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Abstract
Recent empirical evidence indicates that bond excess returns can be predicted using 
machine learning models. However, although the predictive power of machine learn-
ing models is intriguing, they typically lack transparency. This paper introduces 
the state-of-the-art explainable artificial intelligence technique SHapley Additive 
exPlanations (SHAP) to open the black box of these models. Our analysis identi-
fies the key determinants that drive the predictions of bond excess returns produced 
by machine learning models and recognizes how these determinants relate to bond 
excess returns. This approach facilitates an economic interpretation of the predic-
tions of bond excess returns made by machine learning models and contributes to a 
thorough understanding of the determinants of bond excess returns, which is critical 
for the decisions of market participants and the evaluation of economic theories.
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1  Introduction

What drives bond excess returns has been the subject of extensive academic 
research over the past few decades. Recent studies have documented the ability 
of machine learning models to substantially predict bond excess returns (Bianchi 
et  al. 2021a, b; Huang and Shi 2023; Fan et  al. 2022). However, although the 
predictive performance of machine learning models in this context is intriguing, 
their lack of transparency presents a major problem, making it unclear which 
determinants contribute in what way to the predictions produced. Consequently, 
an economic interpretation of the relationship between determinants and bond 
excess returns is difficult. This is a concern because, for the monetary policy of 
central banks and the portfolio management of investors, it is of high importance 
to understand why and under which economic conditions long-term bonds exhibit 
excess returns (Kessler and Scherer 2009; Ludvigson and Ng 2009; Bauer and 
Hamilton 2018).

Our work connects to two important strands in the literature. One strand exam-
ines the determinants of bond excess returns based on linear prediction models. 
Several studies document the usefulness of information from the yield curve for 
predicting bond excess returns (e.g., Fama and Bliss 1987; Campbell and Shiller 
1991; Cochrane and Piazzesi 2005). Furthermore, many studies provide evidence 
of the additional predictive power of macroeconomic variables related to employ-
ment and production (Ludvigson and Ng 2009), inflation (Wright 2011; Joslin 
et  al. 2014), the output gap (Cooper and Priestley 2009), and growth and real 
interest (Coroneo et al. 2016).

The second strand uses machine learning models to predict bond excess 
returns. Machine learning models deliver much stronger performances than lin-
ear prediction models in realistic out-of-sample settings (Bianchi et al. 2021a, b). 
This is because these models can reflect non-linear relationships between bond 
excess returns and their determinants and can include many more input varia-
bles. Recent important contributions to this field include Bianchi et  al. (2021a, 
b), Huang and Shi (2023), and Fan et al. (2022). However, the black-box nature of 
machine learning models means that it remains unclear what determinants enable 
the strong predictive performance of these models and how those determinants 
relate to bond excess returns.

To better understand the determinants of bond excess returns, we apply a 
three-step empirical approach based on explainable artificial intelligence. In par-
ticular, we use SHapley Additive exPlanations (SHAP) to open the black box of 
machine learning models with a strong performance in the prediction of bond 
excess returns. SHAP is a state-of-the-art explainable artificial intelligence tech-
nique that uses concepts from game theory to identify the contribution of indi-
vidual variables to the prediction of a machine learning model (Lundberg and 
Lee 2017). In the first step of our empirical approach, we predict bond excess 
returns across different maturities for the U.S. bond market using machine learn-
ing models in a realistic out-of-sample setting that adapts to new information 
every month. In the second step, we uncover the most important determinants 
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of U.S. bond excess returns in machine learning models. In the third step, we 
examine the direction in which these determinants are related to U.S. bond excess 
returns, information that is critical for a thorough economic understanding. We 
then apply this three-step approach to examine the determinants of bond excess 
returns in the German bond market, enabling a comparison with the determinants 
in the U.S. context.

