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Abstract
Actuarial fairness pertains to the situation in which the price of an insurance contract
is equal to its expected outcome. We show that actuarial fairness leads to “unfairness”
in that annuitants with higher survival rates can choose a better payoff in the sense
of second-order stochastic dominance than those with lower survival rates. To deal
with this issue, we propose equal utility pricing, i.e., we determine prices such that all
contracts have the same (nonlinear) utility from the viewpoint of a third party (e.g., a
social planner). This approach is of particular relevance with respect to the design of
group self-annuitization schemes.

Keywords Fairness · Actuarial pricing · Financial pricing · Equal utility

JEL Classification G22 · J32

1 Introduction

Actuarial fairness finds its pedigree in the seventeenth century, when, based on an
analysis of gambling contracts, Johan De Witt (1625–1672) put forward the idea that
the fair price of an insurance contract is obtained by computing the expected outcome.
Actuarial fairness is thus fairness on average: One can expect to get back from the
insurer the same amount (adjusted for time value) that has been paid as a premium.
While this principle is appealing, the variability around the mean may differ from
one contract to another, and it appears natural to account for differences in contracts’
variability as well. Under a fairly general setup of a financial market, we show that if
all risk-averse utility maximizers agree that if one digital option has lower utility than
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another, while having the same expected value, then the contract with the lower utility
will be strictly cheaper.We say in this case that prices are consistent with second-order
stochastic dominance.

The life insurance equivalent of a digital option is a pure endowment contract, in
which at a given maturity date an insured receives upon survival a fixed amount, but
zero otherwise. We show, however, that there are pure endowment contracts with the
same actuarial fair price, but nevertheless one is better than the other in the sense of
second-order stochastic dominance, which can be seen as “unfair.” The same issue
persists for annuity contracts. Specifically, we show that the payoffs to annuitants with
higher survival probabilities outperform (from the viewpoint of a risk-averse utility
maximizer) the payoffs to annuitants with lower survival probabilities. To this end, we
consider in this paper only the case in which differences among survival probabilities
result from individuals having different ages and we do not consider other reasons that
justify different survival rates. For example, in Pitacco and Tabakova (2022), different
premiums for annuity products result from different health status of individuals.

To remedy this problem of “unfairness,” we propose equal utility pricing. In this
regard, we note that a recent online book by Sharpe (2017) points out that using
expected utility theory (advocated by traditional economists) is at least instructive
to see whether the traditional approaches are helpful, including the context of life
insurance and retirement products. Specifically, we propose that in a first step the
insurer establishes the total premium needed to insure the pool of insureds. In a second
step, the individual prices are determined such that participants’ contracts exhibit
equal utility per unit of premium paid, i.e., there is no interpersonal envy (Herreiner
and Puppe 2009), from the viewpoint of a third party. We show that this approach is
feasible and consistent with financial pricing. Further, we determine the equilibrium
prices explicitly in case the insureds use power utility1 functions to evaluate their
payoffs.

Equal utility pricing is related to the concepts of the equivalent utility principle
(also called the zero utility principle) and utility indifference pricing, both of which
have been widely applied in insurance pricing, see, e.g., Henderson (2002) and the
references therein. Considering the insurance contract from the insured’s viewpoint,
the zero utility principle requires that the insurance premium be determined such that
the insured is indifferent as to buying or not buying the contract. Utility indifference
pricing complies with the zero utility principle and is typically coupled with the opti-
mal dynamic asset allocation decision. In contrast to these concepts, in which equal
utility is imposed on a single insured, the equal utility pricing proposed in our frame-
work concerns various insureds. We observe the “unfairness” among insureds through
actuarial fair pricing and propose a pricing that ensures fairness among insureds in
terms of expected utility.

Actuarial fair pricing implicitly assumes that all probabilities used are true, i.e., the
life table used in pricing reflects what is truly expected and there are no loadings (best-
estimate life table). This paper aims at demonstrating the actuarial fair pricing can be

1 We have chosen power utility mainly for its mathematical simplicity. Nevertheless, there is evidence that
power utility captures basic properties of individual risk preferences. For instance, it is consistent with the
strong evidence that individuals’ risk preferences show decreasing absolute risk aversion (Levy 1994).
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perceived as unfair and provides a possible solution by applying utility-equivalent pric-
ing.Actuarial fair pricing is, however, not applied as such in insurance practice. Indeed,
life tables that are used for pricing contracts typically deviate from the best-estimate
life table. Such deviations from expected values arise from various risk sources. For
instance, even if the modeled best-estimate life table is perfect, the number of deaths
in each time period is rarely if ever an exact match to its expected value. Moreover,
there is uncertainty in the values of the model parameters of the best-estimate model
(parameter risk), and there is also the issue of using an inherently wrong model, e.g.,
because of an incorrect specification of mortality trends (model risk). To account for
these issues, the insurer typically uses a more prudent life table (incorporating implicit
safety loadings). Moreover, to cover operational and solvency costs and to reward its
shareholders, the insurer may also add explicit loadings. We show in Sect. 6.2 that
when actuarial fair pricing is based on adjusted probabilities, consistency with second-
order stochastic dominance (evaluated under true probabilities) is still violated under
fairly weak conditions.

As an important application of our results, we discuss the case of group self-
annuitization (Piggott et al. 2005).Here, a group of people join forces in that each of the
group members agrees to invest some amount and to earn an investment return while
sharing longevity risk. Specifically, at the end of some given time period, the accumu-
lated value of the investments belonging to the dead participants is not transferred to
their heirs, but is shared among the surviving participants. At each period, the surviv-
ing participants thus receive an investment return plus an additional share (mortality
credit) coming from the accumulated value of the investments made by participants
who do not survive. Actuarial fairness then dictates that this share is determined such
that, ex ante, each participant earns the same expected return (Donnelly 2015; Sabin
and Forman 2016; Fullmer and Sabin 2018). The designed pooled group annuitization
with an infinite pool size is thus observationally equivalent to an annuity under the
actuarial fair pricing principle. In the context of pooled group annuitization products,
our results then imply that actuarially fairly pooled group annuitization products are
not fair insofar as participants with higher survival rates will have a better contract
payoff in the sense of second-order stochastic dominance. By contrast, our newly pro-
posed equal utility pricing rule ensures that consistency with second-order stochastic
dominance is preserved. As compared to traditional actuarial fair pricing, equal util-
ity pricing leads to higher premiums (or lower expected benefit per unit of premium
invested) for those with a lower mortality rate and lower premiums (or higher expected
benefits per unit of premium invested) for those with a higher mortality rate. Under the
plausible assumption that there is a negative correlation between income andmortality
risk, equal utility pricing can be seen as a possible tool for reducing income inequality
(Nelissen 1995; Bommier et al. 2011); social planners may use it when designing
retirement products such as group self-annuitization products in which longevity risk
is shared among policyholders.

