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Abstract. In conventional proxy VAR analysis, the shocks of interest are iden-
tified by external instruments. This is typically accomplished by considering the
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ments or proxies. These alternative identification methods are compared and it
is shown that the resulting shocks obtained with the alternative approaches dif-
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1 Introduction

Using external instruments or proxies to identify structural shocks has become an
important tool in structural vector autoregressive (VAR) analysis. Nowadays some
authors use several proxies to identify a set of shocks. In that case, the proxies
generally identify only linear combinations of the shocks and typically additional
assumptions are needed to identify the shocks individually (see, e.g., Mertens and
Ravn (2013), Piffer and Podstawski (2017) or Jarociński and Karadi (2020)).

The dominant approaches for estimating the structural parameters and, hence,
the shocks in proxy VAR analysis are based on the covariance of the instruments and
the reduced-form residuals (see, e.g., Mertens and Ravn (2013)) or on augmenting the
VAR model by the proxies and, hence, internalizing them (e.g., Kilian and Lütkepohl
(2017, Sec. 15.2), Jarociński and Karadi (2020), Plagborg-Møller and Wolf (2021,
2022)). The distinction between external and internal instruments is also discussed
by Stock and Watson (2018).

This study compares the two alternative approaches for using multiple proxies
for identifying a set of shocks in structural VAR analysis and makes several contri-
butions to the proxy VAR literature. (1) Conditions are derived under which the
impulse response functions are identical in population for the external instruments
and the augmented VAR approaches. (2) It is established that the shocks obtained
with both approaches are different in population even if the conditions for identical
impulse responses are satisfied. (3) It is shown that, if the conditions for identical
impulse responses from both approaches are satisfied, the structural shocks are fully
identified by the proxies such that additional restrictions for disentangling the shocks
are unnecessary.

Specifically, we show that, if the proxies are mutually uncorrelated, each proxy is
correlated with exactly one shock only and the proxies are not Granger-causal for the
variables of interest, then the structural shocks are fully identified and the shocks can
be scaled such that the structural impulse responses obtained from the external in-
struments and the augmented VAR approaches are identical in population. However,
if the external instruments approach is used, the shocks will be linear transformations
of the reduced-form residuals. In this setup, the proxies used for identification need
not be direct measurements of the shocks of interest, but can contain some measure-
ment error. If instead the augmented VAR approach is used, the resulting shocks
will be linear transformations of the proxies, i.e., there is no built-in correction for
measurement errors in the proxies.

We use two empirical examples to illustrate our theoretical results. The first one
considers a model of the crude oil market based on a study by Känzig (2021). The
second example is based on a study by Lunsford (2015) who explores the impact
of total factor productivity (TFP) shocks on the U.S. economy. We will show how
our theoretical findings can be used to identify the structural shocks even if some
assumptions of earlier studies are relaxed.

The remainder of the paper is organized as follows. In the next section we present
the model setup, compare the alternative identification and estimation methods for-
mally, and present conditions for individually identified shocks when multiple proxies
are used. In Section 3 we study the empirical examples and Section 4 concludes.
Proofs are provided in the Appendix.
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2 Model Setup and Identification

2.1 The Model

Our point of departure is a K-dimensional reduced-form VAR process,

yt = ν + A1yt−1 + · · ·+ Apyt−p + ut. (1)

The error process, ut, is zero-mean white noise with nonsingular covariance matrix
Σu. In short, the ut are serially uncorrelated and ut ∼ (0,Σu). The structural shocks,
denoted as wt = (w1t, . . . , wKt)

′, are assumed to be linear combinations of the ut,
wt = B−1ut, such that ut = Bwt. In the following we will refer to shocks that are
linear combinations of the reduced-form residuals ut as fundamental.2 The (K ×K)
transformation matrix B contains the impact effects of the structural shocks. They
are assumed to have a diagonal covariance matrix Σw such that BΣwB

′ = Σu. If the
shocks are normalized to have unit variances and, hence, Σw = IK , the transformation
matrix B has to be such that BB′ = Σu.

We assume further that the first K1 shocks, w1t = (w1t, . . . , wK1t)
′, are of primary

interest and have to be properly identified as economic shocks, while the last K−K1

shocks, w2t = (wK1+1,t, . . . , wKt)
′, are not of interest. Accordingly, we partition the

vector of shocks as w′
t = (w′

1t,w
′
2t). The matrix of impact effects, B, is partitioned

correspondingly as B = [B1 : B2], B1 being a (K × K1) matrix and B2 being of
dimensions (K × (K −K1)).

The matrix B contains the structural parameters of the model. The k-th column
of B, say bk, respresents the impact effects of the k-th shock on all the K variables.
Thus, the columns of B1 contain the impact effects of the shocks of interest, w1t.
Having B1, the latter shocks can be obtained from the reduced-form residuals as3

w1t = (B′
1Σ

−1
u B1)

−1B′
1Σ

−1
u ut. (2)

The structural impulse responses of the shocks of interest for propagation horizon h
are known to be Θ1,h = ΦhB1, where the Φh are reduced-form quantities obtained

recursively from the A1, . . . , Ap VAR slope coefficients as Φh =
∑h

j=1 Φh−jAj, with
Φ0 = IK , for h = 1, . . . , and Aj = 0 for j > p (e.g., Lütkepohl (2005, Sec. 2.1.2)).

