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Abstract 
 
We analyze how a major negative shock to the producers of fossil fuels may lead to a shift from 
dirty to clean R&D along the supply chain. First, we develop a theoretical framework of directed 
technical change, showing that adjustment costs in R&D activity can lead fossil energy sector 
suppliers to shift their R&D activity towards clean innovation more than other firms, as a 
consequence of a negative oil price shock. Second, we investigate the impact of a major drop in 
the oil price in 2014 on clean R&D. Relying on rich firm level trade data, we propose a novel 
method of identifying firms’ exposure to the price shock. We find that more exposed firms 
increased their clean R&D investments more than less exposed firms. Our findings contribute to 
the understanding of the drivers of clean technological change, which is vital to assess the 
effectiveness of different climate policy measures, including carbon pricing. 
JEL-Codes: D250, F180, O310, Q550, Q580. 
Keywords: clean innovation, supply chains, carbon pricing. 
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1 Introduction

The transition from fossil fuels to clean energy requires a large-scale shift in technolog-
ical development from fossil to clean technologies. A major challenge to policy makers is
to incentivize investments in clean technologies. In this paper we ask whether leveraging
the technological capabilities present in the fossil energy supply chain can be part of the
solution. Specifically, we investigate the extent to which firms that supply inputs to oil
producers react to a negative oil price shock by switching their resources from dirty to
clean research and development (R&D) activities.1

While there is an extensive literature investigating how clean R&D responds to changes
in energy prices, the focus has generally been on the effects of increased fossil energy
prices, which strengthens incentives for clean innovation through higher demand for re-
newable energy and clean technologies. What has received less attention in the literature
to date, is whether reduced fossil energy prices may induce increased investments in clean
R&D through reallocation of resources in the fossil energy supply chain. Moreover, there
is little empirical evidence on the role of within-firm reallocation in shifting from fossil
to clean technologies.

Figure 1: An oil price shock and the share of firms with clean R&D
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price until Q1 of 2015, and the oil future price for the remaining
time period. The sample covers the years 2007 to 2017.

Our paper is motivated by a striking empirical finding, shown in Figure 1. The figure
depicts a sharp increase in the share of firms with clean R&D following a fall in the oil

1Clean R&D refers to R&D expenditures directed towards renewable energy or other environment-
related energy. More details can be found in Section 2.2.
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price. The main contribution of the paper is to show that lower profitability in the fossil
energy sector can lead to reallocation of R&D resources within firms in the supply chain
and trigger a shift towards clean innovation.2

We start by developing a theoretical framework building on the literature on directed
technical change, and in particular on Acemoglu et al. (2012). In Acemoglu et al. (2012),
a fall in the fossil energy price will give an incentive for firms to increase their clean R&D
activity. We introduce within-firm dynamics by adding two key features to the model,
which give rise to additional responses to price changes. These extensions are motivated
by three stylized facts based on the rich data set at hand: First, in the aftermath of a large
negative shock to the oil price in 2014, the share of firms in the oil producers’ supply chain
that conducts clean R&D activity increases sharply. Second, there is strong persistence
in R&D activities at the firm level over time.3 Third, the majority of the increase in
clean R&D after the shock comes from firms that also have dirty R&D investments.
Summarizing, these facts suggest that there is a non-trivial relationship between clean
and dirty R&D, and that within-firm dynamics may play a role in explaining firms’
reactions to changes in relative energy prices.

In the first extension to the model, we formalize the idea of adjustment costs for R&D
activity proposed by Bloom et al. (2013b). The presence of adjustment costs implies
that in the aftermath of a negative shock to expected returns to dirty innovation, firms
that are more exposed to the shock will face a stronger incentive to divert their R&D
activities towards clean innovation. In the second extension, we allow for spillovers from
the more mature, i.e., dirty, R&D activity towards clean R&D. This extension works in
the opposite direction: After a negative shock to the returns to dirty innovation, the
presence of spillovers will incentivize firms exposed to the shock to scale down both dirty
and clean R&D. The theoretical model allows us to develop a set of predictions which we
take to the data to determine which of these forces dominate. We do so by studying the
impact of a negative shock to fossil energy prices on clean R&D activity in the supply
chain of fossil energy producers.

Our empirical analysis exploits a large, negative shock to the current and future price
of oil, as oil prices dropped by about 60 per cent in the latter half of 2014. This quasi-
natural experiment allows us to study the dynamics of resource reallocation within firms
that supply the oil industry. We use detailed micro data from Norway. The oil industry

2Examples of green technology areas where capabilities and knowledge originating in the oil sector
are particularly relevant include wind and geothermal energy. As an example, the U.S. Department of
Energy launched an initiative in September 2024 called “Geothermal Energy from Oil and Gas Demon-
strated Engineering”, specifically directed at “leveraging the extensive knowledge, technology, skill, and
experience of the oil and gas sector” to develop the geothermal industry (see https://www.geode.energy
for more information).

3This finding is in line with existing empirical evidence, see e.g. Bloom (2007).
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holds a central role in the Norwegian economy, and accounted for around 60 per cent of
Norwegian exports and 14 per cent of private sector employment in 2014.4

To estimate the causal effect of the oil price shock on upstream firms’ clean R&D
investments, we propose a novel method for identification where we rely on firm-level
trade data to compute a measure of firm exposure to the oil price shock. This firm-level
exposure measure allows us to compare firms in the same industry that have similar
characteristics at baseline, but that are differentially exposed to the shock due to their
product mix. We find that firms that are more exposed to the 2014 fall in oil prices
increase their clean R&D efforts more than firms that are less exposed to the shock. This
is true if we look at the likelihood of investing in clean R&D, the share of clean R&D, or
the value of clean R&D expenditures. We also document that more exposed firms have
higher probabilities of starting new investments in clean R&D, and of switching from
non-clean to clean R&D.

Aiming to understand the mechanisms at work, we investigate whether the firms we
identify as being more exposed to the negative oil price shock experience subsequent
decreases in sales and profits. This is indeed the case, as sales per employee decreases,
as does profits. We also explore whether the exposed firms simply intensify their R&D
investments across the board, but this is not the case. We find no effect on total R&D
investments, the number of R&D employees or on the share of R&D employees in total
employment. Our empirical findings support the hypothesis that within-firm reallocation
of R&D investments lead upstream firms already engaged in dirty innovation to redirect
their innovation efforts towards clean technologies in response to a negative shock to
future profits in the downstream industry.

Our findings imply that a negative shock to profitability in the fossil energy sector
may propagate through the supply chain and lead to relatively stronger reallocation of
resources from fossil to clean R&D among the exposed firms. Based on our theoretical
framework, we argue that the results may be driven by within-firm adjustment costs
in R&D activity. Our results have implications for the understandings of the effects of
climate policy in general, and carbon pricing, specifically. As carbon pricing will lower
fossil energy sector profitability, our findings suggest an additional channel through which
carbon pricing will shift resources from fossil to clean R&D activity.

The paper relates to several strands of literature. The theoretical framework builds
directly on the well-established literature on directed technical change and climate, in
particular Acemoglu et al. (2012). Dechezleprêtre and Hémous (2022) provide a recent
review.5 We add to this literature by including within-firm reallocation of R&D invest-

4See https://www.norskpetroleum.no/en/production-and-exports/exports-of-oil-and-gas/ and
Prestmo et al. (2015).

5Acemoglu et al. (2012) underline the key role of R&D subsidies in climate policy, in addition to
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ments, in a model allowing for innovation to take place both in clean and dirty technology
at the same time. Our paper shares the feature of parallel innovation in both sectors with
Fried (2018), who presents a dynamic general equilibrium model with endogenous inno-
vation, which is calibrated using historical oil shocks. Our paper complements Fried’s in
several ways. First, by modeling a specific channel through which a negative oil price
shock induces within-firm reallocation of R&D investments. Second, by providing a well-
identified empirical investigation of the effects of a negative shock to the expected future
profits from oil extraction.

On the empirical side, the paper contributes to the literature investigating the re-
lationship between relative energy prices and clean innovation. The findings of Newell
et al. (1999) indicate that higher energy prices will induce more rapid development of
energy-saving technologies. Similarly, Popp (2002) finds that higher energy prices are
associated with a significant increase in energy-saving innovations at the industry-level.
Aghion et al. (2016) show that firms in the auto industry tend to innovate more in clean
and less in dirty technologies when they face higher tax-inclusive fuel prices. A similar
pattern, with a positive relationship between energy prices and energy-saving innovation,
is also found by Crabb and Johnson (2010), Calel and Dechezleprêtre (2016), Ley et al.
(2016) and Hu et al. (2023), while Acemoglu et al. (2023) shows how lower natural gas
prices are generally negatively related to clean innovation activity. Dugoua and Gerarden
(2024), Dugoua and Dumas (2021) and Dechezleprêtre and Kruse (2022) provide recent
contributions to the literature on energy prices, environmental policies and clean innova-
tion.6 The main focus of the existing empirical literature has been on the demand-side
effect of higher fossil energy prices on clean innovation. We focus on the supply side effect
of lower fossil energy prices, a channel which has received less attention in the literature
to date.

