

A Service of

Leibniz-Informationszentrum Wirtschaft Leibniz Information Centre

Carson, Scott Alan

Working Paper

Equity, Commodity, and Distillate Risks During Industrial Transformation: Innovation in the Oil & Gas Industry Using GARCH Difference-in-Decompositions

CESifo Working Paper, No. 11534

Provided in Cooperation with:

Ifo Institute – Leibniz Institute for Economic Research at the University of Munich

Suggested Citation: Carson, Scott Alan (2024): Equity, Commodity, and Distillate Risks During Industrial Transformation: Innovation in the Oil & Gas Industry Using GARCH Difference-in-Decompositions, CESifo Working Paper, No. 11534, CESifo GmbH, Munich

This Version is available at: https://hdl.handle.net/10419/312044

Standard-Nutzungsbedingungen:

Die Dokumente auf EconStor dürfen zu eigenen wissenschaftlichen Zwecken und zum Privatgebrauch gespeichert und kopiert werden.

Sie dürfen die Dokumente nicht für öffentliche oder kommerzielle Zwecke vervielfältigen, öffentlich ausstellen, öffentlich zugänglich machen, vertreiben oder anderweitig nutzen.

Sofern die Verfasser die Dokumente unter Open-Content-Lizenzen (insbesondere CC-Lizenzen) zur Verfügung gestellt haben sollten, gelten abweichend von diesen Nutzungsbedingungen die in der dort genannten Lizenz gewährten Nutzungsrechte.

Terms of use:

Documents in EconStor may be saved and copied for your personal and scholarly purposes.

You are not to copy documents for public or commercial purposes, to exhibit the documents publicly, to make them publicly available on the internet, or to distribute or otherwise use the documents in public.

If the documents have been made available under an Open Content Licence (especially Creative Commons Licences), you may exercise further usage rights as specified in the indicated licence.

CESIFO WORKING PAPERS

11534 2024

December 2024

Equity, Commodity, and
Distillate Risks During
Industrial Transformation:
Innovation in the Oil & Gas
Industry Using GARCH
Difference-in-Decompositions

Scott Alan Carson

Impressum:

CESifo Working Papers

ISSN 2364-1428 (electronic version)

Publisher and distributor: Munich Society for the Promotion of Economic Research - CESifo

GmbH

The international platform of Ludwigs-Maximilians University's Center for Economic Studies and the ifo Institute

Poschingerstr. 5, 81679 Munich, Germany

Telephone +49 (0)89 2180-2740, Telefax +49 (0)89 2180-17845, email office@cesifo.de

Editor: Clemens Fuest

https://www.cesifo.org/en/wp

An electronic version of the paper may be downloaded

from the SSRN website: www.SSRN.comfrom the RePEc website: www.RePEc.org

· from the CESifo website: https://www.cesifo.org/en/wp

Equity, Commodity, and Distillate Risks During Industrial Transformation: Innovation in the Oil & Gas Industry Using GARCH Difference-in-Decompositions

Abstract

The oil and gas industry's early 2000's fracking and horizontal drilling revolution realigned the industry and larger economies. This study uses New Growth Theory to evaluate innovation across an industry with various integrated but distinct upstream, midstream, and downstream units. Two issues are considered. First, how did Independent returns vary within the industry by equity, commodity, and distillate risks relative to Integrated majors before and after the fracking revolution? The fracking revolution changed within-group technology that favored Independent firms who outperformed larger Integrated producers. Second, how did upstream, midstream, and downstream risks vary across the industry by equity, commodity, and distillates relative to Integrated firms before and after the fracking revolution? Exploration & production across-group Independent equity return gaps with the fracking revolution increased the most for any Independent sector, either within or across decompositions, indicating that the greatest fracking industry realignment was in equity markets as participants increased upstream exploration & production returns closer to oil and gas extraction.

JEL-Codes: G120, L710, L720, O130, O140, Q400, Q410.

Keywords: New Growth Theory, hydraulic-fracturing, technology, financial, commodity markets and technological change.

Scott Alan Carson
University of Texas, Permian Basin
4901 East University
USA – Odessa, TX 79762
Carson S@utpb.edu

I appreciate helpful comments from Roger Olien, Richard Madrid, Joe Siebert, and Eddie Garza.

Equity, Commodity, and Distillate Returns during Industry Transformation: New Growth in the Oil and Gas Industry

I. Introduction

Innovation occurs across industry networks, and New Economic Growth Theory integrates knowledge, human capital, ideas, and positive geographic externalities to analyze growth that results from endogenous relationships. The oil and gas industry has various overlapping sectors, where knowledge, human capital, and positive spill-over effects contribute to economic growth. Hydraulic fracking is the process where a liquid propellant—primarily water in a slick-water frack—is forced into a well-bore under high pressure that leads to greater crude and natural gas recovery. After injected material and pressure are reduced, propellants keep fractures open, which allows hydrocarbons encased in deep rock formations to escape, increasing well-productivity (Gold, 2013, pp. 120-125). While early forms of hydraulic fracturing began as early as 1949, by 2013, the majority of wells brought into production are fracked (EIA, 2022). Advanced technologies associated with the fracking revolution include horizontal drilling, hydraulic fracturing, simultaneous fracking, longer lateral wells, 3D seismic imaging, measurement-while-drilling, slim hole drilling, advanced drilling muds, coiled tubing, and improved electric pumps, which allow greater access to previously inaccessible shale formations that dramatically increased oil and gas production (Zimmerman, 2013; Gold, 2013). Subsequently, the oil and gas industry is a leading application of New Growth Theory across industry networks to explain industrial transformation across an industry with interrelated sectors.

Hydraulic fracturing is now prominent in the largest US oil and gas shale formations: the Bakken, Permian, and Eagle Ford shales.¹ While high crude and natural gas prices were common in 2008, 2010, and 2014, innovation in US hydrocarbon markets increased shale production, which decreased prices between 2015 and 2020. Traditional vertical drilling is the process where an oil reserve is vertically accessed from the surface and was the standard drilling method until a large-scale fracking recovery break-through in natural gas by George P. Mitchell in the Barnett Shale, a geological formation in the Ben-Arch-Fort Worth Basin. To increase crude oil production, Harold Hamm implemented crude oil horizontal drilling in the Bakken formation, and non-traditional drilling is now standard in US oil and gas production (EIA, 2022; Gold, 2013; Zuckerman, 2013).

Changes in oil and gas recovery influenced distillates derived from crude. Innovation in the oil and gas industry's upstream production changed access to primary resources to downstream firms that use oil in refined derivatives.² The fracking revolution was technical, geographical, and created by engineers, which increased upstream productivity that had spill-over effects with mid-stream and downstream oil and gas producers. By itself, unprocessed oil and gas have limited value, and distillates considered here are conventional gas, diesel, and aviation fuels. Diesel is a heavy grade distillate used in ground freight, manufacturing, and rail transportation. Conventional gas is used to transport automobiles and other mobile platforms. Aviation fuels are high octane derivatives used in the aviation industry, and about 10 percent of refined oil is aviation fuels.

It is against that backdrop that this study considers the fracking revolution's effect on smaller upstream, midstream, and downstream producers compared to large Integrated firms.

Two questions are considered. First, how did upstream, midstream, and downstream risks vary by equity,

¹ The Bakken Shale is in North Dakota. The Permian Basin Shale is in Eastern New Mexico and West Texas. The Eagle-Ford Shale is in South Central Texas.

² This study does not address how increased productivity increased criterion pollutants from increased gasoline consumptions.

commodity, and distillate risks within the industry relative to Integrated Majors before and after the fracking revolution? The fracking revolution changed within-group technology that favored Independent firms who outperformed larger Integrated producers. Second, how did upstream, midstream, and downstream returns vary by equity, commodity, and distillate returns across the industry relative to Integrated Majors before and after the fracking revolution? Exploration & production across-group Independent equity return gaps increased the most for any returns gap—either within or across decompositions—indicating that the greatest fracking industry realignment was in equity markets as participants increased upstream exploration & production returns closer to oil and gas extraction.

II. The United States Oil and Natural Gas Industry

Neo-classical growth theory emphasizes capital per worker, exogenous technology shocks, and capital deepening, emphasizing endogenous innovation, network effects, knowledge, and human capital spillover effects that create new products and processes (Romer, 1996, pp. 95-96, and 111-116). Nordaus (1969, p. 18), Romer (1986), Romer (1991), and Lucas (1988) find that Neoclassical growth theory lacks explanations for new technologies integrated into economic growth and innovation. New growth theory emphasizes new technologies, externalities, and ideas from human capital to explain economic growth. Jaffe (1986) finds that technology and innovation spillovers increase with closer physical proximity, and the North American oil and gas industry had considerable geographic externalities with the 2011-2016 horizontal drilling revolution. Regional oil and gas spillover effects into non-traditional fracking and horizontal drilling techniques vacillated and were developed after repeated failures in Texas' Barnett Shale during the 1980s and 1990s with George P. Mitchell and Mitchell Energy and Development Corporation. After Mitchell's processes were proven successful, horizonal techniques were widely adopted and created a North American natural gas boom (Zukerman, 2013; Gold, 2013).

The oil and gas industry is organized into four sectors. Independents are classified as upstream, midstream, and downstream producers that specialize in distinct sectors based on labor supplies, infrastructure, and technology. Upstream exploration & production and equipment & service firms

explore for and extract oil and natural gas and include Apache,³ Concho, EOG, Marathon Oil, National Oilwell Varco, Occidental, Pioneer, and Range Resources. Midstream transportation & pipeline firms transport and store oil and gas once brought into production and include Chiniere, Kinder Morgan, OneOK, and Whiting Companies. Downstream end-use refining & marketing firms process and distribute crude and natural gas into distillates, sold into downstream markets and include Holly Frontier, Marathon Petroleum, Targa Resources, and Valero. Vertical integration occurs when a production process is vertically aligned and managerial structures organized into multiple operating units within the same firm. Large well-capitalized Integrated producers vertically combine oil and natural gas production into single operation units previously known as Super Majors, where much of US private sector oil and natural gas is produced, transported, and refined in a single vertically integrated firm, which include BP, Chevron, ConocoPhillips, Exxon, Hess, Royal Dutch Shell, and Total SA. The fracking revolution changed technology that favored Independent firms who outperformed larger Integrated producers (Carson, 2022).

Assessing how the oil and gas fracking revolution realigned the industry in this study is triangulated off industry information signaled in equity, commodity, and distillate markets (Gold, 2013, pp. 198-199). Markowitz (1952) was the first to model a mean-variance explanation for Modern Portfolio Theory, followed by Sharpe (1964), Litner (1965), and Mossin (1966), who extend mean-variance analysis into a single asset pricing model that partitions firm returns into a risk-free rate, risk quantity, and risk premium. However, original asset pricing models are not well supported by the evidence, and Fama and French (1993,1996, 2004), Jagadesssh and Titman (1993), and Carhart (1997) add factors to improve pricing model's risk evaluation. Assuming equity and commodity markets are sufficiently efficient to price risk into the production process, augmented CAPM models are used here to evaluate market and project risk across upstream, midstream, and downstream sectors relative to Integrated majors.

³ As is common in the oil and gas industry, Apache Corporation has been acquired by APA Corporation, which is another exploration & production corporation.

Asset pricing is useful to assess risk in the oil and gas industry, and Manning (1991) demonstrates that British upstream exploration & production firms have greater risk than Integrated firms. Goodwin (1993) evaluates oil price variation with US equity returns around the 1973 oil embargo and finds that oil price variation is positively related to refining & marketing firm returns. Rajigopal (1999) demonstrates that market expectations are associated with oil and gas returns, while Faff and Brailsford (1999) demonstrate the effect that oil price shocks have on the Australian Stock market. Sodarsky (2001) finds similar effects for Canadian firms associated with broader market indices, oil prices, and interest rates. Mohanty and Nandha (2011) use a four-factor type model to show that oil price variation is positively related to equity returns with size, value, and momentum effects. Carson (2020) evaluates Major and Independent oil and gas returns, and Independents have greater return variation than large Integrated firms that bear less risk because they have more secure labor supplies and easier access to capital. Carson (2022) partitions the oil and gas industry into Majors and Independents and finds that Integrated Majors had greater access to dependable labor and capital reserves benefited more than Independents, and risk varies across the industry. Subsequently, the oil and gas industry allocates risk across sectors, and throughout the oil and gas industry, asset pricing models are useful to assess risk variation with the fracking revolution.

III. Data

Evaluating Integrated and Independent returns and standard deviations before and after the fracking revolution isolates risks associated with the horizontal drilling and non-traditional recovery methods, and different parts of the oil and gas industry were asymmetrically affected by the fracking revolution. For example, fracking more directly affects upstream exploration & production related to oil and gas recovery and less for downstream refining & marketing. While non-traditional oil and gas techniques have existed for several decades, innovations during the early 2000s is one area to evaluate external innovation effects on firm risk in different industrial sectors.

Data to evaluate oil and gas industry risk realignment with the fracking revolution are from 2000 to 2020. Trade publications and industry experts were consulted to appropriately classify firms in the industry. There are 22 firms in the exploration & production sector, 11 in the equipment & service sector, five firms in the transportation & pipeline sector, and five firms in the refining sector in the data used here. There are 11 Integrated firms. Daily S&P returns are the measure for equity return variation, and daily Brent measures are used for commodity returns. Daily natural gas returns are from Henry Hub, conventional gas, diesel, and aviation fuel are distillate returns that augment commodity market returns. Conventional gas returns are the rate of return on Gulf Coast conventional gas. Diesel returns are the US Gulf Coast ultra-low sulfur, No. 2 diesel fuel. Aviation fuel returns are the Kerosene-type US Gulf Coast rate of return. Daily small-minus-big (SMB_t), high-minus-low (HML_t), robust-minus-weak (RMW_t), conservative-minus-aggressive (CMA_t), and momentum (MOM_t) factor returns are also included.