2.2 Identification via Proxy Variables

Identification of the structural parameters and, hence, the structural shocks is as-
sumed to be based on a set of N instrumental variables (proxies) zt = (z1t, . . . , zNt)

′

satisfying

E(w1tz
′
t) = Σw1z ̸= 0, Σw1z (K1 ×N), rk(Σw1z) = K1 (relevance), (3)

E(w2tz
′
t) = 0 (exogeneity). (4)

These conditions imply that

E(utz
′
t) = BE(wtz

′
t) = B1Σw1z. (5)

2In some of the recent literature, this property is referred to as invertibility (see, e.g., Plagborg-
Møller and Wolf (2021)).

3The relation follows from the fact that wkt = b′kΣ
−1
u ut/b

′
kΣ

−1
u bk (see, e.g., Stock and Watson

(2018), Bruns and Lütkepohl (2022, Appendix A.1)) and (B′
1Σ

−1
u B1)

−1 = Σw1
.
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Obviously, there must be at least as many proxies as there are identified shocks such
that N ≥ K1, to satisfy the rank condition for Σw1z which ensures that the N proxies
contain identifying information for all shocks in w1t. As we can estimate B1Σw1z by
the usual covariance matrix estimator

ûz =
1

T

T∑
t=1

ûtz
′
t, (6)

where the ût are reduced-form least squares (LS) residuals, the proxies contain iden-
tifying information for the first K1 structural shocks collectively but the shocks are
not necessarily individually identified. In the following, we will refer to this approach
as the external proxy VAR approach to distinguish it from the approach based on
augmenting the VAR model by the proxies to be discussed in Subsections 2.3 and
2.4. The shocks estimated with the external proxy VAR approach via equation (2)
will be signified as ŵ1t(PVAR).

Note that, if there is just one proxy that identifies a single shock (K1 = N =
1), then an equivalent estimator of B1 is obtained by including zt as an additional
regressor in the VAR model, i.e., by estimating the model

yt = ν + A1yt−1 + · · ·+ Apyt−p +B1zt + u∗
t

by LS. The LS estimator B̂1 is a multiple of ûz in this case (see Paul (2020, Online
Appendix A.2, A.3)).

From now on we assume that N = K1, i.e., there are as many proxies as there are
shocks of interest. In practice, that assumption is not always satisfied (see, e.g., Hou
(2024)) but it holds in most empirical studies. In that case, if each proxy is correlated
with just one shock such that Σw1z is a diagonal square matrix, the shocks will be
identified individually because the right-hand side of (5) will consist of multiples of
the impact effects of the shocks that will provide multiples of the shocks via the
relation (2). Thus, we can get shocks of the desired size by appropriately scaling the
estimated shocks. In that case, we can equivalently estimate the impact effects of the
shocks by using the proxies one-by-one. The estimates and shocks obtained in that
way are obviously identical to those obtained by estimating the impact effects of all
shocks at once as in (6).

One drawback of this approach is that, in practice, it may result in correlated
estimated shocks, as shown, for example, by Gregory, McNeil and Smith (2024) and
Bruns, Lütkepohl and McNeil (2024). If uncorrelatedness of the shocks is used as an
additional restriction, the shocks of interest, w1t, are actually over-identified. Bruns
et al. (2024) propose a GMM method that accounts for these additional restrictions.
It not only provides uncorrelated shocks but it can also improve the estimation effi-
ciency. In general, if Σw1z is not a diagonal matrix, the proxies identify only linear
combinations of the shocks of interest. To identify them individually requires addi-
tional identifying assumptions, as mentioned earlier.

2.3 Population Results for VAR Models Augmented by the
Proxies

In proxy VAR analysis, some authors augment the VAR model by the proxy variables
(see, e.g., Angelini and Fanelli (2019), Jarociński and Karadi (2020), Plagborg-Møller
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and Wolf (2021)). We consider the augmented reduced-form VAR model(
zt
yt

)
=

(
νz

νy

)
+

[
0 0
Az

1 Ay
1

](
zt−1

yt−1

)
+· · ·+

[
0 0
Az

p Ay
p

](
zt−p

yt−p

)
+

(
uz
t

uy
t

)
, (7)

where no lags appear in the zt equations to simplify the exposition. This type of setup
assumes that the proxy vector, zt, is serially uncorrelated because there are no lags
in the equations associated with the proxies. This assumption appears to be quite
realistic for many proxies. Alternatively, one could also include lags of zt and yt in
the zt equations in the augmented VAR model (7).

An augmented model such as (7) is often used for Bayesian proxy VAR analysis
because it allows to use standard Bayesian VAR methods that place priors on the
reduced-form parameters. For example, one could use a Gaussian-inverse-Wishart
prior that results in a convenient Gaussian-inverse-Wishart posterior for the reduced-
form parameters of the augmented model. Thus, the following discussion is also
relevant for Bayesian analysis (see also Caldara and Herbst (2019), Arias, Rubio-
Ramı́rez and Waggoner (2021)).

The residual vector of the augmented VAR model (7) is

uaug
t =

[
uz
t = zt − E(zt)

uy
t

]
(8)

and its covariance matrix will be denoted by Σaug
u . In large VARs, identification of the

shocks is often based on a recursiveness assumption. Hence, the shocks are identified
based on a Cholesky decomposition of Σaug

u (e.g., Bańbura, Giannone and Reichlin
(2010)). If that approach is applied here, Baug = chol(Σaug

u ) is used to obtain shocks

waug
t = (Baug)−1uaug

t (9)

(e.g., Mart́ınez-Hernández (2020)). In that case, the first K1 shocks are interpreted
as the shocks identified by the K1 proxies.

