrer (2001) and Sandroni, Smorodinsky and Vohra (2003) have shown that non-experts can satisfy many versions of calibration tests. Recently it was shown by Sandroni (2003) that every test based on sequential predictions is doomed to fail property 2 if it satisfies property 1. These results amount to finding a very large class of tests that are not good.\(^1\)

The existing literature is initially unsettling since asking for calibrated forecasts, or more general sequential predictions, appeals to common practices of statistical inference for stochastic processes. Calibration tests compare the empirical distribution of a realization with the predictions made by Bob. These tests ask for a prediction of a sequential law or phenomena in a realization of the process. This is a natural approach when considering commonly applied stochastic processes, such as i.i.d. or Markov chains. But it turns out not to be well suited for the situation we face here. The initial assumption is that all distributions are possible, as far as Alice is concerned. How can Alice come up with a sequential test that will test every possible phenomena along a single realization? Indeed, the existing literature states that this is impossible.

We suggest an alternative approach to testing an expert. Our test has Alice asking Bob for a set of realizations, i.e. Bob is asked to predict an event to which an expert assigns

\(^1\)The calibration strategies used by a non-expert in these settings have been extensively used in the game theoretical learning literature; cf. Foster and Vohra (1997) and Fudenberg and Levine (1995). A very general class of adaptive procedures and the solutions they generate is studied by Hart and Mas-Colell (2000, 2001) and recently Sandroni and Smorodinsky (2004) defined a solution generated by calibration tests.
probability one. Alice then considers whether the single realization belongs to the set offered by Bob. She also considers whether the set that Bob is predicting is “small” — whether it would seem impossible for a non-expert to predict this event. If the event is small and the realization agrees with this event then Alice can conclude that Bob is an expert. The crucial feature is that Bob’s prediction has to be narrow enough to convince Alice that he is not just guessing, and broad enough to be consistent with his actual view if he is an expert. This stands in contrast with sequential (calibrated) forecasts that give no indication of Bob’s expertise.

The idea behind our test is that any unique property of a distribution that demonstrates knowledge of the distribution is known only to the expert. Alice has no way of coming up with such a property without being informed. This is why she needs to ask Bob what the right question is — what unique event corresponds to the distribution that only an expert could know. What Alice is able to do is to consider not only whether Bob answers his own question correctly by having the realization in the predicted event, but most importantly, whether Bob asked a difficult question, one that seems impossible to answer if you are not an expert. Our main result states that such a test exists.

The motivation for our construction comes from the Bayesian setting. Let T denote the event “Bob passes the test” and E denote the event “Bob is an expert”. We are looking for a test that will, conceptually, lead to $P(E|T) = 1$. While we are in a non-Bayesian setting we can mimic Bayes’ formula:

$$P(E|T) = \frac{P(T \cap E)}{P(T \cap E) + P(T \cap \lnot E)}$$

and interpret $P(T \cap \lnot E) = 0$ as the “sum” over $\mu \in \Delta(\Omega)$ of $\Pr(\mu) P_\mu(T) = 0$, i.e. the sum over all possible measures of the prior probability of each measure times the probability of passing the test according to the measure. However, since we do not have a prior over $\Delta(\Omega)$ we ask that for “most” distributions μ, the probability of passing a given test when μ is the actual distribution equals zero, i.e. we require $P_\mu(T) = 0$ for all but a small set of measures in $\Delta(\Omega)$.

We need to define the notion of a “small,” or unique, event that corresponds to any distribution known by an expert and formalize what we mean by an uninformed Bob being able to pass the test for only a “small” set of measures. Before we do so, consider the following simple example: Assume that the distribution used assigns probability one to a
single realization—a single sequence of values. Suppose that Alice asks Bob for an event and Bob predicts an event consisting of this single sequence. Alice will then observe the realization and see that it matches the exact prediction that Bob made. Given knowledge of the actual distribution Bob had probability one of a realization matching his prediction. If he passes this test then Alice is faced with a successful prediction that singles out one outcome out of a continuum of possible sequences. It definitely seems impossible to make such a prediction and pass the test if you know nothing about the distribution. In fact, the “likelihood” equals one out of a continuum—which should be considered small by any method of measuring the likelihood.

For property 1 to hold, the test has to be passed with high probability when Bob is informed. Hence, in general, we need the test to allow for events that have cardinality of the continuum. We conclude that we cannot define small events as being of small cardinality. On the other hand, we cannot use the notion of the support of a measure (the smallest closed set that has probability one) since a test based on the support can easily fail property 2. For example, the support of any non-degenerate i.i.d. process is the whole space of sequences.\(^2\) However, much like our Dirac measure example, these i.i.d. distributions do have unique properties that are assigned probability one. Assume the process is generated by an i.i.d. process where the probability of the outcome 1 equals \(a\) at each period, the event “The limit of averages of the realized sequence converges to \(a\)” occurs with probability 1 according to the strong law of large numbers. This event seems quite small as “many” distributions one can think of will assign this event zero probability.