Of itself, the fracking revolution changed engineering and physical processes for crude and natural gas extraction. A sizable amount of the fracking transformation occurred between 2013 and 2014, and by 2015, many fracking gains were integrated into firm values associated with equity, commodity, and distillate markets. Subsequently, the pre-fracking period in this study is from 2000 to 2012. The fracking transformation is between 2013 and 2014 (Wethe, 2019), which provides a distinct break for the assimilation and adaption for pre and post fracking technologies into the oil and gas industry. The post-fracking period is after 2014.

Table 1, Exploration & Production Pre and Post Expected Returns and Standard Deviations

			Pre-				Post-			Differences	
			Frack				Frack				
ENP	N	Mean	S.D.	Sharpe	N	Mean	S.D.	Sharpe	Mean	S.D.	Sharpe
Cabot	1,430	.001352	.033676	.0402	1,672	000120	.023334	0051	0015	0103	0453
Callon	1,386	.000939	.05908	.0159	1,661	.000146	.054459	.0027	0008	0046	0132
Canadian Natural	1,386	.000809	.033096	.0244	1,661	.000188	.027691	.0068	0006	0054	0177
Resources											
Cimirex	1,386	.000738	.029273	.0252	1,722	000077	.030926	0025	0008	.0017	0277
CNX	1,386	.000771	.041243	.0187	1,661	.000075	.037699	.0020	0007	0035	0167
Concho	1,104	.002525	.038713	.0652	1,661	000068	.027526	0025	0026	0112	0677
Continental	1,160	.002330	.045509	.0512	1,722	.000136	.039946	.0034	0022	0056	0478
Devon	1,430	.000534	.026980	.0198	1,611	000472	.033129	0143	0010	.0062	0340
EOG	1,386	.000709	.029261	.0242	1,722	.000076	.025834	.0029	0006	0034	0213
EQT	1,430	.000673	.025756	.0261	1,611	000327	.030520	0107	0010	.0048	0368
Equinor	1,386	.000470	.028043	.0168	1,722	.000200	.021935	.0091	0003	0061	0076
Marathon Oil	1,430	.000732	.028735	.0255	1,611	000477	.034093	0140	0012	.0054	0395
Noble	1,386	.000323	.030861	.0105	1,660	001975	.070059	0282	0023	.0392	0387
Occidental	1,430	.000927	.027957	.0332	1,611	000606	.028616	0021	0015	.0007	0543
Ovintiv	1,386	.000124	.026460	.0047	1,661	000145	.042129	0034	0003	.0157	0081
Pioneer	1,386	.001092	.033278	.0328	1,661	.000037	.027092	.0014	0011	0062	0315
Range	1,430	.001164	.032777	.0355	1,611	000800	.037970	0211	0020	.0052	0566
SMEnergy	1,430	.001019	.033619	.0303	1,611	000423	.056786	0075	0014	.0232	0378
SouthWestern	1,430	.001128	.035863	.0315	1,611	000947	.039338	0241	0021	.0035	0556
Vaalco	1,430	.000690	.039614	.0174	1,611	.000001	.046853	2.13^{-5}	0007	.0072	0174
W&T Offshore	1,386	.000540	.040956	.0132	1,661	000031	.048257	0006	0006	.0073	0138
Total	1,381	.000933	.034321	.0268	1,654	000267	.049606	0060	0012	.0029	0328

Table 2, Equipment & Services Pre and Post Expected Returns and Standard Deviations

ENS			Pre-Frack				Post-Frack			Differences	
	N	Mean	S.D.	Sharpe	N	Mean	S.D.	Sharpe	Mean	S.D.	Sharpe
Baker Hughes	1,386	.000083	.031685	.0317	1,661	000031	.025211	0012	0001	0065	0039
Fluor	1,386	.000571	.032136	.03214	1,661	000629	.035563	0177	0012	.0034	0355
Halliburton	1,430	.000411	.030527	.0305	1,611	000282	.028734	0098	0007	0018	0233
Helmerich & Payne	1,430	.001012	.033241	.0332	1,611	000391	.031310	0125	0014	0019	0429
Nabors	1,430	.000214	.034279	.0343	1,611	000533	.053602	0099	0008	.0193	0162
National Oilwell	1,430	.001309	.036701	.0367	1,611	000621	.028262	0220	0019	0084	0576
Varco											
Precision Drilling	1,430	.000159	.036307	.0363	1,611	000785	.041682	0188	0009	.0054	0232
Schlumberger	1,430	.000560	.028219	.0282	1,611	000586	.023032	0254	0012	0052	0453
TechnipFMC	1,386	.00139	.031895	.0319	1,661	000642	.027821	0231	0020	0041	0667
Tidewater	1,386	.000381	.025625	.0256	1,661	002092	.048786	0429	0025	.0232	0578
Total	1,412	.00061	.03206	.0189	1,631	000660	.034400	1834	0013	.0023	0372

Table 3, Integrated Pre and Post Expected Returns and Standard Deviations

			Pre-Frack				Post-Frack			Differences	
	N	Mean	S.D.	Sharpe	N	Mean	S.D.	Sharpe	Mean	S.D.	Sharpe
BP	1,430	.000128	.022583	.0226	1,611	000085	.019215	0044	0002	0034	0100
Chevron	1,430	.000699	.020310	.0203	1,611	.000137	.018937	.0072	.0072	0014	0272
ConocoPhillips	1,386	.000244	.024001	.0240	1,661	000025	.019073	0013	0013	0049	0115
ENI	1,386	.000246	.023253	.0233	1,661	000162	.018952	0086	0086	0043	0191
Exxon	1,386	.000476	.019105	.0191	1,661	000305	.015813	0193	0193	0033	0442
Hess	1,386	.000663	.032405	.0324	1,661	.000095	.028154	.0038	.0034	0043	0171
Murphy	1,386	.000552	.027288	.0273	1,661	000131	.034923	0038	0035	.0076	0240
Petrobras	1,386	.000835	.034762	.0348	1,722	.000556	.037624	.0148	.0148	.0029	0092
PetroChina	1,386	.000665	.028886	.0289	1,661	000405	.019808	0205	0205	0091	0435
Royal Dutch Shell	1,385	.000465	.021627	.0216	1,661	000158	.020251	0078	0078	0014	0293
Total, SA	1,430	.000310	.022069	.02207	1,611	.000085	.018524	.0046	.0046	0036	0095
Total	1,398	.000480	.025120	.01900	1,653	000030	.022843	0032	0034	0023	0222

Table 4, Transportation & Pipeline and Refining & Marketing Expected Returns and Standard Deviations

			Pre-Frack				Post-Frack			Differences	
TNP	N	Mean	S.D.	Sharpe	N	Mean	S.D.	Sharpe	Mean	S.D.	Sharpe
Cheniere	1,386	.000961	.065391	.0147	1,661	.000366	.023578	.0155	0006	0418	.0008
Kinder Morgan	217	.000403	.017810	.0226	1,721	000128	.021544	0059	0005	.0037	0286
OneOK	1,430	.000941	.021203	.0444	1,611	.002094	.029448	.0711	.0012	.0083	.0267
Whiting Companies	1,386	.001386	.039255	.0353	1,661	000746	.081917	0091	0021	.0427	0444
Total	1,105	.000923	.035915	.0293	1,664	.000397	.039122	.0179	0005	.0032	0114
RNM											
Holly Frontier	1,430	.001020	.035185	.0290	1,611	.000091	.027006	.0034	00093	0082	0256
Marathon Petroleum	128	000219	.038058	0058	1,611	.000504	.027079	.0186	.0007	0110	.0244
Targa Resources	264	.002100	.022451	.0935	1,611	.000052	.037784	.0014	0021	.0153	0922
Valero	1,430	000105	.031236	0034	1,611	.000413	.023776	.0174	.0005	0075	.0207
Total	813	.0007	.031733	.0284	1,611	.000265	.028911	.0102	0004	0028	0182

Pre-Fracking

Exploration & production had the highest pre-fracking average return, followed by transportation & pipeline, refining & marketing, equipment & services, and Integrated firms (Tables 1 through 4).

Upstream exploration & production is historically a high-risk sector with greater returns to compensate for greater risk. Nonetheless, downstream transportation & pipeline and refining & marketing firms had considerable risk with distillate and fuels, where because of order flow and infrastructure, transportation & pipeline and refining & marketing bear risk when they purchase raw crude in commodity markets and face uncertainty when crude prices fluctuate before refined product is delivered to output markets (Carson, 2020; Carson, 2022a; Carson, 2022b; Peltzman, 2000). Prior to the fracking revolution, equipment & services and Integrated firms had lower equity returns. Equipment & services face the greatest competitive pressure from Independent rivals, associated with lower equipment & service profitability. On the other hand, well-capitalized large pre-fracking Integrated firms had the lowest expected risk and returns within the industry.

Sharpe ratios are expected returns divided by standard deviations and are a measure for returns per unit of risk (Tables 1 through 4). Although pre-fracking risk was high in transportation & pipeline, financial markets rewarded transportation & pipeline firms with the highest return relative to risk. In the pre-fracking period, refining & marketing firms were similarly compensated for risk, indicating that midstream and downstream pre-fracking risk was rewarded more than upstream risk. Large Integrated firms, with greater time in the industry and liquidity, had the lowest Sharpe Ratios, indicating their access to capital, and infrastructure were the least rewarded in the industry.

Post-Fracking

Across the oil and gas industry, returns were lower after the fracking revolution as upstream exploration & production and equipment & service sector firms brought greater crude into production that decreased returns. In part, oil, natural gas, and distillates extraction changed comparative risk and sector compensations. Transportation & pipeline had the highest post-fracking average returns, followed by refining & marketing, Integrated, exploration & production. Increased international oil and gas supplies

decreased exploration & production and equipment & service returns, and their post-fracking risk was highest in the industry when they faced greater supplies and risk with purchase-delivery risk in transportation & pipeline. Post-fracking downstream firm returns were high because supply disruptions associated with asymmetric delivery times, when Covid 2020 squeezed transportation & pipeline and refining & marketing firms were caught in the middle of upstream and downstream capacity asymmetries that increased transportation & pipeline risk that was compensated with greater returns. Large well-capitalized Integrated firms had the lowest post fracking risk, followed by refining & marketing who took crude delivery without facing comparable risk associated with asymmetric purchase-delivery risk in transportation & pipeline. Integrated and upstream exploration & production and equipment & services returns per unit of risk were lower after the fracking revolution.

Changes in Returns per Unit of Risk

Refining & marketing returns increased the most with the fracking revolution, followed by transportation & pipeline, exploration & production, equipment & services, and Integrated firms. With asymmetric purchase and delivery times, transportation & pipeline risk increased the most with fracking, followed by exploration & production, equipment & services, Integrated, and refining & marketing.

Among the complex risk-return fracking revolution realignments, return increases per unit of risk were highest among transpiration & pipeline and refining & marketing, indicating that downstream and midstream producers were better off with the fracking revolution. Integrated returns-per-unit of risk was next most rewarded, while increased oil production decreased upstream exploration & production and equipment & service returns the least relative to risk with the fracking revolution.

IV. Independent and Integrated Return Variation by Equity, Commodity, and Distillate Markets

Decomposing Independent and Integrated equity, commodity, and distillate market risk before and after the fracking revolution offers insight into New Economic Growth Theory's explanation for

innovation and spatial effects in the oil and gas industry. The oil and gas industry data are partitioned into the jth pre and post fracking periods and regressed on the ith firm's equity return in the jth period.

$$\left(R_{it} - R_{ft} \right)_{t}^{j} = \alpha_{0}^{j} + \beta_{1}^{j} \left(R_{mt} - R_{ft} \right)^{j} + \beta_{2}^{j} \left(R_{ot} - R_{ft} \right)^{j} + \beta_{3}^{j} \left(R_{gt} - R_{ft} \right)^{j} + \beta_{4}^{j} \left(R_{ct} - R_{ft} \right) + \beta_{5}^{j} \left(R_{dt} - R_{ft} \right)$$

$$+ \beta_{6}^{j} \left(R_{at} - R_{ft} \right) + \beta_{7} SM B_{t}^{j} + \beta_{8} HM L_{t}^{j} + \beta_{9} RM W_{t} + \beta_{10} CM A_{t} + \beta_{11} MO M_{t}^{j} + \varepsilon_{t}^{j}$$
 (Equation 1)

 R_{it} is the ith firm's daily return. R_{ft} is the daily risk-free three-month US T-Bill rate. Over the interval, the treasury's T-Bill rate was low and stable, yet varied with the 2008 financial crisis. β_i^j is S&P 500 return sensitivity to variation in the jth period and is the primary source of equity market variation. R_{ot} is the daily Brent Crude rate of return, and β_2 is the Brent crude oil sensitivity return parameters in the jth period. R_{gt} is the natural gas daily rate of return for natural gas prices at Henry Hub, and β_3 is the natural gas excess return sensitivity parameter in the jth period. R_{eg} is the daily rate of return on conventional gas measured at Erath, Louisiana, and β_4 the conventional gas sensitivity parameter in the jth period. R_{d} is the diesel daily rate of return measured on low sulfur no. 2 in the Gulf Coast, and β_5 is the diesel sensitivity parameter. R_{jt} is each firm's daily rate of return with aviation fuel, and β_6 is the aviation fuel excess return sensitivity parameter in the jth period. β_7 , β_8 , β_9 , β_{10} , and β_{12} are firm excess return variation with SMB₁, HML₄, RMW₄, CMA₄ and MOM₄. In the results that follow, Independent and Integrated coefficients are estimated with GARCH (1, 1), used to estimate Oaxaca and difference-indecompositions in the next section (Ng and Lam, 2006).