To understand the relationship of these shocks to thew1t shocks obtained from the
VAR model (1), it may be worth mentioning that the inverse of the lower-triangular
Baug is also a lower-triangular matrix and, hence, the first component of waug

t is just
a multiple of the mean-adjusted z1t, the second component is a linear combination of
mean-adjusted z1t and z2t, and, more generally, the k-th component of waug

t is a linear
combination of the mean-adjusted z1t, . . . , zkt. There are no linear combinations of
the uy

t involved in determining the first K1 shocks of the augmented model. In other
words, the shocks of interest from the augmented model are linear combinations of the
proxies, while in the external proxy VAR approach the shocks are linear combinations
of the reduced-form residuals of the VAR model (1) and are just correlated with the
proxies such that the proxies are better thought of as shocks measured with error. In
fact, the two sets of shocks can be quite different although they may result in identical
impulse response functions, as we will see below. Empirical examples are provided in
Section 3.

Given the way many proxies are constructed in practice, it may not be very
appealing to view them directly as shocks. As an extreme case, consider for example
the sign proxies proposed by Boer and Lütkepohl (2021) which are discrete variables
with values −1, 0, and 1 only. A number of proxies used in the proxy VAR literature
are explicitly constructed to be nonzero only for selected periods where shocks have
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occurred and set to zero for many other periods where no shock measurements are
available (e.g., Gertler and Karadi (2015), Piffer and Podstawski (2017), Boer and
Lütkepohl (2021)). It is easy to picture them as correlated with shocks of interest
but perhaps less plausible to view them as the shocks of interest themselves. Thus,
interpreting the proxies as shocks may not be natural in many situations.

It turns out, however, that, under suitable conditions, the impact effects of the
shocks of interest, w1t, of the VAR model (1) are multiples of the impact effects of
the first K1 shocks in waug

t , obtained from a Cholesky decomposition of Σaug
u . Thus,

the shocks have equal impact effects if the scaling of the shocks is adjusted. In the
following proposition, proven in Appendix A, we state conditions under which that
equivalence of the impact effects of the shocks holds.

Proposition 1. Suppose the proxies, zt, satisfy the relevance and exogeneity condi-
tions (3) and (4) and, in addition, the following three conditions hold:

(a) In the augmented VAR model (7), Az
1 = · · · = Az

p = 0, i.e., no lags of the proxies
appear in the yt equations.

(b) The covariance matrix of zt, Σz, is a diagonal matrix, i.e., the proxies are
instantaneously uncorrelated.

(c) Σw1z is a diagonal matrix, i.e., each shock in w1t is correlated with one proxy
only.

Then the lower-left hand (K ×K1) block of Baug = chol(Σaug
u ) has columns that are

scalar multiples of the columns of the impact effects matrix, B1, of the shocks w1t. □

The proposition states that, if the proxies are contemporaneously uncorrelated
and each of the proxies is correlated with one shock of interest only, then we can
get scalar multiples of the impact effects of the first K1 structural shocks, w1t, by
considering chol(Σaug

u ) and, using these multiples of the impact effects, we can get
multiples of the shocks w1t from the relation (2).

If there is just one shock of interest (K1 = 1) and one proxy that satisfies the
relevance and exogeneity conditions, the conditions (b) and (c) of Proposition 1 are
automatically satisfied and, hence, if also Az

1 = · · · = Az
p = 0, the impact effects of the

shock can be obtained directly from the relation E(utz1t) = σ1b1, where σ1 is a scalar,
or, equivalently, by using the covariance matrix of the VAR residuals augmented by
a single proxy. The latter fact follows from Corollary 1 in Appendix A which implies
that, if there is just one shock identified by a single proxy (N = K1 = 1), the last K
elements of the first column of the Cholesky decomposition of the covariance matrix
Σaug

u of the augmented VAR residual vector are a multiple of E(utzt) and thus, upon
standardization, are precisely the desired impact effects of the structural shock of
interest. A closely related result was established earlier by Plagborg-Møller and Wolf
(2021) (see in particular their Section 3.3).

In fact, the result even holds for the first shock if there are several proxies and
shocks of interest. However, it does not hold for the other shocks in w1t in general.
Only if there are several proxies which are instantaneously uncorrelated, i.e., Σz is a
diagonal matrix as in Proposition 1, then, by Corollary 2 given in Appendix A, we
can get also the impact effects of all shocks from the external proxy VAR approach
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from the Cholesky decomposition of Σaug
u , provided Σw1z in (5) is a diagonal matrix,

that is, if the i-th proxy is only correlated with the i-th shock and uncorrelated with
all other shocks.

We emphasize that there is an important precondition specified in Proposition 1
for these results to hold, namely condition (a) which states that there are no lags of
the proxies in the yt equations. That condition implies that the proxies have to be
Granger-noncausal for the yt to ensure undistorted impulse responses. There are, in
fact, good reasons for including lags of zt in the yt equations. If the proxies contain
information on some of the structural shocksw1t, which after all is why we use them as
proxies, they may well be Granger-causal for yt. In that case, at least some of the Az

i ,
i = 1, . . . , p, are nonzero. Including them leads to different impulse responses. Note
the following relation between the reduced-form impulse responses of the augmented
model (7), denoted by Φaug

h , and the original model (1), denoted by Φh:

Φaug
h =

[
0 0
∗ Φh

]
, h = 1, 2, . . . , (10)

where * stands for possibly nonzero elements. Thus, computing the structural impulse
responses as Φaug

h Baug, the resulting impulse responses of yt will in general not be
identical to ΦhB from the VAR model (1).