The paper also contributes to the literature on the role of carbon taxation in the green
transition.7 We show that carbon pricing may have a positive impact on the development

a carbon price, when there is path dependency in technical change. Acemoglu et al. (2016) estimate a
similar model using micro data from US energy markets and conclude that, although the carbon tax plays
an important role, subsidies for clean R&D are key to achieving the shift from dirty to clean technologies.
Similar conclusions are drawn in Greaker et al. (2018). The key role of R&D subsidies in optimal climate
policy is also underlined by Casey (2024). Hart (2019) use a model structure closer to that normally
used in integrated assessment models of climate change (see e.g. Golosov et al. (2014)), resulting in a
more important role for the carbon price. By allowing for complementarities between technology and
energy inputs in production, Lemoine (2024) reaches a similar conclusion with regards to the importance
of sufficient carbon pricing.

6See Popp et al. (2010) and Popp (2019) for reviews of the literature on environmental policy and
innovation more broadly.

7See Golosov et al. (2014) for a key contribution to the literature on optimal carbon pricing, and
Timilsina (2022) and Köppl and Schratzenstaller (2023) for reviews of this literature. Important con-
tributions to the broader literature on optimal climate policy are, among others, Gerlagh et al. (2009),
Stern and Valero (2021) and Blanchard et al. (2023).
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of clean technologies not only through increased demand for these technologies, but also
through increased supply, as profitability falls in the fossil energy sector.

Lastly, the paper speaks to the literature on shock propagation in networks. Bar-
rot and Sauvagnat (2016) identify firm-specific shocks among supplier firms, and find
that their domestic buyers experience substantial losses as a consequence. Dhyne et al.
(2022) focus on the opposite direction and examine how suppliers are affected when their
buyers are hit by shocks. Most of this literature is focused on short-run effects of short-
run shocks; we contribute by focusing on a large and persistent shock and its effect on
investments.

The paper is organized as follows. In Section 2, we describe the context and data used
for the empirical analysis, and present a set of stylized facts. In Section 3, we present
the theoretical model of directed technical change with within-firm adjustment costs and
technology spillovers. The empirical strategy is described in Section 4, while the empirical
results are presented in Section 5. In Section 6, we provide some concluding remarks.

2 Data and Stylized Facts

In this section, we first describe the large, negative oil price shock that occurred in the
second half of 2014. We will exploit this large decline in the profitability of fossil energy
production to identify the consequences for investments in clean R&D.8 We then present
the rich data at hand, and document three stylized facts, which guide our theoretical
model and motivate our empirical design.

2.1 The oil shock

Our analysis relies on a quasi-natural experiment created by the large and sudden drop
in the oil price. After peaking at $107.95 a barrel on June 20 2014, the oil price plunged to
$44.08 a barrel by January 28, 2015, a drop of 59.2 percent in a little over 7 months. The
main reason was a combination of an oversupply in the market and low global demand
for oil. The increased production of shale oil in the US increased substantially, while
the OPEC countries contributed to the oversupply by maintaining high production levels
despite the falling price. At the same time, the economic slowdown in China and Europe
reduced the global demand for oil, further exacerbating the supply-demand imbalance.

The result was a large, negative shock to the current and future price of oil. Figure 2
shows the development of the price of brent oil over the time period we study. As can be
seen from the graph, oil prices plummeted starting in June 2014. Firms did most likely

8Lorentzen (2024) studies the impact of the same shock on sectoral reallocation of workers and
subsequent effects on earnings in destination sectors.
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not expect this dramatic decline to happen. In Figure 3 the dotted line shows the future
price of oil in Q2 2014, just before the price drop started. It shows that the price was
expected to remain high for the coming years. The dashed line on the other hand, shows
the future price of oil as estimated in Q4 of 2014, and clearly illustrates that after most
of the shock had materialized, markets anticipated that prices would remain low for the
foreseeable future.

The drop in future prices is potentially important for our analysis, as the decisions
firms are making about investments in R&D are forward-looking in nature, and firms are
unlikely to respond much to temporary fluctuations in the price. The oil price is set in
the world market, and is completely exogenous from the perspective of firms in a small
open economy. Hence, the 2014 oil price drop serves an ideal quasi-natural experiment
that allows us to study resource reallocation within firms that are exposed to the shock
through their supply linkages to the oil extraction industry.

The fall in the oil price in 2014 had a substantial negative impact on expected output
growth in the firms in Norway supplying the oil extraction industry. Figure 4 reports
the results from the business sector survey conducted regularly by the Norwegian Central
bank for the period January to August 2015. According to the survey, expectations varied
significantly across industries, with a positive outlook in most sectors, while the industries
serving and supplying the oil industry stand out, with a very negative outlook for both
domestic sales and exports.9

9It should be noted that the technology, intermediates and capital goods used for offshore extraction
of oil differs substantially from the technology used for onshore oil extraction. It is therefore unlikely
that the firms supplying the Norwegian offshore industry experienced increased demand for their product
as a consequence of the positive shale oil shock in the US. We can see this reflected in Figure 4.
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Figure 2: Oil price: Brent Blend
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Figure 3: Crude Oil Price and Oil Future Prices
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Figure 4: Expected Output Growth
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Note: The figure shows expected annual output growth the coming six months by
sector in the Norwegian economy based on the Norwegian Central bank regular
survey of the business sector. Source: The Norwegian Central Bank Monetary
Policy Report 3/2015.

2.2 Data

Our empirical analysis is based on five data sets. The first data set is administrative
firm register data from Statistics Norway, which covers the universe of firms across all
sectors. The firm register provides information on the date of the entry and exit of each
individual firm, allowing us to calculate the firm’s age. The register also holds data on
firms’ number of employees.

The second data set is income statement and balance sheet data from Statistics Nor-
way for all private non-financial joint-stock companies. Since 90 percent of Norwegian
firms with one or more employees are joint-stock firms, this means that it covers almost
the entire universe of firms in Norway. The income statement and balance sheet data are
based on data from annual accounting reports that, according to Norwegian law, must
be filed with the public Register of Company Accounts.

The third data set is the R&D survey. The survey provides information about the
value of R&D expenditures, the number of and the wage bill of R&D personnel. Impor-
tantly, the survey also gives information about the share of R&D related to clean energy.
Specifically, firms are asked to report what percentage of R&D expenditures are directed
towards renewable energy or other environment-related energy. We combine these two

9



categories to create a measure of clean innovation.10 More detailed descriptions of the
R&D data can be found in the Appendix, Section A.

The fourth data set we use is product-level trade data for the universe of firms in
Norway. The data is at the HS8 product-level and covers all goods that are imported or
exported by Norwegian firms.

The fifth data set provides complete information on all direct support from the gov-
ernment for R&D and innovation to firms.11 We link all data sets with a unique firm
identifier.

2.3 Sample selection

For our analysis, we focus on all joint stock firms in manufacturing (defined by the
NACE industries #10 to 35) that are covered by the R&D survey. We do not include
the firms that were directly hit by the fall in oil price, namely the oil producers. This
gives us an unbalanced panel of approximately 1,300 firms per year. We focus on the
manufacturing industry, as these firms are responsible for the vast majority of trade in
goods. We use information about which goods are imported by oil producers (NACE
06) to construct our exposure measure as described below in Section 4.1. Our sample is
constructed to cover the years 2007 to 2017. The years 2007-2013 define the pre-shock
period, and 2014-2017 define the post-shock period.

2.4 Stylized facts on R&D and clean R&D

We present three stylized facts on the development of R&D and clean R&D in the
manufacturing industry in the aftermath of the oil price shock that motivates our analysis
and which will guide our theoretical model.

Fact 1: After the oil price shock, the share of firms investing in clean R&D increased
both in absolute and relative terms. In 2013, the share of firms with positive R&D in our
sample was 40 percent and the share of firms investing in clean R&D was only 5 percent.
Fast-forward to 2017, and the numbers have increased to 46 percent for overall R&D,
whereas the share of firms investing in clean R&D has more than doubled, to 11 percent.
Figure 5 shows the increase in the share of firms with clean R&D expenditure relative to
all firms engaged in R&D.

10Firms are also asked about the percentage of R&D expenditures that are directed towards energy
efficiency. We choose to leave this category out, as it is likely to capture process innovations related to
reducing the firm’s own emissions as well as innovation related to technologies that will reduce emissions
of the downstream firms.