Table 5, Exploration & Production Pre and Post Generalized Autoregressive Integrated Moving Average Models

	Cabot C	Oil & Gas	Callon	Energy		n Natural ources	Cimirex		CNX	
	Pre-	Post-	Pre-	Post-	Pre-Frack	Post-Frack	Pre-	Post-	Pre-	Post-
	Frack	Frack	Frack	Frack			Frack	Frack	Frack	Frack
Intercept	0.001	-0.001	5.89^{-4}	.001*	2.11^{-4}	1.45^{-4}	0.001	-5.14	2.70^{-4}	-0.001
SNP	1.22***	.835***	1.28***	1.31***	1.09***	.961***	1.01***	1.10***	1.59***	1.09***
Crude Oil	.067***	066***	.087*	0.035	.122***	.070***	.084***	0.027	0.035	0.005
Natural Gas	.028*	.028***	.034*	0.008	0.007	-0.001	0.016	0.012	0.025	.032***
Conventional	.123***	0.02	0.053	.095**	.089***	.055***	.060***	0.035	.117***	-0.003
Gas										
Diesel	.241***	.075*	.202***	.248***	.172***	.115***	.135***	.201***	.136**	.120***
Aviation Fuel	-0.002	0.004	0.061	.167***	.123***	.139***	.062**	0.043	.089*	0.061
SMB	.002**	.002*	.013***	0.01	.001**	.002***	.003***	.003***	.003**	.006***
HML	.002**	-0.001	.011***	.012***	0.001	1.69^{-4}	.002**	.004***	0.001	0.002
RMW	.007***	007***	-0.001	008***	0.002	006***	.002*	009***	0.005	012***
CMA	018***	.009***	010***	-5.86	012***	.008***	008***	.005***	017***	.008***
MOM	.004***	004***	.011***	010***	0.002	006***	.002***	006***	.002**	008***
N	1430	1672	1386	1661	1386	1661	1386	1722	1386	1661
	Concho		Conti	inental	Devon		EOG		EQT	
	Pre-	Post-	Pre-	Post-	Pre-Frack	Post-Frack	Pre-	Post-	Pre-	Post-
	Frack	Frack	Frack	Frack			Frack	Frack	Frack	Frack
Intercept	.002**	2.02^{-4}	0.001	0.001	4.93^{-5}	9.56^{-5}	1.17^{-6}	8.79^{-5}	1.09^{-4}	001**
SNP	1.04***	1.07***	1.25***	1.23***	1.05***	1.29***	1.09***	1.03***	1.11***	.861***
Crude Oil	.154***	.066***	.142***	.072***	0.005	.042*	0.002	.061***	.062***	-0.006

Natural Gas	0.006	0.008	0.013	0.005	.031***	0.007	.024***	0.001	.025***	.059***
Conventional	.118***	.046**	0.061	0.044	.060***	0.018	.087***	.047***	0.002	0.023
Gas										
Diesel	.235**	.233***	.228***	.380***	.164***	.264***	.186***	.193***	.127***	0.082
Aviation Fuel	-0.013	-0.023	0.099	.101***	.058**	0.028	.052*	0.01	0.012	-0.012
SMB	.004***	0.001	.003**	.005***	-7	.002***	9.18^{-6}	.002**	1.07^{-4}	.003***
HML	-8.33	.002*	.003**	.004***	.003***	.004***	0.001	.002***	.002***	0.001
RMW	-0.002	010***	0.002	012***	.005***	013***	.004***	008***	.005***	006***
CMA	010***	.006***	012***	.007***	011***	.010***	016***	.006***	006***	.006***
MOM	.002***	006***	.003***	008***	.003***	-0.008	.003***	005***	.002***	005***
N	1104	1661	1160	1722	1430	1611	1386	1722	1430	1611

Source: See Table 1.

Table 5, Exploration & Production Pre and Post Generalized Autoregressive Integrated Moving Average Models

	EQT		Equinor		Marathon Oil		Nobel		Occidental	
	Pre-	Post-	Pre-	Post-	Pre-Frack	Post-	Pre-	Post-	Pre-Frack	Post-Frack
	Frack	Frack	Frack	Frack		Frack	Frack	Frack		
Intercept	1.09^{-4}	001**	-1.97 ⁻⁴	1.30^{-4}	2.56^{-4}	1.13^{-4}	-7.25 ⁻⁵	001	2.90^{-4}	-3.32-4
SNP	1.11***	.861***	1.17***	.920***	1.18***	1.37***	1.30***	1.43***	1.17***	.911***
Crude Oil	.062***	006	.160***	.087***	.045**	.073***	.058**	.122***	.053***	.031**
Natural Gas	.025***	.059***	-4.39 ⁻⁴	.004	.004	002	.004	017	001	.004
Conventional Gas	.002	.023	.049**	.043***	.078***	.084***	.070***	.141***	.074***	.027**
Diesel	.127***	.082	.129***	.124***	.140***	.286	.171***	.274***	.191***	.156***
Aviation Fuel	.012	012	.061*	.062**	.023	.006	.037	099*	.027	.014
SMB	1.07-4	.003***	6.25^{-5}	002***	002	.002*	1.76^{-4}	.003**	001	9.19 ⁻⁵
HML	.002***	.001	.001	.001	2.51^{-4}	.003***	-4.39 ⁻⁵	.002	.001	3.98^{-4}
RMW	.005***	006***	.003***	006***	.003**	014***	.005***	015***	.004***	004***
CMA	006***	.006***	004***	.007***	007***	.013***	017***	.019***	012***	.008***
MOM	.002***	005***	.002***	004***	-9.36 ⁻⁵	008***	.003***	013***	.002***	004***
N	1,430	1,611	1,386	1,722	1,430	1,611	1,386	1,660	1,430	1,611
	Ovintiv		Pioneer		Range		SM Energy			Ovintiv
	Pre-	Post-	Pre-	Post-	Pre-Frack	Post-	Energy Pre-	Post-		Pre-Frack
	Frack	Frack	Frack	Frack	TTC-TTACK	Frack	Frack	Frack		TIC-TTACK
Intercept	-3.05 ⁻⁴	4.05 ⁻⁵	.001*	6.59 ⁻⁵	.001	002**	3.73 ⁻⁴	8.99 ⁻⁵	Intercept	-3.05 ⁻⁴
SNP	.921***	1.01***	1.14***	1.09***	1.14***	1.07***	1.05***	1.44***	SNP	.921***
Crude Oil	.094***	.003	.103***	.029*	.064**	048	.121***	.172***	Crude Oil	.094***
Natural Gas	.037***	.020	.018*	.004	.031***	.089***	.041***	.023	Natural Gas	.037***
Conventional Gas	.084***	.082***	.092***	.043**	.115***	.003	.095***	.052	Conventional	.084***
Conventional Gas	.00.	.002	.0,2	.0.15	.113	.005	.055	.022	Gas	.001
Diesel	.152***	.319***	.215***	.180***	.138***	.233***	.200**	.550***	Diesel	.152***
Aviation Fuel	.045*	.146***	.016	.012	.054	.011	.030	.025	Aviation Fuel	.045*
SMB	.001**	.005***	.002***	.002**	.005***	.007***	.004***	.007***	SMB	.001**
HML	.001*	.003***	.004***	.002**	.003***	.002	.002*	.005***	HML	.001*

RMW	.003***	012***	.003**	009***	.008***	010***	.001	017***	RMW	.003***
CMA	010***	.012***	013***	.007***	023***	.007***	009***	.006**	CMA	010***
MOM	.002	008***	.003***	005***	.004***	010***	.003***	015***	MOM	.002
N	1,386	1,661	1,386	1,661	1,430	1,611	1,430	1,611	N	1,386

Source: See Table 1.

Table 5, Exploration & Production Pre and Post Generalized Autoregressive Integrated Moving Average Models

	Ovintiv		Pioneer		Range		SM Energy	
	Pre-Frack	Post-Frack	Pre-Frack	Post-Frack	Pre-Frack	Post-Frack	Pre-Frack	Post-Frack
Intercept	-3.05 ⁻⁴	4.05^{-5}	.001*	6.59^{-5}	.001	002**	3.73^{-4}	8.99^{-5}
SNP	.921***	1.01***	1.14***	1.09***	1.14***	1.07***	1.05***	1.44***
Crude Oil	.094***	.003	.103***	.029*	.064**	048	.121***	.172***
Natural Gas	.037***	.020	.018*	.004	.031***	.089***	.041***	.023
Conventional Gas	.084***	.082***	.092***	.043**	.115***	.003	.095***	.052
Diesel	.152***	.319***	.215***	.180***	.138***	.233***	.200**	.550***
Aviation Fuel	.045*	.146***	.016	.012	.054	.011	.030	.025
SMB	.001**	.005***	.002***	.002**	.005***	.007***	.004***	.007***
HML	.001*	.003***	.004***	.002**	.003***	.002	.002*	.005***
RMW	.003***	012***	.003**	009***	.008***	010***	.001	017***
CMA	010***	.012***	013***	.007***	023***	.007***	009***	.006**
MOM	.002	008***	.003***	005***	.004***	010***	.003***	015***
N	1,386	1,661	1,386	1,661	1,430	1,611	1,430	1,611
	Southwestern		Vaalco		W&T Offshore		Average	
	Pre-Frack	Post-Frack	Pre-Frack	Post-Frack	Pre-Frack	Post-Frack	Pre-Frack	Post-Frack
Intercept	1.92^{-4}	002***	-2.03 ⁻⁴	-2.44 ⁻⁴	2.13^{-4}	-5.11 ⁻⁵	.001	-2.35 ⁻⁴
SNP	1.20***	1.11***	1.18***	.758***	1.15***	1.14***	1.22	1.16
Crude Oil	.018	046	019	044	.100***	.228***	.081	.047
Natural Gas	.064***	.100***	.019	.017	.013	.015	.022	.020
Conventional Gas	.098***	012	.055	.077**	.095**	.043	.083	.048
Diesel	.144***	.125**	.167***	.307***	.289***	.449***	.190	.252
Aviation Fuel	.079**	.084	.080*	.097	019	037	.051	.045
SMB	.002**	.006***	.011***	.002	.011***	.012***	.003	.004
HML	.002	.003**	.001	002	.005***	.002	.002	.003
RMW	.007***	013***	.001	009***	.003	012***	.003	011
CMA	022***	.009***	017***	.002	017***	.001	013	.008

MOM	.004***	011***	.003***	008***	.003***	010***	.003	008
N	1,430	1,611	1,430	1,611	1,386	1,661		

Source: See Table 1.

Table 6, Equipment & Services Pre and Post Generalized Autoregressive Integrated Moving Average Models

	Baker		Fluor		Halliburto		Helmeri		Nabor		National	
	Hughe				n		<i>ch</i> &		S		Oilwell	
	S						Payne		Drilli ng		Varco	
	Pre-	Post-	Pre-Frack	Post-	Pre-Frack	Post-	Pre-	Post-	Pre-	Post-	Pre-Frack	Post-
	Frack	Frack		Frack		Frack	Frack	Frack	Frack	Frack		Frack
Intercept	001	9.66 ⁻⁵	.001	.001* **	-6.87 ⁻⁵	-2.40 ⁻	.001	-7.06 ⁻	-1.56 ⁻⁴	-3.94 ⁻	.001*	-2.90 ⁻⁴
SNP	1.22**	1.05* **	1.36***	1.07* **	1.15***	1.17*	1.28***	1.06* **	1.21*	1.44* **	1.46***	1.07**
Crude Oil	.056**	.011	.034	.017*	.065***	.080* **	.049**	.067* **	.030	.126* **	.041	.071**
Natural Gas	.016	.003	.009	.029* **	.003	.001	.024***	002	.036*	.011	.012	.012
Conventio	.094**	.048*	.017	-	.086***	.020	.079***	.077*	.071*	.074*	.093***	.021
nal Gas	*	*		.173*				**	*	*		
Diesel	.198**	.083*	010	.125*	.174***	.174* **	.195***	.125* **	.208*	.265* **	.187***	.067
Aviation Fuel	010	.040	.113***	.038	.036	.006	.015	.076* *	.075*	.070	.077**	.042
SMB	.004**	.001	.004***	.007*	.003***	.002*	.004***	.003* **	.004*	.008* **	.001	.004**
HML	.001	.002* **	002**	.001*	001	.003*	.003***	.004* **	.001	.006* **	-3.19-4	.005**
RMW	.003**	_	004***	_	001	_	.004***	_	003*	_	.001	_
		.007* **		.002*		.006* **		.010* **		.016* **		.010**
CMA	-	.009*	009***	.004*	012***	.007*	-	.009*	-	.018*	017***	.006**
	.006**	**		**		**	.019***	**	.011* **	**		*

MOM	.003**	.005*	.002***	.005*	.004	.006*	.003***	008*	.002*	.012*	.003***	.006**
		**		**		**		**		**		*
N	1,386	1,661	1,386	1,661	1,430	1,611	1,430	1,611	1,430	1,611	1,430	1,611
	Precisi on Drillin		Schlumber ger		TechnipF MC		Tidewat er		Avera ge			
	g Pre- Frack	Post- Frack	Pre-Frack	Post- Frack	Pre-Frack	Post- Frack	Pre- Frack	Post- Frack	Pre- Frack	Post- Frack		
Intercept	-1.51-6	-1.16 ⁻	1.17-4	001*	.001**	-3.15 ⁻	-1.27	001	1.89-4	-3.73		
SNP	1.24**	1.33*	1.21***	1.00*	1.26***	1.08*	.986***	1.01* **	1.24	1.13		
Crude Oil	.013	.117* **	.056**	.061* **	.037	.039*	015	.019	.040	.061		
Natural Gas	.031**	001	.008	.014*	.003	-1.20 ⁻	.013	- .030* *	.012	.004		
Conventio nal Gas	.075**	.068* *	.096***	.054* **	.076***	.057* **	.092***	.043	.073	.029		
Diesel	.225**	.182*	.136***	.104* **	.102***	.075*	.168***	.048	.146	.125		
Aviation Fuel	.053	.092	.049**	004	.086***	.023	.009	.145*	.064	.053		
SMB	.004**	.006* **	.002***	.001*	.004***	.002* **	.002***	.007* **	.004	.004		
HML	.003**	.005* **	1.94 ⁻⁴	.004* **	.002**	.004* **	-2.36 ⁻⁴	.005* **	.001	.004		
RMW	.002	- .009* **	.002*	.005* **	.003**	- .009* **	.003**	- .011* **	-4.00-4	009		
CMA	.016**	.010* **	012***	.005* **	012***	.005*	009	.004	011	.008		

MOM	.003**	-	.001***	-	.004***	-	4.04-4	-	.001	008
	*	.009* **		.005* **		.007*		.013* **		
N	1,430	1,611	1,430	1,611	1,386	1,611	1,386	1,661		

Source: See Table 2.