Our empirical approach reveals that information from the yield curve, espe-
cially the slope of the yield curve, is a key determinant of U.S. bond excess returns. 
With respect to the functional relationship, a steeper slope of the yield curve pre-
dicts higher bond excess returns. Accordingly, we provide empirical evidence for 
consumption-based theoretical asset pricing models explaining the predictability 
of bond excess returns based on the slope of the yield curve (e.g., Gabaix 2012). 
Beyond information from the yield curve, we find that macroeconomic variables—
especially variables related to the housing market—drive predictions of U.S. bond 
excess returns. Specifically, a weaker housing market predicts higher bond excess 
returns. These findings add to the relatively scarce literature on the importance of 
the housing market for asset prices (Piazzesi et  al. 2007; Huang and Shi 2023). 
Turning to differences across bond markets, our study provides empirical evidence 
that the slope of the yield curve is also an important determinant of German bond 
excess returns. However, in contrast to the U.S., the local housing market does not 
seem to provide additional explanatory power beyond the information from the yield 
curve for German bond excess returns. We suspect that the German housing market 
poses less risk to German bonds than the U.S. housing market poses to U.S. bonds.

We contribute to the literature in three important ways. First, we contribute to a 
deeper understanding of the determinants of bond excess returns by examining the 
key determinants of bond excess returns in machine learning models and investigat-
ing the nature of the relationship those determinants have with bond excess returns. 
Second, we highlight differences in the determinants of bond excess returns across 
countries by contrasting two central bond markets, drawing attention to this scarcely 
studied research area. Third, from a methodological perspective, we contribute to 
the broader asset pricing literature by presenting an empirical approach based on 
explainable artificial intelligence that is suitable for opening up the black box of 
machine learning models to predict the returns of not only bonds but also other 
assets, including stocks and options.

Our findings have important implications for practitioners and academics. Inves-
tors can benefit from our results by better understanding which factors determine 
bond portfolio returns. Central banks can gain a better understanding of the price 
dynamics of long-term bonds, which play an important role in the transmission of 
monetary policy. For future empirical asset pricing research, our study suggests the 
application of explainable artificial intelligence, especially SHAP, to better under-
stand the predictions of machine learning models.

The remainder of the paper is structured as follows. Section 2 provides an over-
view of the related literature and derives hypotheses. Section  3 presents the data 
upon which our analysis is based. Section 4 describes our methodology. Section 5 
presents our results regarding the determinants of bond excess returns, and Sect. 6 
concludes.
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2 � Literature review and hypotheses

2.1 � Research on the determinants of bond excess returns

Bond excess returns have long been the subject of academic research. From a theo-
retical perspective, the pure expectation hypothesis posits that investors expect the 
same return on long-term bonds as on short-term bonds when the bonds are held 
for the same period (McCallum 1975; Campbell 1995). This implicitly assumes that 
the term structure of yields is determined entirely by expectations of future yields. 
According to this hypothesis, there should be no systematic difference between hold-
ing period returns on long-term bonds and short-term bonds. A weaker form of the 
pure expectation hypothesis proposes that investors may expect a higher return on 
long-term bonds than short-term bonds, but this difference is constant and does not 
change over time (Campbell 1995). Therefore, any deviations between these returns 
should be completely random and unpredictable (Cochrane and Piazzesi 2005).

While the expectation hypothesis has long been the most common theory on 
bond excess returns, there is substantial empirical evidence against it, at least for in-
sample settings. Several studies find that bond excess returns in the U.S. and inter-
national markets can be predicted to some extent using information from the yield 
curve) (e.g., Fama and Bliss 1987; Campbell and Shiller 1991; Cochrane and Piazz-
esi 2005; Kessler and Scherer 2009; Sekkel 2011). In particular, the first three prin-
cipal components of yields over different maturities—reflecting the level, the slope, 
and the curvature of the yield curve—and a linear combination of forward rates, 
commonly known as the Cochrane–Piazzesi factor, provide insight into bond excess 
returns (Litterman and Scheinkman 1991; Cochrane and Piazzesi 2005).