The remainder of this paper is structured as follows. We introduce some prelim-
inaries related to equivalence pricing in insurance in Sect. 2 and discuss the issues
with actuarial fairness, in contrast to financial pricing, in Sect. 3. With the help of
pure endowment and annuity products, we introduce in Sect. 4 the equal utility pricing
rule. In Sect. 5, we compare the equivalence and equal utility pricing, using power
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utility. Section6 discusses the case in which a risk loading is charged additionally to
the actuarial fair premium and considers the application of the equal utility pricing
rule in innovative retirement products like group self-annuitization schemes. Section7
concludes the article.

2 Preliminaries

Let Tx denote the random residual lifetime of an individual aged x and Kx be the
curtate remaining lifetime, defined as the integer part of Tx , i.e., Kx = �Tx�. Denote
by ω the maximum age one can attain and let H = {0, 1, 2, . . . , ω − x} be the set
containing all possible outcomes of Kx . Denote k px := P(Kx ≥ k) > 0, k ∈ H.

A life annuity payoff2 with payoff function g(·) is a random vector g(Kx ) of the
form

g(Kx ) = (b1I{Kx≥1}, . . . , bω−x I{Kx≥ω−x}), bk ≥ 0, k = 1, . . . , ω − x, (1)

where IA is the indicator fuction which gives 1 if A occurs, otherwise 0.
Hence, the benefits bk are paid out to the beneficiaries of the contract under the

binding condition that the insured person is alive at time k, k = 1, . . . , ω − x . To deal
with the time value of future cash flows, it is also useful to associate with each g(Kx )

the net present value of future random benefits, which we denote by D(Kx ). In this
regard, we assume that discounting is done using a constant technical interest rate δ,
i.e., we consider discount factors of the form

vk = (1 + δ)−k, k = 1, . . . , ω − x . (2)

Nonetheless, our results can be readily extended to the case in which the insurer uses
another yield curve to make present value calculations. Hence, we express D(Kx ) as

D(Kx ) =
ω−x∑

k=1

vkbkI{Kx≥k}, bk ≥ 0, k = 1, . . . , ω − x . (3)

In life insurance, the so-called equivalence principle is the basic concept on which to
set premiums (Olivieri and Pitacco 2015). In essence, the principle states that at all
times there must be a balance between expected income (premiums to be received)
and expected loss (benefits to be paid). Apart from Section 6.2, we assume that all
probabilities are on a realistic basis, i.e., we use true probabilities, and these are
moreover assumed to be known in that there is no uncertainty about their levels. In
this sense, possible systematic deviations are disregarded, and risks do not come from
this aspect.

Definition 2.1 (Equivalence principle). Given a contract payoff function g(.), the
equivalence principle sets the actuarial fair premium π(g(Kx )) of a life insurance

2 Without loss of generality, we assume that benefits are paid at the end of each yearly period.
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contract g(Kx ) as equal to

π(g(Kx )) := πx (b1, . . . , bω−x ) = E(D(Kx ))

=
ω−x∑

k=1

vkE(bkI{Kx≥k})

=
ω−x∑

k=1

vk · k px · bk . (4)

The actuarial fair premium π(g(Kx )) of an insurance contract g(Kx ) is thus set
equal to the sum of discounted expected benefits E(bkI{Kx≥k}) that are paid by the
insurer. All life insurance contracts g(Kx ) that are priced using the equivalence prin-
ciple are similar in the sense that they provide the same rate of return δ for their stream
of expected cash flows given as

(−πx (b1, . . . , bω−x ),E(b1I{Kx≥1}), . . . ,E(bω−x I{Kx≥ω−x})). (5)

For further details on the equivalence principle and its application in insurance pricing,
see, for instance, Chapter 4 of Olivieri and Pitacco (2015), Chapter 6 of Dickson et al.
(2009) or Section 4.2 of Bacinello et al. (2011).

Here are a few special cases of life annuity payoffs.

• Pure endowment at time t = k: The payoff g(Kx ) writes as

g(Kx ) = (0, . . . , 0, bkI{Kx≥k}, 0, . . . , 0), bk > 0, (6)

i.e., the amount bk will be paid provided the insured is alive at time t = k. In what
follows, we also denote such payoff as g(Kx ) = bkI{Kx≥k}.

πx (bk) = E(vkbkI{Kx≥k}) = vk · k px · bk . (7)

• Deferred life annuity: The amounts bk > 0, k = m,m + 1, . . . , ω − x , are paid
to the insured at each time k = m,m + 1, . . . , ω − x provided he is alive at that
time. We obtain that

g(Kx ) = (0, . . . , 0, bmI{Kx≥m}, . . . bω−x I{Kx≥ω−x}) (8)

with actuarial fair premium given as

πx (bm, . . . , bω−x ) =
ω−x∑

k=m

πx (bk),

where πx (bk) is as in (7).
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Note that all components of the general annuity g(Kx ) as defined in (1) are pure
endowment payoffs bkI{Kx≥k}, k = 1, 2 . . . , ω − x and observe that these endowment
payoffs are all increasing in the random variable Kx .