Our objective is to generalize and formalize these examples. We need to find a notion of a small event such that every distribution will have a small event that occurs with probability 1. We also need to demonstrate that the notion of smallness we suggest distinguishes the expert from the uninformed. We use the notion of category to capture this property of smallness. A category 1 set is a set which is topologically small, it is defined as a countable union of nowhere dense sets, i.e. sets whose closure has an empty interior. Fortunately, for every probability measure there exists a category 1 set that has probability one with respect

\(^2\)Consider any i.i.d. distribution \(\mu\) over \(\Omega = \{0,1\}^\infty\) where at every stage the probability \(\alpha\) of the outcome 1 satisfies 0 < \(\alpha\) < 1. Assume by contradiction that \(\bar{\omega} = (\bar{\omega}_1, \bar{\omega}_2, \bar{\omega}_3, ...) \in \Omega \setminus Supp \mu \neq \emptyset\). Since \(\Omega \setminus Supp \mu\) is an open set there exists a finite n such that \(T = \{\omega = (\omega_1, \omega_2, \omega_3, ...) \in \Omega | \omega_i = \bar{\omega}_i\text{ for } i = 1, 2, ..., n\} \subset \Omega \setminus Supp \mu\). But since \(\mu\) is an i.i.d. process we have \(\mu(T) = \prod_{i=1}^{n} (\bar{\omega}^\alpha_i (1 - \bar{\omega}_i)^{1-\alpha}) > 0\) – a contradiction.
to the given distribution. For example, the set of sequences with a limit converging to \(a\) is a category 1 set.

We now attempt to justify why a prediction of a category 1 set is indeed indication of expertise. Why do we claim it is “impossible” for a non-expert to make such a prediction and pass the test? Our answer lies in the space of all possible probability measures. We show that for any category 1 set of sequences, the set of probability measures that assign positive probability to the set of sequences is itself very small. In other words, for most probability measures a given category 1 set of sequences suggested by an uninformed Bob will cause Bob to fail the test with probability one, with respect to any distribution other than a small set of distributions. Once again we need a notion of smallness, but now for a set of distributions. We show that for any given category 1 set of sequences, the set of probability measures that assign positive probability to the category 1 set, is itself a category 1 set in the space of measures endowed with the weak* topology. For example, the set of measures that assign positive probability to the event “The limit of averages of a sequence converges to \(2/3\)” is a category 1 set of measures. In other words, if an uninformed Bob offers this event, or any other category 1 event, as a test, he is likely (in the category sense) to fail.

We conclude that with the notion of category 1 for smallness, we can, using only Bob’s prediction and a single realization of the process, determine whether Bob is an expert. Alice should ask Bob to predict a category 1 event, if he does so and the realization is in the predicted set, then she can regard him as an expert, since suggesting a category 1 set as a prediction without being informed seems practically impossible.

2 A Right Question for the Expert

Let \(\Omega = \{0,1\}^\infty\) be the set of all countable sequences of 0’s and 1’s. Each point \(\omega \in \Omega\) is called a realization. We consider the set of possible Borel probability measures over \(\Omega\) denoted by \(\Delta(\Omega)\). For any topological space, denote by \(\bar{S}\) and \(\text{int}(S)\) the closure and the interior of a set \(S\), respectively. A set is called nowhere dense when the interior of its closure is empty, i.e. \(\text{int}(\bar{S}) = \emptyset\). A first category set is a countable union of sets that are nowhere dense. A set is called a second category set if it is not a first category set.

We first note the following:

Proposition 1 For every probability measure \(\mu \in \Delta(\Omega)\) there exists a set \(S_\mu \subset \Omega\) such that \(\mu(S_\mu) = 1\) and \(S_\mu\) is a first category set.
Proof. From Theorem 16.5 in Oxtoby (1980) we have that for every non-atomic finite measure μ one can divide Ω into a set of category 1 and a μ-measure zero G_δ set, i.e. a countable intersection of μ-measure zero open sets. This follows from Ω being a metric space with a countable base. If μ has atoms then we can add the (at most) countable set of atoms to the first category set to obtain a first category set with μ-measure one.