Researchers have developed different theoretical asset pricing models that can 
explain the predictive power of yields for bond excess returns. Among the most 
notable studies, Gabaix (2012) proposes a consumption-based disaster model that 
incorporates inflation jumps in rare consumption disasters. Because long-term 
bonds are more sensitive to inflation jumps, investors demand a higher risk premium 
for these bonds, producing a positive slope of the yield curve without a direct link to 
higher expected yields in the future. In this model, the size of the expected inflation 
jumps varies over time. When investors expect particularly large inflation jumps, the 
slope of the yield curve is particularly steep. Because the slope of the yield curve is 
assumed to be mean-reverting, a particularly steep slope of the yield curve predicts 
falling yields—that is, rising prices—for long-term bonds, which translates into pos-
itive bond excess returns. However, where the model introduced by Gabaix (2012) 
is based on consumption disasters, other studies suggest habit formation (Wachter 
2006) and long-run risk models (Bansal and Shaliastovich 2013) to explain the pre-
dictive power of the yield curve.1

The theoretical view on predicting bond excess returns indicates that all risks 
relevant to bondholders—like the risk of inflation jumps in the model proposed by 

1  We refer the reader to Cochrane (2017) for an overview of different state-of-the-art theoretical asset 
pricing models used to explain the predictability of returns from assets such as stocks and bonds.
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Gabaix (2012)—should be incorporated into current bond prices by investors. This 
idea is reflected in the spanning hypothesis, which posits that all information rel-
evant for predicting bond excess returns is spanned by the yield curve (Bauer and 
Hamilton 2018). Consequently, any other variable potentially relevant for predicting 
bond excess returns should contain no predictive power beyond information from 
the yield curve.

Whether the spanning hypothesis holds is subject to extensive and ongoing 
empirical debate. Ludvigson and Ng (2009) apply dynamic factor analysis to a 
large number of macroeconomic indicators to investigate the spanning hypothesis 
for the U.S. market. They find that macroeconomic indicators substantially increase 
the predictability of bond excess returns and that indicators related to employment 
and production are most useful for predictions. This evidence against the spanning 
hypothesis aligns with Wright (2011) and Joslin et al. (2014), studies indicating that 
inflation risk is unspanned by the yield curve and can explain risk premia in the 
U.S. bond market and other international bond markets. Cooper and Priestley (2009) 
instead focus on the macroeconomic output gap, finding that it has predictive power 
for U.S. bond excess returns. However, Bauer and Hamilton (2018) argue in favor of 
the spanning hypothesis, criticizing prior methodological approaches. Furthermore, 
Bauer and Rudebusch (2017) provide empirical evidence in favor of the spanning 
hypothesis for the U.S. market.

Until recently, most studies investigating the predictability of bond excess returns 
and their determinants have relied on linear regressions (e.g., Cochrane and Piazzesi 
2005; Ludvigson and Ng 2009; Sekkel 2011; Ioannidis and Ka 2021). Furthermore, 
most of these studies have focused on the in-sample predictability of returns. This is 
problematic for two reasons. First, in-sample analyses only consider the information 
available at a single point in time and are based on expost knowledge rather than the 
knowledge available at the time of the investment decision. Hence, in-sample analy-
ses do not reflect a realistic decision setting. Second, the in-sample performance of 
predictive models usually correlates poorly with the more realistic out-of-sample 
performance of these models (Inoue and Kilian 2004; Thornton and Valente 2012). 
Recent evidence shows that in an out-of-sample setting, linear predictive regressions 
based on information from the yield curve (Thornton and Valente 2012; Bianchi 
et al. 2021a, b) and based on both information from the yield curve and macroeco-
nomic information (Bianchi et al. 2021a, b) have almost no predictive power for U.S. 
bond excess returns. This is contrary to the findings described above and highlights 
the need for further empirical analyses of the determinants of bond excess returns.