We define the expected utility of the general annuity product g(Kx ) as defined in
(1) as follows:

Vu(g(Kx )) =
∑

bk>0

vk k px u(bk), (9)

where u : (0,∞) → (0,∞) is an increasing concave utility function.3 Note that
the utility functions we consider are finite valued, which implies that the expected
utility Vu(g(Kx )) is well defined and finite. Individuals are assumed to maximize
expected lifetime utility and to derive utility from their consumption (here, payments
from retirement products) upon survival. When aggregating utility levels at different
points in time, discounting is used to account for time value of consumption. Note that
this definition of expected lifetime utility is based on the independence assumption
between mortality and financial market risk. This approach is fairly standard in the
literature on retirement products; see, e.g., Yaari (1965) and Chen et al. (2020).

Definition 2.2 (Second-order stochastic dominance). Let g1(Kx1) and g2(Kx2) denote
two annuity payoffs. We say that g1(Kx1) dominates g2(Kx2) in the sense of second-
order stochastic dominance, denoted as g1(Kx1) ≥SSD g2(Kx2), if and only if for
every non-decreasing concave utility function u : (0,∞) → (0,∞),

Vu(g1(Kx1))) ≥ Vu(g2(Kx2))). (10)

If, in addition, inequality (10) is strict for every strictly increasing and strictly concave
utility function u, then g1(Kx1) is said to strictly dominate g2(Kx2) and we denote
g1(Kx1) >SSD g2(Kx2).

When g1(Kx1) >SSD g2(Kx2), all non-satiated risk-averse utility maximizers thus
prefer g1(Kx1) over g2(Kx2), and the preference is usually strict.

3 Issue with actuarial fairness

Hereafter, we show that two individuals might purchase a pure endowment resp. annu-
ity contract bearing the same actuarial fair premium, but such that one contract is better
than the other from the viewpoint of a risk-averse utility maximizer. This is at odds
with the economic intuition that better contracts should be more expensive.

Proposition 3.1 (Unfairness of pure endowments). Consider two individuals aged xi ,
i = 1, 2, each of whom purchases a pure endowment contract with a maturity date

3 For instance, u(x) = x1−γ

1−γ
with γ > 1 is not defined in 0, whereas the same utility with γ ∈ (0, 1) is

well defined on [0,∞).
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1 ≤ k ≤ min{ω − x1, ω − x2},4

gi (Kxi ) = bik · I{Kxi ≥k}, i = 1, 2.

Assume that k px1 > k px2 and let

b2k = k px1
k px2

b1k > 0.

It holds that

(i) πx1(g1(Kx1)) = πx2(g2(Kx2)).
(ii) g1(Kx1) >SSD g2(Kx2).

Proof By construction, g1(Kx1) and g2(Kx2) have the same mean, and the proof for
(i) is thus immediate. To prove (ii), observe that Vu(g1(Kx1)) = vk · k px1 · u(b1k ) and
Vu(g2(Kx2)) = vk · k px2 · u(

k px1
k px2

b1k ). Note that

vk · k px1 · u(b1k ) − vk · k px2 · u(
k px1
k px2

b1k ) = vk · k px1 · b1k
⎛

⎝u(b1k )

b1k
−

u(
k px1
k px2

b1k )

k px1
k px2

b1k

⎞

⎠ .

As u : (0,∞) → (0,∞) is increasing, concave and finite valued,5 we obtain that for
every 0 < y ≤ z,

u(y)

y
≥ u(z)

z
. (11)

The above inequality is strict when the increasingness and concavity of u are strict.
This implies (ii). 	


Note also that if k px1 = k px2 , the payoffs are identically distributed and therefore
are equally preferred.

Corollary 3.2 Consider two individuals aged xi , i = 1, 2, each of whom purchases a
pure endowment contract with a maturity date 1 ≤ k ≤ min{ω − x1, ω − x2},

gi (Kxi ) = bik · I{Kxi ≥k}, i = 1, 2.

Assume that k px1 > k px2 and let bik > 0, i = 1, 2. It holds that

g1(Kx1)

πx1(g1(Kx1))
>SSD

g2(Kx2)

πx2(g2(Kx2))
.

4 Typical maturity dates for pure endowments are 10, 15 and 20 years.
5 As already pointed out in footnote 3, the power utility with a relative risk aversion level larger than 1
is not contained in our setting, while the power utility with a relative risk aversion level between 0 and 1
satisfies (11).
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Proof Denote
g1(Kx1 )

πx1 (g1(Kx1 ))
as g∗

1(Kx1) and
g2(Kx2 )

πx2 (g2(Kx2 ))
as g∗

2(Kx2). It is then sufficient

to observe that g∗
1(Kx1) and g∗

2(Kx2) satisfy the conditions of Proposition 3.1. 	

Corollary 3.2 shows that per unit of actuarial fair premium of two pure endowment

contracts can always be compared in the sense of second-order stochastic dominance:
From the viewpoint of a strictly risk-averse utilitymaximizer, the payoff corresponding
to the higher survival probability, i.e., g(Kx1), is strictly preferred over the payoff with
lower survival probability, i.e., g(Kx2).

Remark 3.3 Proposition 3.1 and Corollary 3.2 can be extended to the case in which
the two payoffs have a different maturity, say k1 resp. k2. Specifically, let vk1 · k1 px1 >

vk2 · k2 px2 and let

b2k = vk1 · k1 px1
vk2 · k2 px2

b1k > 0.

In a similar way as in the proof for Proposition 3.1, it shows that πx1(g1(Kx1)) =
πx2(g2(Kx2)) and g1(Kx1) >SSD g2(Kx2). �
Proposition 3.1 can be extended to the case of annuities as follows.

Proposition 3.4 (Unfairness of annuities). Consider two individuals aged xi , i = 1, 2,
each of whom purchases an annuity

gi (Kxi ) = (0, . . . , 0, bimI{Kxi ≥m}, . . . , binI{Kxi ≥n}), bik > 0, k = m, . . . , n, i = 1, 2,

in which 1 ≤ n ≤ min{ω − x1, ω − x2}. Assume that for all m ≤ k ≤ n, k px1 ≥ k px2
with at least one of the inequalities being strict, and let b2k = k px1

k px2
b1k . It holds that

(i) πx1(g1(Kx1)) = πx2(g2(Kx2)).
(ii) g1(Kx1) >SSD g2(Kx2).