If the lags of the proxies enter the yt equation in (7), one may even wonder whether
the shocks of interest are fundamental and can be obtained as linear transformations
of the reduced-form residuals ut, as assumed in our model setup in Section 2, and
in the external proxy VAR approach (see Plagborg-Møller and Wolf (2021) for dis-
cussion). Plagborg-Møller and Wolf (2021) discuss another point in favour of using
an augmented VAR model. They point out that in general the impulse responses
obtained from a VAR model will be distorted if the true shocks are nonfundamental
and they mention that correct impulse responses in this case are obtained only if the
assumed shock is a function of just the true shock and perhaps an error term which is
not related to yt. Plagborg-Møller and Wolf (2021) also mention that, in such a case,
even if the shock is not fundamental, its impulse responses can be estimated properly
by adding zt as an additional variable to the VAR.

In summary, if Az
1 = · · · = Az

p = 0 and there is only one shock that is identified by
a single proxy, then we can use a Cholesky decomposition of the residual covariance
matrix of the augmented VAR model to compute the impulse responses. If there are
several shocks identified by a set of proxies, then the impact effects of the first shock
can be obtained from the first column of the Cholesky decomposition of the residual
covariance matrix of the augmented VAR. The impact effects of the other shocks can
be obtained from the Cholesky decomposition of the residual covariance matrix of the
augmented VAR if both of the following conditions are satisfied: (b) the proxies are
uncorrelated (the matrix Σz is a diagonal matrix) and (c) the i-th proxy is correlated
with the i-th shock and not with any of the other shocks of interest (the matrix Σw1z

is a diagonal matrix).

2.4 Estimation of Augmented VAR Models

The previous discussion refers to population quantities. It is important to emphasize
that these results will carry over to estimated quantities in small samples as long
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as standard estimation methods are used. For example, if the VAR model (1) is
estimated by LS and Σaug

u is estimated as

Σ̂aug
u =

1

T

T∑
t=1

[
zt − z̄
ût

]
[(zt − z̄)′, û′

t], (11)

where z̄ = T−1
∑T

t=1 zt and the ût are LS residuals, then the lower left-hand (K×K1)

block of chol(Σ̂aug
u ) can be used to estimate the impact effects B1 of the structural

shocks.
Alternatively, one may include lags of the proxies in the yt equations of the aug-

mented model (7) and consider the shocks and impulse responses obtained from the
augmented model even if the true Az

1 = · · · = Az
p = 0. In that case, the estimated

shocks, their interpretation and their impulse responses are different from those of
the external proxy VAR approach. Of course, the additional parameters to be es-
timated in the augmented VAR may reduce the precision of the estimated impulse
responses if that approach is used. In the following, to distinguish the shocks obtained
from models with and without lags of zt in the augmented VAR, we use the notation
ŵ1t(augVAR) when the lags of zt are included in the yt equations and ŵ1t(augVAR

0)
when they are not included.

One issue that is often a concern in the estimation of the impact effects is that some
proxies are only weakly related to the shocks of interest. In other words, the proxies
may be weak instruments for which special estimation procedures are recommended
(see Montiel Olea, Stock and Watson (2021)). Clearly, as the external proxy and
augmented VAR estimates are identical up to a scalar multiple under the conditions of
Proposition 1, both approaches are equally affected by the weakness of an instrument.

Of course, there are a number of other estimation methods for proxy VAR models.
The method based on (11) does not account for the over-identifying restrictions from
the diagonality of Σw1z and the uncorrelatedness of the structural shocks and is, hence,
not efficient. To improve efficiency, one could use the GMM approach of Gregory
et al. (2024), as mentioned earlier. There are also local projection (LP) and Bayesian
estimation methods that could be applied. It may be useful to take the theoretical
results of Proposition 1 into account in the estimation of proxy VAR models. In the
present study we are interested in presenting and illustrating the results of Proposition
1 and therefore do not consider alternative estimation methods.

3 Empirical Examples

The following empirical examples illustrate the theoretical findings of the previous
section. The first example considers the global market for crude oil and the second
example studies the impact of TFP shocks on the U.S. economy.

3.1 Oil Market Shocks

Känzig (2021) considers a six-dimensional benchmark model to study the impact of
oil market shocks on some key economic variables. In his benchmark analysis, he uses
a single proxy to identify an oil supply news shock. To safeguard against distortions in
his analysis, he also uses a setup with two proxies to identify two shocks, an oil supply

7



Table 1: Empirical Correlations of Proxies and Shocks for Oil Market Example with
95% Bootstrap Confidence Intervals

zopst znews
t ŵops

t (PVAR) ŵnews
t (PVAR)

zopst 1 −0.065
(−0.131,−0.008)

znews
t 1

ŵops
t (PVAR) 0.173

(0.006, 0.319)
−0.020

(−0.091, 0.050)
1 −0.088

(−0.182, 0.005)

ŵnews
t (PVAR) −0.015

(−0.130, 0.092)
0.226

(0.098, 0.346)
1

Note: The confidence intervals are obtained with a bootstrap suggested by Lunsford
(2015) and presented in detail in the Appendix of Bruns et al. (2024).

news shock and an oil production shortfall shock. We will denote the corresponding
proxies by znews

t and zopst , respectively.
Känzig uses a VAR(12) model with a constant term for the real price of oil (rpt),

world oil production (prodt), world oil inventories (invt), world industrial production
(ipWorld

t ), U.S. industrial production (ipUS
t ), and the U.S. consumer price index (cpiUS

t )
such that yt = (rpt, prodt, invt, ip

World
t , ipUS

t , cpiUS
t )′. All variables are in logs. Känzig

uses monthly data from January 1974 to December 2017. Hence, his gross sample size
is 528. Accounting for the presample values required for LS estimation of the VAR(12)
model, we have a net sample size of T = 516. We use his sample period and data set
to facilitate a comparison with his results although there is some evidence that the
structural impulse responses may not be time-invariant across the full sample period
(see Bruns and Lütkepohl (2023)). We also emphasize, that Känzig (2021) actually
identifies the shocks with additional restrictions to ensure individually identified and
uncorrelated shocks. Thus, his identification approach is different from ours.