Empirical research has addressed these methodological drawbacks most recently 
by using machine learning methods instead of linear regressions to predict asset 
returns and by applying these methods to out-of-sample rather than in-sample set-
tings. Machine learning can be understood as an approach in which ‘computer algo-
rithms (...) infer meaningful patterns from a dataset’ (Bartram et al. 2021). Apply-
ing machine learning methods to bond excess return prediction enables the use of a 
large set of variables and allows for non-linear relationships between these variables 
and returns. In this context, Bianchi et al. (2021a, b) use several machine learning 
methods and find that neural networks fed with yield data and macroeconomic data 
together can predict bond excess returns in the U.S., thereby presenting empirical 
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evidence against the spanning hypothesis. Huang and Shi (2023) apply regularized 
regressions to predict U.S. bond excess returns and also argue against the spanning 
hypothesis, demonstrating that some macroeconomic variables have significant pre-
dictive power and are, therefore, not spanned by the yield curve. Fan et al. (2022) 
use neural networks to predict U.S. bond excess returns and find that they can be 
predicted to a substantial extent based on macroeconomic data.

Although the predictive performance of machine learning models for bond excess 
returns is intriguing, a central shortcoming of these models is their lack of trans-
parency. As such, it is difficult to identify which variables contribute in what way 
to the bond excess return predicted by the model. Thereby an economic interpre-
tation of the relationship between the determinants and the bond excess return is 
hindered, which makes it difficult for decision makers to act based on the outcomes 
of machine learning models. This calls for techniques that can open the black box of 
these models, typically referred to as explainable artificial intelligence.

Overall, there is still an extensive academic debate about the determinants of 
bond excess returns. Specifically, it is unclear which variables drive bond excess 
returns. Furthermore, most studies have focused on a single market, typically the 
U.S. market. Therefore, further research is needed to understand which variables are 
most important for predicting bond excess returns and investigate whether these var-
iables differ between bond markets.

2.2 � Hypotheses on the determinants of bond excess returns

To guide our empirical examination, we derive hypotheses on what information is 
most likely to have predictive power for bond excess returns. In this regard, eco-
nomic theory suggests that information from the yield curve is highly informative 
for future bond excess returns (Wachter 2006; Gabaix 2012; Bansal and Shalias-
tovich 2013). In particular, the described consumption-based disaster model by 
Gabaix (2012) considers the slope of the yield curve important because it reflects 
investor expectations of inflation jumps, meaning that a higher expected inflation 
jump in the case of a consumption disaster leads to a steeper slope of the yield 
curve. Because the slope is assumed to be mean-reverting, a particularly steep slope 
predicts a subsequently less steep slope, which is equivalent to increasing prices for 
long-term bonds, implying positive bond excess returns. Based on this theoretical 
reasoning—that the slope of the yield curve reflects substantial risk for future long-
term bond prices—we hypothesize the following:

H1: The slope of the yield curve is one of the most important determinants of bond 
excess returns.

However, despite the empirical findings and the theoretical asset pricing models 
in favor of the high predictive power of information from the yield curve for bond 
excess returns, there is some empirical evidence that not all relevant macroeconomic 
risks are reflected in the yield curve (Ludvigson and Ng 2009; Wright 2011; Joslin 
et al. 2014; Cooper and Priestley 2009; Bianchi et al. 2021a, b; Huang and Shi 2023). 
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Furthermore, the literature has documented the importance of local risk factors for 
predicting bond excess returns (Barr and Priestley 2004; Pérignon et al. 2007). How-
ever, which macroeconomic determinants have explanatory power beyond informa-
tion from the yield curve in different local bond markets has not been in the focus 
of research to date. Intuitively, there are different local macroeconomic risks that 
are relevant to investors in different local bond markets. For example, high inflation 
expectations in the Eurozone will more substantially impact European government 
bonds than U.S. government bonds. Furthermore, the degree to which such risks 
are reflected in the yield curve can differ between local bond markets. Therefore, it 
is likely that the macroeconomic determinants that have explanatory power beyond 
information from the yield curve differ between bond markets. Following this line of 
reasoning, we hypothesize the following:

H2: The macroeconomic determinants of bond excess returns that have explanatory 
power beyond information from the yield curve differ between bond markets.