11For more details see https://www.ssb.no/en/teknologi-og-innovasjon/forskning-og-innovasjon-i-
naeringslivet/statistikk/naeringspolitiske-virkemidler.
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Figure 5: Share of R&D firms with clean R&D
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Note: The table shows the share of firms that report investments in clean
R&D relative to all firms engaged in R&D.. The sample covers the years
2007 to 2017.

Fact 2: The majority of the increase in clean R&D comes from firms that have on-
going investments in non-clean R&D. Figure 6 shows how the aggregate change in clean
R&D can be decomposed into 3 categories: firms starting to do R&D (including new
entrants), firms who stop doing R&D (including exiting firms), and continuing R&D
performers. For each of these categories, we split firms into two groups, depending on
whether their R&D investments are 100 percent clean or a combination of clean and
non-clean. As the graph shows, the majority of the increase in clean R&D after the oil
price shock comes from firms with both clean and non-clean R&D.
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Figure 6: Decomposition of Clean R&D

Note: The figure shows the annual percentage change in clean R&D – decomposed
according to the status of the firm, i.e. whether the firm starts, stops or continues
investment in both clean and dirty R&D (“mixed”), or starts, stops or continues
investment in just clean R&D. The sample covers the years 2007 to 2017.

Fact 3: There is persistence in R&D activities at the firm-level. A firm that has
positive R&D expenditures in one period, has a 90 percent probability of continuing
in the subsequent period. This inertia in R&D activities is in line with the empirical
findings of Bloom (2007), who finds that R&D investments are highly persistent across
business cycles, and supports the hypothesis that the rescaling of R&D activity is subject
to adjustment costs.

Table 1: Annual transition rates

Status year t Status year t+1

No R&D R&D

No R&D 0.862 0.138
R&D 0.098 0.902

Note: The table shows transition rates for firms in
the baseline sample and covers the years 2007 to
2017.

These stylized facts indicate that within-firm dynamics in R&D activity may be rele-
vant for understanding reallocation of resources between clean and dirty R&D in response
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to changes in relative prices. Based on these observations, in the next section we intro-
duce within-firm spillovers and adjustment costs into a framework of directed technical
change.

3 A Theoretical model of Directed Technical Change

In this section, we develop a stylized model of directed technical change, to guide
our empirical analysis of the impact of a permanent drop in the price of fossil fuels on
investments in clean R&D. We build on Acemoglu et al. (2012), and develop a model that
allows us to investigate how a negative price shock to a dirty final good may propagate
through the supply chain and induce a diversion of R&D investments from dirty to clean
R&D among input producers. The model allows us to illustrate how firms supplying
inputs to the fossil energy industry may react differently to a drop in the oil price as
compared to firms that do not deliver their inputs to the fossil fuel producers.

Informed by the three stylized facts presented above, we extend the model by Ace-
moglu et al. (2012) by allowing firms to differ in their innovation productivity with respect
to dirty and clean R&D, implying that firms will make heterogenous choices regarding
R&D investments. Moreover, we introduce two types of within-firm dynamics in the
model. First, we allow for within-firm spillovers from the more mature R&D activity
(dirty) to the less mature (clean) activity. 12Second, in line with Bloom et al. (2013b),
we include adjustment costs in the R&D activity within the firms. We model adjustment
costs by including a convex cost of rescaling the size of the R&D activity within the firm.

3.1 The Model

Consider a discrete-time, infinite-horizon economy where two final goods, j = c, d, are
produced in each time period. The clean good, denoted by subscript c, in quantity Yct,
and the dirty good, denoted by subscript d, in quantity Ydt. We consider a small, open
economy and therefore the final-good prices are exogenously given.

Each final good is produced by competitive producers using a continuum of inputs
that are specific to the type of final good produced, with the production technology:

Yjt =
∫ 1

0
A1−α

jit xα
jitdi, j = c, d, (1)

with α ∈ (0, 1) where xjit is the quantity of input ji . Ajit denotes the productivity of

12Between-firm spillovers are well-documented in the literature, see specifically Bloom et al. (2013a).
Many of the mechanisms proposed in this literature are likely present also within firms. Nix (2020)
proposes mechanisms that may lead to a similar pattern within firms.
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the input. We abstract away from the use of other inputs such as labor in the final good
sector, in order to keep the framework as simple as possible.

There is a mass of 1 firms that can produce inputs. The unit cost in production of
inputs is constant and independent of both type and productivity of the input, given by
ϕ. Without loss of generality, we follow Acemoglu et al. (2012) and let ϕ = α2.

Innovation takes place within the input-producing firms. Define Ajt as the aggregate
state of the technology for the final good type j at time t across all firms producing
inputs, with:

Ajt ≡
∫ 1

0
Ajitdi. (2)

A successful innovation for input xjit will increase the productivity of the input, Ajit, by
a common factor (1 + γ) > 1. Let subscript k denote a firm k. When an innovation
for input ji happens in firm k, the firm obtains a one-period patent and is allocated the
monopoly rights for input xji for the current time period. We follow Acemoglu et al.
(2012) and assume that for all inputs with no successful innovation, the monopoly rights
are allocated to a random firm.

To innovate, the firms must hire scientists to conduct R&D activity. There is a mass
of 1 scientists available in the market, and they have skills that can be used for both
clean and dirty R&D. A firm hiring a scientist chooses whether to put a scientist to work
on dirty or clean R&D. A scientist that is hired for type-j R&D activity is randomly
assigned to an input of that type. The input producers act competitively in the market
for scientists. Let skjt be the number of scientists hired by firm k for type-j R&D activity
in period t, and let skt = skdt + skct, be the total number of scientists hired by firm k in
period t.

Firms are heterogeneous and the probability of innovation of type j in firm k depends
on a firm and final good specific innovation productivity, ηkj ∈ {0, ηj} with ηj ∈ (0, 1), and
on a concave innovation production function gj(·). We allow for within-firm technological
spillovers from the more mature (dirty) R&D activity towards the less mature (clean)
R&D activity. For the relevant range of skct and skdt, the clean-innovation production
function is therefore given by gc(skct, skdt),with gc(0, skdt) = 0, gc(1, 1) ≤ 1, ∂gc/∂skct >

∂gc/∂skdt ≥ 0, ∂2gc/∂s2
kct < 0, ∂2gc/∂s2

kdt = 0 and ∂2gc/∂skct∂skdt ≥ 0, while all third
derivatives are zero.

For dirty innovation, only the number of scientists working on dirty R&D is relevant,
since there are no technological spillovers from the less mature towards the more mature
R&D activity. The dirty-innovation production function is given by gd(skdt), with gd(0) =
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0, gd′(·) > 0, gd′′ < 0, gd′′′ = 0 and gd(1) ≤ 1.13

Firms will not engage in R&D of type j if their innovation productivity for that type
is zero. We can divide the input producers into four groups, depending on ηkc and ηkd:

• Group I: ηkc = ηc, ηkd = 0. Engage only in clean R&D.

• Group II: ηkc = 0, ηkd = ηd. Engage only in dirty R&D.

• Group III: ηkc = ηc, ηkd = ηd. Engage in both types of R&D.

• Group IV : ηkc = 0, ηkd = 0. Are not active (can be disregarded).

Let λl ∈ [0, 1] denote the share of firms that belong to group l, with λI +λII +λIII +λIV =
1.

We further assume that the rescaling of R&D activity is subject to adjustment costs.
We think of these adjustment costs as capturing not only direct costs of firing scien-
tists, but also other economic and behavioral responses that might arise within a team
of highly specialized workers when downscaling is considered. For instance, managers
might be reluctant to let go of scientists with specialized skills that will be hard to re-
place. They may also prefer to avoid disrupting the dynamics within a team and rather
keep a well-composed team intact. This “team cohesion effect” occurs when the collective
performance of a team is greater than the sum of its individual members’ performances,
and removing one or more of the scientists will lead to productivity losses for the remain-
ing team members. Managers might also be worried about a “layoff contagion effect”,
where laying off one scientist will make colleagues worried about their own job security.14

Managers might also care about their own careers and be reluctant to let their own teams
shrink, even if that contradicts the best interest of the firm. To reflect such adjustment
costs, we include a convex cost of rescaling the size of the R&D activity within the firm.15

To keep the framework as simple as possible, the adjustment cost is separable from the
innovation productivity and given by:

Rk = c ·
(

skt − skt−1

skt−1

)2

, (3)

13To ensure an interior solution with respect to skjt to the problem of a firm with ηkj = ηj , we assume
limskdt→0 gd(skdt) = ∞ and limskct→0 gc(skct, skdt) = ∞.

14A related argument is that a team of workers may be of greater value than the sum of its individuals
in the labor market, as pointed to by a recent literature on co-mobility of workers and “aqui-hiring” (see
for example Marx and Timmermans (2017).) If managers take this into account, it might make them
less willing to lay off part of a team as it might make the rest of the team less productive, or induce
them to leave.