Table 7, Integrated Pre and Post Generalized Autoregressive Integrated Moving Average Models

	BP		Chevron		ConocoPhillips		ENI		Exxon	
	Pre-	Post-	Pre-	Post-	Pre-Frack	Post-	Pre-Frack	Post-	Pre-	Post-Frack
	Frack	Frack	Frack	Frack		Frack		Frack	Frack	
Intercept	-8.04 ⁻⁵	-1.22-4	2.37^{-4}	-1.96 ⁻⁴	2.35^{-4}	8.88^{-5}	-1.77 ⁻⁴	-2.70^{-4}	-4.10^{-5}	-2.98^{-4}
SNP	.918***	.859***	1.03***	.972***	1.03***	.993***	1.16***	.871***	1.04***	.876***
Crude Oil	.072***	.075***	.014	.024**	.049***	.072***	.079***	.050***	.031***	003
Natural Gas	007	003	1.55^{-4}	.001	005	005	003	005	.002	.001
Conventional Gas	.029*	.042***	.015	.041***	.055***	.050***	.010	.029**	.004	.020**
Diesel	.137***	.111***	.110***	.082***	.102***	.178***	.083***	.064***	.088	.056***
Aviation Fuel	026	.001	.028**	012	.031	.024	.015	.040*	3.48^{-5}	.031*
SMB	001*	001*	003***	002***	002***	.001	002***	1.56^{-5}	003255	002***
HML	001**	.002***	-5.75 ⁻⁵	.003***	.002***	.004***	-2.69 ⁻⁴	.002***	000770	.002***
RMW	1.72^{-4}	005***	.004***	005***	.006***	007***	001	004***	.006391	003***
CMA	002**	.006***	003***	.007***	002**	.010***	.003**	.006***	3.65^{-4}	.005***
MOM	.001***	003***	.002***	002***	.002***	004	.003***	002***	.002***	003***
N	1,430	1,611	1,430	1,611	1,386	1,661	1,386	1,661	1,386	1,661
	HES		Murphy Oil		Petrobras		PetroChina		Royal Dutch Shell	
	Pre-	Post-	Pre-	Post-	Pre-Frack	Post-	Pre-Frack	Post-	Pre-	Post-Frack
	Frack	Frack	Frack	Frack		Frack		Frack	Frack	
Intercept	2.13-5	2.84^{-4}	.002	004	-3.57 ⁻⁴	.001	4.86^{-5}	-7.06 ⁻⁴	1.73^{-4}	-1.48^{-4}
SNP	1.29***	1.18***	1.10***	1.14***	1.32***	1.33***	1.13***	.935***	1.01***	.807***
Crude Oil	.025	.081***	.079***	.054**	.092***	.063**	.063***	.041***	.076***	.081***
Natural Gas	.017*	.001	.007	.007	028***	.008	003	4.76^{-7}	006	006
Conventional Gas	.119***	.061***	.087***	.083***	.113***	.026	.026	004	.011	.039***
Diesel	.129***	.244***	.135***	.299***	.044	.189***	.064***	.155***	.105***	.147***
Aviation Fuel	.065**	015	.065**	.070**	.083**	.073	.022	.010	.010	031
SMB	-1.70-4	.001	4.36^{-4}	.006***	.001	002*	-2.26 ⁻⁵	-4.65^{-4}	002***	001
HML	.001	.002**	001	.007***	5.23^{-5}	.002	.002***	-1.91 ⁻⁵	001*	.002***

RMW	.003**	010***	.003***	008***	.005***	008***	.004***	004***	.001	004***
CMA	003**	.016***	001	.021***	010***	.011***	005***	.002**	001	.006***
MOM	.002***	006***	-7.34 ⁻⁷	1.06^{-6}	7.63^{-5}	005***	7.76^{-5}	003***	.002***	002***
N	1,386	1,661	1,386	1,661	1,386	1,722	1,386	1,661	1,385	1,661

Source: See Table 3.

Table 7, Integrated Pre and Post Generalized Autoregressive Integrated Moving Average Models

	Total		Average	
	Pre-	Post-	Pre-	Post-
	Frack	Frack	Frack	Frack
Intercept	-1.93 ⁻⁴	-1.85 ⁻⁴	1.71^{-4}	-3.77 ⁻⁴
SNP	1.15***	.888***	1.11	.914
Crude Oil	.082***	.051***	.060	.054
Natural Gas	001	1.37^{-4}	002	-7.84 ⁻⁵
Conventional	.026**	.042***	.045	.039
Gas				
Diesel	.104***	.087***	.097	.147
Aviation Fuel	001	.022	.027	.019
SMB	001***	001***	.003	-1.20-4
HML	-4.40-4	.002***	4.69^{-5}	.003
RMW	.001	003***	.003	006
CMA	002	.004***	002	.009
MOM	.002***	003***	.002	003
N	1,430	1,661		

Source: See Table 3.

Table 8, Transportation & Pipeline Pre and Post Generalized Autoregressive Integrated Moving Average Models

	Cheniere		Kinder Morgan		OneOK		Whiting		Average	
	Pre-Frack	Post-	Pre-	Post-	Pre-Frack	Post-	Pre-Frack	Post-	Pre-	Post-
		Frack	Frack	Frack		Frack		Frack	Frack	Frack
Intercept	.001	3.47^{-4}	.001	-1.27 ⁻⁴	.001**	.001	.001*	-4.28^{-4}	.001	1.48^{-4}
SNP	.727***	.984***	.558***	.904***	.888***	.968***	1.24***	1.91***	.853	1.26
Crude Oil	001	026	103	.009	.026*	.030*	.125***	.108***	.012	.049
Natural Gas	014	.003	.018	.007	.013**	.010	.015	006	.008	.004
Conventional	.051	.030	074	.029**	.047***	.015	.145***	.079*	.042	.041
Gas										
Diesel	.068	.127***	.161	.077***	.029	.158***	.227***	.654***	.121	.296
Aviation Fuel	.129	.029	046	023	006	.032	070	.082	.002	.030
SMB	.011	.002***	002	.001	.002***	.001**	.007***	.013***	.005	.005
HML	.005	001	.007**	.001	.002***	001	.003***	6.88^{-5}	.004	2.29^{-5}
RMW	007**	010***	006	008***	.005***	006***	.003*	013***	001	009
CMA	010***	.005***	013**	.006***	.002**	.009***	018***	.021***	010	.012
MOM	.003*	003***	.009***	003***	.002***	003***	.003***	014***	.004	007
N	1,386	1,661	217	1,721	1,430	1,611	1,386	1,611		

Source: See Table 4.

Table 9, Refining & Marketing Pre and Post Generalized Autoregressive Integrated Moving Average Models

_	Holly		Marathon		Targa		Valero		Average	
	Frontier		Petroleum		Resources					
	Pre-	Post-	Pre-Frack	Post-	Pre-Frack	Post-	Pre-	Post-	Pre-	Post-
	Frack	Frack		Frack		Frack	Frack	Frack	Frack	Frack
Intercept	.001*	3.64^{-5}	.001	1.31^{-4}	.002*	3.27^{-4}	6.67^{-5}	3.67^{-4}	.001	2.65^{-4}
SNP	1.01***	1.04***	.918***	1.18***	.670***	1.06***	1.12***	1.06***	.930	1.09
Crude Oil	.025	022	.102	.038*	.045	.091***	.011	.006	.046	.028
Natural Gas	.009	007	026	009	.006	.001	.013	003	.001	005
Conventional	.264***	.073***	.199	.072***	.121	.020	.166***	.077***	.188	.061
Gas										
Diesel	.026	.164***	415	.061	007	.164***	.101**	.042	074	.108
Aviation Fuel	.010	041	.374	.008	039	.076*	.017	034	.091	.002
SMB	.005***	.004***	006*	.003***	2.33^{-4}	.002***	.004***	.003***	.001	.003
HML	.003**	.003***	.002	.005***	001	3.47^{-4}	.001	.004***	.001	.003
RMW	.002	002	024***	001	008*	009***	-2.31^{-4}	3.93^{-4}	008	003
CMA	009***	-2.52^{-4}	006	003**	3.91^{-4}	.008***	009***	002*	006	.001
MOM	.002***	002***	.010**	002***	.004**	007***	.001	001*	.007	003
N	1,430	1,661	128	1,661	264	1,661	1,430	1,661		

Source: See Table 4.

Assessing the oil and gas industry risk in upstream, midstream, and downstream sectors, Tables 5 through 9 present pre and post return generating models, where CAPM-based models' equity, commodity, and distillate returns are risk estimates in upstream, midstream, and downstream sectors. Integrated and partitioned Independent's excess return variation are positively related to equity, commodity, and distillate excess return variation (Tables 5 through 9; Gold, 2013, pp. 198-199). Across upstream, mid-stream, and downstream sectors, Independent equity risk premium are greater than Integrated firms. Equity and commodity risk mostly decreased in the upstream exploration & production, equipment & service, and Integrated industry sectors (Tables 5 through 9). Results are mixed for downstream transportation & pipeline and refining & market, where equity market increased.

Nonetheless, concern is risk and return variation and their variation across oil and gas sectors with the fracking revolution.

V. Difference-in-Decompositions Model

Oaxaca-Blinder decompositions (1973) are statistical techniques that partition dependent variable differences into structure and composition effects. To isolate causal effects in the experimental design literatures, Card and Krueger (1993) introduced difference-in-difference estimators that are now standard causal inference techniques using only observational data. A difference-in-decompositions combines Oaxaca-Blinder decompositions and difference-in-difference estimates to separate Independent and Integrated equity, commodity, and distillate risk into structural and compositional effects before and after the unconventional drilling and hydraulic fracturing revolutions. Carson (2018, 2019, 2021, 2022) introduces differences-in-decompositions, while Carson (2022a) uses differences-in-decompositions to the oil and gas industry.

5.1 Model

Within and across Independent and Integrated differences-in-decompositions are constructed before and after the development of unconventional recovery techniques (Tables 5 through 9). Linear

return vector model coefficients are presented in Tables 3 and 4 and expressed as returns to characteristics and returns to average characteristics before and after fracking. R_m and R_i are returns to Integrated and Independent oil producers.

Model 1

$$R_m^{pre} = \alpha_m^{pre} + \beta_m^{pre} X_m^{pre}$$
 (Equation 2)

Model 2

$$R_m^{post} = \alpha_m^{post} + \beta_m^{post} X_m^{post}$$
 (Equation 3)

Model 3

$$R_i^{pre} = \alpha_i^{pre} + \beta_i^{pre} X_i^{pre}$$
 (Equation 4)

Model 4

$$R_i^{post} = \alpha_i^{post} + \beta_i^{post} X_i^{post}$$
 (Equation 5)

where α_i^{pre} and α_m^{pre} are Independent and Integrated pre-fracking autonomous return components. β_i^{pre} and β_m^{pre} are Independent and Integrated pre-fracking return sensitivity parameters associated with equity, commodity, and distillate market effects. α_i^{post} and α_m^{post} are Independent and Integrated post-fracking autonomous return components. β_i^{post} and β_m^{post} are Independent and Integrated post-fracking sensitivity parameters associated with equity, commodity, and distillate effects. Changes in these post-pre, Independent-Integrated return characteristics are modelled with within-group and across-group difference-in-decompositions. A difference-in-decomposition is different from the difference-in-difference estimator because a difference-in-decompositions is first decomposed with Blinder-Oaxaca decompositions and then differenced, creating differences-in-decompositions that are different from difference-in-difference estimators (Wooldridge, 2010, p. 410). However, where a difference-in-

difference estimator is associated with causal interpretation, because there are no treatment and control groups, a difference-in-decompositions considers changes in structural and compositional results associated with an event, and estimated difference-in-decomposition coefficients are not interpreted as causal.

