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1 Introduction

Identification of structural shocks through heteroskedasticity in structural vec-
tor autoregressive (VAR) analysis has been used extensively in recent years (see,
e.g., Lütkepohl and Netšunajev (2017), Kilian and Lütkepohl (2017, Chapter 14),
Lütkepohl and Velinov (2016)). A central assumption for using that device is that
the impact effects of the shocks are time-invariant despite the change in the vari-
ance of the shocks. Some authors have pointed out that the assumption may be
problematic (e.g., Angelini, Bacchiocchi, Caggiano and Fanelli (2019), Bacchioc-
chi, Castelnuovo and Fanelli (2018), Bacchiocchi and Fanelli (2015), Lütkepohl
and Schlaak (2022), Bruns and Lütkepohl (2024)).

Another drawback of identification through heteroskedasticity is that the shocks
identified in this way are purely statistical/mathematical shocks and may not cor-
respond to economic shocks of interest. In any case, to interpret them as eco-
nomic shocks additional subject matter or economic knowledge has to be available
to label the shocks properly. Because of this obstacle of identification through
heteroskedasticity the device has often been used only as an additional identifi-
cation tool that leads to over-identified shocks and thereby enables the user to
assess or compare different conventional identification assumptions (e.g., Lanne
and Lütkepohl (2014), Lanne and Lütkepohl (2008), Lütkepohl and Netšunajev
(2014), Lütkepohl and Velinov (2016), Chen and Netšunajev (2016), Netšunajev
(2013)).

If the shocks can be identified via other means than heteroskedasticity and het-
eroskedasticity serves as an over-identifying device, then the assumption of time-
invariance of the impact effects of the structural shocks can be tested. Lütkepohl
and Schlaak (2022) and Bruns and Lütkepohl (2024) use this possibility for the
case where proxy variables are available for identification. In this study, we will
explore this option for structural VARs identified by long-run restrictions and dis-
cuss and investigate the properties of tests for time-varying impact effects in the
context of VAR models identified by restrictions on the long-run effects of the
shocks. As long-run restrictions for identifying structural shocks in VAR analy-
sis are closely related to the cointegration structure of the underlying variables,
we will consider a vector error correction model setup to discuss the issue (see,
e.g., Granger (1986) for the concept of cointegration and early developments and
King, Plosser, Stock and Watson (1991) for the relation between cointegration and
structural VAR modelling).

We will use the tests to investigate the question whether U.S. stock prices are
driven primarily by speculation or by fundamentals. The issue has been discussed
extensively and with controversial opinions and results in the literature (see, e.g.,
Velinov (2013)). A number of studies have addressed the topic in the context
of structural VAR models (e.g., Lee (1995), Rapach (2001), Binswanger (2004)
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and Jean and Eldomiaty (2010)). Lütkepohl and Velinov (2016) use identification
through heteroskedasticity techniques to compare models with different sets of
variables and different identification schemes for the fundamental shocks. We
consider the time-invariance of the transmission of fundamental shocks at times of
variance changes in a small benchmark model for the U.S. considered by Lütkepohl
and Velinov (2016). It consists of three variables, real GDP (gdpt), a real interest
rate (rt) and a real stock price index (st) and has been used to explore the impact
of fundamental shocks on stock prices. Evidence is found that the importance of
fundamental shocks has increased since the middle of the 1980s.

The remainder of the paper is organized as follows. The model setup and model
estimation are presented in the next section. The tests for time-varying impact
effects of the shocks and their small-sample properties are discussed in Section 3.
The empirical study follows in Section 4 and conclusions are drawn in the final
section. Some technical issues are deferred to the Appendix.

The following notation is used: ∆ is the differencing operator such that ∆yt =
yt− yt−1 for a time series or stochastic process yt. The (K ×K) identity matrix is
denoted by IK , while 0n×m is an (n×m) dimensional matrix of zeros. For a matrix
A, A′ is the transpose, A−1 denotes the inverse, A+ the Moore-Penrose generalized
inverse, and rk(A) signifies the rank. For a (K × N) matrix C, N < K, with
rk(C) = N , C⊥ denotes a (K × (K − N)) orthogonal complement of the matrix
C such that [C : C⊥] is nonsingular and C ′C⊥ = 0. If C is a nonsingular square
matrix, C⊥ = 0 and if C is a zero matrix, C⊥ is an identity matrix with suitable
dimensions. The symbol vec denotes the column vectorizing operator such that,
for a (K × N) matrix A, vec(A) is a KN -dimensional column vector and vech is
the vectorization operator that collects the elements of a (K ×K) square matrix
from the main diagonal downward in a K(K + 1)/2-dimensional column vector.
DK denotes the (K2 × 1

2
K(K + 1))-dimensional duplication matrix defined such

that, for a symmetric (K ×K) matrix S, vec(S) = DKvech(S).

2 The Model

In this section we discuss the model setup and parameter estimation.

2.1 Model Setup

Our point of departure is a standard K-dimensional reduced-form VAR(p) model
for a vector of time series variables yt = (y1t, . . . , yKt)

′,

yt = A1yt−1 + · · ·+ Apyt−p + ut, (1)
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where Aj (j = 1, . . . , p) are (K × K) VAR slope coefficient matrices and ut is
a zero-mean white noise error term with nonsingular, possibly time-varying co-
variance matrix Σt. In other words, ut ∼ (0,Σt). Thus, we allow explicitly for
heteroskedasticity. Note that there is no deterministic term in the model (1) be-
cause such terms do not play a role for structural analysis in our framework. Of
course, in practice, deterministic terms have to be added for an empirical analysis,
as required by the data features.