15The assumption of convex adjustment costs is standard in the labor market literature, see e.g.
Hamermesh (1995)
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for firm k, with c > 0. Note that a key to the results presented in the following is that the
cost of rescaling depends on the overall level of R&D activity in the firm, not on whether
the activity is related to clean or dirty inputs.

The aggregate productivity of type-j inputs will develop over time according to:

Act =
(

1 + γ
∫ 1

0
ηkcg

c(skct, skdt)dk
)

Act−1 (4)

Adt =
(

1 + γ
∫ 1

0
ηkdgd(skdt)dk

)
Adt−1 (5)

with
∫ 1

0 skt = 1 in equilibrium. Allocation of scientists will therefore drive the tech-
nological state of the economy in the long run. In the following, we make one further
simplifying assumption, namely that all input producers are myopic in the sense that they
do not take future adjustment costs into account when they make their R&D investment
decision.16 The value of potential innovation as a result of investment in R&D arises in
the current time period, and is of course included in the firms’ objectives.

3.2 Market Equilibrium

Let pjt denote the exogenous price of final good j in period t, while pjit denotes the
price of input ji. The producer of final good type j will choose inputs to maximize profits:

max
xjit

pjt

∫ 1

0
A1−α

jit xα
jitdi −

∫ 1

0
pjitxjitdi. (6)

Solving the maximization problem gives the downward-sloping demand for each input:

pjit(xjit) = αpjtA
1−α
jit xα−1

jit . (7)

The monopolistic producer of good xjit will maximize profits subject to the final good
producers’ demand for inputs. In equilibrium, production of, and profits related to, input
ji are given by

xjit =Ajitp
1

1−α

jt (8)

πjit =α(1 − α)Ajitp
1

1−α

jt (9)

16Forward-looking firms will take into account not only the current adjustment costs, but also those
expected to be incurred in the future. For a firm adjusting its R&D up or down, the expected future
adjustment costs provide an incentive to rescale somewhat quicker, relative to the optimal rescaling
for a myopic firm. However, as long as the future adjustment costs are discounted, the key effect of
including the adjustment costs on the firms’ decisions is captured in the myopic problem presented in
the following. Hence, we make the assumption about myopic behavior in order to keep the framework
as simple as possible.
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The expected within-period revenue from hiring a scientist for type-j R&D activity
for firm k in period t, denoted Ikjt, is given by:

Ikct =ηkcg
c(skct,skdt)

∫ 1

0
πcitdi = ηkcg

c(skct, skdt)α(1 − α)p
1

1−α
ct (1 + γ)Act−1 (10)

Ikdt =ηkdgd(skdt)
∫ 1

0
πditdi = ηkdgd(skdt)α(1 − α)p

1
1−α

dt (1 + γ)Adt−1 (11)

Because scientists are randomly assigned to a variety within the type they are hired
for, it is the aggregate input quality for that type, Ajt−1, that determines the expected
revenue from hiring.

Scientists are paid wage wt, and firm k thus hires scientists to solve the following
problem in period t:

maxskdt,skct

{
α(1 − α)(1 + γ)

(
ηkcp

1
1−α
ct Act−1g

c(skct, skdt) + ηkdp
1

1−α

dt Adt−1g
d(skdt)

)

−wtskt − c ·
(

skt−skt−1
skt−1

)2
}

,

(12)

subject to skt = skct + skdt.

We let the resulting demand for scientists from a firm k in group I, which only
conducts clean R&D activity, be given by sI

kct(pct, wt). Demand for scientists from firm k

in group II, which only conducts dirty R&D activity, is given by sII
kdt(pdt, wt), and demand

for scientists from firm k in group III, which conducts both types of R&D activity, is
given by sIII

kct (pct, pdt, wt) and sIII
kdt(pct, pdt, wt). The fourth group of firms does not conduct

any research and does therefore not demand any scientists. Equilibrium in the market
for scientists requires that the demand for scientists in each period t from each group of
input producers is equal to the supply of scientists, which we have set to one:

λIsI
kct(pct, wt) + λIIsII

kdt(pdt, wt) + λIIIsIII
kct (pct, pdt, wt) + λIIIsIII

kdt(pct, pdt, wt) = 1 (13)

We note that group I is not directly affected by a change in the price of dirty goods,
while group II is not directly affected by a change in the price of clean goods.

3.3 Comparative Statics

Let us now consider the effect of a fall in the price of the dirty final good on clean
innovationin upstream firms. Specifically, we want to compare the effect for a firm in
group III, that is engaged in both clean and dirty R&D, to that of a firm in group
I, that is only engaged in clean R&D. Because we want to compare otherwise similar
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firms, assume now that all firms have the same total number of scientists hired in the
previous period, i.e. skt−1 = st−1 for all k. To get at these effects, we must consider all
general-equilibrium effects in the model.

We show in the Appendix Section B that the direct effect of a fall in the price of the
dirty final good on demand for scientists is negative for the upstream firms in group II

and III, which supply the producers of the dirty final good with inputs: Their revenue
falls, and returns to dirty R&D innovation fall. As a consequence, these firms will reduce
their dirty R&D activity and thus their demand for scientists, which in turn leads to a
decline in wages (see equations 29, 32 and 37).The decline in wages will induce all firms
that are active in R&D, including the firms in group I, to expand their R&D activity
(see equations 33-36).

Firms in group III are active in both dirty and clean R&D. The impact of a price
shock for dirty goods on their clean R&D activities depends both on the wage effect,
which is also experienced by firms in group I, as well on within-firm allocation of R&D
investments related to technological spillovers and adjustment costs: The presence of
technological spillovers implies that reduced dirty R&D activity leads to lower marginal
productivity of scientists working on clean innovation. This in turn leads to reduced clean
R&D activity. Adjustment costs, on the other hand, imply that these firms increase the
resources they allocate towards clean innovation, relative to firms in group I, because
the net marginal cost of their clean R&D activity decreases as they downscale their dirty
R&D. In other words, the adjustment costs make firms shift some of their scientist from
dirty to clean R&D rather than firing them. The effect of a change in the price of the
dirty final good on the demand for scientists for clean R&D activity in group III depends
on what effects that dominate.

The following two propositions summarize our key conclusions regarding the relative
impact of a price shock for firms that only conduct clean R&D (group I ) and firms
active in both clean and dirty R&D (group III ), using the case without spillovers and
adjustment costs as a benchmark:

Proposition 1. When there are no within-firm technological spillovers, and there are no
adjustment costs, a drop in the price of the dirty final good, pdt, will induce the same
change in clean R&D in all firms engaged in clean R&D, independently of whether the
firms are also active in dirty R&D or not:

dsI
kct

dpdt

=dsIII
kct

dpdt

. (14)

Proof. All calculations and expressions are provided in the Appendix, Section B, see
specifically Equation 41. When ∂gc/∂skdt = ∂2gc/∂skct∂skdt = c = 0, it follows that the
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direct effect on clean R&D, the first term in Equation 39, is zero for firms in both groups.
Moreover, the indirect effect (the second term in Equation 39 and the full expression in
Equation 40) is the same across the two groups.

Proposition 2. If there are within-firm technological spillovers and adjustment costs,
and the effect of the adjustment costs dominates the spillover effect, firms engaged in
both dirty and clean R&D will respond to a fall in the price of the dirty final good by
increasing their clean R&D activity, compared to the firms only engaged in clean R&D:

dsIII
kct

dpdt

>
dsI

kct

dpdt

. (15)

If, on the other hand, the spillover effect dominates the effect of the adjustment costs,
the firms with both dirty and clean R&D activity, will respond to the price fall by reducing
their clean R&D activity relative to the firms only engaged in clean R&D activity:

dsIII
kct

dpdt

<
dsI

kct

dpdt

. (16)

Proof. See the Appendix, Section B, specifically Equation 41.
In the next section, we take these propositions to the data. It is worth noting that in

the theoretical framework, we deliberately focus on the intensive margin to avoid corner
solutions. We do this to highlight the key mechanisms that we propose, which would
hold also in a more complicated set-up allowing for corner solutions. In the empirics that
follow, we will also consider the extensive margin, i.e. not limit the analysis to firms that
were already conducting clean R&D before the shock, but also include firms that were
only conducting dirty R&D before the shock.

4 Empirical Strategy

The point of departure for our empirical analysis is the theoretical framework devel-
oped above. According to Proposition 2, the relative impact of an oil price shock on
exposed firms (group III ) relative to non-exposed firms (group I ) is ambiguous. It thus
remains an empirical question. To investigate this question we develop a novel measure
of identification which lets us exploit firms’ heterogeneous exposure to the shock in our
analysis.
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4.1 Identification: Measuring the exposure to the shock

To make progress towards estimating the causal effects of the oil price shock, we need
to identify which firms are exposed to the shock. The standard approach in the literature
has been to rely on sectoral input-output tables, which provide the share of production
in an industry i that is bought by industry j. However, this would not be satisfactory
for our purposes for two main reasons.