Proof Statement (i) follows from the construction of the payoffs g(Kx1) and g(Kx2).
To prove (ii), observe that Vu(g1(Kx1)) = ∑

b1k>0 vk · k px1 ·u(b1k ) and Vu(g2(Kx2)) =
∑

b1k>0 vk · k px2 · u(
k px1
k px2

b1k ). Note that

n∑

k=m

vk · k px1 · u(b1k ) −
n∑

k=m

vk · k px2 · u
(

k px1
k px2

b1k

)
=

n∑

k=m

vk · k px1 · b1k
⎛

⎝u(b1k )

b1k
−

u(
k px1
k px2

b1k )

k px1
k px2

b1k

⎞

⎠ .

As it holds that k px1 ≥ k px2 , m ≤ k ≤ n, the positivity and concavity of u(·) imply

that all terms

(
u(b1k )

b1k
− u( k

px1
k px2

b1k )

k px1
k px2

b1k

)
are nonnegative, which ensures the nonnegativity

of the sum. This implies the statement. 	

Note that Proposition 3.4 can also be extended to the case of individuals having

different maturity dates for the annuity payoffs they wish to receive. The results in
this section show that annuity contracts may have the same actuarial fair premium,
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but nevertheless are such that from the viewpoint of any risk-averse observer one is
always better than the other. This observation is not consistent with the paradigm
that riskier assets must earn a higher expected return to give investors an incentive
to hold them. The equivalent in financial markets of a pure insurance endowment
contract is a so-called digital option, which pays out either nothing or a fixed amount.
Hereafter, we will show that if one digital option dominates another contract in the
sense of second-order stochastic dominance, then this contract will also be strictly
more expensive.

To show this, consider an arbitrage-free and frictionless financial market described
by amarketmodel S = (St )0≤t≤T in a filtered probability space (�,A, (At )0≤t≤T ,P).
Let r > 0 be the continuous risk-free rate, and let ϕ := (ϕt )0≤t≤T = (e−r t dQ

dP )0≤t≤T

be a state-price density process that is adapted to the given filtration and that is used
by the market participants for arbitrage-free pricing, whereQ denotes the risk neutral
pricing measure. Hence, the price of a payoff Xk that matures at time k is given as

c(Xk) = EP(ϕk Xk)

= e−rk
EQ(Xk). (12)

We assume that ϕt , 0 ≤ t ≤ T is strictly continuously distributed. Roughly speaking,
a low realization of ϕt describes a good economic state, while a high realization of
ϕt represents an unfavorable economic state. Furthermore, it is well known that every
investor with an increasing utility function who wishes to obtain a payoff that matures
at time k will select a payoff that is decreasing in ϕk ; see Dybvig (1988); Bernard et al.
(2014) and Rüschendorf and Vanduffel (2020). Hence, without loss of generality, we
consider payoffs that are decreasing in the state-price density.6

Furthermore, denote

p(ck) := P(ϕk ≤ ck)

and

q(ck) := Q(ϕk ≤ ck)

= erkEP(ϕkIϕk≤ck ).

In order to demonstrate a nifty parallel comparison to the presented insurance
products, we consider digital options and multiple digital options in Propositions 3.5
and 3.6, which can be considered as an “equivalence,” respectively, to pure endowment
and annuity products.

Proposition 3.5 (Digital options that are better are also more expensive). Consider
two individuals, i = 1, 2, each of whom purchases a digital option with a maturity
date k > 0,

hi (ϕ) := bikIϕk≤cik
, i = 1, 2.

6 Throughout the paper,E is also used to denote EP.
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Assume that p(c1k ) > p(c2k ) and that both options have the same expected value, i.e.,

b2k = p(c1k )

p(c2k )
b1k > 0.

It holds that

(i) c(h1(ϕ)) > c(h2(ϕ)).
(ii) h1(ϕ) >SSD h2(ϕ).

Proof Note that Vu(h1(ϕ)) = vk p(c1k )u(b1k ) and Vu(h2(ϕ)) = vk p(c2k )u(
p(c1k )

p(c2k )
b1k ). In

a similar way as in the proof for Proposition 3.1, it shows that h1(ϕ) >SSD h2(ϕ).
By construction, h1(ϕ) and h2(ϕ) have the same expected value (with respect to the
measure P), i.e.,

EP(h1(ϕ)) = b1k p(c
1
k ) = b2k p(c

2
k ) = EP(h2(ϕ)).

As for their cost, we have that

c(h1(ϕ)) = e−rkb1kq(c1k ), c(h2(ϕ)) = e−rkb2kq(c2k ) = e−rk p(c
1
k )

p(c2k )
b1kq(c2k ).

As for c1k > c2k , it holds that p(c
1
k ) > p(c2k ), we thus only need to show that the ratio

q(c)
p(c) is increasing in c to show (i). To see this, note that q(c)/p(c) can be expressed
as

q(c)

p(c)
= erkEP(ϕkIϕk≤c)

p(c)
= erk

∫ c
0 u fϕk (u)du

p(c)

= erkcp(c) − erk
∫ c
0 Fϕk (u)du

p(c)
= erkc − erk

∫ c
0 Fϕk (u)du

p(c)
,

where fϕk (u) and Fϕk (u) are the density and distribution functions of ϕk . The first
derivative of the ratio with respect to c is given by

∂
q(c)
p(c)

∂c
= erk

(p(c))2
· ∂ p(c)

∂c
·
∫ c

0
Fϕk (u)du > 0.

	

Proposition 3.6 (Better financial payoffs are more expensive). Consider two individ-
uals, i = 1, 2, each of whom purchases a vector of digital options,

hi (ϕ) := (0, . . . , 0, bmIϕm≤cim
, . . . , bnI{ϕn≤cin}).
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Assume that for all m ≤ k ≤ n, p(c1k ) ≥ p(c2k ) with at least one of the inequalities

being strict, and that b2k = p(c1k )

p(c2k )
b1k > 0.

It holds that

(i) c(h1(ϕ)) > c(h2(ϕ)).
(ii) h1(ϕ) >SSD h2(ϕ).