For the residual covariance matrices we consider a simple model with a finite
number of volatility regimes as in Lütkepohl and Schlaak (2022) and Bruns and
Lütkepohl (2024). Specifically, the residual covariances are

E(utu
′
t) = Σt = Σu(m) for t ∈ Tm, m = 1, . . . ,M, (2)

where Tm = {Tm−1 + 1, . . . , Tm} (m = 1, . . . ,M) are M volatility regimes with
volatility change points at the end of time periods Tm, for m = 1, . . . ,M − 1 and
we specify T0 = 0 and TM = T , the overall sample size.

For our analysis we assume that all components of yt are stationary (I(0)) or
integrated of order one (I(1)). Extensions for higher-order integrated variables are
possible but are not needed for our empirical analysis and would complicate the
notation and distract from the main points of the paper. To focus the analysis
of the cointegration properties of the variables and assuming that there are r
(0 ≤ r ≤ K) linearly independent cointegration relations between the components
of yt, we convert the model (1) to a vector error correction model (VECM) as
proposed by Johansen and Juselius (1990) and Johansen (1991, 1995),

∆yt = αβ′yt−1 + Γ1∆yt−1 + · · ·+ Γp−1∆yt−p+1 + ut, (3)

where α is a (K× r) loading matrix of rank r, β is a (K× r) cointegration matrix,
also of rank r, and Γ1, . . . ,Γp−1 are (K ×K) slope coefficient matrices (see, e.g.,
Lütkepohl (2005) for the relation between the parameters in (1) and (3)). For
r = 0, the error correction term αβ′yt−1 = 0 and, hence, disappears in (3) and
the model is a VAR(p− 1) in first differences of the variables. On the other side,
if r = K, αβ′ = Π = −(IK − A1 − · · · − Ap) is an invertible (K × K) matrix.
Identification of the structural shocks in this framework was proposed by King
et al. (1991).

The structural shocks, wt, are typically obtained by a linear transformation
from the reduced-form residuals, i.e., wt = B−1ut such that the components of
wt are instantaneously uncorrelated. In other words, E(wtw

′
t) = B−1ΣtB

−1′ is
a potentially time-varying diagonal matrix. Given our assumption for the het-
eroskedasticity of the reduced-form residuals in (2), for t ∈ Tm the variances of
the structural shocks may depend on the volatility regime Tm and we denote the
covariance matrix of wt for t ∈ Tm by Σw(m).
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Substituting Bwt for ut in (1) or (3), the matrix B is easily recognized as
the matrix of impact effects of the structural shocks. Heteroskedasticity has been
used in structural VAR analysis to identify B. However, this identification device
relies on B being time-invariant. Clearly, if the variances of the structural shocks
change, it is possible that also their impact on the variables changes and, hence,
their transmission through the system. Consequently, we also allow the impact
effects of the shocks to depend on the volatility regime and denote the matrix of
impact effects associated with volatility regime m by B(m). In the following we
will present a test for time-varying impact effects that checks whether elements of
B(m) are equal to the corresponding elements of B(n) for m 6= n.

The long-run effects of the structural shocks with impact effects B(m) are
known to be

Υ(m) = ΞB(m), (4)

where

Ξ = β⊥

[
α′⊥

(
IK −

p−1∑
i=1

Γi

)
β⊥

]−1
α′⊥ (5)

is a matrix of rank K − r (see, e.g., Lütkepohl (2005, Chapter 9) or Kilian and
Lütkepohl (2017, Chapter 10) for details). Obviously, the long-run effects of the
shocks may also depend on the volatility regime m if the impact effects may depend
on m. As B(m) is a full rank matrix, Υ(m) inherits the rank of Ξ and, for r < K,
also has rank K−r. If r = 0 and, hence, the VAR process (1) is a stable VAR(p−1)
in the first differences of all variables, then Ξ becomes

Ξ =

(
IK −

p−1∑
i=1

Γi

)−1
. (6)

In that case, Υ(m) also has rank K and represents the matrix of cumulated ef-
fects of the shocks. In other words, for integrated variables that appear in first
differences in yt, Υ(m) contains the effects on the related levels variables.

In any case, as the reduced-form of the model represents the DGP and is,
hence, given for a specific data set, imposing restrictions on the long-run effects
Υ(m), implies restrictions for the impact effects B(m).

The reduced rank of Υ(m) implies that there can only be as many shocks
without any long-run effects, corresponding to columns of zeros in Υ(m), as there
are cointegration relations. In this sense, the number of cointegration relations is
central for the potential properties of structural VAR shocks. If the cointegration
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rank is zero, all shocks must have permanent effects at least on some of the vari-
ables. Since the rank of Υ(m) is (K − r), it is in general not sufficient to identify
all shocks by K(K − 1)/2 restrictions on the matrix of long-run effects.

There is a large body of literature on long-run restrictions for identifying struc-
tural shocks in VARs. For example, there are proposals by Blanchard and Quah
(1989), Gonzalo and Ng (2001), Fisher, Huh and Summers (2000), and Pagan and
Pesaran (2008). Fisher and Huh (2014) review that literature and discuss the
relations between the various approaches. In the present context it is not impor-
tant which approach is used for imposing long-run restrictions. They can all be
combined with the identification procedures derived from time-varying volatility,
as discussed in the following.

2.2 Estimation

Estimation of the reduced-form VECM (3) is conveniently done by the Johansen
(1991, 1995) Gaussian maximum likelihood (ML) procedure, ignoring the het-
eroskedasticity in a first step. It provides good asymptotic properties of the es-
timators for a large family of distributions and can be applied even if the actual
distribution of the data is non-Gaussian. We denote the resulting estimates by
α̂, β̂, Γ̂1, . . . , Γ̂p−1 and Σ̂u(m), m = 1, . . . ,M , where the latter estimates are ob-
tained from the VECM residuals ût as

Σ̂u(m) =
1

Tm − Tm−1

∑
t∈T

ûtû
′
t.