5.2. Within-Group Decompositions

Independent and Integrated returns are decomposed into within-group difference-in-decomposition estimators. Returns are first differenced within Independent and Integrated sectors, and the across post and pre-fracking periods. Equation (6) is the within-group Independent-Integrated post and pre-fracking return difference-in-decompositions observed at post fracking returns to characteristics.

$$\begin{split} \left(R_{i}^{post}-R_{i}^{pre}\right)-\left(R_{m}^{post}-R_{m}^{pre}\right)&=\left(\left(\alpha_{i}^{post}-\alpha_{i}^{pre}\right)-\left(\alpha_{m}^{post}-\alpha_{m}^{pre}\right)\right)+\left(\left(\beta_{i}^{post}-\beta_{i}^{pre}\right)X_{i}^{pre}-\left(\beta_{m}^{post}-\beta_{m}^{pre}\right)X_{m}^{pre}\right)\\ &+\left(\left(X_{i}^{post}-X_{i}^{pre}\right)\beta_{i}^{post}-\left(X_{m}^{post}-X_{m}^{pre}\right)\beta_{m}^{post}\right) \end{split} \tag{Equation 6}$$

Equation (7) is the within-group Independent-Integrated post and pre-fracking estimator observed at post fracking averages and pre-fracking returns to characteristics.

$$\begin{split} \left(R_{i}^{post}-R_{i}^{pre}\right)-\left(R_{m}^{post}-R_{m}^{pre}\right) &=\left(\left(\alpha_{i}^{post}-\alpha_{i}^{pre}\right)-\left(\alpha_{m}^{post}-\alpha_{m}^{pre}\right)\right)+\left(\left(\beta_{i}^{post}-\beta_{i}^{pre}\right)X_{i}^{post}-\left(\beta_{m}^{post}-\beta_{m}^{pre}\right)X_{m}^{post}\right) \\ &+\left(\left(X_{i}^{post}-X_{i}^{pre}\right)\beta_{i}^{pre}-\left(X_{m}^{post}-X_{m}^{pre}\right)\beta_{m}^{post}\right) \end{split} \tag{Equation 7}$$

5.3. Across-Group Decompositions

Independent and Integrated returns are decomposed with across-group difference-indecomposition estimators. Returns are first differenced across Independent and Integrated sectors and then across post and pre periods. Equation (8) is the across-group difference-indecompositions observed at Integrated averages at Independent returns to characteristics.

$$\left(R_{m}^{post}-R_{i}^{post}\right)-\left(R_{m}^{pre}-R_{i}^{pre}\right)=\left(\left(\alpha_{m}^{post}-\alpha_{i}^{post}\right)-\left(\alpha_{m}^{pre}-\alpha_{i}^{pre}\right)\right)+\left(\left(\beta_{m}^{post}-\beta_{i}^{post}\right)X_{m}^{post}-\left(\beta_{m}^{pre}-\beta_{i}^{pre}\right)X_{m}^{pre}\right)$$

$$+\left(\left(X_{m}^{post}-X_{i}^{post}\right)\beta_{i}^{post}-\left(X_{m}^{pre}-X_{i}^{pre}\right)\beta_{i}^{pre}\right)$$
 (Equation 8)

Equation (9) is the across-group difference-in-decompositions observed at Independent averages at Integrated returns to characteristics.

$$\begin{split} \left(R_{m}^{post} - R_{i}^{post}\right) - \left(R_{m}^{pre} - R_{i}^{pre}\right) &= \left(\left(\alpha_{m}^{post} - \alpha_{i}^{post}\right) - \left(\alpha_{m}^{pre} - \alpha_{i}^{pre}\right)\right) + \left(\left(\beta_{m}^{post} - \beta_{i}^{post}\right)X_{i}^{post} - \left(\beta_{m}^{pre} - \beta_{i}^{pre}\right)X_{i}^{pre}\right) \\ &+ \left(\left(X_{m}^{post} - X_{i}^{post}\right)\beta_{m}^{post} - \left(X_{m}^{pre} - X_{i}^{pre}\right)\beta_{m}^{pre}\right) \end{split} \tag{Equation 9}$$

Difference-in-decompositions partition relative risk sources created with the fracking revolution.

VI. Results

6.1 Independent and Integrated Within-Group Difference-in-Decomposition

The Independent-Integrated within-group difference-in-decompositions are presented in Tables 10 through 13. Panel A is the within-group Independent post-pre fracking decomposition. Panel B is the within-group Integrated post-pre fracking decomposition. Panel C is the within-group difference-in-decompositions and is the difference between Panels A and B. Because each element in Panels A and B are the post and pre-fracking Independent-Integrated percent differences, Panel C elements are the percent differences in the post-pre within-group decompositions. To highlight the fracking revolution's industry realignment, only S&P 500, brent crude, natural and conventional gas, diesel, and aviation fuel are considered. Levels are aggregate decompositions. Proportions by characteristics are specific decompositions (An and Glynn, 2019, p. 1006)

Table 10, Exploration & Production Within-Group Difference-in-Decompositions

Panel A				
Independen	$(R^{Post} - R^{Pre}) Y^{Pre}$	$(\overline{\mathbf{Y}}^{Post} - \overline{\mathbf{Y}}^{Pre}) R^{Post}$	$\left(eta_i^{Post} - eta_i^{\operatorname{Pr}e}\right) X_i^{\operatorname{Post}}$	$(\overline{\mathbf{Y}}^{Post} - \overline{\mathbf{Y}}^{Pre}) R^{Pre}$
t	$(\rho_i - \rho_i) \Lambda_i$	$(\mathbf{A}_i - \mathbf{A}_i) p_i$	$(\rho_i - \rho_i) \Lambda_i$	$(X_i - X_i) p_i$
Levels				
Sum	0009	0003	0014	.0002
Total		0012		0012
Proportions		.0012		.0012
Intercept	.5785		.5785	
SNP	.0080	2484	.0217	2620
SMB	.0073	.0925	.0142	.0710
HML	.0034	.0483	.0093	.0424
RMW	.3570	1914	.1040	.0615
CMA	1054	.1249	.2366	2171
MOM	0957	.1816	.1563	0704
Crude	.0243	.0390	0038	.0671
Natural Gas	.0003	0085	.0010	0091
Conventiona	.0187	.0193	.0047	.0333
1 Gas	.0107	.0193	.0047	.0333
Diesel	0239	.1520	.0136	.1146
Aviation	.0030	.0298	0013	.0340
Fuel	.0030	.0296	0013	.0340
Sum	.7609	.2391	1.135	135
Total	.7009	.2391	1.155	133 1
Panel B		1		1
Integrated	(Post OPra) Tra	(=Post =Pra) oPost	(Post OPra) Ta Post	(= Post = Pra) oPra
miegraieu	$\left(\beta_{m}^{rosi}-\beta_{m}^{rie}\right)X_{m}^{rie}$	$(X_m^{rosi} - X_m^{rie})\beta_m^{rosi}$	$\left(oldsymbol{eta}_{m}^{Post}-oldsymbol{eta}_{m}^{\operatorname{Pr}e} ight)X_{m}^{\operatorname{Post}}$	$(X_m^{rost} - X_m^{rre})\beta_m^{rre}$
Levels				
Sum	0007	.0001	0011	.0005
Total		0007		0007
Proportions				
Intercept	.8355		.8355	
SNP	.0262	06322	.1600	7660
SMB	.0341	0051	.0812	1204
HML	.0467	.0868	.1320	.0016
RMW	.3946	1789	.1144	.1013
CMA	1006	.2509	.2187	0684
MOM	0729	.1698	.1800	0831
Crude	.0059	.0443	.0007	.0495
Natural Gas	0007	7.22-5	0024	.0018
Conventiona	.0062	.0225	.0025	.0262
1 Gas	.0002	.0220	.0020	.0202
Diesel	0344	.1425	.0143	.0938
Aviation	.0059	.0209	0019	.0287
Fuel	.0037	.0207	.0017	.0207
Sum	1.078	078	1.735	7349
Total	1.070	070	1.733	/J T /
Panel C				
ENP DID	Equation 6	Equation 7	Equation 6	Equation 7
Levels	Equation o	Equation /	Equation o	Equation /
	1			

Sum	0002	0004	0003	0003
Total		0006		0006
Proportions				
Intercept	2570		2570	
SNP	0182	.3838	1384	.5040
SMB	.0680	.0976	0670	.1914
HML	0434	0386	1227	.0408
RMW	0376	0126	0104	0400
CMA	0047	1260	.0179	1487
MOM	0228	.0118	0237	.0127
Crude	.0184	0052	0045	.0176
Natural Gas	.0011	0086	.0034	0109
Conventiona	.0125	0033	.0021	.0070
1 Gas				
Diesel	.0105	.0095	0008	.0208
Aviation	0030	.0088	.0006	.0053
Fuel				
Sum	3174	.3174	6002	.6002

Source: See Table 5 and 7.

Table 11, Equipment & Services Within-Group Difference-in-Decompositions

Panel A				
Independen	$(\beta^{Post} - \beta^{Pre}) X^{Pre}$	$(\overline{X}^{Post} - \overline{X}^{Pre}) R^{Post}$	$\left(eta_i^{Post} - eta_i^{\operatorname{Pr}e}\right) X_i^{\operatorname{Post}}$	$(\overline{X}^{Post} - \overline{X}^{Pre}) \beta^{Pre}$
t	$\rho_i \rho_i \gamma_i$	$(X_i X_i) p_i$	$(P_i P_i) \Lambda_i$	$(\Lambda_i \Lambda_i) \rho_i$
Levels				
Sum	0012	.0003	0007	0002
Total		0009		0009
Proportions				
Intercept	.6117		.6117	
SNP	.0518	.2877	.0233	.3162
SMB	.0084	1258	0039	1135
HML	.1025	0957	.0359	0292
RMW	.0733	.2029	.2667	.0096
CMA	.2707	1641	1278	.2344
MOM	.1830	2251	0776	.0355
Crude	0003	0375	0131	0247
Natural Gas		0373 .0019	.0029	.0056
	.0067			
Conventiona	.0093	0131	.0292	0330
l Gas	00.62	00.42	0100	1105
Diesel	0063	0943	.0100	1105
Aviation	0031	0446	.0063	0540
Fuel	1.200	2055	7.05	22.55
Sum	1.308	3077	.7635	.2365
Total		1		1
Panel B				
Integrated	$\left(\beta_{m}^{Post}-\beta_{m}^{\Pr e}\right)X_{m}^{\Pr e}$	$(\bar{X}_m^{Post} - \bar{X}_m^{Pre}) \beta_m^{Post}$	$\left(oldsymbol{eta}_{m}^{Post}-oldsymbol{eta}_{m}^{\operatorname{Pr}e} ight)X_{m}^{\operatorname{Post}}$	$\left(ar{X}_{m}^{Post}-ar{X}_{m}^{\operatorname{Pr}e} ight)eta_{m}^{\operatorname{Pr}e}$
Levels	,	,	,	,
Sum	0007	-5.127 ⁻⁵	0011	.0005
Total		0007		0007
Proportions				
Intercept	.8355		.8355	
SNP	.0262	6322	.1600	0766
SMB	0341	0051	.0812	1204
HML	.0467	.0868	.1320	.0016
RMW	.3946	1789	.1144	.1013
CMA	1006	.2509	.2187	0684
MOM	0729	.1698	.1800	0831
Crude	.0059	.0443	.0007	.0495
Natural Gas	0008	.0001	0024	.0018
Conventiona	.0062	.0225	.0024	.0262
1 Gas	.0002	.0223	.0023	.0202
Diesel	0244	1.425	0142	0029
	0344	.1425	.0143	.0938
Aviation	.0059	.0209	0019	.0287
Fuel	1.070	0702	1.727	7240
Sum	1.078	0782	1.735	7349
Total		1		1
Panel C				
ENS DID Levels			D	
Lovole	Equation 6	Equation 7	Equation 6	Equation 7

Sum	0005	.0002	.0004	0007
Total		0003		0003
Proportions				
Intercept	2238		2238	
SNP	.0256	.9198	1367	1.082
SMB	.0425	1207	0850	.0069
HML	.0557	1826	0961	0308
RMW	3213	.3817	.1523	0918
CMA	.3713	4150	3465	.3028
MOM	.2559	3948	2576	.1187
Crude	0062	0818	0138	0742
Natural Gas	.0075	.0018	.0054	.0039
Conventiona	.0031	0356	.0267	0592
1 Gas				
Diesel	.0281	2368	0044	2043
Aviation	0090	0655	.0082	0827
Fuel				
Sum	.2294	2294	9715	.9715

Source: See Table 6 and 7.