Proof Note that c(h1(ϕ)) = ∑n
k=m b1kq(c1k ) and c(h2(ϕ)) = ∑n

k=m b1k
p(c1k )

p(c2k )
q(c2k ).

Due to the fact that q(c)/p(c) increases in c and that c1k > c2k , we obtain
straightforwardly c(h1(ϕ)) > c(h2(ϕ)). Further, Vu(h1(ϕ)) = ∑n

m vk p(c1k )u(b1k )

and Vu(h2(ϕ)) = ∑n
m vk p(c2k )u(

p(c1k )

p(c2k )
b1k ). In a similar way as in the proof for

proposition 3.4, it shows that h1(ϕ) >SSD h2(ϕ). 	


We conclude that actuarial fair pricing of life annuities does not respect a basic
economic principle that payoffs that exhibit more risk should earn higher expected
returns (i.e., prices are not consistent with second-order stochastic dominance) and is,
in this sense, “unfair.” In the next section, we provide a solution for this problem.

4 Equal utility pricing rule

To deal with the inconsistency of the actuarial equivalence principle with respect
to second-order stochastic dominance, we propose the “equal utility pricing rule.”
As already mentioned in the introduction, Sharpe (2017) has pointed out that using
expected utility theory is at least instructive to see whether the traditional approaches
are helpful, also in the context of life insurance and retirement products.While different
decision theories exist and certainly have theirmerits, Bernard et al. (2015) show that in
finance optimal payoffs can always be rationalized in the expected utility framework.
Furthermore, as pointed out by Sharpe and many others, power utility (preferences
with constant relative risk aversion) is the most frequently used utility function to
capture the preferences of individuals. For instance, Levy (1994) has found strong
evidence to support the DARA (decreasing absolute risk aversion) hypothesis, and
power utility exhibits this property. Power utility is therefore also used in our numerical
section. Hence, we consider an insurer who has a portfolio with N policyholders and
who charges a total premium C for the given portfolio of contract payoffs. The total
premium income C can be considered as the amount the insurer aims to achieve.
Further, the insurer aims to determine premiums c	

i > 0 among the policyholders
for obtaining their contract payoffs gi (Kxi ) in such a manner that full allocation is
obtained, i.e., it is required that

N∑

i=1

c	
i = C . (13)
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In addition to the rule of full allocation, the “equal utility condition” needs to be
satisfied, i.e.,

V i
u

(
gi (Kxi )

c	
i

)
= V j

u

(
g j (Kx j )

c	
j

)
, i, j = 1, . . . , N , (14)

where V i
u is the expected utility for policyholder i , as defined in (9), g(Kxi ) the contract

payoff, and c	
i the premium/cost that individual i shall deliver at the contract-issuing

time to obtain the contract payoff gi (Kxi ). If conditions (13) and (14) are satisfied,
we say that the insurance portfolio exhibits equal utility fairness (per unit of premium
invested) and the c	

i , i = 1, . . . , N are called utility equilibrium prices.

Proposition 4.1 (Uniqueness of utility equilibrium prices). Consider a portfolio of N
annuity payoffs

gi (Kxi ) = (bikI{Kxi ≥k})ω−xi
k=1 , bik ≥ 0, i = 1, . . . , N . (15)

Assume that u : (0,∞) → (0,∞) is a strictly increasing and strictly concave utility
function and that limx→∞u(x) = ∞. It holds that there exists a unique set of utility
equilibrium prices c	

i , i = 1, . . . , N.

Proof Under the equal utility pricing, each individual utility equilibrium price c	
i ,

i = 1, . . . N has to satisfy the following relation:

∑

bik>0

vk · k pxi · u
(
bik
c	
i

)
=

∑

b1k>0

vk · k px1 · u
(
b1k
c	
1

)
. (16)

We first arbitrarily set ci ≤ C
N , i = 1, . . . , n. Without loss of generality (possibly

after reordering the ci ), we can assume that c1 is such that for each ci , i = 2, . . . , N ,

it holds that

∑

bik>0

vkk pxi u

(
bik
ci

)
≤

∑

b1k>0

vkk px1u

(
b1k
c1

)
. (17)

At first, we keep c1 fixed. Then, for a given i ∈ {2, . . . , N } in order to obtain
equality in (17), the initial ci needs to become smaller. As the left-hand side in (17) is
a continuous and strictly decreasing function f of ci , its inverse f −1 is also continuous
and strictly decreasing, and by setting

ci = f −1

⎛

⎜⎝
∑

b1k>0

vkk px1u

(
b1k
c1

)⎞

⎟⎠
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equality in (17) is obtained. We do this for every i ∈ {2, . . . , N } and note that the
ci ’s that we obtain satisfy

∑N
i=1 ci ≤ C . Next, we let c1 increase and note that the ci ,

i ∈ {2, . . . , N } that leads to equality in (17) is continuously and strictly increasing
in c1. Hence, by letting c1 increase to a certain unique value c	

1 < C , we obtain the
desired ci , denoted as c	

i . 	

Depending on the specification of the utility function,we can determine c	

i explicitly

or numerically as a function of c	
1. Further, applying

∑N
i=1 c

	
i = C , we then obtain c	

1
and hence also c	

i .

Proposition 4.2 (Utility equilibrium prices exhibiting consistency with second-order
stochastic dominance). Consider a portfolio of N annuity payoffs

gi (Kxi ) = (bikI{Kxi ≥k})ω−xi
k=1 , bik > 0, i = 1, . . . , N . (18)

Assume that u : (0,∞) → (0,∞) is a strictly increasing and strictly concave utility
function. The equilibrium prices c	

i , i = 1, . . . , N, are consistent with second-order
stochastic dominance, i.e.,

gi (Kxi ) >SSD g j (Kx j )

implies

ci > c j .

Proof Let

gi (Kxi ) >SSD g j (Kx j ),

then it holds that

V i
u

(
gi (Kxi )

)
> V j

u
(
g j (Kx j )

)
.