Choosing any orthogonal complements α̂⊥ and β̂⊥ of α̂ and β̂, respectively, we can
estimate Ξ as

Ξ̂ = β̂⊥

[
α̂′⊥

(
IK −

p−1∑
i=1

Γ̂i

)
β̂⊥

]−1
α̂′⊥

If enough restrictions for the B(m) and the diagonal elements of the Σw(m) are
available such that they are just-identified, then these parameters can be estimated
by solving the set of equations

vech
(
B(m)Σw(m)B(m)′ = Σ̂u(m)

)
subject to all restrictions on B(m) and Ξ̂B(m), for m = 1, . . . ,M , and a diagonal
Σw(m) matrix. The computations may be easier if we consider an impact effects

matrix B∗(m) = B(m)Σ
1/2
w such that B∗(m)B∗(m)′ = Σu(m) and we can solve for

B∗(m) satisfying

vech
(
B∗(m)B∗(m)′ = Σ̂u(m)

)
. (7)
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Once we have found the estimate B̂∗(m) we can then standardize one element in
each column to be unity. In other words, we divide each column by one nonzero
element. Thereby we assign a unit response on impact to one of the variables.
Thus, for each shock, a variable has to be chosen that has a nonzero response on
impact. Of course, the same variable should be used in each volatility regime, i.e.,
for m = 1, . . . ,M .

Interpreting Σ̂u(m) as a GMM estimator, we get from general GMM results
that, under general conditions, the estimator is consistent and asymptotically nor-
mal if we assume that the regimes get larger with the sample size. We are assuming
in the following that the fractions τm = (Tm − Tm−1)/T are fixed. By Slutsky’s
Theorem, the resulting estimators of B(m) and B∗(m) will then also be asymptot-
ically normal. Given the identifying restrictions on these matrices, they will have
singular asymptotic distributions which has to be taken into account in testing for
time-variation across volatility regimes, as discussed in Section 3.

Because we want to accommodate changing variances of the structural shocks
across the volatility regimes even if the impact effects do not change, we have to
disentangle the contribution of shock variance changes and changes in the impact
effects in the B∗(m) matrices. To ensure comparable B(m) matrices across volatil-
ity states, we normalize the impact effects of the shocks such that each shock has
a unit impact effect on one of the variables across all volatility states. In other
words, we restrict one element in each of the columns of the B(m) matrices to be
1 for all m = 1, . . . ,M . To obtain estimators of the B(m) matrices, we use the
B̂∗(m) matrices and divide each column by the estimate corresponding to the unit
element in the corresponding column of B(m). The estimator will be denoted by
B̂(m) in the following. Clearly, for the normalisation of the columns of B(m), the
elements restricted to 1 have to be well away from zero. In other words, we have
to choose variables which clearly respond to the shock of interest on impact.

3 Testing for Time-Varying Impact Effects

3.1 The Tests

Given that the asymptotic distribution of the estimated impact effects matrix
B(m) is singular, special care is required in setting up tests for hypotheses regard-
ing the elements of B(m). Note that some elements of B(m) are 1 and there may
also be elements that are restricted to zero. In any case the identifying restrictions
are imposed on its elements. Therefore, testing the pair of hypotheses

H0 : B(m) = B(n) vs. H1 : B(m) 6= B(n) (8)
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is not straightforward in general and requires careful examination of the identifying
restrictions imposed on the elements of the matrices involved.

In general, it will be easy, however, to set up corresponding tests for individual
elements of the B(m) matrices or columns of the matrices. For the k-th column,
say bk(m) of B(m), a pair of hypotheses of specific interest is

H0 : bk(m) = bk(n) vs. H1 : bk(m) 6= bk(n). (9)

Under our assumptions, the impulse responses of the k-th shock will be identical
in volatility regimes m and n if the null hypothesis holds. In that case, if the shock
variances in regimes m and n are different, this does not affect the responses of
the variables to the shock.

For pairs of hypotheses such as (9) it may be easier to determine the asymptotic
distribution of the unrestricted elements and use that for setting up a standard
Wald type test. Suppose, for example, the only fully restricted element in the k-th
column is the element normalized to 1, then, denoting the (K − 1)-dimensional
vector of unrestricted elements of bk(m) by ηk(m), we have

√
T (η̂k(m)− ηk(m))

d→ N (0, τ−1m Σηk(m)), (10)

where η̂k(m) is the estimator implied by b̂k(m).
The covariance matrix Σηk(m) will typically be nonsingular such that we can

use a Wald statistic

W (ηk) = T (η̂k(m)− η̂k(n))′
(
τ−1m Σ̂ηk(m) + τ−1n Σ̂ηk(n)

)−1
(η̂k(m)− η̂k(n)) (11)

with a χ2(K − 1) distribution to test the pair of hypotheses

H0 : ηk(m) = ηk(n) vs. H1 : ηk(m) 6= ηk(n) (12)

which in this case is equivalent to the pair of hypotheses in (9). Note that

Σ̂ηk(m) denotes a consistent estimator of Σηk(m) and we assume that the resid-
ual process ut is such that η̂k(m) and η̂k(n) are asymptotically independent and,
hence, the asymptotic covariance of

√
T ((η̂k(m)− ηk(m))− (η̂k(n)− ηk(n))) is

(τ−1m Σηk(m) + τ−1n Σηk(n)). In the Monte Carlo simulations in Section 3.2 and in
the empirical application in Section 4, we will estimate the covariance matrix used
for the Wald statistic by a bootstrap procedure (see Appendix A.2.1 for details).