For a constructive example of such a category 1 set, consider the i.i.d. process in $\Omega = \{0, 1\}^\infty$ as described in the introduction where the probability of 1 at each period is given by $0 < \alpha < 1$. Consider the set

$$S = \left\{ \omega = (\omega_1, \omega_2, \ldots) \in \Omega \mid \lim_{n \to \infty} \frac{1}{n} \sum_{i=1}^{n} \omega_i = \alpha \right\}.$$ \hspace{1cm} (1)

Claim 2 S is a category 1 set that occurs with probability 1.

Proof. From the strong law of large numbers for Bernoulli trials we have that the probability of the event S according to the i.i.d. process equals 1. We define for every $\varepsilon > 0$ and every n the following set:

$$F_{\varepsilon,n} = \left\{ \omega \in \Omega \mid \text{for all } m \geq n \left| \sum_{i=1}^{m} \frac{1}{m} \omega_i - \alpha \right| < \varepsilon \right\}.$$

If $\omega \notin F_{\varepsilon,n}$ then there exists an $m \geq n$ such that $\left| \sum_{i=1}^{m} \frac{1}{m} \omega_i - \alpha \right| \geq \varepsilon$. Consider the set $G_\omega = \{ \bar{\omega} \in \Omega | \bar{\omega}_i = \omega_i \text{ i } i = 1, \ldots, m \}$, G_ω is an open set in the product topology and for all $\bar{\omega} \in G_\omega$ we have $\left| \sum_{i=1}^{m} \frac{1}{m} \bar{\omega}_i - \alpha \right| \geq \varepsilon$, hence $G_\omega \subset \Omega \setminus F_{\varepsilon,n}$. Since we have found such an open set for every $\omega \notin F_{\varepsilon,n}$ we conclude that $F_{\varepsilon,n}$ is a closed set. Assume $\varepsilon < \alpha/2$. For every $\omega = (\omega_1, \omega_2, \ldots) \in F_{\varepsilon,n}$ consider the sequence of points $\{\omega^k\}_{k=1}^\infty$ such that $\omega^k = (\omega_1, \ldots, \omega_k, 0, 0, \ldots)$. We have that for all k that $\omega^k \notin F_{\varepsilon,n}$ but $\omega^k \to \omega$, hence $F_{\varepsilon,n}$ is nowhere dense. Since $S \subset \bigcup_{n=1}^\infty F_{\varepsilon,n}$ for every $\varepsilon > 0$ we have shown that S is included in a countable union of closed nowhere dense sets and is therefore a category 1 set.

To determine just how difficult the test is, i.e. whether it is a good test or not, we ask whether the set of possible distributions under which an uninformed Bob could pass the test with positive probability is small. So we now need a notion of smallness for a set of measures.
As mentioned, we again use the notion of first category, this time with respect to the space of probability measures over Ω. We consider the weak* topology on the space of measures $\Delta(\Omega)$.

Our main result states that the set of measures that assign positive probability to a category 1 subset of Ω is itself a small set of measures. When the expert offers a category 1 set as his prediction we know that only under a small – category 1 – set of possible distributions will he have any positive probability to pass the test.

Theorem 3 For every first category set $S \subset \Omega$ the set of measure $M_S = \{\mu \in \Delta(\Omega) | \mu(S) > 0\}$ is a category 1 set in the weak* topology.

Proof. Let S be a first category set in Ω. We can write $S = \bigcup_{i=1}^{\infty} S_i$ where $int(S_i) = \emptyset$. Let $S^n = \bigcup_{i=1}^{n} S_i$. Hence $\{S^n\}_{n=1}^{\infty}$ is an increasing sequence of closed sets with empty interior and $S \subset \bigcup_{n=1}^{\infty} S^n$. It suffice to show that the set of measures which assign positive probability to $\bigcup_{n=1}^{\infty} S^n$ is a set of category 1 in the weak* topology over $\Delta(\Omega)$. We define the sets $M^n_S \subset \Delta(\Omega)$ by

$$M^n_S = \{\mu \in \Delta(\Omega) | \mu(S^n) > \frac{1}{n}\}.$$ \hspace{1cm} (2)

If $\mu \in M_S$ then $\mu(S) > 0$ which implies that there exists $\varepsilon > 0$ such that $\mu(\bigcup_{n=1}^{\infty} S^n) \geq \mu(S) > \varepsilon$ and hence there is an m such that $\mu(S^m) = \mu(\bigcup_{n=1}^{m} S^n) > \varepsilon/2$. Choosing $k > Max\{m, \frac{\varepsilon}{2}\}$ we have that $\mu \in M^n_S$. We conclude that $M_S \subset \bigcup_{n=1}^{\infty} M^n_S$. Hence it suffices to show that each set M^n_S is a category 1 set for their countable union to be a category 1 set. We will actually show that M^n_S is a closed nowhere dense set.