Table 12, Transportation & Pipeline Within-Group Difference-in-Decompositions

Panel A				
Independen	$(\beta^{Post} - \beta^{Pre}) X^{Pre}$	$(\overline{X}^{Post} - \overline{X}^{Pre}) R^{Post}$	$\left(eta_i^{Post} - eta_i^{\operatorname{Pr}e} ight) X_i^{\operatorname{Post}}$	$(\overline{X}^{Post} - \overline{X}^{Pre}) \beta^{Pre}$
t	$\rho_i \rho_i \gamma_i$	$(X_i X_i) p_i$	$(P_i P_i) \Lambda_i$	$(\Lambda_i \Lambda_i) \rho_i$
Levels				
Sum	0010	.0002	0011	.0003
Total		0008		0008
Proportions				
Intercept	1.030		1.030	
SNP	0236	5751	2094	3892
SMB	.0004	.1011	.0105	.0910
HML	0977	.0004	1731	.0759
RMW	.3681	3361	.0787	0467
CMA	0450	.2182	.3506	1773
MOM	.0840	.0789	.2132	0503
Crude	0261	.0335	0007	.0080
Natural Gas	-4.194 ⁻⁴	0036	.0042	0079
Conventiona	.0010	.0236	.0002	.0243
1 Gas	.0010	.0230	.0002	.0243
Diesel	0952	.2533	.0545	.1036
Aviation	0176	.0272	.0081	.0016
Fuel	0170	.0272	.0001	.0010
Sum	1.179	178	1.367	367
Total	1.179	1/0	1.307	307
Panel B				
Integrated	(Post Pre) xx Pre	(\overline{x}_{Post} \overline{x}_{Pre}) o_{Post}	(Post Pre) Tr Post	($\overline{\mathbf{x}}_{Post}$ $\overline{\mathbf{x}}_{Pre}$) o_{Pre}
integrateu	$\left(\beta_m^{res} - \beta_m^{re}\right) X_m^{re}$	$(X_m^{rost} - X_m^{rost})\beta_m^{rost}$	$\left(oldsymbol{eta}_{m}^{Post}-oldsymbol{eta}_{m}^{\operatorname{Pr}e} ight)X_{m}^{\operatorname{Post}}$	$(X_m^{res} - X_m^{re})\beta_m^{re}$
Levels				
Sum	0007	5.130^{-5}	0011	.0005
Total		0007		0007
Proportions				
Intercept	.8355		.8355	
SNP	.0262	6322	.1600	7660
SMB	0341	.0051	.0812	1204
HML	.0467	.0868	.1320	.0016
RMW	.3946	1789	.1144	.1013
CMA	1006	.2509	.2187	0684
MOM	0729	.1700	.1800	0831
Crude	.0059	.0443	.0007	.0495
Natural Gas	0008	7.220-5	0024	.0018
Conventiona	.0062	.0225	.0025	.0262
1 Gas				
Diesel	0344	.1425	.0143	.0938
Aviation	.0059	.0209	0019	.0287
Fuel		.0207	.0017	
Sum	1.078	0783	1.735	7349
Total	1.570	.0703	1.,55	.,517
Panel C				
	1			
TNP DID				
TNP DID Levels	Equation 6	Equation 7	Equation 6	Equation 7

Sum	0003	9.630-5	0011	.0005
Total	.0003	0002	.0011	0002
Proportions		.0002		.0002
Intercept	.1948		.1948	
SNP	0498	.0571	3694	.3767
SMB	.0345	.1062	0707	.2113
HML	1444	0864	3051	.0743
RMW	0265	1572	0357	1480
CMA	.0557	0327	.1316	1089
MOM	.1570	0909	.0332	.0328
Crude	0321	0108	0014	0415
Natural Gas	.0007	0037	.0067	0097
Conventiona	0052	.0011	0023	0019
1 Gas				
Diesel	0608	.1108	.0402	.0098
Aviation	0235	.0063	.0099	0271
Fuel				
Sum	.1003	1003	3679	.3679

Source: Tables 8 and 7.

Table 13, Refining & Mining Within-Group Difference-in-Decompositions

$(\beta^{Post} - \beta^{Pre}) X^{Pre}$	$(\overline{X}^{Post} - \overline{X}^{Pre})\beta^{Post}$	$(\beta^{Post} - \beta^{Pre}) X^{Post}$	$(\bar{X}^{Post} - \bar{X}^{Pre}) \beta^{Pre}$
$(P_i P_i)^{II}_i$	$(I_i I_i) P_i$	$(P_i P_i)^{11}i$	$(n_i n_i) p_i$
0007	0003	0011	.0001
	0010		0010
.7691		.7691	
0849	.1865	0582	.1598
.0298	.0371	.0569	.0100
			.0237
			3082
			1121
			0371
			.0261
			0007
			.0827
.0701	.0207	.020 .	.0027
- 0976	0885	0515	0606
			.0756
.0307	.0019	.022)	.0750
6752	3248	1 141	1408
.0732		1.171	1
	1		1
$\left(R^{Post} - R^{Pre} \right) \mathbf{V}^{Pre}$	$(\overline{\mathbf{Y}}^{Post} - \overline{\mathbf{Y}}^{Pre})_{R}^{Post}$	$\left(R^{Post} - R^{Pre} \right) \mathbf{Y}^{Post}$	$(\bar{\mathbf{Y}}^{Post} - \bar{\mathbf{Y}}^{Pre}) R^{Pre}$
$(\rho_m - \rho_m) \Lambda_m$	$(\Lambda_m - \Lambda_m) \rho_m$	$(\rho_m - \rho_m) \Lambda_m$	$(X_m - X_m) \rho_m$
	_		
0007		0011	.0005
	0007		0007
			7660
			1204
.0467	.0868	.1320	.0016
.3946	1789	.1144	.1013
1006	.2509	.2187	0684
0729	.1700	.1800	0831
.0059	.0443	.0007	.0495
0008	7.220^{-5}	0024	.0018
.0062	.0225	.0025	.0262
0344	.1425	.0143	.0938
.0059	.0209	0019	.0287
1.078	0783	1.735	7349
0007	5.130 ⁻⁵	0011	.0005
	0007 .76910849 .0298 .031418760416 .1231 .01020041 .0764 0976 .0509 .6752 $(\beta_m^{Post} - \beta_m^{Pre}) X_m^{Pre}$ 0007 .8355 .02620341 .0467 .394610060729 .00590008 .0062 0344 .0059 1.078	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$

Sum	.0001	0004	2.182-5	0003
Total		0003		0001
Proportions				
Intercept	0664		0664	
SNP	1111	.8187	2182	.9257
SMB	.0638	.0422	0243	.1304
HML	0153	0283	0657	.0221
RMW	5822	.0525	1201	4096
CMA	.0591	2379	1352	0436
MOM	.1961	0153	0032	.0460
Crude	.0043	0281	0005	0234
Natural Gas	0033	.0063	.0054	0025
Conventiona	.0702	.0042	.0179	.0565
1 Gas				
Diesel	0632	0540	.0371	1544
Aviation	.0450	0191	0210	.0469
Fuel				
Sum	4032	.4031	5942	.5942

Source: See Tables 9 and 7.

6.1.1 Within-group Independent Decompositions

Tables' 10 through 13, Panel A are Independent post-pre fracking decompositions and is the measure for before-after Independent variation with the fracking revolution. Panel A characteristic elements are positive if within-group Independent returns increase with the fracking revolution, and negative if Independent returns decreased with the fracking revolution. From specific decompositions, exploration & production post fracking returns increased across equity and commodity returns, save diesel, indicating that fracking technologies increased Independent returns for infrastructure closest to extraction (Panel A; Gold, 2013, p. 129). Equipment & service equity and distillate returns were higher after fracking from equity, natural gas, and conventional gas but were lower from crude, diesel, and aviation. Transportation & pipeline post fracking conventional gas is the only return that increased with fracking; transportation & pipeline returns were higher before the fracking revolution for equity and commodity returns, except conventional gas. Refining & marketing crude, conventional gas, and aviation fuel returns were higher after fracking and lower for equity, natural gas, and diesel, indicating that midstream and downstream Independent returns decreased in the post-fracking period and had measurable spillover effects associated with the fracking revolution (Panel A). Independent diesel post fracking returns decreased across the oil and gas industry and were higher after fracking for conventional gas (Panel A), and multiple fracking technologies increased returns closest to oil and gas extraction.

6.1.2 Within-group Integrated Decompositions

Panel B characteristic elements are positive if within-group vertically Integrated returns increased within the fracking revolution, and negative if Integrated returns decreased with the fracking revolution. Integrated post fracking returns increased with equity, commodity, conventional gas, and aviation fuel and decreased with natural gas and diesel, indicating the fracking revolution also increased Integrated returns closest to oil and gas extraction. From the start, the fracking revolution changed relationships between Independent and Integrated equity and commodity market returns and risk, and across the industry, within-group returns to equity market relationships were greater than commodity markets.

6.1.3 Within-Group Difference in Decompositions

Within-group differences-in-decomposition signs indicate fracking revolution risk and return variation (Panel C). If characteristic elements are positive, Independent gaps increased with the fracking revolution relative to vertically Integrated gaps and negative if vertically Integrated gaps increased with fracking compared to Independent producers. Exploration & production within-group differences-in-decompositions indicate that post-fracking return gaps increased compared to Integrated from crude, natural gas, conventional gas, and diesel, and decreased from equity and aviation fuel gaps, indicating that fracking technologies increased Independent relative to Integrated within-group returns closest to oil and gas extraction. Only the Integrated to exploration & production Independent returns gap increased with equity and aviation fuel. Subsequent 2020's oil and gas mergers and acquisitions indicate that large vertically integrated firms recognized their smaller exploration & production advantages and engaged in a post-fracking mergers to acquire smaller producers closer to oil and gas extraction (Gold, 2013, p. 134). Equipment & service equity, natural gas, conventional gas, and diesel return gaps increased with fracking and Integrated return gaps increased in crude commodity and aviation fuel gaps. The fracking revolution shifted several well completions to equipment & service firms, that reflect upstream technologies, creating market value.

Transportation & pipeline Independent to Integrated return gaps only increased in natural gas, whereas Integrated returns gaps increased from equity, commodity, conventional gas, diesel, and aviation fuel with the fracking revolution. Refining & marketing Independent to Integrated return gaps increased for crude, conventional gas, and aviation fuel, while Integrated to refining & marketing gaps increased in equity, natural gas, and diesel. With more stable access to oil and gas, downstream transportation & pipeline and refining & marketing equity returns decreased with fracking, indicating that downstream Independent firm values decreased with fracking revolution New Growth factors.

6.2 Independent and Integrated Across-Group Difference-in-Decomposition

Tables 14 through 17, Panel A are the across-group Integrated-Independent post-fracking returns decompositions. Panel A elements are positive if vertically Integrated returns were higher than Independents after fracking and negative if Independent returns were higher than vertically Integrated after fracking. Panel B is the across-group Independent-Integrated pre-fracking decompositions, and elements are positive if vertically Integrated returns were higher than Independents before the fracking revolution and negative if Independent returns were higher than Integrated before fracking. Panel C is the difference-in-decompositions between Panels A and B and are positive if post-fracking Integrated to Independent gaps increased with the fracking revolution and negative if post fracking Independent gaps increased relative to vertically Integrated.

Table 14, Exploration & Production Across-Group Decomposition

Panel A				
ENP	$\left(\beta_{m}^{Post}-\beta_{i}^{Post}\right)X_{m}^{Post}$	$\left(ar{X}_{m}^{Post}-ar{X}_{i}^{\operatorname{Post}} ight)oldsymbol{eta}_{i}^{Post}$	$\left(\beta_{m}^{Post} - \beta_{i}^{Post}\right) X_{i}^{Post}$	$(\bar{X}_{m}^{Post} - \bar{X}_{i}^{Post})\beta_{m}^{Post}$
Post		((* ***) **	(
Levels				
Sum	-1.402 ⁻⁵	.0001	-2.198 ⁻⁵	.0001
Total		9.800^{-5}		9.800^{-5}
Proportions				
Intercept	-1.117		-1.447	
SNP	-1.333	1.376	-1.046	1.089
SMB	.8384	0382	.7990	.0011
HML	.0362	.0287	.0373	.0276
RMW	.4507	.0603	.4797	.0314
CMA	1065	.0547	1121	.0603
MOM	1.372	7450	.8997	2779
Crude	.0050	.1005	0098	.1153
Natural Gas	1796	.0138	1658	-5.401 ⁻⁵
Conventiona	0238	.0448	0154	.0364
1 Gas				
Diesel	.2017	.2161	.2922	.1256
Aviation	.0437	.0359	.0641	.0155
Fuel				
Sum	1431	1.143	2243	1.224
Total				
Panel B				
Pre	$\left(eta_{\scriptscriptstyle m}^{{ ext{Pr}}_e}\!-\!eta_{\scriptscriptstyle i}^{{ ext{Pr}}_e} ight)\!X_{\scriptscriptstyle m}^{{ ext{Pr}}_e}$	$\left(ar{X}_{m}^{ ext{Pr}e}-ar{X}_{i}^{ ext{Pr}e} ight)\!eta_{i}^{ ext{Pr}e}$	$ig(eta_{\!\scriptscriptstyle m}^{{ ext{Pr}}_e}\!-\!eta_{\!\scriptscriptstyle i}^{{ ext{Pr}}_e}ig)X_i^{{ ext{Pr}}_e}$	$\left(ar{X}_{m}^{ ext{Pr}e}-ar{X}_{i}^{ ext{Pr}e} ight)oldsymbol{eta}_{m}^{ ext{Pr}e}$
Levels	,	,	,	,
Sum	0004	0001	0004	0001
Total		0005		0005
Proportions				
Intercept	.6400		.6400	
SNP	.0201	.1710	.0357	.1554
SMB	.0999	.0086	.1163	.0078
HML	0569	0035	0602	-6.995 ⁻⁵
RMW	.0174	.0122	.0184	.0112
CMA	1377	0031	1402	.0005
MOM	0364	.0006	0361	.0003
Crude	.0255	.0470	.0374	.0351
Natural Gas	.0129	.0004	.0134	-3.481 ⁻⁵
Conventiona	.0486	.0051	.0509	.0028
1 Gas				
Diesel	.0857	.0113	.0913	.0057
Aviation	.0270	.0042	.0290	.0022
Fuel				
Sum	.7462	.2538	.7958	.2042
Total		1		1
Panel C				

ENP DID				
Levels	Equation 8	Equation 9	Equation 8	Equation 9
Sum	.0004	.0002	.0004	.0002
Total		.0006		.0006
Proportions				
Intercept	-2.087		-2.087	
SNP	-1.353	1.205	1082	.9336
SMB	.7385	0468	.6827	.0089
HML	.0930	.0322	.0975	.0277
RMW	.4333	.0481	.4613	.0202
CMA	.0312	.0577	.0281	.0608
MOM	1.408	7504	.9358	2781
Crude	0204	.0534	0472	.0802
Natural Gas	1925	.0134	.1791	-1.920 ⁻⁵
Conventiona	0723	.0397	0663	.0336
1 Gas				
Diesel	.1160	.2049	.2010	.1199
Aviation	.0167	.0318	.0351	.0134
Fuel				
Sum	8893	.8893	-1.020	1.020

See Table 5 and 7.