3.2 Small Sample Properties

We investigate the small sample properties of the test using a Monte Carlo ex-
periment based on two different data generating processes (DGPs). The first one
(DGP1) has cointegration rank r = 0 while the cointegration rank of the second
one (DGP2) is r = 1.

7



3.2.1 DGP1

The parameters of DGP1 are informed by the empirical Model I in Lütkepohl and
Velinov (2016) using the updated series also employed in Section 4. We use a
VAR(2) model in first differences of the variables with constant term and the VAR
slope coefficients from the application in Section 4. This yields:

Ξ =

 1.496 −0.001 0.082
23.937 0.634 2.820
−0.796 −0.006 1.047

 .
We also set

B(1) =

 1.00 0.00 −0.06
33.24 1.00 −2.31
12.35 0.02 1.00


corresponding to the impact effects matrix in the second volatility regime in our
application in Section 4 such that ΞB(1) is a lower-triangular matrix, and

B(2) =

 1.00 0.00 −0.06
δ × 33.24 1.00 −2.31
δ × 12.35 0.02 1.00

 ,
where δ is a scalar that varies in the power analysis of the tests. The structural er-
ror covariance matrices for the two regimes are Λ(1) = diag(0.0005, 0.0154, 0.3113)
and Λ(2) = diag(0.0001, 0.0017, 0.0195).

To generate samples of yt we draw reduced-form errors ut ∼ N (0, B(1)Λ(1)B(1)′)
for the first volatility regime and ut ∼ N (0, B(2)Λ(2)B(2)′) for the second. Under
H0 we set δ = 1 and under H1 we use δ = 1.2 and 1.5.

We generate 500 samples of size T = 150, 250, and 500 with a breakpoint
T1 = T/2 and fit a VAR with the same specifications as the DGP, i.e., the lag order
is 2 and it has a constant term. The covariance estimator in the Wald statistic (11)
is based on 500 bootstrap replications. Table 1 reports the rejection frequencies for
testing time-invariance of the impact effects of the first shock (H0 : η1(1) = η1(2)
vs. H1 : η1(1) 6= η1(2)) when data are generated under H0 and H1 using nominal
levels of 5% and 10%.

The relative rejection frequencies under H0 in Table 1 are reasonably close to
the nominal levels even for relatively small samples of size T = 150, while the
finite sample power is quite substantial for all scenarios considered. The power
increases with the sample size and with the distance of the alternative from H0

measured by δ, as one would expect. In other words, a larger δ leads to higher
small sample power if there is still room for an increase in the rejection frequency,
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Table 1: Relative Rejection Frequencies (DGP1)

Nominal level 5% Nominal level 10%
H1 H1

H0 δ = 1.2 δ = 1.5 H0 δ = 1.2 δ = 1.5

T = 150 0.062 0.898 0.954 0.090 0.904 0.956
T = 250 0.042 0.984 0.996 0.084 0.986 0.998
T = 500 0.038 1.000 1.000 0.070 1.000 1.000

that is, if the rejection frequency is not one already for the smaller δ. Overall, for
DGP1, our test performs quite well in samples of a size which is often encountered
in empirical macroeconometric studies.

3.2.2 DGP2

The parameters of DGP2 are informed by the empirical model referred to as Model
II in Lütkepohl and Velinov (2016). This model uses K = 3 U.S. variables, namely
log real earnings, real interest rates, and log real stock prices, all deflated using
the CPI inflation rate. Quarterly data from 1947Q1 - 2007Q3 are used, implying
T = 240 observations. Lütkepohl and Velinov (2016) use data until 2012Q1, while
we discard the last 5 years to avoid the volatility cluster during the financial crisis
in 2007/08. Following Lütkepohl and Velinov (2016), and supported by the test
in Cavaliere, Angelis, Rahbek and Taylor (2018), we estimate a VECM as in (3)
with a constant term, cointegration rank r = 1 and lag length p = 3. This yields:

ν =

 −0.012
0.710
0.030

 , α =

 0.020
−0.107
−0.036

 , β =

 1
−0.063
−0.521

 ,
and

Γ =

 1.112 0.003 0.031 −0.378 0.001 0.006
6.720 −0.033 −0.485 −3.896 −0.281 0.901
0.078 −0.011 0.322 −0.132 −0.007 −0.018

 .
We assume a volatility breakpoint in 1986Q3, as for the somewhat different

empirical model considered in Section 4, and obtain the regime-dependent impact
effects imposing the restrictions

ΞB(m) =

 ∗ 0 0
∗ ∗ 0
∗ ∗ 0
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as in Lütkepohl and Velinov (2016) by minimising vech[B∗(m)B∗(m)′ − Σ̂u(m)].
After standardising the (2,1) element of B(m) this yields for δ = 1:

B(1) =

 0.014 0.003 −0.010
1 0.560 0.552

0.031 −0.038 0.018

 , B(2) =

 δ × 0.037 0.009 −0.008
1 0.190 0.460

δ × 0.025 −0.048 0.015

 .
As for DGP1, we vary the scalar δ and thereby the parameters considered under
H1 for the power analysis of our test.

To generate data under H0, we set B = B(1) and generate reduced-form errors
ut ∼ N (0, BB′) for the first volatility regime and ut ∼ N (0, BΛB′) for the second
regime, where Λ = diag(0.690, 0.387, 0.330).2 To generate data under H1 we gen-
erate reduced-form errors ut ∼ N (0, B(1)B(1)′) for the first volatility regime and
ut ∼ N (0, B(2)B(2)′) for the second regime.