The following two sections describe the data and the methodology used to investi-
gate these two hypotheses.

3 � Data

3.1 � Yield data and macroeconomic data

Based on the literature described in the previous section, we use two types of infor-
mation to predict bond excess returns. On the one hand, we predict bond excess 
returns based on the structure of yields over different maturities, as proposed by 
Fama and Bliss (1987), Campbell and Shiller (1991), and Cochrane and Piazzesi 
(2005), among others. On the other hand, we use both yield data and a large set 
of macroeconomic data to predict bond excess returns (Ludvigson and Ng 2009; 
Bianchi et al. 2021a, b; Huang and Shi 2023). Our study focuses on two important 
international bond markets, namely, the U.S. and the German bond market.

For the U.S., we use a monthly data set of the zero-coupon U.S.-Treasury bond 
yield curve constructed by Liu and Wu (2021), which is available online.2 This data 
set contains monthly information on yields for maturities from 1 to 10 years. Our 
sample period ranges from August 1971 to December 2018. Using these data on 
the structure of yields, we then calculate the bond excess returns for the U.S. bond 
market, as illustrated in the following subsection, and forward rates. Furthermore, 
we conduct a principal component analysis (PCA) of the yield data to summarize 
the most important information from these data. In particular, we extract the first 
three principal components of the yield data. Earlier studies showed that the princi-
pal components of yields are highly informative and related to the level, slope, and 
curvature of the yield curve, respectively (e.g., Litterman and Scheinkman 1991; 
Bauer and Rudebusch 2017).

2  https://​sites.​google.​com/​view/​jingc​ynthi​awu/​yield-​data.

https://sites.google.com/view/jingcynthiawu/yield-data
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For our macroeconomic data, we use a large panel of 124 monthly macroeco-
nomic variables for the U.S. bond market. This panel, constructed by McCracken 
and Ng (2016), is also available online.3 The time series in the panel were grouped 
to reflect the following eight categories of macroeconomic information: “Output and 
income” (1), “Labor market” (2), “Housing” (3), “Consumption, orders, and inven-
tories” (4), “Money and credit” (5), “Interest and exchange rates” (6), “Prices” (7), 
and the “Stock market” (8). This data set has been widely used in previous studies 
(e.g., Stock and Watson 2002, 2006; Ludvigson and Ng 2009).

For the German bond market, we use monthly data on the yields of German gov-
ernment bonds provided by the Deutsche Bundesbank.4 These data are also avail-
able online.5 Again, we use the data to calculate bond excess returns and forward 
rates for the German bond market and conduct a PCA of the yield data to summarize 
the most important information from the yield curve. A short analysis of the corre-
lation between the first three principal components and proxies for the level, slope, 
and curvature of the yield curve following Diebold and Li (2006) and Diebold et al. 
(2006) confirms that, as for the U.S., the first two principal components strongly 
relate to the level and slope of the yield curve, with the third principal component 
rather weakly related to the curvature.6 For our macroeconomic data for the German 
bond market, we construct a large panel of 67 monthly macroeconomic variables 
from the Thomson Reuters Eikon database and the Federal Reserve Economic Data 
(FRED). These macroeconomic variables are selected to match the U.S. variables as 
closely as possible. As such, we have grouped them into the same eight categories 
of macroeconomic information previously introduced. Table  3 and Table  4 in the 
Appendix provide a full description of the macroeconomic variables used for each 
bond market.