Furthermore, for all c > 0, u( xc ) will be a finite valued, strictly increasing and strictly
concave utility function. Hence, it also holds that

V i
u

(
gi (Kxi )

c

)
> V j

u

(
g j (Kx j )

c

)

for all c > 0. Consequently, the equal utility condition

V i
u

(
gi (Kxi )

ci

)
= V j

u

(
g j (Kx j )

c j

)

can only hold when ci > c j . 	
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Table 1 Given the parameters as in (20), the 30-year survival probabilities for the two individuals are given
by 0.9477 and 0.8640, respectively, and for both pure endowment contracts their cost, in this case the
actuarial fair premium, is given as c1 = c2 = 0.5232

γ 0.2 0.4 0.6 0.8

(Vu(
g1(Kx1 )

c1
), Vu(

g2(Kx2 )

c2
) (1.098, 1.078) (1.286, 1.240) (1.695, 1.603) (2.978, 2.766)

The table states the resulting utility for the two individuals

5 Equal utility versus equivalence pricing

With the help of specific utility functions, we provide here further interpretations of
the results achieved in the previous sections. In particular, in this section we work out
the difference between equivalence pricing and equal utility pricing.

5.1 Implications deriving from the equivalence principle

For our numerical illustration, let us consider an insurer whose portfolio consists of
two types of products: either two pure endowments or two annuity products. In both
settings, one contract is assigned to an individual aged x1 and the other to an individual
aged x2.Without loss of generality,we assume that k px1 > k px2 . FromProposition 3.1,
which addresses the unfairness of the equivalence principle for pure endowment, we
learn that setting b2k = k px1

k px2
b1k leads to the same actuarial fair premiums, while the

contract of individual 1 stochastically dominates that of individual 2. To see this, we
assume a Gompertz model (Gompertz 1825) in which the mortality rates are then
given by

μx+t = 1

g
e
x+t−m

g , (19)

where g is the dispersion coefficient and m is the modal age at death. The resulting

survival probability is given by k px = e− ∫ k
0 μx+sds . We fix the parameters as follows:

m =88.721, g = 10, δ = 0.02, x1 = 30, x2 = 40, b1k ≡ 1, k = 30, ω = 120,
(20)

where ω is the maximum age, and a 30-year pure endowment is considered. The
discounting function in (2) is given by vk = (1 + δ)−k . Further, we assume u(y) =
y1−γ

1−γ
, γ ∈ (0, 1).

Note that in Table 1c1 and c2 reflect the actuarial fair premiums that are obtained
under actuarial fair pricing. As we take b2k = k px1

k px2
b1k , both pure endowment contracts

lead to the same price of 0.5232. However, contract type 1 (i.e., the one with a higher
survival rate) leads to a higher utility level than contract type 2, which indicates the
second-order stochastic dominance of contract type 1. An increase in the relative risk
aversion level enlarges the difference in the utility level.
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Table 2 Given the parameters as in (20) with b2k = k px1
k px2

b1k ,k = 1, . . . , 80, we find that both annuity

contracts have the same cost under the actuarial fairness principle, i.e., c1 = c2 = 31.7825

γ 0.2 0.4 0.6 0.8

(Vu(
g1(Kx1 )

c1
), Vu(

g2(Kx2 )

c2
) (2.497, 2.413) (6.649, 6.246) (19.918, 18.259) (79.565, 71.364)

However, these contracts lead to different utility levels for the two individuals

Table 3 The premiums of both
pure endowment contracts
which show equal utility fairness
(power utility case), using the
parameters as in (20)

γ c1 c2 Vu(
g1(Kx1 )

c1
) Vu(

g2(Kx2 )

c2
)

0.2 0.529 0.517 1.088 1.088

0.4 0.539 0.507 1.263 1.263

0.6 0.559 0.487 1.650 1.650

0.8 0.619 0.428 2.879 2.879

The same analysis can be carried over to the annuity product, see Proposition 3.4
and Table 2.

Again, both contracts have the same price of 31.7825, but the contract of individual
1 dominates over that of the second individual in second-order stochastic dominance.
An increase in the relative risk aversion level enlarges the difference in the utility level.

5.2 Implications deriving from equal expected utility pricing

In the case of the equal expected utility principle, we ensure an identical utility level
for both individuals. In the case of pure endowment, for k px1 > k px2 , requiring

u(
b2k
c2

)

u(
b1k
c1

)

= k px1
k px2

leads to equal utility. In the case of power utility, it implies that

b2k = b1k
c2
c1

(
k px1
k px2

) 1
1−γ

. (21)

In order to conduct a reasonable comparison between the equal utility and the equiv-
alence principle, we assume that the insurer charges a total premium identically as
in the case with the equivalence principle, i.e., C = 2 · 0.5232 = 1.0464. Further,
we assume that the contract expected payment streams in these two cases are iden-
tical, i.e., b1k = 1 and bk2 = 0.9477/0.8640 ≈ 1.1085. The two-equation system
((21) and C = c1 + c2) determines the premiums c1 and c2 in the equal utility case
(see Table 3).

Based on Table 3, we make the following observations:

• As the total premium C is chosen to be identical as in the equivalence pricing,
these two pricing principles lead to the same expected profit for the insurer.
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Table 4 The premiums of both
contract types which show equal
utility fairness (power utility
case), using the parameters as in
(20)

γ c1 c2 Vu(
g1(Kx1 )

c1
) Vu(

g2(Kx2 )

c2
)

0.2 32.460 31.105 2.455 2.455

0.4 33.436 30.129 6.449 6.449

0.6 35.226 28.339 19.115 19.115

0.8 40.218 23.347 75.906 75.906

• Moving from the equivalence pricing to equal utility pricing implies that individual
1 needs to pay more, while individual 2 can pay less, i.e., it turns out that as
compared to the case in which the actuarial equivalence principle prevails, there is
an implicit transfer of wealth from those with a lower mortality rate to those with
a higher mortality rate.

• The lower the value of the risk aversion coefficient γ the more the premiums under
both approaches correspond to each other; indeed the lower the value of γ , the
more the utility function resembles a linear function. In the case of linear utility,
the equal utility principle reduces to the equivalence principle.