We generate 500 samples of size T = 150, 250, and 500 with a breakpoint
T1 = T/2 and fit a VECM with the same specifications as the DGP, i.e., r = 1
and p = 3. We consider two values of δ (δ = 0.5 and 1). Both values make the
first column of B(2) clearly distinct from the first column of B(1). Although all
columns of B(1) and B(2) differ in this simulation design, we test again time-
invariance of the first column only (H0 : η1(1) = η1(2) vs. H1 : η1(1) 6= η1(2)). As
for DGP1, 500 bootstrap replications are used to compute the covariance estimator
for the test statistic in (11).

Table 2: Relative Rejection Frequencies (DGP2)

Nominal level 5% Nominal level 10%
H1 H1

H0 δ = 0.5 δ = 1 H0 δ = 0.5 δ = 1

T = 150 0.028 0.073 0.800 0.036 0.117 0.853
T = 250 0.022 0.498 1.000 0.031 0.619 1.000
T = 500 0.040 0.990 1.000 0.061 0.994 1.000

Table 2 reports the relative rejection frequencies for DGP2 when data are
generated under H0 and H1 using nominal significance levels of 5% and 10%,
respectively. For DGP2 the test appears to be slightly undersized for small samples
with relative rejection frequencies below 5% and 10%, respectively, for sample sizes
up to T = 500. Despite this feature, the power is remarkable and grows quickly

2The elements of Λ are obtained as argmin
Λ

vec(BΛB′−Σ(2))′vec(BΛB′−Σ(2)) and Σ(2) =

B(2)B(2)′. In other words, to generate data under H0, we scale the variance of the structural
shocks in the second volatility regime to approximately match the reduced-form covariance matrix
in the second regime when data are generated under H1.
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with the sample size. For example, for a significance level of 5%, the power for
δ = 0.5 is rather small (0.073) for a sample size of T = 150 but it is already almost
0.5 for T = 250 and close to one for T = 500. Thus, overall the test performs quite
well in small samples also for our DGP2 which has cointegration rank 1. Generally,
the simulation results for DGP1 and DGP2 are a strong encouragement for using
the test in practice and we will do so in the next section.

4 Empirical Investigation of Stock Price Funda-

mentals

To consider the question to what extent stock prices reflect their underlying eco-
nomic fundamentals or are primarily driven by speculation, we perform an em-
pirical analysis using a benchmark model from Velinov (2013) and Lütkepohl and
Velinov (2016). The latter authors condition on time-invariant impact effects of
their structural shocks and use the implied over-identifying restrictions due to het-
eroskedasticity to test identifying long-run restrictions. Instead, we will use the
over-identifying information from the long-run restrictions and heteroskedasticity
to test the time-invariance of the impact effects. Thereby we will also demonstrate
the usefulness of tests for time-varying impact effects of structural shocks at times
of volatility changes.

The dividend discount model (DDM) states that the price of an asset is the sum
of its expected future discounted payoffs. As the payoffs are linked to real economic
activity such as real GDP, stock prices should also depend on real economic factors.
Alternatively, stock prices may be driven primarily by speculation and, hence, may
depend on economic fundamentals only to a limited extent or not at all. The issue
has been considered by a number of authors (see, e.g., Lee (1995), Rapach (2001),
Binswanger (2004), Lanne and Lütkepohl (2010) and Jean and Eldomiaty (2010)).

We consider a model for the U.S. consisting of the three quarterly variables
real GDP (gdpt), real interest rates (rt), and real stock prices (st). In other words,
yt = (gdpt, rt, st)

′. Related models have been used in the aforementioned studies
by other authors. Our sample period extends from 1947Q1 to 2019Q4 giving a
gross sample size of 292 observations. We do not include the COVID period to
avoid having to deal with possibly more substantial structural changes. Lütkepohl
and Velinov (2016) use a shorter sample period from 1947Q1 - 2012Q3. More
details on our data and their sources are provided in Appendix A.1.

To set up the reduced-form VECM, we first investigate the lag order and coin-
tegration rank. Based on standard unit root and cointegration tests, for their
dataset, Lütkepohl and Velinov (2016) consider a VAR(2) model in first differences
which corresponds to a cointegration rank zero. As there may be heteroskedastic-
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Table 3: BIC Values for Lag Order, p, and Cointegration Rank, r

lag order p
r 1 2 3 4 5 6 7 8
0 -14.715 -14.837 -14.843 -14.745 -14.575 -14.464 -14.330 -14.202
1 -14.662 -14.772 -14.772 -14.672 -14.503 -14.402 -14.276 -14.137
2 -14.641 -14.731 -14.716 -14.622 -14.453 -14.361 -14.236 -14.096
3 -14.636 -14.713 -14.693 -14.606 -14.441 -14.346 -14.223 -14.079

ity in the residuals, we use a heteroskedasticity-robust procedure for determining
the VAR lag order and the cointegration rank jointly, as proposed by Cavaliere
et al. (2018). It is based on minimizing the BIC criterion across a range of pairs of
lag orders and cointegration ranks. The details are given in Appendix A.2.2. We
include a deterministic trend in the levels version of our VAR model.

The results are presented in Table 3. The BIC criterion is minimized for lag
order p = 3 and cointegration rank r = 0. We proceed with this lag order and
cointegration rank and, accordingly, we use a VAR(2) model with constant inter-
cept term in first differences of all three variables which corresponds to p = 3 for
the model in levels. Thus, for our longer sample, using the same settings as in
Lütkepohl and Velinov (2016) is suggested by our statistical procedure.