Känzig (2021) constructs one proxy (znews
t ) based on OPEC announcements about

their production plans. It is used to identify an ‘oil supply news shock’ (wnews
t ),

while the other proxy (zopst ) is based on work by Kilian (2008) and Bastianin and
Manera (2018) and captures the shortfall of OPEC oil production caused by exogenous
political events such as wars or civil disturbances and, hence, may be related to the
first proxy. Känzig considers the two proxies to exclude possible distortions due to
omitting effects related to his oil supply news shock.

Based on the shocks obtained by using the proxies one-by-one in an external proxy
VAR approach, we get the correlations between the proxies and shocks of interest pre-
sented in Table 1. Although the empirical correlation between the proxies is small,
there is evidence that the proxies are correlated as zero is not in the 95% bootstrap
confidence interval. However, the estimated correlation between the resulting struc-
tural shocks is small and not significantly different from zero. Moreover, the estimated
correlation matrix corresponding to Σw1z has off-diagonal elements not significantly
different from zero. Diagonality of the latter matrix already ensures identification
of the shocks, while the conditions (a) and (b) of Proposition 1 ensure that both
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Figure 1: Scatter plots of shocks for oil market example.

approaches provide identical impulse responses. Given that the conditions of Propo-
sition 1 for using the augmented model without additional identifying assumptions
are roughly satisfied if we ignore that there may be some small correlation between
the proxies, the impulse responses may be expected to be very similar.

In Figure 1 we show scatter plots of the shocks obtained from the external proxy
VAR (ŵ1t(PVAR)) and the two versions of the augmented VAR approaches with and
without lagged proxies in the yt equations (ŵ1t(augVAR) and ŵ1t(augVAR

0)). Table
2 shows the corresponding correlations. Note that we have computed the augVAR
shocks using the relation (9). Obviously, the augmented VAR shocks are identical
(ŵ1t(augVAR

0) = ŵ1t(augVAR)) because they are equal to the same linear combina-
tions of the proxies, and corr(ŵnews

t (augVAR0), ŵops
t (augVAR0)) = corr(ŵnews

t (augVAR),
ŵops

t (augVAR)) = 0 by construction. Note that znews
t contains many zero elements,

leading to ŵnews
t (augVAR0) and ŵnews

t (augVAR) to take on a constant value for much
of the sample. In contrast, ŵnews

t (PVAR) varies across the full sample period. This
outcome illustrates the external proxy VAR’s ability to account for measurement
errors in the proxies rather than intending to measure the shock directly.

Pairs of corresponding shocks differ quite substantially between the external PVAR
and the augmented VAR approaches, although the conditions of Proposition 1 are
approximately satisfied. Given that these conditions are roughly satisfied, we would
expect similar estimates for the impact effects, B1, for the external PVAR and the
augmented VAR approaches. The reason for the difference in estimated shocks is that
for the external proxy VAR approach, shocks are recovered as linear combinations of
VAR residuals according to equation (2). For the augmented VAR approach instead,
the estimated shocks are linear combinations of the proxies themselves, as apparent
from equations (8) and (9). Note that, as a consequence, the ŵnews

t (augVAR) are
constant across parts of the sample while the ŵnews

t (PVAR) vary. It is therefore not

9



Table 2: Empirical Correlations of Shocks Obtained with Alternative Estimation
Procedures for Oil Market Example with 95% Bootstrap Confidence Intervals

ŵops
t (augVAR0) = ŵops

t (augVAR) ŵnews
t (augVAR0) = ŵnews

t (augVAR)
ŵops

t (PVAR) 0.172
(0.006, 0.320)

−0.009
(−0.080, 0.062)

ŵnews
t (PVAR) −0.015

(−0.130, 0.092)
0.225

(0.098, 0.346)

surprising that the correlation of ŵnews
t (PVAR) and ŵnews

t (augVAR) is low (see Table
2) despite the conditions of Proposition 1 being approximately satisfied and therefore
a similarity in impact effects of the shocks might be expected.

The impulse responses to the frist shock, the ops shock, obtained by the exter-
nal proxy VAR approach and the augmented VAR approach without lags of zt are
identical, as discussed in Section 2.3. Therefore we focus on the impulse responses of
the news shock and compare them for all three approaches in Figure 2. We follow
Känzig (2021) and consider shocks that increase the real oil price by 10% on impact.
As the conditions of Proposition 1 are (almost) satisfied, one would expect that the
responses to ŵnews

t (PVAR) and ŵnews
t (augVAR0) shocks are similar if restricting the

Az
i to zero in model (7) is not a severe restriction. In other words, one would expect

the impulse responses to be similar if the shocks are fundamental. As can be seen in
Figure 2, the responses to ŵnews

t (PVAR) and ŵnews
t (augVAR0) are indeed very similar.

We have also performed a standard Wald test of H0 : Az
1 = · · ·Az

p = 0. It returns a
value of 116.9 which corresponds to a p-value of 0.95 of a χ2 limiting distribution with
144 degrees of freedom. Thus, the null hypothesis is clearly not rejected.4 Although
this suggests that the shock may indeed be fundamental, it is clear that nonrejection
of a null hypothesis just means that the test may not have enough power to reject.
The null hypothesis may still be false. Actually, Plagborg-Møller and Wolf (2022)
find that the Känzig shocks may not be fundamental. For illustrative purposes we
nevertheless treat the shock as fundamental in the following.