Consider M^n_S for a given n. Let $\mu_i \in M^n_S$ $i = 1, 2, ...$ be a sequence of probability measures converging to a probability measure $\mu \in \Delta(\Omega)$ in the weak* topology. Since S^n is a closed

3 The weak* topology is the weakest topology possible that assures the continuity of measures as operators, i.e. when integrating over continuous functions of Ω there is convergence of the value of the integration for converging continuous functions.
set we have
\[
\limsup_{i \to \infty} \mu_i(S^n) \leq \mu(S^n)
\] \hspace{1cm} (3)

and in fact convergence is equivalent to (3) holding for all closed sets. In particular we find that \(\mu \in M^n_S \). We conclude that \(M^n_S \) is closed in the weak* topology. Finally we need to show that \(\text{int}(M^n_S) = \emptyset \). Let \(\mu \in M^n_S \) we will show that for every open set \(G \) that contains \(\mu \), we can find a measure \(\nu \in G \setminus M^n_S \). From the definition of the weak* topology, for every open set \(G \) there exists a continuous function \(f : \Omega \to \mathbb{R} \) and an \(\varepsilon > 0 \) such that the open set
\[
G_{\varepsilon,f}(\mu) = \{ \lambda \in \Delta(\Omega) \mid \left| \int f(\omega)d\lambda(\omega) - \int f(\omega)d\mu(\omega) \right| < \varepsilon \}
\] \hspace{1cm} (4)
satisfies \(\mu \in G_{\varepsilon,f}(\mu) \subset G \). If \(f \) is constant then \(G_{\varepsilon,f}(\mu) = \Delta(\Omega) \) and any Dirac measure \(\delta_\omega \) on a point \(\omega \in \Omega \setminus S^n \) will satisfy \(\delta_\omega \in G \setminus M^n_S \). If \(f \) is not constant then there exist points \(\omega_l \) and \(\omega_h \) such that \(f(\omega_l) \leq \int f(\omega)d\mu(\omega) \leq f(\omega_h) \) and \(f(\omega_l) < f(\omega_h) \) we define
\[
\alpha = \frac{f(\omega_h) - \int f(\omega)d\mu(\omega)}{f(\omega_h) - f(\omega_l)}.
\] \hspace{1cm} (5)

Since \(f \) is continuous and since \(S^n \) is nowhere dense there exist points \(\omega_1 \) and \(\omega_2 \) such that \(\omega_1, \omega_2 \notin S^n \) and
\[
\max\{|f(\omega_1) - f(\omega_l)|, |f(\omega_2) - f(\omega_h)|\} < \varepsilon
\] \hspace{1cm} (6)
consider the measure \(\nu = \alpha \delta_{\omega_1} + (1 - \alpha) \delta_{\omega_2} \), i.e. the convex combination of the Dirac measures at \(\omega_1 \) and \(\omega_2 \). By the choice of these points we have that \(\nu(S^n) = 0 \) and therefore \(\nu \notin M^n_S \). From the definition of \(\nu \) we have
\[
\left| \int f(\omega)d\nu(\omega) - \int f(\omega)d\mu(\omega) \right| = \left| \alpha f(\omega_1) + (1 - \alpha) f(\omega_2) - \int f(\omega)d\mu(\omega) \right|
\] \hspace{1cm} (7)
which from (6) implies

\[\left| \int_{\Omega} f(\omega) d\nu(\omega) - \int_{\Omega} f(\omega) d\mu(\omega) \right| < \alpha f(\omega_l) + (1 - \alpha) f(\omega_h) - \int_{\Omega} f(\omega) d\mu(\omega) + \alpha \varepsilon + (1 - \alpha) \varepsilon \]

and together with the definition (5) we have

\[\left| \int_{\Omega} f(\omega) d\nu(\omega) - \int_{\Omega} f(\omega) d\mu(\omega) \right| < \int_{\Omega} f(\omega) d\mu(\omega) - \int_{\Omega} f(\omega) d\mu(\omega) + \varepsilon = \varepsilon \]

and we have shown that \(\nu \in G_{e.f}(\mu) \setminus M^\alpha \subset G \setminus M^\alpha \) and the proof is complete. ■

3 Additional Remarks

While we have focused on the case where the space of realizations is the space of sequences, we have done so mainly because the existing literature has focused on calibration with respect to a sequence. A closer look at our proofs shows that the result holds for any Polish space \(\Omega \). The proof of the proposition requires that the topology on \(\Omega \) have a countable infinite basis, and the proof of the theorem requires completeness and separability for the weak* topology to be represented by (3). For example, if one has the unit interval as the space of realizations, and Bob could be informed as to the distribution over the interval that is used to generate one point from the interval, Alice can use the same method to determine whether Bob is an expert or not by asking him for a category 1 set as a prediction.