The VAR(2) residuals for the first differences of the variables are plotted in
Figure 1. They show clear signs of heteroskedasticity. Therefore we search for a
single volatility break point by minimizing the criterion function

ψ(T1) = T1 log det Σ̂u(1) + (T − T1) log det Σ̂u(2) (13)

over T1 ∈ {0.15T, . . . , 0.85T}. Thereby we find a volatility change point in 1986Q3.
Conditioning on this change point and searching for an additional volatility change
point results in 1978Q2. These change points roughly coincide with the period
when Volcker was the Fed Chairman which is known as a period of high macroe-
conomic volatility in the U.S.. In the following we will investigate time-invariance
of the impact effects of the shocks in a model with M = 2 volatility regimes and
a volatility change point in 1986Q3 as well as in a model with M = 3 volatility
regimes specified by change points 1978Q2 and 1986Q3.

We have used an LM test for heteroskedasticity as described in Lütkepohl (2005,
pp. 600-601) to investigate whether the residual covariances in all three potential
volatility regimes are in fact distinct. The tests yield very small p-values below
0.1% and thereby support the notion of different variances in the three volatility
regimes (see Table 4).

The structural parameters are identified by restrictions on the long-run effects.
Only the first shock is allowed to have permanent effects on all the variables of
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Figure 1: Residuals of VAR(2) for first differences of variables.

the system and is therefore labelled as fundamental. Lütkepohl and Velinov (2016)
consider a time-invariant impact effects matrix B and identify the structural shocks
by standardizing their variances to unity and by choosing a lower-triangular long-
run effects matrix

Υ = ΞB =

 ∗ 0 0
∗ ∗ 0
∗ ∗ ∗

 , (14)

where ∗ signifies an unrestricted element. These restrictions just-identify the struc-
tural parameters. We use the same lower-triangular structure for each of the
M long-run effects matrices, that is, we choose all Υ(m), m = 1, . . . ,M , to be
lower-triangular. In this case, taking into account the cointegration rank of zero
(r = 0), estimation of B(m) is particularly simple because a closed-form estimator
for B∗(m) exists (see Appendix A.2.3).

To allow for time-varying variances of the structural shocks, we restrict the
diagonal elements of each B(m) matrix to be unity. In other words,

B(m) =

 1 ∗ ∗
∗ 1 ∗
∗ ∗ 1

 . (15)
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Table 4: Tests for Heteroskedasticity for Reduced-Form VAR Model

Period 1 versus Period 2 Test statistic p-value
1947Q1-1978Q2 versus 1978Q3-1986Q3 162.61 < 0.1%
1947Q1-1978Q2 versus 1986Q4-2019Q4 67.65 < 0.1%
1978Q3-1986Q3 versus 1986Q4-2019Q4 211.32 < 0.1%
1947Q1-1986Q3 versus 1986Q4-2019Q4 105.73 < 0.1%

Note: The LM test for heteroskedasticity described in Lütkepohl (2005, pp. 600-601) was used
to test whether the residual covariance in period 1 is different from the residual covariance in
period 2.

For the present analysis, the crucial shock of interest is the first shock, the funda-
mental shock, and that shock is clearly expected to have a nonzero impact effect on
the first variable, GDP growth. Thus, standardizing the upper left-hand element
of the impact effects matrix to one is justified, while it is of limited importance
where the ones are placed in the other two columns. It is essential, of course, that
the corresponding coefficients of the B∗(m) matrices are nonzero.

As the cointegration rank is zero, the tests for time-varying impact effects
of the individual shocks are very easy to set up because the two unrestricted
elements in the first column of each of the B(m) matrices are easily seen to have
a nonsingular asymptotic distribution such that we can use the Wald statistic
with a χ2(2) distribution to test hypotheses of the type shown in (12). Note,
however, that our setup implies that the last column of B(m) is time-invariant by
construction. It depends on the VECM slope coefficients only which are assumed
to be time-invariant.3 Thus, no tests are needed to verify time-invariant impact
effects of the third shock, corresponding to the third column of B(m). Test results
for the first two columns are presented in Table 5.

If we consider just one volatility change (M = 2) in period 1986Q3, the Wald
test results in a p-value of 0.000 and, hence, clearly rejects time-invariance of the
impact effects of the fundamental shock at any reasonable significance level. On
the other hand, time-invariance of the impact effects of the second shock cannot be
rejected, given the p-value 0.334. Considering three volatility regimes, it turns out
that there is weak evidence at best of a change in the impact effects in Regimes 1
and 2, while the impact effects of the fundamental shock in Regimes 1 and 2 differ
significantly from those in Regime 3. Note that testing H0 : η1(1) = η1(2) results
in a p-value of 0.060 such that the test does not reject at significance level of 5%.
Again no significant changes in the impact effects of the second shock across the
sample are diagnosed. Thus, we find a clear change in the impact effects of the

3The last column of the matrix B∗(m) is a scalar multiple of a column of the matrix Ξ−1 that
depends on time-invariant parameters only. The scalar cancels in the transition to B(m).
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Table 5: Tests for Time-Varying Impact Effects

H0 Wald statistic p-value
M = 2 η1(1) = η1(2) 12.47 0.002

η2(1) = η2(2) 2.46 0.292
M = 3 η1(1) = η1(2) 5.61 0.060

η1(1) = η1(3) 15.24 0.000
η1(2) = η1(3) 13.82 0.001
η2(1) = η2(2) 0.12 0.940
η2(1) = η2(3) 2.04 0.361
η2(2) = η2(3) 3.36 0.187

Note: For M = 2 volatility regimes the change point is 1986Q3 while for M = 3 the change
points are 1978Q2 and 1986Q3.

fundamental shock roughly at the time when the Great Moderation started,4 while
the possible volatility change in 1978Q2 has not resulted in clear changes in the
impact effects. Therefore we continue under the assumption of a change in the
impact effects of the fundamental shock in 1986Q3. Of course, we will account in
the following analysis for possible heteroskedasticity also during the pre-1986Q3
period.