In Figure 2 we also show the impulse responses corresponding to ŵnews
t (augVAR),

where the Az
i are not restricted to zero. Although the Az

i are not significally differ-
ent from zero as a group, they have a substantial impact on the estimated impulse
responses. First of all, the confidence intervals (in green color in Figure 2) are much
wider than the confidence intervals of the corresponding impulse responses estimated
with the other two approaches (in blue and red in Figure 2) which may be due to the
larger number of parameters in the model. The impulse responses also have partly
very different shapes and, hence, are likely to lead to very different interpretations of
the dynamics in the system. For example, the cpiUS index is much less persistent than
the response estimated with the other two methods. Thus, augmenting the model
with many additional insignificant parameters, may not be a good idea if the lagged
proxies are actually not needed in the yt equations. On the other hand, the differ-
ences in the impulse responses may be indicative for the lagged zt to be important in

4Based on a model yt = [ν,Az
1, . . . , A

z
p, A1, . . . , Ap]Xt + ut = DXt + ut or, for t = 1, . . . , T ,

Y = DX +U , we use the Wald statistic W = vec(D̂)′R′[R((XX ′)−1⊗ Σ̂u)R
′]−1Rvec(D̂) for testing

H0 : Rvec(D) = 0. Here D̂ = Y X ′(XX ′)−1 and R = [0pKK1×K , IpKK1
, 0pKK1×pK2 ].
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the yt equations in which case the PVAR and augVAR0 impulse responses would be
distorted.

We have also reversed the order of the proxies and hence the shocks such that
ŵnews

t is first and ŵops
t becomes the second shock. In Figure B.1 in Appendix B

we show the corresponding impulse responses of the oil production shortfall shock.
The results are qualitatively similar to those in Figure 2 in that the responses to
ŵops

t (PVAR) and ŵops
t (augVAR0) shocks are almost identical, while the responses to

ŵops
t (augVAR) have wider confidence intervals and are partly quite different from the

corresponding other two impulse responses.
As mentioned earlier, Känzig (2021) identifies the shocks with additional restric-

tions to ensure individually identified and uncorrelated shocks. Assuming that Σw1z

is a diagonal matrix, as suggested by the results in Table 1, such additional restric-
tions would be unnecessary in this case for fully identifying the shocks. Of course,
additional information can always be used to improve the related inference proce-
dures. For example, impulse responses may be estimated more precisely if additional
restrictions for the structural parameters are available. Because our objective is to il-
lustrate the theoretical results of Section 2, we do not consider alternative estimation
methods here.

3.2 U.S. TFP Shocks

Lunsford (2015) considers the dynamic effects of two types of TFP shocks on the U.S.
economy. He uses data from 1948Q2 to 2015Q2 which implies a gross sample size of
269 observations. His model contains K = 5 variables: GDP growth, employment
growth, inflation, consumption growth, and investment growth. There are two proxies
to identify K1 = 2 TPF shocks and the VAR model has p = 4 lags5 and a constant.6

The model was also considered by Arias et al. (2021).
The two proxies are meant to be related to shocks to consumption and investment

TFP. They are based on two utilization-adjusted TFP measures constructed by Fer-
nald (2014), one for the consumption sector excluding durable goods (consumption
TFP) and the second one for durable goods and equipment investment (investment
TFP). Consumption TFP and investment TFP are regressed on four lags of yt and a
constant and the resulting residuals are used as proxies zconst and zinvt , respectively.
The corresponding shocks will be denoted by wcons

t and winv
t , respectively.

In Table 3 we present the estimated correlations between the proxies and the
shocks of interest together with 95% bootstrap confidence intervals. The correlation
between the two proxies is 0.295 which is significantly different from zero. The re-
sulting shocks ŵcons

t (PVAR) and ŵinv
t (PVAR), obtained by the external proxy VAR

approach, are well correlated with their respective proxy and have no significant corre-
lation with the other proxy. For instance, ŵcons

t (PVAR) has correlation 0.582 with the
proxy zconst and correlation 0.011 with zinvt . The latter correlation is not significantly
different from zero in that zero is within its 95% bootstrap confidence interval. The
situation is similar for ŵinv

t (PVAR). Thus, we conclude that each proxy is correlated
with one shock only (Σw1z is diagonal). Hence, the shocks are identified without im-
posing further restrictions. Moreover, the estimated structural shocks ŵcons

t (PVAR)

5Lunsford (2015) states that he uses 3 lags. However, in a later revised version of the paper,
p = 4 is claimed. Thus, we use the latter lag length.

6The dataset is available at https://sites.google.com/site/kurtglunsford/research.
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Figure 2: Oil market example: Comparison of impulse responses of a wnews
t shock

estimated with a single proxy, znews
t , and by the augmented model with two proxies.

The shock is normalized to increase oil prices by 10 percent on impact. The confidence
intervals around the impulse responses are based on 5000 bootstrap samples.
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Table 3: Empirical Correlations of Proxies and Shocks for U.S. TFP Example with
95% Bootstrap Confidence Intervals

zconst zinvt ŵcons
t (PVAR) ŵinv

t (PVAR)
zconst 1 0.295

(0.175, 0.412)

zinvt 1

ŵcons
t (PVAR) 0.582

(0.493, 0.663)
0.011

(−0.113, 0.140)
1 0.025

(−0.125, 0.176)

ŵinv
t (PVAR) 0.015

(−0.131, 0.158)
0.445

(0.344, 0.539)
1

Table 4: Empirical Correlations of Shocks Obtained with Alternative Estimation
Procedures for U.S. TFP Example with 95% Bootstrap Confidence Intervals

ŵcons
t (augVAR0) = ŵcons

t (augVAR) ŵinv
t (augVAR0) = ŵinv

t (augVAR)
ŵcons

t (PVAR) 0.582
(0.493, 0.663)

−0.168
(−0.286,−0.036)

ŵinv
t (PVAR) 0.015

(−0.131, 0.158)
0.461

(0.355, 0.556)

and ŵinv
t (PVAR) are not significantly correlated. The estimated correlation of 0.025

has zero in the 95% confidence interval. Thus, in this example, one could justify the
assumption of uncorrelated shocks that are each correlated with one proxy only.