First, we are interested in the firm-level reaction to the shock, and we know from
a large literature in international trade that firms are very heterogeneous even within
narrowly defined industries. As we will describe below, our exposure measure shows that
there is a lot of variation in exposure within industries. This heterogeneity NB that would
be classified as either treated or control if we rely on sectoral input-output tables.

Second, if our treatment were defined at the industry-level, we would not be able to
control for any other contemporaneous shocks to individual industries.

Therefore, we instead develop a novel firm-specific exposure measure leveraging the
detailed trade data. We exploit the rich information we have about firm-level imports by
oil producers to identify which products they use in their production, and construct our
firm-specific exposure measure by following these steps:

1. Identify the HS8 products imported by the oil producing industry (NACE #6) in
the pre-shock period (2007-2013).17

2. Identify the firms in manufacturing that export products that are imported by the
oil producing industry (j ∈ o).

3. Calculate firm-level exposure xok as the share of products supplied to the oil industry
in each firm’s total export basket in 2013 as xok = ∑

j∈o xkjt/
∑

j xkjt for t = 2013.

More details on the construction and underlying assumptions are given in the Appendix,
Section C.

Measuring exposure to the shock in this way has some clear advantages compared to
using sector-level input-output tables. First, it captures the fact that the oil price shock
was a global shock. Compared to measuring the exposure only through domestic linkages,
we are capturing the extent to which firms are exposed to the oil price drop through
international trade. Second, and crucial for identification, it gives firm-level variation in
exposure. Compared to using sectoral input-output linkages, using our exposure measure
allows us to control for other, potentially time-varying, factors that are affecting all firms
in an industry.

17We use the whole pre-shock period to account for the fact that firms’ sourcing of capital goods will
be subject to lumpiness over time.
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Using our exposure measure does come at a cost, as it reduces the sample to only
goods-exporting firms in the manufacturing sectors, and we are therefore not able to
capture firms that trade in services. Moreover, our measure relies on the assumption that
a firm’s share of exports directed towards the oil producing industry is an appropriate
measure of the share of the firm’s activity devoted to these products.

Figure 7 highlights the importance of using a firm-specific measure. The box plot
describes the within-industry variation in the exposure measure for all of our manufac-
turing industries. The median of the exposure measure is shown by the line within the
box, and the box’s boundaries represent the first (Q1) and third (Q3) quartiles, indicating
the middle 50 percent of the data. The difference between Q3 and Q1 is the interquartile
range (IQR), and the whiskers extend from the box to the smallest and largest values
within 1.5 times the IQR from the quartiles, highlighting the range of the data. The
points outside this range are plotted individually as outliers, indicating data points that
differ significantly from the rest of the distribution.

The box plot shows that there is substantial variation in the exposure of firms within
practically all of the manufacturing industries. An alternative to our approach would be
to follow the commonly used classification from Statistics Norway, which defines industries
with at least 50 percent of its value of production directed to the petroleum sector to
be oil related.18 This would in practice mean that we would have classified all firms in
industries 25, 26, 27, 28, 30 and 33 as being affected by the shock, and firms in all other
industries as not affected. We find it reassuring that these sectors also stand out as being
strongly affected with our approach. However, as Figure 7 shows, there is substantial
exposure also among firms in the other industries. In particular, NACE 22 (Manufacture
of rubber and plastic products), NACE 29 (Manufacture of motor vehicles, trailers and
semi-trailers), NACE 31 (Manufacture of furniture) and NACE 32 (Other manufacturing)
stand out as having medians close to 1.

18See Statistics Norway for details: https://www.ssb.no/246994/naeringsundergrupper-i-
standard-for-naeringsgruppering-sn2007-som-er-gruppert-som-petroleumsrettet-leverandorindustri-
og-utvinningstjenester .
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Figure 7: Within-industry Variation in Exposure

Note: The median of the exposure measure is shown by the line within the box, and the
box’s boundaries represent the first (Q1) and third (Q3) quartiles, indicating the middle 50
percent of the data. The difference between Q3 and Q1 is the interquartile range (IQR),
and the whiskers extend from the box to the smallest and largest values within 1.5 times the
IQR from the quartiles. The points outside this range are plotted individually as outliers.

4.2 Empirical Model

In order to estimate the impact of the oil price shock, we specify a difference-in-
difference model based on the theoretical framework developed in Section 3. This model
allows us to identify the causal effect of the oil price shock on clean R&D investments, as
we compare firms that are differentially affected by the oil price shock before and after
2014. The baseline specification takes the form:

ykt = αk + βxok × Postt + γZkt + δst + εkt, (17)

where ykt is an outcome variable related to the firm’s R&D investments or performance.
xok captures the firm’s exposure to the shock based on the export portfolio (as described
in Section 4.1).19 αk are firm fixed effects, capturing all time-invariant differences be-
tween the more exposed and less exposed firms. Crucially, as our exposure measure is
constructed at the firm level, we are able to control for industry-specific trends, δst, at
the NACE 2-digit level. Our main coefficient of interest is β, which captures how firms
exposed to the shock respond in the years following the shock. Postt is a dummy variable
that equals one in the the post-period (t > 2013). Zkt is a vector of firm-level controls
aimed at ensuring that the more exposed and less exposed firms are comparable. To
account for differences across firms related to the size of their operations, we include log
employment and log tangible assets as firm level controls. Firms may also have been

19To be precise, this is a difference-in-difference specification with a continuous treatment variable.
We discuss the implications of having a continuous treatment variable below, in Section 5. Our approach
is conceptually similar to a shift-share design, but with a one-off, common shock.
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differently hit by the global oil price shock due to their exposure to trade, in particular
due to a depreciation of the Norwegian exchange rate in the aftermath of the shock. To
account for this, we include firms’ export share (in total sales) as a further control.

As pointed out above, we limit our analysis to firms in the manufacturing sector. That
is, we leave out the oil producers (NACE #6) that were directly affected by the oil price
shock. The firms in our sample differ in their exposure to the shock depending on their
supply linkages to the oil producers. They may, however, also differ in their exposure to
the shock due to their use of energy as an input in production. Manufacturing firms in
Norway typically rely on two main sources of energy: electricity based on hydro power,
and fossil fuels for transport and some types of machinery. In the Appendix Section D, we
show how firms’ costs of energy have developed over time for each of these energy goods
and in aggregate, see Figure 9. The main takeaway is that electricity prices developed
smoothly over the relevant time horizon. Still, to control for potential differences in
exposure to the shock on the cost side, we add firms’ energy share, measured as cost
of energy related to production and transportation relative to operational costs, to the
specification. Finally, we also control for differences in state aid to R&D, by adding a
dummy which captures whether or not the firm has received public funding for R&D and
innovation.

As all of these control variables themselves are possibly affected by the oil price shock,
we compute them based on the first year the firm is observed in the sample and interact
them with year dummies. Standard errors are clustered at the firm-level.

5 Empirical Results on Clean Innovation

Our main outcome variables of interest are related to clean R&D activities. We start
by analyzing the effect on the probability of doing clean R&D, as measured by a dummy
variable that takes the value of 1 if the firm reports any clean R&D investment, and
0 otherwise. The results from estimating different versions of Equation (17) with and
without controls and fixed effects can be found in Table 2.

In column (1), we only include industry-year fixed effects. We find that for a firm
with average exposure, the shock leads to an increase in the likelihood of reporting any
clean R&D investment of approximately 4.5 percentage points. The baseline likelihood of
having any clean R&D investment is 7.5 percent, meaning that this effect is substantial
and of economic importance. In column (2), we add firm fixed effects, which attenuates
the coefficient slightly, but not by much. In column (3), we add our baseline control
variables, except that we leave out the control for the firm’s energy share in the production
process. We add this control in column (4) to reach our preferred specification. We find
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that the energy share is the only control variable that seems to have some bite. An effect
of including energy share in the regression is not surprising, as firms with substantial
use of energy in production may clearly also be affected by the oil price drop through
this direct channel. In column (5), we estimate our preferred specification using PPML
instead of OLS.20 Our results suggest that firms that where relatively more exposed to
the oil price shock, due to their delivery of inputs to the oil producing sector, were more
likely to invest in clean R&D after the shock.