Table 4 illustrates the result for the annuities. Again, we have assumed that the
insurer charges the total premiums as in the equivalence case, i.e., C = 2 ∗ 31.7823.
Further, the b1k and b2k are the same benefit streams as in the equivalence case. Based
on C = c1 + c2 and the equal utility condition, i.e.,

min(ω−x1,ω−x2)∑

k=1

vkk px1u

(
b1k
c1

)
=

min(ω−x1,ω−x2)∑

k=1

vkk px2u

(
b2k
c2

)
, (22)

we can compute c1 and c2.
In Table 4, wemake similar observations to those noted in the pure endowment case.

Specifically, a pricing rule based on equal utility for various policyholders suggests a
higher (or a lower) price shall be charged for contract 1 (or 2).

6 Further discussion

6.1 Group self-annuitization

In this section, we show that the results obtained so far imply that group self-
annuitization schemes are not fair in the sense that participants with higher survival
rates receive payoffs that second order stochastically dominates those of participants
with lower survival rates. For the ease of exposition, we only consider simple one-
period schemes in which benefits are paid only once, namely at the end of a given
time period provided the participant is alive. However, our findings also hold for
general self-annuitization schemes. Hence, consider a pool of N individuals aged xi ,
i = 1, . . . , N , each investing a certain amount ci in a risk-free account earning the

123



On the unfairness of actuarial fair annuities

continuous risk-free rate r > 0. It is also agreed that after k years only those partici-
pants who survive will receive returns on their investment, whereas the heirs of those
who pass away during this period will receive nothing. The value Vi , i = 1, . . . , N of
the investment after k years is then given as

Vi = I{Kxi ≥k}(ci erk + ai BN ). (23)

Here, BN denotes the total amount that needs to be shared among the survivors of the
pool, which is equal to the accumulated value of the investments ci corresponding to
the participants who passed away, i.e.,

BN =
N∑

j=1

I{Kx j <k}c j erk . (24)

BN can be considered as the mortality credit, which can be split among the surviving
participants. Further, ai ≥ 0 is the share that is actually received by the i th surviving
participant in the case in which he survives. It is not known, ex ante, as it depends
on the actual mortality that will be observed during the period under consideration.
Specifically, as the total sum of the shares ai , i = 1, . . . , N , allocated to the survivors,
needs to be equal to one (full allocation), we can express the ai as

ai = κi∑N
j=1 κ j I{Kx j ≥k}

, (25)

with the convention that all ai are equal to zero whenever all participants survive, i.e.,
when

∑N
j=1 κ j I{Kx j ≥k} = 0. Here, the κi > 0, i = 1, . . . , n can be interpreted as the

relative proportion that the i-th individual is entitled to receive upon survival.
In this contract payoff design, the participants thus obtain a (fixed) financial return,

coming from the risk-free investment and a (random) return coming from themortality
credit ai BN . Note that the total return is random but always bigger than the fixed
financial return. Hereafter, we show that for an infinitely large pool in which sharing
is done according to the rule

κi = ci
kqxi
k pxi

, i = 1, . . . , N ,

where kqxi = 1 − k pxi , the contract payoffs correspond to pure endowments that are
priced according to actuarial fair pricing (see Proposition 6.1).

In the following proposition, the notation
p→ reflects convergence in probability

(for N→∞).

Proposition 6.1 (Equivalence between group self-annuitization and actuarial fair pure
endowments). Let 1 ≤ k ≤ min{ω − x1, . . . , ω − xN }. Denote kqxi = 1 − k pxi , i =
1, . . . , N. Let κi , i = 1, . . . , N , be given as

κi = ci
kqxi
k pxi

, (26)
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and assume that cA ≤ ci ≤ cB, i = 1, . . . , N . It holds that

ai BN
p→ ci e

rk kqxi
k pxi

.

As a consequence,

Vi
p→ I{Kx j ≥k}bi ,

in which bi = ci erk

k pxi
.

Proof Noting that that the variance resp. the mean of BN/N is uniformly bounded
from above resp. from below, it follows from Chebyshev’s inequality that

BN

E(BN )

p→ 1.

Similarly, we obtain for every i ∈ {1, . . . , N } that
Ai

E(Ai )

p→ 1,

where we denote Ai = 1/ai . Hence, from the continuous mapping theorem,

E(Ai )

Ai

p→ 1,

and using that
p→ is preserved when taking products, we obtain that

E(Ai )

E(BN )
ai BN

p→ 1.

Hence, we find that

ai BN
p→ ci e

rk kqxi
k pxi

.

	

The above proposition shows that the payoff defined in (23) converges to a pure

endowment contract with a payoff ci erk

k pxi
at maturity date k for the i − th individual. As

the initial investment of the i th individual is ci , this means that this basic group self-
annuitization product with only one payout at time k is priced according to the actuarial
fairness principle; see also Donnelly (2015), Dagpunar (2021), Fullmer and Sabin
(2018), and Sabin and Forman (2016), who advocate this sharing rule for allocating
death benefits among survivors.
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When considering a sequence of time points k = 1, . . . ,m where payouts aremade,
it shows in a similar way that a group self-annuitization with infinite pool size and
with allocation rule as in (26) is asymptotically equivalent to a life annuity portfolio

g(Kxi ) =
(
ci er

1 pxi
I{Kxi ≥1}, . . .

ci er

m pxi
I{Kxi ≥m}

)
. (27)

Group annuitization with an infinite pool size under allocation rule (26) is thus
observationally equivalent to an annuity under the fair pricing principle. The results
we established in this paper imply that actuarially fairly pooled group annuitization
products are not fair in the respect that participants with higher survival rates will have
a better contract payoff in the sense of second-order stochastic dominance. By contrast,
our newly proposed equal utility pricing rule ensures that consistency with second-
order stochastic dominance is preserved. As the new rule allocates the total premium
based on true probabilities and not on adjusted ones, it also enhances transparency in
the annuity market.