Because the proxies are correlated, the second shock, ŵinv
t (augVAR0), and its im-

pulse responses obtained from the augmented VAR approach in this case are expected
to be different from ŵinv

t (PVAR) as condition (b) of Proposition 1 is not satisfied (and
because the shocks are recovered from VAR residuals for the PVAR case and from
proxies for the augmented VAR case). The shocks are plotted against the exter-
nal proxy VAR shocks in Figure 3, where we have again used the augmented VAR
model with and without lags of the proxies in the yt equations for computing the
ŵt(augVAR) and ŵt(augVAR

0) shocks, respectively. As expected, ŵt(PVAR) are
correlated with but not identical to the corresponding shocks obtained from the aug-
mented VAR approach. Again, by construction, the two augmented VAR approaches
yield identical shocks.
The numerical correlations between the shocks estimated with the external proxy

VAR and augmented VAR approaches are presented in Table 4. The corresponding
shocks estimated with the different methods are correlated, but the PVAR and the
augmented VAR approach yield notably different shocks, as one would expect since
the proxies are correlated. The ŵcons

t (augVAR0) and ŵinv
t (augVAR0) are uncorrelated

by construction. The same is, of course, true for ŵcons
t (augVAR) and ŵinv

t (augVAR).
The impulse responses of the investment TFP shocks estimated by all three ap-

proaches are presented in Figure 4. Unlike in the previous example, the impulse
responses of the ŵinv

t (PVAR) (dotted line) and ŵinv
t (augVAR0) shocks (solid line) are

13
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Figure 3: Scatter plots of TFP shocks

now quite different, as expected. In some cases, impulse responses of the ŵinv
t (PVAR)

are not even covered by the confidence intervals around the impulse response esti-
mates obtained for ŵinv

t (augVAR0) and vice versa. Given that the proxies are corre-
lated and, hence, the conditions of Proposition 1 are not satisfied, this outcome is not
surprising. Again the impulse responses of ŵinv

t (augVAR) shocks (dashed line) are
partly quite different from those of the other shocks. Note in particular the response
of inflation which is even qualitatively different when the lags of proxies are included
in the model.

We have also reversed the order of the proxies and shocks and performed an
impulse response analysis with the consumption TFP shock being the second shock.
The impulse responses are presented in Figure B.2 in Appendix B. The general
picture in Figure B.2 is similar to that in Figure 4 in that the impulse responses of
the external proxy VAR approach partly differ from those obtained by the augmented
VAR approach without lagged proxies in the yt equations.

To investigate, whether this may also be driven by having a model with nonfun-
damental shocks, we have again applied a standard Wald test for Granger-causality
of the proxies. The test value is 81.1 which corresponds to a p-value of 0.0001 of the
limiting χ2 null distribution with 40 degrees of freedom. Thus, Granger-noncausality
is strongly rejected and, hence, the shocks of interest may not be linear transforma-
tions of the ut which may contribute to the clear differences in some responses to
ŵinv

t (PVAR) and ŵinv
t (augVAR0) shocks in Figures 4 and B.2. Thus, this example

illustrates that the conditions of Proposition 1, in this case notably the fundamen-
talness condition (a), are crucial for getting properly identified impulse responses by
the external proxy VAR methodology without further assumptions.
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Figure 4: TFP example: Comparison of impulse responses of a winv
t shock estimated

with different methods. The investment TFP shock is normalized to increase invest-
ment TFP by 1 percent on impact. The confidence intervals around the impulse
responses are based on 5000 bootstrap samples.
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4 Conclusions

When instruments are used in a proxy VAR study to identify a single shock or a set
of shocks, a couple of alternative approaches for estimating the structural parameters
are in common use. The first one is based on the covariance of the proxies and
the reduced-form residuals and another one augments the VAR by the proxies. We
have pointed out important differences and similarities between these approaches
for the case of multiple proxies. Thereby, we not only provide some new insights for
researchers using multiple proxies to identify a set of shocks but also generalize results
that were previously known for the case of identifying a single shock only.

In general, both approaches for identifying multiple shocks by a set of proxies
have to be complemented with additional identifying assumptions in order to prop-
erly identify the shocks of interest individually. However, if there are exactly as many
proxies as there are shocks to be identified and if the proxies are mutually uncor-
related, and each of them is correlated with a single shock only, then no additional
information is needed to fully identify the shocks of interest individually. If the prox-
ies are not Granger-causal for the variables of the VAR model, the impulse responses
obtained with the two alternative estimation approaches are identical in population
and may be very similar if in the augmented VAR no lags of the proxies are included.
If the lagged proxies are nevertheless included in the model, the increased estimation
uncertainty due to the additional parameters in the model may distort the impulse
responses.