Table 15, Equipment & Service Across-Group Difference-in-Decompositions

Panel A				
ENS	$\left(oldsymbol{eta}_{m}^{Post}-oldsymbol{eta}_{i}^{Post} ight)X_{m}^{Post}$	$\left(ar{X}_{m}^{Post}-ar{X}_{i}^{Post} ight)oldsymbol{eta}_{i}^{Post}$	$\left(oldsymbol{eta}_{m}^{Post}-oldsymbol{eta}_{i}^{Post} ight)X_{i}^{Post}$	$\left(ar{X}_{m}^{Post}-ar{X}_{i}^{Post} ight)oldsymbol{eta}_{m}^{Post}$
Post				
Levels				
Sum	.0002	9.400^{-5}	.0001	.001
Total		.0002		.0002
Proportions				
Intercept	0132		0132	
SNP	4821	.5449	3786	.4414
SMB	.3450	0056	.3393	.0002
HML	.1949	.0020	.1956	.0013
RMW	.1058	0110	.1021	0069
CMA	0462	.0045	0467	.0050
MOM	.5038	2290	.3652	0904
Crude	0021	.0147	0004	.0130
Natural Gas	0137	.0008	0129	-1.665 ⁻⁵
Conventiona	.0109	.0080	.0081	.0108
1 Gas	.010		10001	10100
Diesel	0169	.0421	0243	.0495
Aviation	.0234	.0188	.0351	.0067
Fuel	.0254	.0100	.0331	.0007
Sum	.6097	.3903	.5694	.4306
Total	.0077	.5705	.5074	.4300
Panel B		1		1
Pre	$\left(\beta^{\text{Pr}e} - \beta^{\text{Pr}e}\right) X^{\text{Pr}e}$	$ig(ar{X}_{m}^{ ext{Pr}e}-ar{X}_{i}^{ ext{Pr}e}ig)oldsymbol{eta}_{i}^{ ext{Pr}e}$	$\left(\beta^{\operatorname{Pr}e} - \beta^{\operatorname{Pr}e}\right) X^{\operatorname{Pr}e}$	$(\bar{X}^{\operatorname{Pr}e} - \bar{X}^{\operatorname{Pr}e})\beta^{\operatorname{Pr}e}$
Levels	$(P_m P_i)^{11}_m$	$(m m p_i)$	$(P_m P_i)^{n}$	(11m 11i)Pm
Sum	3.334 ⁻⁵	0001	2.118 ⁻⁵	0001
	3.334	0001 -8.934 ⁻⁵	2.118	0001 -8.934 ⁻⁵
Total		-8.934		-8.934
Proportions	2072		2052	
Intercept	.2072			
SNP	1221	1 410	.2072	1.267
	.1321	1.419	.2842	1.267
SMB	.6033	.0240	.2842 .6456	0183
SMB HML	.6033 1565	.0240 .0013	.2842 .6456 1553	0183 4.948 ⁻⁵
SMB HML RMW	.6033 1565 1.179	.0240 .0013 0024	.2842 .6456 1553 -1.200	0183 4.948 ⁻⁵ .0185
SMB HML RMW CMA	.6033 1565 1.179 5881	.0240 .0013 0024 0280	.2842 .6456 1553 -1.200 6101	0183 4.948 ⁻⁵ .0185 0059
SMB HML RMW CMA MOM	.6033 1565 1.179 5881 .0321	.0240 .0013 0024 0280 .0346	.2842 .6456 1553 -1.200 6101 .0244	0183 4.948 ⁻⁵ .0185 0059 .0424
SMB HML RMW CMA MOM Crude	.6033 1565 1.179 5881 .0321 1378	.0240 .0013 0024 0280 .0346 0133	.2842 .6456 1553 -1.200 6101 .0244 1311	0183 4.948 ⁻⁵ .0185 0059 .0424 0201
SMB HML RMW CMA MOM Crude Natural Gas	.6033 1565 1.179 5881 .0321 1378 .0398	.0240 .0013 0024 0280 .0346 0133	.2842 .6456 1553 -1.200 6101 .0244 1311	0183 4.948 ⁻⁵ .0185 0059 .0424 0201 0019
SMB HML RMW CMA MOM Crude Natural Gas Conventiona	.6033 1565 1.179 5881 .0321 1378	.0240 .0013 0024 0280 .0346 0133	.2842 .6456 1553 -1.200 6101 .0244 1311	0183 4.948 ⁻⁵ .0185 0059 .0424 0201
SMB HML RMW CMA MOM Crude Natural Gas Conventiona 1 Gas	.6033 1565 1.179 5881 .0321 1378 .0398	.0240 .0013 0024 0280 .0346 0133 .0112 0242	.2842 .6456 1553 -1.200 6101 .0244 1311 .0528 .1885	0183 4.948 ⁻⁵ .0185 0059 .0424 0201 0019
SMB HML RMW CMA MOM Crude Natural Gas Conventiona	.6033 1565 1.179 5881 .0321 1378 .0398	.0240 .0013 0024 0280 .0346 0133	.2842 .6456 1553 -1.200 6101 .0244 1311	0183 4.948 ⁻⁵ .0185 0059 .0424 0201 0019
SMB HML RMW CMA MOM Crude Natural Gas Conventiona 1 Gas	.6033 1565 1.179 5881 .0321 1378 .0398	.0240 .0013 0024 0280 .0346 0133 .0112 0242	.2842 .6456 1553 -1.200 6101 .0244 1311 .0528 .1885	0183 4.948 ⁻⁵ .0185 0059 .0424 0201 0019
SMB HML RMW CMA MOM Crude Natural Gas Conventiona 1 Gas Diesel	.6033 1565 1.179 5881 .0321 1378 .0398 .1976	.0240 .0013 0024 0280 .0346 0133 .0112 0242	.2842 .6456 1553 -1.200 6101 .0244 1311 .0528 .1885	0183 4.948 ⁻⁵ .0185 0059 .0424 0201 0019 0150
SMB HML RMW CMA MOM Crude Natural Gas Conventiona 1 Gas Diesel Aviation	.6033 1565 1.179 5881 .0321 1378 .0398 .1976	.0240 .0013 0024 0280 .0346 0133 .0112 0242	.2842 .6456 1553 -1.200 6101 .0244 1311 .0528 .1885	0183 4.948 ⁻⁵ .0185 0059 .0424 0201 0019 0150
SMB HML RMW CMA MOM Crude Natural Gas Conventiona I Gas Diesel Aviation Fuel	.6033 1565 1.179 5881 .0321 1378 .0398 .1976	.0240 .0013 0024 0280 .0346 0133 .0112 0242 0384 0110	.2842 .6456 1553 -1.200 6101 .0244 1311 .0528 .1885	0183 4.948 ⁻⁵ .0185 0059 .0424 0201 0019 0150 0253 0046
SMB HML RMW CMA MOM Crude Natural Gas Conventiona 1 Gas Diesel Aviation Fuel Sum	.6033 1565 1.179 5881 .0321 1378 .0398 .1976	.0240 .0013 0024 0280 .0346 0133 .0112 0242 0384 0110	.2842 .6456 1553 -1.200 6101 .0244 1311 .0528 .1885	0183 4.948 ⁻⁵ .0185 0059 .0424 0201 0019 0150 0253 0046

Levels	Equation 8	Equation 9	Equation 8	Equation 9
Sum	.0001	.0002	.0001	.0002
Total		.0003		.0003
Proportions				
Intercept	.2204		.2204	
SNP	6142	8755	6628	8258
SMB	2583	0296	3063	.0185
HML	.3514	.0008	.3509	.0013
RMW	1.285	0081	1.302	0254
CMA	.5418	.0325	.5634	.0106
MOM	.4717	2636	.3408	1328
Crude	.1357	.0280	.1307	.0331
Natural Gas	0534	0104	.0357	.0019
Conventiona	1867	.0322	1803	.0269
1 Gas				
Diesel	2678	.0805	2620	.0748
Aviation	2022	.0294	1841	.0113
Fuel				
Sum	.9829	9829	.8065	8065

Source: Table 6 and 7.

Table 16, Transportation & Services Across-Group Difference-in-Decompositions

Panel A				
TNP	$\left(eta_{m}^{Post}-eta_{i}^{\operatorname{Post}} ight)X_{m}^{\operatorname{Post}}$	$\left(ar{X}_{m}^{Post} - ar{X}_{i}^{Post} ight) oldsymbol{eta}_{i}^{Post}$	$\left(eta_{\scriptscriptstyle m}^{\scriptscriptstyle Post}-eta_{\scriptscriptstyle i}^{\scriptscriptstyle Post} ight)\!X_{\scriptscriptstyle i}^{\scriptscriptstyle Post}$	$\left(\overline{X}_{m}^{Post} - \overline{X}_{i}^{Post} ight) oldsymbol{eta}_{m}^{Post}$
Post	, ,			
Levels				
Sum	0005	9.705^{-5}	0005	9.293 ⁻⁵
Total		0004		0004
Proportions				
Intercept	1.300		1.30	
SNP	.4655	3652	.3650	2647
SMB	2497	.0289	2200	0007
HML	.216	4.320^{-5}	.2113	.0048
RMW	0738	.0051	0718	.0032
CMA	1127	0046	1140	0033
MOM	2395	.1690	1466	.0760
Crude	0009	0068	0002	0074
Natural Gas	.0081	0006	.0075	1.279^{-5}
Conventiona	.0013	0100	.0008	0096
1 Gas				
Diesel	0695	0514	0954	0254
Aviation	0046	0048	0063	0031
Fuel				
Sum	1.240	240	1.230	230
Total		1		1
Panel B				
Pre	$\left(oldsymbol{eta}_{\!\!\!m}^{\mathrm{Pr}e}\!-\!oldsymbol{eta}_{\!\!\!i}^{\mathrm{Pr}e} ight)\!X_{m}^{\mathrm{Pr}e}$	$\left(ar{X}_{\scriptscriptstyle m}^{ ext{Pr}_{\it e}}-ar{X}_{\scriptscriptstyle i}^{ ext{Pr}_{\it e}} ight)\!oldsymbol{eta}_{\scriptscriptstyle i}^{ ext{Pr}_{\it e}}$	$\left(oldsymbol{eta}_{\!\scriptscriptstyle m}^{{ ext{Pr}}_e}\!-\!oldsymbol{eta}_{\!\scriptscriptstyle i}^{{ ext{Pr}}_e} ight)\!X_{\scriptscriptstyle i}^{{ ext{Pr}}_e}$	$\left(ar{X}_{\scriptscriptstyle m}^{ ext{Pr}_{\it e}}-ar{X}_{\scriptscriptstyle i}^{ ext{Pr}_{\it e}} ight)oldsymbol{eta}_{\scriptscriptstyle m}^{ ext{Pr}_{\it e}}$
Levels				
Sum	0006	8.879^{-6}	0005	-4.238 ⁻⁵
Total		0006		0006
Proportions				
Intercept	1.441		1.441	
SNP	0392	0607	0211	0788
SMB	.1051	0697	0083	.0437
HML	0895	0505	1395	0006
RMW	2270	0207	2996	.0519
CMA	0781	.0737	0220	.0176
MOM	0517	.1259	.0308	.0435
Crude	0513	0006	0488	0031
Natural Gas	.0047	0039	0001	.0009
Conventiona	0035	-9.675 ⁻⁵	0035	0001
1 Gas				
Diesel	.0194	-8.139 ⁻⁵	.0194	-6.475 ⁻⁵
Aviation	0234	-9.211 ⁻⁵	0219	0014
Fuel				
Sum	1.007	0067	.9638	.0736
Total		1		1
Panel C				

TNP DID				
Levels	Equation 8	Equation 9	Equation 8	Equation 9
Sum	7.854-5	9.317 ⁻⁵	3.640^{-5}	.0001
Total		.0002		.0002
Proportions				
Intercept	1413		1413	
SNP	.5047	3045	.3861	1859
SMB	.3548	.0986	2118	0444
HML	.3056	.0506	.3508	.0054
RMW	.1543	.0258	.2278	0488
CMA	0345	0783	0919	0209
MOM	1878	.0430	1773	.0325
Crude	.0505	0062	.0486	0043
Natural Gas	.0035	.0033	.0076	0009
Conventiona	.0047	0100	.0043	0095
1 Gas				
Diesel	0888	0513	1148	0254
Aviation	.0187	0047	.0156	0017
Fuel				
Sum	.2336	2336	.3037	3037

Source: See Tables 8 and 7.