Table 2: Probability of Clean R&D

Variable: Dummy Dummy Dummy Dummy Dummy
(1) (2) (3) (4) (5)

Postt*xok 0.044** 0.039** 0.042** 0.055*** 0.499**
(0.019) (0.020) (0.020) (0.020) (0.199)

Controls ex. energy No No Yes Yes Yes
Controls incl. energy No No No Yes Yes
Firm FE No Yes Yes Yes Yes
Industry*year FE Yes Yes Yes Yes Yes
Estimator OLS OLS OLS OLS PPML
Obs. 11,695 11,695 11,695 11,695 3,024

Note: Standard errors in parenthesis are clustered on firm. Controls include baseline levels
of log employment, log tangible assets, export share, and a dummy for public funding,
all interacted with year dummies. A control for energy share is included where indicated.
∗p < 0.1, ∗ ∗ p < 0.05, ∗ ∗ ∗p < 0.01.

We are interested not only in the likelihood of investing in clean R&D, but also in the
share of clean R&D in each firm’s total R&D, and the value of clean R&D investments.
To get at the share, we replace the dummy variable with a variable capturing the value
of clean R&D investments relative to the total R&D investments of the firm. The results
can be found in columns (1) and (2) in Table 3 below, for a linear and PPML model
respectively. We find a positive and significant effect also on this measure, although not
as precisely estimated as the dummy. The baseline share of clean R&D is 6%, so again this
is an economically significant effect. These findings suggest that firms more exposed to
the oil price shock are increasing their clean R&D investments relative to their non-clean
investments relatively more than less exposed firms. In columns (3) and (4) we replace
the share of clean R&D with the value of clean R&D, in logs in column (3) and levels in
column (4). Here, we find support for the hypothesis that exposed firms are increasing

20While it would be preferable to use a logistic model, these models struggle to converge with high-
dimensional fixed effects. PPML can deal with high-dimensional fixed effects, but on the other hand
assumes an exponential conditional expectation that will not automatically be valid for binary data.
However, if the probabilities are all sufficiently close to zero, the exponential function is a good approx-
imation to the logistic and therefore the use of PPML can be justified,
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their clean R&D spending also in absolute terms, although the effect in column (4) is just
below the threshold for significance at the 10 percent level. The coefficient from column
(3) translates into an increase in the value of clean R&D spending of around 40% for
firms exposed to the shock.

Table 3: Clean R&D: Share and Value

Variable: Share Share Log Value Value
(1) (2) (3) (4)

Postt*xoi 1.575* 0.358* 0.346** 0.716
(0.899) (0.218) (0.140) (0.470)

Controls Yes Yes Yes Yes
Firm FE Yes Yes Yes Yes
Ind.*year FE Yes Yes Yes Yes
Estimator OLS PPML OLS PPML
Obs. 11,695 3,024 11,695 3,024

Note: Standard errors in parenthesis are clustered on firm. Log Value is
measured as log(1 + Clean R&D expenditures). Controls include baseline
levels of log employment, log tangible assets, export share, energy share
and a dummy for public funding, all interacted with year dummies. ∗p <
0.1, ∗ ∗ p < 0.05, ∗ ∗ ∗p < 0.01.

The findings presented in Tables 2 and 3 support the hypothesis that firms more
exposed to the oil price shock through the oil producers’ supply chain will react relatively
stronger to the price shock in terms of investments in clean R&D.

Our exposure measure is continuous, which has been shown by Callaway et al. (2024)
to complicate inference. As they demonstrate in their paper, one can summarize what
they call “average level treatment effects among treated” firms by comparing the average
change in outcomes for all treated firms to the average change in outcomes for untreated
firms, following Sun and Shapiro (2022). The level treatment effect captures the difference
between a firms’s potential outcome under the exposure it receives and its untreated
potential outcome – basically the equivalent of a treatment effect in a classical binary
treatment set-up. To identify this effect, we rely on a standard parallel trends assumption:
the average evolution of outcomes that firms with any exposure would have experienced
without treatment is the same as the evolution of outcomes that firms in the non-exposed
group actually experienced. We re-estimate all our results using a binary dummy variable
that takes the value of one for firms with positive exposure and zero for non-exposed
firms. The results are very similar to our baseline results, suggesting that the average
level treatment effects are linear.21

21The results using a binary dummy variable are available upon request from the authors.
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We investigate further where the increase in clean R&D investments is originating – is
it mainly due to firms that have previously not invested in any R&D that start investing,
or is it mainly driven by firms with pre-existing R&D investments that reallocate their
R&D spending towards clean activities? To get at this, we create two dummy variables:
First, “New Clean” equals one if the firm reports spending on clean R&D in period t but
did not in period t − 1. Second, “R&D to Clean” equals one if the firm reports spending
on clean R&D in period t but did not in period t − 1, conditional on the firm reporting
positive R&D spending (in any type of R&D) in period t − 1.

The results from this exercise is found in Table 4. In column (1), we see a strong
and positive coefficient, indicating that firms that are more exposed to the shock are
significantly more likely to start new, clean R&D projects, compared to firms that are
not exposed. In columns (2) and (3) we show the results from using the “R&D to Clean”
dummy. In column (2), all firms are included, regardless of whether or not they report
any R&D spending, In column (3), we limit the sample to firms that report positive R&D
investments before the shock. We, again, find that firms that are more exposed to the
shock are more likely to start new clean R&D projects – this effect is particularly strong
if we narrow the sample to include only R&D performers.

Table 4: Switching into Clean R&D

Variable: “New Clean” “R&D to Clean” “R&D to Clean”
(1) (2) (3)

Postt×xoi 0.033*** 0.018** 0.056***
(0.011) (0.009) (0.022)

Controls Yes Yes Yes
Firm FE Yes Yes Yes
Industry*year FE Yes Yes Yes
Control group All firms All firms R&D firms
Observations 11,695 11,695 4,751

Note: Standard errors in parenthesis are clustered on firm. “New Clean” is a dummy that
takes the value of 1 if the firm has positive investments in Clean R&D in year t, but not
in t-1. “R&D to Clean” is the same as “New Clean” conditional on having invested in
R&D in t-1. Controls include baseline levels of log employment, log tangible assets, export
share, energy share and a dummy for public funding, all interacted with year dummies.
∗p < 0.1, ∗ ∗ p < 0.05, ∗ ∗ ∗p < 0.01.

To summarize our results: we find that firms that are more exposed to the 2014 fall
in the oil price through the oil producers’ supply chain increase their clean R&D more
than firms that were less exposed to the shock. This is true if we look at the likelihood
of investing in clean R&D, the share of clean relative to non-clean R&D, or the value
of clean R&D. We also document that the firms which are most exposed to the shock
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have higher probabilities of starting new investments in clean R&D, and switching from
non-clean to clean R&D. We will now explore what mechanisms are at play to produce
these effects. Our results indicates that within-firm dynamics such as adjustment costs,
are relevant for the understanding the full effect of such price drops on clean technological
progress.

Pre-Trends A potential concern is that more exposed firms face different pre-trends
compared to those less exposed. It would be reassuring to find similar pre-trends for
firms with different exposure levels indicating that our identification strategy is solid.
We investigate this by estimating the dynamic pattern of our main outcome variable, the
dummy for clean R&D:

ykt = αk + βxok × δt + γZkt + δst + εkt, (18)

For ease of exposition, we show the graph for a binary treatment variable here.22 The
result from estimating this specification is illustrated in Figure 8. First, the lack of
evidence of any sort of pattern in the pre-trends is reassuring, and suggests that our
treatment and control firms are behaving similarly in our pre-period. We see a clear
upward trajectory beginning in 2014 and turning significant from 2015.

Figure 8: Dynamic DID

Note Each point presents the event-study coefficient estimates and 90% confidence
intervals of Equation 18.

22The graph looks very similar with the continuous treatment variable, but is harder to interpret.
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Table 5: Placebo

Variable: Bio tech R&D ICT R&D
(1) (2)

Postt×xoi -0.015 -0.032
(0.015) (0.024)

Controls Yes Yes
Firm FE Yes Yes
Industry*year FE Yes Yes
Observations 11,695 11,695

Standard errors in parenthesis are clustered on firm. Controls include base-
line levels of log employment, log tangible assets, export share, energy
share and a dummy for public funding, all interacted with year dummies.
∗p < 0.1, ∗ ∗ p < 0.05, ∗ ∗ ∗p < 0.01.

Robustness Another potential concern is that firms exposed to the shock shifted their
R&D investments towards other technological fields in general, but not with any specific
emphasis on clean R&D. To address the concern of whether the shock actually triggered
directed technical change we perform a placebo test using information on firms’ invest-
ments in bio tech R&D and ICT R&D. We estimate Equation (17) with these two new
variables as dependent variables. Table 5 reports the results. The estimated coefficients
are not significant.

Although our dynamic difference-in-difference estimation is reassuring, one cannot
exclude the possibility that our results are driven by something other than the oil price.
In particular, if clean energy prices increased substantially during the time period we are
looking at, this would have incentivized firms to ramp up their clean R&D investments.,
and exposed firms might in theory be hit differently by changes in clean energy prices,
compared to less exposed firms. However, figure 10 in Appendix Section D shows how
clean energy prices evolved over our sample period. If anything, they declined smoothly
over the time period in question.