For sequential predictions it is natural to ask whether an expert can provide an approximate prediction in finite time. The answer is positive in the sense that Bob can offer a set which occurs with probability close to 1 and Alice would fail a non-expert Bob in finite time. We note that Alice cannot determine for sure whether Bob is an expert in finite time. For example, if Bob suggests the set of all sequences in \(\{0,1\}^\infty \) that from some point onward have only 0’s, then such a countable (and hence category 1) set can never be excluded in finite time. However, Alice can ask Bob to provide a set of sequences that he is confident will occur with high probability and such that in finite time Bob’s expertise will be revealed. This is stated in the following proposition:

Proposition 4 For every distribution \(\mu \in \Delta(\Omega) \) and every \(\varepsilon > 0 \) there is a closed set with
empty interior $S \subset \Omega$ such that $\mu(S) > 1 - \varepsilon$. For every closed set with empty interior $S \subset \Omega$ we have for most distributions λ (other than a category 1 set) that there is a finite N such that with λ–probability $1 - \varepsilon$ the realization will be outside S within N periods.

Proof. Given μ we know that there is a first category set that is assigned μ–probability one. Hence there is a finite union of closed sets with empty interior that are assigned probability $1 - \varepsilon$. Denote the finite union by S. Consider any measure λ such that $\lambda(S) = 0$, we know that all but a category 1 collection of measures have this property from our main theorem.

For every $\omega \in \Omega \setminus S$ there exists an open neighborhood that does not intersect S since S is a closed set. In particular, for all $\omega \in \Omega \setminus S$ there exists an $N(\omega)$ such that

$$\{\bar{\omega} | \bar{\omega}_i = \omega_i \text{ for } i = 1, \ldots, N(\omega)\} \subset \Omega \setminus S.$$

Denote $T_N = \{\omega \in \Omega \setminus S | N(\omega) \leq N\}$. We have that $\bigcup_{N=1}^{\infty} T_N = \Omega \setminus S$. Since $\lambda(\Omega \setminus S) = 1$ there exists an N such that $\lambda(T_N) > 1 - \varepsilon$. We conclude that if Bob reports S as a closed set with empty interior prediction that is based on the actual distribution μ, he will never fail the test with probability of at least $1 - \varepsilon$, but for any prediction of a closed nowhere dense set S, and for most distributions, there is a finite time such that Bob will fail the test within that time with probability of at least $1 - \varepsilon$.

Note that the exact time at which Alice can be certain with probability $1 - \varepsilon$ whether Bob is an expert or not, may not be known to Alice. It depends on the choice of the closed nowhere dense set S and also on the actual distribution of the sequence in the case that Bob is not an expert.

The calibration literature only allows for sequential probabilistic predictions for a given sequence of events that is determined by the tester and does not vary with the distribution. In contrast, we have a much larger set of possible reports by the expert and ask that he reports a single event that has a fixed probability – probability 1.

The mapping from distributions over the set of realizations to category 1 subsets of the set of realizations is sufficiently fine for property 2. However, it is still coarse in its representation of measures. An expert can choose among many possible category 1 sets, with some strictly more informative than others (by way of inclusion). For example, when the expert knows exactly the sequence that will occur, if the limit of averages converges to a, then Bob could predict the sequence itself, or the set of sequences with an average converging to a, or in fact
he can predict the union of any category 1 set with this sequence. Indeed, our framework also does not measure any possible "partial" information that an expert could have by ranking his prediction. Of course, implicitly there is a weak ranking of this form: as in the example above smaller (in terms of set inclusion) category one sets are “better” predictions. More generally, it might be of interest to see if this can be extended to a method of ranking the quality of the prediction. An alternative extension would be to the case where the expert has some information that is not in the form of a distribution. For instance, the expert could know the sequence is determined according to a parametric family of distributions without having a prior belief over this family, from which the distribution is chosen.

Finally, we note that the notion of category 1 for smallness is supported by the duality between null-sets and category 1 sets. The Sierpinski-Erdos theorem assures that (under the continuum hypothesis) there is a one-to-one mapping of the unit interval onto itself that maps every category 1 set to a Lebesgue measure zero set and such that every measure zero set is the image of a category 1 set under this map. Since we cannot use measures for determining whether Bob’s prediction is “small” (if we accidently use the actual measure used to generate the realization then property 1 requires that the prediction is not small), we use the dual notion of category.

References