Table 17, Refining & Marketing Across-Group Difference-in-Decompositions

Panel A				
RNM	$\left(eta_{\scriptscriptstyle m}^{\scriptscriptstyle Post}-eta_{\scriptscriptstyle i}^{\scriptscriptstyle Post} ight)X_{\scriptscriptstyle m}^{\scriptscriptstyle Post}$	$\left(ar{X}_{m}^{Post}-ar{X}_{i}^{\operatorname{Post}} ight)\!eta_{i}^{Post}$	$\left(eta_{m}^{Post}-eta_{i}^{Post} ight)X_{i}^{Post}$	$\left(ar{X}_{m}^{Post}-ar{X}_{i}^{Post} ight)eta_{m}^{Post}$
Post	,	,	,	,
Levels				
Sum	.0008	.0001	.0007	.0002
Total		.0009		.0009
Proportions				
Intercept	.7136		.7136	
SNP	.1032	.1791	.0696	.2127
SMB	0683	.0007	0879	.0188
HML	0209	.0018	0213	.0022
RMW	.0235	0454	.0034	0254
CMA	.1151	0075	.1082	0006
MOM	-2.826^{-6}	.0289	-1.897 ⁻⁴	0289
Crude	0020	.0035	0004	.0018
Natural Gas	0043	-2.541 ⁻⁴	0029	0015
Conventiona	.0062	.0045	.0038	.0070
1 Gas			10000	.0070
Diesel	.0081	.0146	.0120	.0108
Aviation	.0032	.0018	.0048	.0002
Fuel	.0032	.0010	.00-10	.0002
Sum	.8773	.1227	.8029	.1971
Total	.0113	1	.0027	1
Panel B		1		1
Pre	$\left(oldsymbol{eta}_{m}^{ ext{Pr}e} - oldsymbol{eta}_{i}^{ ext{Pr}e} ight) X_{m}^{ ext{Pr}e}$	$\left(ar{X}_{m}^{\operatorname{Pr}e}-ar{X}_{i}^{\operatorname{Pr}e} ight)oldsymbol{eta}_{i}^{\operatorname{Pr}e}$	$\left(oldsymbol{eta}_{m}^{ ext{Pr}e} - oldsymbol{eta}_{i}^{ ext{Pr}e} ight) X_{i}^{ ext{Pr}e}$	$\left(ar{X}_{m}^{ ext{Pr}e}-ar{X}_{i}^{ ext{Pr}e} ight)oldsymbol{eta}_{m}^{ ext{Pr}e}$
Levels	,	,	,	,
Sum	0005	.0004	0003	0006
Total		0009		0009
Proportions				
Intercept	.9060		.9060	
SNP	0169	.4426	1015	.5272
SMB	0094	.0019	0515	.0650
HML	.0007	0006	0215	0002
RMW	.0972	0102	4709	.0382
CMA	0820	0060	0236	0003
MOM	.0370	.0023	.0698	.0362
Crude	.0321	0186	.0088	0026
Natural Gas	0158	0060	0020	.0023
Conventiona	3408	0919	.0895	0025
1 Gas	.5 100	.0717	.00,5	.0025
Diesel	0232	0007	0957	.0078
-10001	0605	.1664	.0386	.0078
Aviation			.0.500	.0007
Aviation Fuel	0003	.1004		
Fuel				6718
Fuel Sum	.5245	.4755	.3282	.6718
Fuel				.6718 1

Levels	Equation 8	Equation 9	Equation 8	Equation 9
Sum	.0013	.0006	.0010	.0008
Total		.0018		.0018
Proportions				
Intercept	1924		1924	
SNP	.1201	.2636	.1711	3146
SMB	0589	.0012	0363	0462
HML	0216	.0024	.0003	.0024
RMW	0738	0352	.4744	0636
CMA	.1970	0015	.1318	0003
MOM	0370	0312	0698	0651
Crude	0341	.0221	.0085	.0044
Natural Gas	.0115	.0059	0008	0036
Conventiona	.3470	.0964	0857	.0094
1 Gas				
Diesel	.0313	.0153	.1077	.0029
Aviation	.0637	1646	0338	0005
Fuel				
Sum	.3528	3528	.4747	4747

Source: See Tables 9 and 7.

6.2.1 Across Group post-Fracking Returns

Tables 14 through 17, Panel A are the Integrated-Independent post fracking returns differences. Post fracking exploration & production were higher than Integrated in commodity, diesel, and aviation fuels, and lower in equity, natural gas, and conventional gas. Post fracking Integrated to equipment & service Independent return gaps were higher in conventional gas and aviation fuels and lower in equity, crude, natural gas, and diesel. Post fracking Integrated return gaps were higher than transportation & pipeline in equity, natural gas, and conventional gas and lower in crude, diesel, and aviation. Downstream refining & marketing post fracking Integrated to Independent return gaps were higher in equity, conventional gas, diesel, and aviation fuel, and lower in crude and natural gas.

6.2.2 Across Group Pre-Fracking Decompositions

From specific decompositions, pre-fracking Integrated to exploration & production Independent return gaps were higher for equity, commodity, natural gas, conventional gas, and aviation fuels (Panel B). Similarly, pre-fracking equipment & service equity, natural gas, conventional gas, and aviation fuel, and only pre fracking crude favored Independent equipment & service. Pre-fracking Integrated to Independent transportation & pipeline were higher in natural gas and diesel and lower with equity, crude, conventional gas, and aviation fuels. Similarly, pre-fracking Integrated to refining & marketing Independent were higher for crude and diesel but were lower for equity, natural gas, conventional gas, and aviation fuel.

6.2.3 Across Group Difference-in-Decomposition

Across-group difference-in-decomposition elements indicate fracking increased Integrated to exploration & production returns for diesel and aviation fuel, and decreased the exploration & production gap in equity, commodity, natural gas, and conventional return gaps (Panel C). Exploration & production

across-group Independent equity return gaps increased the most for any returns gap, either within or across decompositions, indicating that the greatest industry fracking realignment was in equity markets as participants increased upstream exploration & production returns closer to oil and gas extraction. The equipment & service Integrated to Independent gap only increased for crude returns, but were lower across remaining equity and distillate returns. The fracking revolution shifted more well completions to equipment & service, and Integrated to Independent equipment & service also decreased with fracking. Alternatively, the fracking revolution increased the vertically Integrated mid and downstream transportation & pipeline and refining & marketing return gaps in equity, crude, and distillate markets.

VII. Conclusion

Innovations in the oil and gas industry increased industry productivity, and improvements were not shared uniformly across the oil and gas industry. The fracking revolution changed within-group technology that favored Independent firms who outperformed larger Integrated producers. For example, as the industry realigned, fracking technologies increased Independent returns closest to oil and gas extraction and decreased mid and downstream returns. Equipment & services Independent to Integrated return differences were also higher with the fracking revolution, and fracking technologies increased upstream Independent relative to Integrated returns gaps closest to oil and gas extraction and decreased downstream Independent to Integrated returns. Independent-Integrated within-group commodity differences are greater after the revolution with exploration & production and equipment & service, while pre-fracking risk and returns transportation & pipeline and refining & marketing were higher prior to the revolution. The post-revolution merge and acquisition wave reflects industry realignment, where large vertically Integrated majors recognized these upstream producer's value from upstream technologies with access to mineral rights and acquired or merged with exploration & production and equipment & service firms.

Exploration & production across-group Independent equity return gaps increased the most for any returns gap, either within or across decompositions, indicating that the greatest fracking industry realignment was in equity markets as participants increased upstream exploration & production returns closer to oil and gas extraction. While not this study's primary objective, increasing characteristic returns to include distillates indicate that Integrated and Independents were affected differently across equities and commodity risk. The oil and gas fracking revolution illustrates that innovation occurs across industry networks, and New Economic Growth Theory integrates knowledge, human capital, and positive geographic externalities to analyze growth that results from endogenous relationships.

References

- An, Wihua and Adam Glynn. (2019). "Treatment Effect Deviation as an Alternative to Blinder—Oaxaca Decomposition for Studying Social Inequality." *Sociological Methods & Research*, 50(3), pp. 1006-1033.
- Blinder, Alan S. 1973. "Wage Discrimination: Reduced form and Structural Estimates. *Journal of Human Resources* 8: 436–455.
- Carson, Scott Alan. (2018). "Net Nutrition and the Transition from 19th Century Bound to Free-Labor: Assessing Dietary Change with Differences in Decompositions." *Journal of Demographic Economics.* 84(4), pp. 447-475.
- Carson, Scott Alan. (2019). "Changing Institutions, Changing Net Nutrition: A Difference-in-Decompositions Approach to Understanding the US Transition to Free-Labor." *Review of Black Political Economy.* 46(1).
- Carson, Scott Alan (2020). "United States Oil and Gas Stock Returns with Multi-Factor Pricing Models: 2008-2018." *North American Journal of Economics and Finance*, *54*. https://doi.org/10.1016/j.najef.2020.101236
- Carson, Scott Alan (2021). "Weight as a Measure for the Net Nutritional Transition from Bound to Free Labor: A Difference-in-Decompositions Approach." *Review of Black Political Economy.* 48(3). pp. 286-312.
- Carson, Scott Alan (2022a). "Independent and Major Equity Market and Commodity Return

 Sources around the Time of Hydraulic Fracking and Horizontal Drilling Revolution: A

 Differences-in-Decompositions Approach." *Economics of Innovation and New Technology*. pp.

 1-19.
- Carson, Scott Alan (2022b). "Long Term Daily Equity Returns across Sectors of the Oil and Gas Industry, 2000-2019," *Journal of Industry, Competition and Trade*. 22, pp. 125-143.

- Carson, Scott Alan (2022c). "Late 19th and Early 20th Century Social Feminism and Women's Suffrage: A Female-Male Net Nutrition Comparison using Differences-in-Decompositions." *Journal of Interdisciplinary Economics*. pp. 139-163.
- Carson, Scott Alan (2023). "Quad O and Firm Ownership: The Effects of Oil and Gas

 Regulation on Firm Value," *Journal of Environmental Economics and Policy*. 13(3), pp. 346-370.
- EIA (2022) "Today in Energy: Nearly all U. S. Crude Oil and Natural Gas Wells are Horizontal Wells are Horizonal or Directional."

 https://www.eia.gov/todayinenergy/detail.php?id=52138. Accessed: March 16th, 2023.
- Faff, Robert W. and Timothy Brailsford. "Oil Price Risk and Australian Stock Market." *Journal of Finance and Development.* 4(1): 69-87.
- Fama, Eugene and Kenneth French. 1993. "Common Risk Factors in the Returns on Stocks and Bonds." *Journal of Financial of Economics* 33(1): 3-56.
- Fama, Eugene and Ken French. (1996). "The CAPM is Wanted, Dead or Alive. *The Journal of Finance*, 51(5), pp. 1947-1958.
- Fama, Eugene and Kenneth French. 2004. "The Capital Asset Pricing Model: Theory and Evidence." *Journal of Economic Perspectives* 18(3): 25-26.
- Gold, Russell. (2014). *The Boom: How Fracking Ignited the American Energy Revolution and Changed the World.* Simon and Schuster: New York.
- Jaffe, Adam. (1986). "The Technological Opportunity and Spillovers of R&D: Evidence from Firms' Patents, Profits, and Market Value." American Economic Review 76(5). pp. 984-1001.

- Jegadeesh, Narasimhan and Sheridan Titman. (1993). Returns to buying winners and selling losers: Implications for stock market efficiency. *The Journal of finance*, 48(1), 65-91.
- Litner, John. 1965. "Security Prices, Risk, and Maximal Gains from Diversification." *Journal of Finance* 20(4): 587-615.
- Lucas, Robert. 1988. "On the Mechanics of Economic Development." *Journal of Monetary Economics*. 22(1): 3-42.
- Markowitz, Harry. 1952. "Portfolio Selection." Journal of Finance. 7(1): 77-91.
- Mohanty, Sunil and Mohan Nandha. 2011. "Oil Risk Exposure: The Case of the U.S. Oil and Gas Sector." *The Financial Review* 46: 165-191.
- Mossin, Jan. 1966. "Equilibrium in a Capital Asset Market." *Econometrica*. 34(4): 768-783.
- Nordaus, William. 1969. "An Economic Theory of Technical Change." *American Economic Review*. 59(2). pp. 18-28.
- Ng, Hs. Raymond and Kai-Pui Lam. (2006). "How Does Sample Size Affect GARCH Models?.

 In 9th Joint International Conference on Information Sciences (JCIS-06). Atlantis Press.
- Oaxaca, Ron L. 1973 "Male Female Wage Differentials in Urban Labor Markets." *International Economic Review* 14: 693-709.
- Peltzman, Sam. (2000). "Prices Rise Faster than They Fall." *Journal of Political Economy*. 108(3), pp. 466-502.
- Perry, Martin. (1998). "Vertical Integration: Determinants and Effects." In Schlamensensee, Richard and Robert Willig. *Handbook of Industrial Organization, Volume 1*. North Holland: New York. pp. 185-260.

- Romer, Paul. 1986. "Increasing Returns and Long-Run Growth." *Journal of Political Economy*. 94(6): 1002-1037.
- Romer, Paul. (1994). "The Origins of Endogenous Growth. *Journal of Economic Perspectives*, 8(1), pp. 3-22.
- Romer, David. (1996). *Advanced Macroeconomics*. New York: McGraw-Hill.

 US Dept. of Energy, "How is Shale Gas Produced?"

 https://www.energy.gov/sites/prod/files/2013/04/f0/how_is_shale_gas_produced.pdf Accessed:

November 24th, 2022.

- Sharpe, William. (1964). "Capital Asset Prices: A Theory of Market Equilibrium under Conditions of Risk." *Journal of Finance*. 19(3). pp. 425-442.
- Wooldridge, Jeffrey. (2010). *Introductory Econometrics: A Modern Approach*. Cengage Publishers: Boston.
- Zuckerman, Gregory. (2013). The Frackers: The Outrageous Inside Story of the New Billionaire Wildcaters. Penguin: New York.