Mechanisms In our theoretical framework, within-firm reallocation of investments
from dirty to clean R&D after a negative oil price shock is driven by the fall in expected
profits from producing inputs for the oil-extracting sector. Therefore, we investigate
whether the firms we identify as more exposed to the negative oil price shock experience
a decrease in sales and profits.

We create two new variables, sales per employee and an indicator variable for operating
profits. The indicator takes on the value of either 0, -1 or 1, depending on whether the
firms makes zero, negative or positive profits. We estimate Equation (17) with these two
new variables as dependent variables. The results from these regressions are presented in
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Table 6. We find that sales per employee decreases significantly, as does profits, although
the latter finding is not as robust as the first. Our results suggest that the mechanism
suggested by the theoretical model is indeed at play.

Table 6: Sales per employee and Profits indicator

Variable: Sales per emp. Sales per emp. Profits indicator Profits indicator
(1) (2) (3) (4)

Postt×xoi -0.082*** -0.043* -0.179*** -0.081
(0.026) (0.026) (0.049) (0.060)

Controls Yes Yes Yes Yes
Firm FE Yes Yes Yes Yes
Year FE Yes No Yes No
Industry FE Yes No Yes No
Industry*year FE No Yes No Yes
Observations 11,695 11,695 11,695 11,695

Standard errors in parenthesis are clustered on firm. Income is measured as operating income and
profits as an indicator for operating profits. Controls include baseline levels of log employment, log
tangible assets, export share, energy share and a dummy for public funding, all interacted with year
dummies. The indicator for operating profits takes on 0, -1 and 1 depending on whether the firms
makes zero, negative or positive profits. ∗p < 0.1, ∗ ∗ p < 0.05, ∗ ∗ ∗p < 0.01.

Finally, we explore whether the most exposed firms intensify their R&D investments
across the board, relative to other firms. As shown in Table 7, we find no effects of
the shock on total R&D investments, the number of R&D employees, or on the share of
R&D employees in total employment. These results suggest that firms are not scaling
up all R&D investments in response to the shock. Rather, in line with our theoretical
predictions, they appear to reallocate resources towards clean R&D investments.

Table 7: R&D

Variable: R&D dummy log R&D emp R&D emp share
(1) (2) (3)

Postt×xoi -0.015 -0.008 -0.001
(0.028) (0.007) (0.001)

Controls Yes Yes Yes
Firm FE Yes Yes Yes
Industry*year FE Yes Yes Yes
Observations 11,695 11,695 11,695

Standard errors in parenthesis are clustered on firm. Log R&D employment is
log(1+R&D employees). Controls include baseline levels of log employment, log
tangible assets, export share, energy share and a dummy for public funding, all
interacted with year dummies. ∗p < 0.1, ∗ ∗ p < 0.05, ∗ ∗ ∗p < 0.01.
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6 Concluding Remarks

In this paper, we aim to shed light on a potentially important channel through which
changes in the price of fossil fuels may affect investments in clean technology. We do so
by developing a theoretical framework that highlights the role of within-firm reallocation
of R&D investments as means of adjusting to a negative price shock to fossil energy.
We exploit the rich data at hand to develop a novel measure of shock exposure. Our
results suggest that a price shock which trickles down the supply chain, combined with
adjustment costs at the firm level, may induce within-firm reallocation of resources from
dirty towards clean innovation. Our empirical findings demonstrate that the impact of
changes in energy prices through this less researched channel might be substantial.

Understanding the mechanisms through which firms react to external price shocks
and the subsequent reallocation of resources is crucial for designing effective policies
that promote environmentally sustainable economic growth. Our findings have some
key policy implications. They imply that policies lowering the profitability in the oil
producing sector may promote a shift towards investment in clean R&D, not only through
the induced structural change which entail reallocation of resources from fossil towards
clean energy producing firms, but also indirectly through within-firm reallocation of R&D
investments in upstream industries.
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Appendix

A Data

The R&D survey measures R&D activity in the Norwegian business enterprise sec-
tor. The statistics are comparable to statistics for other countries and are reported to
the OECD and EUROSTAT. The R&D survey includes: (i) all firms with at least 50
employees; (ii) all firms with less than 50 employees and with reported intramural R&D
activity in the previous survey of more than NOK 1 million or extramural R&D of more
than NOK 3 million; (iii) among other firms with 10-49 employees a random sample was
selected within each strata (NACE 2-digit and size class).

The R&D survey provides details on the share of R&D spend in certain thematic
areas. We use information on the share of R&D spent on what we define as clean energy,
which encompasses the two areas: Renewable energy and Energy efficiency.

B Calculations for the analytical model

In the following, we provide the details for calculation of the signs of the first- and
second-order effects of the drop in the price of the dirty final good on clean R&D activity,
in the analytical model presented in Section 3,The calculations provided in the following
makes us able to compare the total effects of the price drop on clean R&D in firms engaged
in both clean and dirty R&D (group III) relative to firms only engaged in clean R&D
(group I), and provide proofs for Proposition 1 and 2.

For notational simplicity, let us define the function H l
kjt(·) as the derivative of the

objective function (Equation 12) of firm k, belonging to group l, with respect to skjt.
H l

kjt(·) represents the net value of a marginal increase in skjt for firm k in group l. Each
firm will hire scientists until the relevant marginal value is zero, i.e. until H l

kjt(·) = 0.
For firms in group I and II, the first-order conditions are given by:

HI
kct(skct, pct, wt) =α(1 − α)(1 + γ)ηcAct−1p

1
1−α
ct

∂gc(skct, 0)
∂skct

− wt − 2c
skct − skct−1

s2
kct−1

= 0

(19)

HII
kdt(skdt, pdt, wt) =α(1 − α)(1 + γ)ηdAdt−1p

1
1−α

dt gd′(skdt) − wt − 2c
skdt − skdt−1

s2
kdt−1

= 0.

(20)

For firms in group III, the two first-order conditions are given by:
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HIII
kct (skct, skdt, pct, wt) =α(1 − α)(1 + γ)ηcAct−1p

1
1−α
ct

∂gc(skct, skdt)
∂skct

− wt − 2c
skt − skt−1

s2
kt−1

= 0

(21)

HIII
kdt (skct, skdt, pct, pdt, wt) =α(1 − α)(1 + γ)

(
ηcAct−1p

1
1−α
ct

∂gc(skct, skdt)
∂skdt

+ ηdAdt−1p
1

1−α

dt gd′(skdt)
)

− wt − 2c
skt − skt−1

s2
kt−1

= 0 (22)

with skt = skct + skdt.

The first-order conditions in equations 19-22 give the demand for scientists from all
three groups of firms.

In the following, the group-specific superscripts are dropped for expressions that take
the same value for all relevant groups. For group I and II, respectively, the following
second-order conditions ensure that the first-order conditions characterize a maximum:

∂Hkct

∂skct

=α(1 − α)(1 + γ)ηcAct−1p
1

1−α
ct

∂2gc

∂s2
c

− 2c

s2
kt−1

≤ 0 (23)

∂Hkdt

∂skdt

=α(1 − α)(1 + γ)ηdAdt−1p
1

1−α

dt gd′′ − 2c

s2
kt−1

≤ 0. (24)

These inequalities follow directly from our initial assumptions. For group III, we also
require that:

∂Hkct

∂skct

∂Hkdt

∂skdt

−
(

∂HIII
kct

∂skdt

)2

≥0 (25)

with

∂HIII
kct

∂skdt

=∂HIII
kdt

∂skct

= α(1 − α)(1 + γ)ηcAct−1p
1

1−α
ct

∂2gc

∂sc∂sd

− 2c
1

s2
kt−1

≶ 0. (26)

The cross-derivative of the objective function of a firm in group III is positive if
the spillover effect dominates the effect of the adjustment cost, while it is negative if the
adjustment cost dominates. In either case, we assume that Equation (??) holds , i.e. that
the effect of dirty-scientist hiring on the marginal value and cost of hiring scientists for
clean innovation, independent of its direction, is not large enough to prevent an interior

36



solution to the problem of any firm in group III.
First-order effects of the oil price drop.
To get at the effects of the price drop on each firm’s R&D activity (demand for scien-

tists), we use the first-order conditions . First, differentiating the first-order conditions
with respect to pdt and w gives:

∂H l
kdt

∂pdt

=α(1 + γ)ηdAdt−1p
α

1−α

dt gd′(sl
kdt) > 0, for l = II, III. (27)

∂H l
kjt

∂wt

= − 1, for l = I, II, III ogj = d, t (28)

Next, it follows directly from differentiating the first-order conditions and using the
inequalities in equations 23-26 that:

∂sII
kdt

∂pdt

= −
∂HII

kdt

∂pdt

∂Hkdt

∂skdt

> 0 (29)

∂sIII
kdt

∂pdt

= −
∂Hkct

∂skct

∂HIII
kdt

∂pdt

∂Hkct

∂skct

∂Hkdt

∂skdt
−
(

∂HIII
kct

∂skdt

)2 > 0 (30)

∂sIII
kct

∂pdt

=
∂HIII

kct

∂skdt

∂HIII
kdt

∂pdt

∂Hkct

∂skct

∂Hkdt

∂skdt
−
(

∂HIII
kct

∂skdt

)2 ≶ 0 (31)

∂sIII
kct

∂pdt

+ ∂sIII
kdt

∂pdt

=
α(1 − α)(1 + γ)ηcAct−1p

1
1−α
ct

(
∂2gc

∂sc∂sd
− ∂2gc

∂s2
c

)
∂HIII

kdt

∂pdt

∂Hkct

∂skct

∂Hkdt

∂skdt
−
(

∂HIII
kct

∂skdt

)2 > 0 (32)

Effects of wage changes.
Similarly, it follows, again from differentiating the first-order conditions and using

23-26, that:
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∂sI
kct

∂wt

=1
/

∂Hkct

∂skct

< 0, (33)

∂sII
kdt

∂wt

=1
/

∂Hkdt

∂skdt

< 0, (34)

∂sIII
kct

∂wt

=
(

− ∂HIII
kct

∂skdt

+ ∂Hkdt

∂skdt

)/(
∂Hkct

∂skct

∂Hkdt

∂skdt

−
(

∂HIII
kct

∂skdt

)2 )
< 0 (35)

∂sIII
kdt

∂wt

=
(

− ∂HIII
kct

∂skdt

+ ∂Hkct

∂skct

)/(
∂Hkct

∂skct

∂Hkdt

∂skdt

−
(

∂HIII
kct

∂skdt

)2 )
< 0. (36)

The market equilibrium condition in Equation 13 gives the equilibrium wage as a
function of final good prices: wt(pct, pdt). Differentiating shows that the wage will drop
as a consequence of a fall in the fossil energy price:

∂wt

∂pdt

= −
λII ∂sII

kdt

∂pdt
+ λIII

(
∂sIII

kct

∂pdt
+ ∂sIII

kdt

∂pdt

)
λI ∂sI

kct

∂wt
+ λII ∂sII

kdt

∂wt
+ λIII

(
∂sIII

kct

∂wt
+ ∂sIII

kdt

∂wt

) > 0. (37)

We can now turn to the proof of Proposition 1 and 2.
Proof of Proposition 1 and 2.
Define

∆ ≡ −dsIII
kct

dpdt

−
(

− dsI
kct

dpdt

)
, (38)

with

dsIII
kct

dpdt

=∂sIII
kct

∂pdt

+ ∂sIII
kct

∂wt

∂wt

∂pdt

(39)

dsI
kct

dpdt

=∂sI
kct

∂wt

∂wt

∂pdt

(40)

Insert from Equation (??) and (??) and reorganize, to get:

∆ = λIX1 + λIIX2 + λIIIX3, (41)

with:
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X1 =∂sIII
kct

∂pdt

∂sI
kct

∂wt


> 0 if ∂sIII

kct

∂pdt
<0 (adjustment costs dominate)

< 0 if ∂sIII
kct

∂pdt
>0 (spillovers dominate)

(42)

X2 =
∂HII

kdt

∂pdt

∂Hkct

∂skct

∂Hkdt

∂skdt
−
(

∂HIII
kct

∂skdt

)2

∂HIII
kct

∂skdt

∂Hkct

∂skct

∂Hkdt

∂skdt

(
∂HIII

kct

∂skdt

− ∂HIII
kct

∂skct

(
1 − gd′(sIII

kdt)
gd′(sII

kdt)

))
, (43)

X3 =
∂HIII

kdt

∂pdt

∂Hkct

∂skct

∂Hkdt

∂skdt
−
(

∂HIII
kct

∂skdt

)2

∂HIII
kct

∂skdt

∂Hkct

∂skct


> 0 if ∂sIII

kct

∂pdt
<0 (adjustment costs dominate))

< 0 if ∂sIII
kct

∂pdt
>0 (spillovers dominate)

(44)

The first fraction in X2 is always non-negative. The second fraction takes the same
sign as the fraction ∂HIII

kct /∂skdt, positive if the spillover effect dominates, negative if the
adjustment cost effect dominates. Next, the expression inside the inner brackets will take
a negative value as long as sIII

kdt ≤ sII
kdt. With sIII

kt−1 = sII
kt−1,where the group-III firm uses

only a share of their scientists for dirty R&D , we assume in the following that this is the
case. The second term in the outer brackets will then take a positive value.

If the adjustment costs dominates, the full expression in the outer brackets will be
negative, and X2 will take the opposite value of ∂HIII

kct /∂skdt. The same will be the case
if the spillover effect dominates, as long as ∂HIII

kct /∂skdt is not large too large. In the main
body of the paper, we assume this is the case. However, it is worth noting that for the
special case of very large spillover effects, X2 may take the same sign as ∂HIII

kct /∂skdt. As
a consequence, if λII is sufficiently large, the same can become true for the full expression
for ∆ in Equation (??). The firms in group II will react to the price drop by decreasing
their demand for scientists, which will push the wage down. If the share of firms belonging
to this group is very large, the firms in group III may face a wage drop that is large
relative to the drop in prices.

Given the signs of X1,X2 and X3, disregarding the special case just described, we
have:
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∆


> 0 if ∂sIII

kct

∂pdt
<0

= 0 if ∂sIII
kct

∂pdt
=0

< 0 if ∂sIII
kct

∂pdt
>0

i.e., exposed-firm clean R&D increase more than clean R&D in non-exposed firms if
the rescaling cost dominates, while one would see the largest increase in the non-exposed
firms (and possibly even a decrease in exposed firms) if the spillover effect dominates.
This concludes the proof.

Note that the analysis presented above assumes interior solution to the maximization
problem of the firms with respect to skjt in for all firms with ηkjt = ηj. As a consequence,
a drop in the dirty-good price will only induce intensive-margin shifts in clean R&D, as
all firms with the ability to engage in clean R&D will have skct > 0 for any set of prices,
by assumption. However, allowing the marginal productivity of innovation to be finite
as skct approaches 0: limskct→0 gc(skct, skdt) ̸= ∞, would induce firms in group I and III

to engage in clean R&D activity only if the expected revenue is sufficiently high. As a
result, a drop in the dirty-good price would potentially induce increases in clean R&D in
both groups both on the extensive and on the intensive margin.

C The firm-level measure of exposure to the oil price
drop

We use a two-step process to identify the level of exposure of each firm in our data
set to the 2014 oil price drop.

First, we categorize all products imported to Norway as oil related or not oil related.
In this first step, we rely on data on imports to oil producing firms in Norway. All
products that are imported by these firms are defined as oil related. In the period before
the 2014 oil price drop, around 7000 products are imported to Norway, and about 1800
of these are imported (in any quantity) by the oil producing sector, and thereby defined
as oil related in our measure.

When determining which products to define as inputs to the oil production , we take
into account the potentially strong home bias of the oil extraction sector operating in
Norway regarding the sourcing of inputs. Since the start of Norwegian oil extraction, it
has been a stated goal to build a Norwegian supply sector, and strong policy measures
have been in place to obtain this goal.

Building on Armington (1969) we assume that the production function of the oil
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producers encompass different preferences for domestically produced and foreign inputs :

Ydt = βdi

∫ 1

0
A1−α

Dditx
α
Dditdi + (1 − βdi)

∫ 1

0
A1−α

Mditx
α
Mditdi, (45)

with subscript D denoting domestically produced inputs and subscript M denoting for-
eign inputs, while βdi is the value of the imported good in production relative to the
domestically produced good. The size of βdi determines the home bias for input di. For
higher values of βdi, input demand would be directed more towards domestically pro-
duced goods. If the home bias differs across sectors and inputs, the share of imports
of good xdi that is directed towards the oil producing sector will not be informative of
the relative importance of good xdi as an input in the oil producing sector.Therefore, we
do not weight the goods categorized as inputs to the oil producing sector using import
shares.

D Additional Figures

Figure 9: Producer Price Index - Norway (2021=100)
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The figure shows the development of the producer price index for the do-
mestic market for the commodities/industries (i) oil- and gas extraction,
(ii) electricity, gas and steam and (iii) the aggregate of energy goods with
2021 as the reference year (2021=100).
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Figure 10: Global renewable costs (IRENA)

The figure shows the development of cost of renewable energy according to
technology. Source: IRENA (www.irena.org)
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