6.2 Annuity pricing in practice

Due to tightening solvency regulations and increasing life expectancy, insurance com-
panies will charge non-negligible risk loadings to life annuity products leading to
real-world premiums that are higher than those resulting from the equivalence prin-
ciple. Bauer et al. (2010) and Chen and Rach (2019) apply risk loadings by relying
on the concept of risk neutral pricing. Specifically, it is then assumed that among the
infinitelymany risk neutral probabilitymeasures that exist in incomplete arbitrage-free
markets (untradable insurance riskmakes themarket incomplete7), the insurer chooses
a particular risk neutral probability measure Q. The chosen measure Q then accounts
for both unsystematic and systematic mortality risk. In what follows, we denote the
survival curve under the pricing measure Q by t p̃x . Furthermore, we assume that the
insurer is prudent. As only retirement products are considered, this can be achieved
by imposing that

t p̃x ≥ t px , (28)

must hold, where t px denotes the true survival curve. Note that the choice of the
pricing measureQ (or t p̃x ) can depend on the pool size N . A larger pool size will lead
to less longevity risk included in the retirement products, as unsystematic risk can be
partly eliminated by increasing the pool size.

Given a contract payoff function g(·), the premium π̃(g(Kx )) of a life insurance
contract g(Kx ) is equal to

π̃(g(Kx )) := π̃x (b1, . . . , bω−x ) = EQ(D(Kx ))

7 Note that Bernard and Vanduffel (2014) show that prices of insurance payoffs are affected by those of
financial payoffs.
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=
ω−x∑

k=1

vkEQ(bkI{Kx≥k})

=
ω−x∑

k=1

vk · k p̃x · bk . (29)

Hereafter, we show that in a life insurance portfolio unfairness among policyholders
may still result.

Proposition 6.2 (Unfairness of life insurance portfolios). Assume a life insurance port-
folio containing two policyholders aged xi , each of whompurchases a pure endowment
contract with a maturity date ki , i = 1, 2,

gi (Kxi ) = biki · I{Kxi ≥ki }, i = 1, 2.

Assume that vk1 · k1 p̃x1 > vk2 · k2 p̃x2 and we take

b2k2 = vk1 · k1 p̃x1
vk2 · k2 p̃x2

b1k1 .

If
k1 px1
k2 px2

≥ k1 p̃x1
k2 p̃x2

, then it holds that

(i) π̃x1(g1(Kx1)) = π̃x2(g2(Kx2)).
(ii) g1(Kx1) >SSD g2(Kx2).

Proof By construction, g1(Kx1) and g2(Kx2) have the same mean under the pric-
ing measure Q, and the proof for (i) is thus immediate. To prove (ii), observe that

Vu(g1(Kx1)) = vk1 · k1 px1 · u(b1k ) and Vu(g2(Kx2)) = vk2 · k2 px2 · u(
k1 p̃x1
k2 p̃x2

b1k ). Note

that

vk1 · k1 px1 · u(b1k ) − vk2 · k2 px2 · u(
vk1

vk2

k1 p̃x1
k2 p̃x2

b1k ) = vk1 · k1 px1 · b1k
⎛

⎝u(b1k )

b1k
−

u(
vk1 ·k1 p̃x1
vk2 ·k2 p̃x2 b

1
k )

vk1 ·k1 px1
vk2 ·k2 px2 b

1
k

⎞

⎠ .

The increasingness and concavity of u(·) imply that for every 0 < y ≤ z1 ≤ z2,

u(y)

y
≥ u(z1)

z2
.

The above inequality is strict when the increasingness and concavity of u are strict.
This implies (ii). 	


7 Conclusion

In this paper, in contrast to financial pricing, we demonstrate that the actuarial fair
pricing principle in insurance leads to unfairness among insureds in the sense that
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riskier payoffs are not necessarily less expensive. Specifically, using pure endowment
and life annuities as examples, we show that policyholders with higher survival rates
have a better payoff than those with lower survival rates in terms of second-order
stochastic dominance. To resolve this issue,we propose equal utility pricing to improve
fairness among policyholders and to ensure that prices are determined such that all
policyholders obtain the same utility, i.e., there is no interpersonal envy (Herreiner
and Puppe 2009), from the viewpoint of a third party.

When there is no mortality risk (limiting case), our proposed equal utility condition
ensures that each investor receives the same return corresponding to the financial return
of the underlying investment strategy. A drawback of our approach is that there is in
general no guarantee that each surviving agent always receives a positive mortality
credit, as equal utility, rather than equal average return, is what matters in our setting.
As an extension of our framework, one could study the pricing rule in which premiums
are determined such that utilities among the members are “as equal as possible” (and
no longer exactly equal as in our case) under the constraint that mortality credit returns
are always non-negative.

The pricing rule can be of particular societal relevance, as social planners have
genuine interest in ensuring welfare (utility) fairness [cf. see Frees and Huang (2021)
addressing the importance of studying insurance discrimination for the insurance
industry for decades]. Compared to traditional actuarial fair pricing, equal utility pric-
ing leads to a transfer of wealth from those with a lower mortality rate to those with
a higher mortality rate. Hence, under the plausible assumption that there is a negative
correlation between income and financial risk, equal utility pricing can be consid-
ered as a possible tool for reducing income inequality (Nelissen 1995; Bommier et al.
2011). In addition, the relevance of our approach is exhibited when it comes to the fair
design of innovative retirement products such as group self-annuitization products, in
which longevity risk is shared among policyholders.

Making effectively retirement decisions and ensuring pension security constitute
important challenges in contemporary society, both in developed industrial and devel-
oping countries [see, e.g., Cai et al. (2006), Borck (2007), and Brown (2013)]. In this
context, as an extension to this article, it would be interesting to consider optimal
demand for retirement products taking account of equal utility pricing, both from the
individual investors’ and social planners’ point of view. In this paper, we used the
expected utility theory from von Neumann and Morgenstern to assess the value (util-
ity) of contracts. However, the idea that fairness among policyholders can be achieved
by making the value of their contracts equal can also be developed under other mod-
els, such as generalized expected utility models (Quiggin 1995) or the dual theory
of choice under risk (Yaari 1987). In addition, the premiums discussed in this paper
are of the type single premium, i.e., a single payment is charged at the inception of
the contract. In reality, insureds often make periodic payments for their life insurance
and annuity products. Since a contract that is fair today is not necessarily also fair
tomorrow, the extension of our results to the case of periodic premiums is not trivial.
We leave such analysis to future research.
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