We consider two examples to illustrate these theoretical results. The first one
studies the impact of oil market shocks on the economy and the second one considers
two different types of TFP shocks and their impact on the U.S. economy. In the first
example, the conditions for identified impulse responses are nearly satisfied and the
shocks estimated by the external proxy and the augmented VAR approaches are very
similar, if no lagged proxies are included in the equations for the variables of inter-
est. Dropping the lagged proxies in this example is supported by the nonsignificant
outcome of a Granger-causality test. If nevertheless lags of the proxies are included
on the right-hand side of the VAR model, the additional estimation uncertainty due
to model augmentation is reflected in much wider confidence intervals around the
impulse responses and quite different impulse response estimates that may lead the
researcher to draw different conclusions regarding the dynamics of the model. Thus,
the example illustrates that it may not be a good idea to include unnecessarily many
variables in the VAR model.

In the second example, the proxies are correlated and are also found to be Granger-
causal for the variables of the original VAR model. Therefore the estimates obtained
from the external proxy VAR approach are different from those of the augmented VAR
approach and may be distorted. In contrast, the augmented VAR impulse responses
may still be valid.

Our results imply the following strategies for applied work. If the shocks can be
thought of as linear combinations of the proxies, then the augmented VAR approach
may be useful. If, however, the proxies are better thought of as shocks measured
with error, then the external proxy VAR approach is perhaps more suitable. If the
conditions of Proposition 1 are satisfied and the researcher is interested only in the
impulse responses, then s/he is free to choose between the external proxy VAR and the
augmented VAR approaches because they imply identical impulse responses under the
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conditions of Proposition 1. Finally, if the proxies are Granger-causal for the variables
of the model, then using the augmented VAR approach with lags of the proxies in the
model is called for and the two approaches will provide different shocks and impulse
responses.

In practice, one may also want to consider alternative estimation methods which
may be more efficient or account for weak instruments. Also Bayesian methods can be
considered instead of the frequentist methods mentioned in this study. We have not
discussed those methods here because the objective of this study is to raise awareness
of the theoretical relations between external proxies and internalizing them. Con-
sidering the implications for the various possible estimation methods for proxy VAR
analysis may be an interesting topic for future research.

A Proof of Proposition 1

Proposition 1 follows from the following matrix result.

Lemma 1. Let Σ11 be a symmetric positive definite (N × N) matrix, Σ22 be a
symmetric positive definite (K×K) matrix, and Σ21 a (K×N) matrix such that the
((N +K)× (N +K)) matrix

Σ =

[
Σ11 Σ′

21

Σ21 Σ22

]
is positive definite. Then the lower-triangular Cholesky decomposition of Σ is

chol(Σ) =

[
chol(Σ11) 0

Σ21chol(Σ11)
−1′ G

]
, (A.1)

where G = chol(Σ22 − Σ21Σ
−1
11 Σ

′
21), i.e., GG′ = Σ22 − Σ21Σ

−1
11 Σ

′
21. □

Proof of Lemma 1. The lemma follows by multiplying the right-hand side of equa-
tion (A.1) by its transpose and noting that chol(Σ11)

−1′chol(Σ11)
−1 = Σ−1

11 . □

Using this Lemma, it is easy to prove Proposition 1.

Proof of Proposition 1. Setting Σ11 = Σz and Σ21 = E(utz
′
t) = E (ut(zt − E(zt))′)

and using that Σz is a diagonal matrix and, hence, chol(Σz)
−1 = chol(Σz)

−1′, Lemma
1 implies that the lower-left hand (K ×K1) block of chol(Σaug

u ) is E(utz
′
t)chol(Σz)

−1.
The latter matrix is equal to B1Σw1zchol(Σz)

−1 according to the relevance and exo-
geneity conditions (3) and (4) (see also expression (5)). Thus, Proposition 1 follows
by noting that chol(Σz)

−1 is a diagonal matrix. □

We also state the following straightforward implications of Lemma 1 for future
reference.

Corollary 1. The first column of chol(Σ) is a multiple of the first column of Σ.
More precisely, denoting the upper left-hand element of Σ by σ11, the first column of
chol(Σ) is 1/

√
σ11 times the first column of Σ. □
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Corollary 2. If Σ11 in Proposition 1 is a diagonal matrix, then the first N columns
of chol(Σ) are multiples of the corresponding columns of Σ. More precisely, denoting
the i-th diagonal element of Σ11 by σii, the i-th column of chol(Σ) is 1/

√
σii times

the i-th column of Σ for i = 1, . . . , N . □

Proof of Corollary 2. The corollary follows by noting that, for a diagonal ma-
trix Σ11 = diag(σ11, . . . , σNN), σii > 0, the Cholesky decomposition is chol(Σ11) =
diag(

√
σ11, . . . ,

√
σNN). □
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B Additional Impulse Responses
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Figure B.1: Oil market example: Comparison of impulse responses of a wops
t shock

estimated with a single proxy, zopst , and by the augmented model with two proxies.
The oil production shortfall shock is normalized to decrease oil production by 1 per-
cent on impact.The confidence intervals around the impulse responses are based on
5000 bootstrap samples.
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Figure B.2: TFP example: Comparison of impulse responses of a wcons
t shock esti-

mated with different methods. The consumption TFP shock is normalized to increase
consumption TFP by 1 percent on impact. The confidence intervals around the im-
pulse responses are based on 5000 bootstrap samples.

21



References

Angelini, G. and Fanelli, L. (2019). Exogenous uncertainty and the identification of
structural vector autoregressions with external instruments, Journal of Applied
Econometrics 34: 951–971.

Arias, J. E., Rubio-Ramı́rez, J. F. and Waggoner, D. F. (2021). Inference in Bayesian
Proxy-SVARs, Journal of Econometrics 225: 88 – 106.
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