Given our test results, one would expect the impulse responses of the funda-
mental shock pre- and post-1986Q3 to be different. An important question in this
context is, of course, the responses of which of the variables have changed and,
importantly, whether the responses of the stock prices have changed. Therefore we
present the impulse responses of the fundamental shock in Figure 2. Clearly, the
responses of the stock index are much stronger in the second part of the sample
(post-1986Q3). The same is also true for GDP and the interest rate. Thus, funda-
mental factors seem to have become more important, a result that is covered up if
one conditions on time-invariant shock transmission as in Lütkepohl and Velinov
(2016). Note, however, that the latter authors used a different model for volatility
changes such that their analysis is not directly comparable to ours.

To further investigate the importance of fundamental shocks for the stock mar-
ket, we report forecast error variance decompositions in Table 6. If one considers
a time-invariant forecast error variance decomposition for the full sample period,
fundamental shocks only contribute around 33% for short horizons and 26% after
five years to the forecast error variance of the stock index. The situation changes
substantially if we allow for a change in the shock transmission in 1986Q3. In that

4The exact timing of the beginning of the Great Moderation is controversial in the related
literature (see, e.g., Stock and Watson (2003), Bernanke and Mihov (1998), McConnell and
Perez-Quiros (2000), Gaĺı and Gambetti (2009)). There seems to be consesus that it has started
somewhere in the middle of the 1980s.
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Figure 2: Responses to fundamental shocks. The coloured areas are 68% point-
wise confidence intervals based on a moving block bootstrap implemented as in
the Online Supplement of Bruns and Lütkepohl (2022). This procedure is asymp-
totically valid in conditionally heteroskedastic structural VAR models (see Jentsch
and Lunsford (2019)) and allows for the possibility of further volatility changes
within the regimes.
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Table 6: Forecast Error Variance Decompositions for the S&P500 Stock Index

full sample pre-1986Q3 post-1986Q3
forecast fund. 2nd 3rd fund. 2nd 3rd fund. 2nd 3rd
horizon shock shock shock shock shock shock shock shock shock

1 0.331 0.000 0.669 0.234 0.015 0.752 0.571 0.021 0.408
2 0.358 0.003 0.638 0.266 0.034 0.701 0.586 0.014 0.400
3 0.338 0.004 0.658 0.243 0.040 0.717 0.573 0.013 0.415
4 0.321 0.005 0.674 0.224 0.043 0.733 0.561 0.012 0.426
8 0.286 0.005 0.709 0.186 0.046 0.768 0.537 0.012 0.451
12 0.273 0.005 0.722 0.172 0.047 0.781 0.528 0.012 0.459
20 0.263 0.005 0.733 0.161 0.048 0.791 0.521 0.013 0.467

Note: Some shares do not sum to one due to rounding errors.

case, the fundamental shock has a substantially larger contribution to the forecast
error variance post-1986Q3 than pre-1986Q3. For example, post-1986Q3, 57% of
the forecast error variance for a one-quarter ahead forecast are due to fundamental
shocks, while only 23% are explained by fundamental shocks in the pre-1986Q3 pe-
riod. Although the share of fundamental shocks declines slightly for longer forecast
horizons, it remains substantially higher in the post-1986Q3 period. Correspond-
ingly, the contribution of the other shocks, capturing possibly speculation, declines
post-1986Q3. This pattern is stable across the forecast horizons shown in Table 6.

Overall our results clearly indicate that stock prices are driven much more by
fundamental shocks in the latter part of our sample than in the earlier sample
period. Correspondingly, the importance of speculation has declined during the
great moderation period relative to its importance in the earlier period. Such a
finding is covered up if the impact effects of the shocks are assumed to be time-
invariant across the full sample.

5 Conclusions

Heteroskedasticity is used as a tool for identifying structural shocks in a number
of studies using structural VARs. A basic precondition for identifying the shocks
in this context is the time-invariance of the impact effects of the shocks also at
times of volatility changes. In this study we present possible tests for time-varying
impact effects of the shocks if long-run restrictions are available to identify the
shocks and, hence, any identifying restrictions from heteroskedasticity become
over-identifying.

Using our tests we consider the question whether stock prices in the U.S. are
mainly driven by speculation or by fundamentals. We find that the impact effects
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of a fundamental shock are larger in the latter part of our sample implying that
fundamental shocks have been more important for the stock market since the
middle of the 1980s than they were before. This also demonstrates the usefulness
of our tests for applied work and the importance of carefully investigating the
possibility of time-varying impulse responses at times of volatility changes. Our
results also question the practice to assume time-invariant impact effects of the
shocks to identify the structural shocks by heteroskedasticity. In any case, it is
worth checking that assumption carefully.

A Appendix

A.1 Data

Table 7: Data Description, Sources, and Sample Periods

Variable Description Source Transf. Sample Period

gdpt US Gross Domestic Product (GDPC1) FRED log 1947Q1 - 2019Q4

rt 3-Month Treasury Bill Secondary Market
Rate (TB3MS) deflated by US Consumer
Price Index (CPIAUCSL)

FRED log 1947Q1 - 2019Q4

st S&P 500 Index deflated by US Con-
sumer Price Index (CPIAUCSL).
The monthly S&P 500 series is ob-
tained from Robert Shiller’s website
(http://www.econ.yale.edu/ shiller/data.htm).
Quarterly data are obtained taking the last
month of each quarter.

Robert
Shiller’s
website,
FRED

log 1947Q1 - 2019Q4

et Real earnings Lütkepohl
and Veli-
nov (2016)
replication
codes

log 1947Q1 - 2012Q1

A.2 Details on Computations

A.2.1 Computation of the Wald Statistic W (ηk)

In this appendix we describe how the Wald statistic in equation (11) is constructed.

In particular, we use the following bootstrap to obtain the estimates Σ̂βk(m) and

Σ̂βk(n):
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1. The estimated residuals from the VECM model (3) are resampled using a
regime-specific moving block bootstrap as in Bruns and Lütkepohl (2024) to

obtain bootstrap residuals u
(j)
1 , . . . , u

(j)
T , where the superscript (j) denotes

the number of the bootstrap sample.

2. Bootstrap data y
(j)
1 , . . . , y

(j)
T are recursively generated using the VAR repre-

sentation in (1).

3. A VECM model is fitted to y
(j)
t to obtain û

(j)
1 , . . . , û

(j)
T .

4. The normalised impact effects η̂k(m)(j) and η̂k(n)(j) are obtained minimising
(7) subject to the long-run restrictions.

5. Their covariance matrix across bootstrap samples is estimated as Σ̂η̂k(m) =

cov(η̂k(m)(j)) and Σ̂η̂k(n) = cov(η̂k(n)(j)).

6. The test statistic is computed as

W (ηk) = (η̂k(m)− η̂k(n))′
(

Σ̂η̂k(m) + Σ̂η̂k(n)
)−1

(η̂k(m)− η̂k(n)).

A.2.2 Estimation of Lag Order and Cointegration Rank

We follow Cavaliere et al. (2018) in jointly determining the lag order p and the
cointegration rank r using a Bayesian Information Criterion (BIC) and allowing
for heteroskedastic residuals. We include a linear trend in the model. The BIC in
its generic form is

BIC(p, r) = −2llikT (p, r) + penT (p, r), (16)

where llikT (p, r) is the log-likelihood of the model depending on (p, r) and penT (p, r)
is a penalty term. Their computation proceeds as follows:

1. Define

• S00(p) = T−1
∑T

t=1 ∆yt∆y
′
t

• S10(p) = T−1
∑T

t=1 ∆yt(y
′
t−1, dt)

′, where dt = (1, . . . , T ) is a time trend

• S11(p) = T−1
∑T

t=1(y
′
t−1, dt)(y

′
t−1, dt)

′.

2. Compute λ̂1(p) > · · · > λ̂K(p) the K largest solutions to the eigenvalue
problem |λS11(p)− S10(p)S00(p)S01(p)| = 0

3. Compute π(p, r) = r(2K − r + 1) +K(K + 2)/2 +K2(p− 1)
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4. Then we obtain the penalty term penT (p, r) = log(T )π(p, r)

5. and the log likelihood llikT (p, r) = −T
2

log(|S00(p)|)− T
2

∑r
i=1 log(1− λ̂i(p)).

The procedure is repeated for the desired number of pairs (p, r) and we choose
(pBIC , rBIC) = argmin

(p,r)

BIC(p, r).

A.2.3 Estimation of Structural VARs with Recursive Long-run Re-
strictions and Cointegration Rank Zero

Using the notation from Section 1 and assuming that the cointegration rank of the
VAR model is zero, the long-run effects of the shocks for m = 1, . . . ,M , are

Υ(m) = ΞB∗(m)

with

Ξ =

(
IK −

p−1∑
i=1

Γi

)−1
(see equations (4) and (6)). If Υ(m) is lower-triangular, it can be obtained by a
Choleski decomposition of

Υ(m)Υ(m)′ = ΞB∗(m)B∗(m)′Ξ′ = ΞΣuΞ
′

Since there are only reduced-form quantities on the right-hand side, Υ(m) can be
obtained easily and, thus, as Ξ is invertible, we can get B∗(m) as

B∗(m) = Ξ−1Υ(m) = Ξ−1chol(ΞΣu(m)Ξ′).

A simple bivariate model of this type was already considered by Blanchard and
Quah (1989) in their seminal study on using restrictions on the long-run effects of
the structural shocks for identification.

References

Angelini, G., Bacchiocchi, E., Caggiano, G. and Fanelli, L. (2019). Uncertainty
across volatility regimes, Journal of Applied Econometrics 34: 437–455.

Bacchiocchi, E., Castelnuovo, E. and Fanelli, L. (2018). Gimme a break! Identifi-
cation and estimation of the macroeconomic effects of monetary policy shocks
in the United States, Macroeconomic Dynamics 22: 1613–1651.

20



Bacchiocchi, E. and Fanelli, L. (2015). Identification in structural vector autore-
gressive models with structural changes, with an application to US monetary
policy, Oxford Bulletin of Economics and Statistics 77: 761–779.

Bernanke, B. S. and Mihov, I. (1998). Measuring monetary policy, Quarterly
Journal of Economics 113: 869–902.

Binswanger, M. (2004). How do stock prices respond to fundamental shocks?,
Finance Research Letters 1(2): 90–99.

Blanchard, O. J. and Quah, D. (1989). The dynamic effects of aggregate demand
and supply disturbances, American Economic Review 79: 655–673.

Bruns, M. and Lütkepohl, H. (2022). Comparison of local projection estimators
for proxy vector autoregressions, Journal of Economic Dynamics & Control
134: 104277.

Bruns, M. and Lütkepohl, H. (2024). Heteroskedastic proxy vector autoregres-
sions: An identification-robust test for time-varying impulse responses in the
presence of multiple proxies, Journal of Economic Dynamics and Control
161: 104837.

Cavaliere, G., Angelis, L. D., Rahbek, A. and Taylor, A. M. R. (2018). Determin-
ing the cointegration rank in heteroskedastic VAR models of unknown order,
Econometric Theory 34: 349–382.
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