3.2 � Bond excess returns

A bond excess return is defined as the return from buying a long-term bond and sell-
ing it at a future point in time T less the return from investing in a short-term bond 
with maturity T and holding it until maturity. Bond excess returns are positive if the 
returns on long-term bonds exceed the returns on short-term bonds over this period 
and negative if the returns on long-term bonds are below the returns on short-term 
bonds.

Using the notation p(n)t  for the (log) price of a zero-coupon bond at time t and a 
remaining maturity of n, and the notation y(n)t = −

1

n
p
(n)
t  for the (continuously com-

pounded) yield at time t with a remaining maturity of n, the (log) excess return of 
a n-year bond from t to t + 1 can be calculated as follows:

3  https://​resea​rch.​stlou​isfed.​org/​econ/​mccra​cken/​fred-​datab​ases.
4  Due to data availability, the sample period for Germany lasts from August 1972 to December 2018.
5  https://​www.​bunde​sbank.​de/​dynam​ic/​action/​de/​stati​stiken/​zeitr​eihen-​daten​banken/​zeitr​eihen-​daten​
bank/​759778/​759778?​listId=​www_​skms_​it03a.
6  For our sample period, the Pearson correlation coefficients for the relationships between the three 
principal components of the German yield data and the level, slope, and curvature proxies are −99.98% , 
84.33% , and −23.04% respectively.

https://research.stlouisfed.org/econ/mccracken/fred-databases
https://www.bundesbank.de/dynamic/action/de/statistiken/zeitreihen-datenbanken/zeitreihen-datenbank/759778/759778?listId=www_skms_it03a
https://www.bundesbank.de/dynamic/action/de/statistiken/zeitreihen-datenbanken/zeitreihen-datenbank/759778/759778?listId=www_skms_it03a
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The return from buying a long-term bond today and selling it after a certain holding 
period depends on the price of the long-term bond at the end of the holding period. 
Because this information is unknown at the time of the investment, buying a long-term 
bond and selling it later is associated with uncertainty. This is reflected in the fact that 
bond excess returns vary substantially over time (e.g., Ludvigson and Ng 2009), as dem-
onstrated by Fig. 1, which shows the observed excess returns on 10-year government 
bonds between January 1995 and December 2017—the out-of-sample period in our 
analysis—for the U.S. and German bond markets.7 In general, bond excess returns in 
both bond markets vary from approximately −15% to 20%. This means that sometimes, 
returns on long-term bonds are higher, and, at other times, returns on short-term bonds 
are higher. Although bond excess returns in the two bond markets move in a broadly 
similar direction, this is not the case at every point in time, and bond excess return levels 
can vary substantially between the two bond markets. The following analyses will iden-
tify and compare the determinants of the bond excess returns in these two markets.

(1)xr
(n)

t+1
= (p

(n−1)

t+1
− p

(n)
t ) − y

(1)
t
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Fig. 1   10-year bond excess returns over time. The upper plot displays the excess returns on 10-year gov-
ernment bonds between January 1995 and December 2017 for the U.S. market, and the bottom plot dis-
plays the excess returns on 10-year government bonds between January 1995 and December 2017 for the 
German market

7  Due to the holding period of one year, the last observed bond excess return in our data is from Decem-
ber 2018.
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4 � Methodology

4.1 � Estimation strategy

To predict bond excess returns, it is crucial that we very carefully consider the tem-
poral structure of how information becomes available to decision makers. This con-
sideration is especially important when building machine learning models because 
technical parameters (called hyperparameters) must be set for these models (see 
Sect. 4.3 for more detail). Neither the training of machine learning models nor the 
choice of hyperparameters should be based on ex-post knowledge. Therefore, we 
split the data available to the decision maker at the respective time into a training, 
validation, and testing sample using a realistic rolling approach that adapts to newly 
acquired information every month. This aligns with the recent literature predicting 
asset returns using machine learning methods (e.g., Gu et  al. 2020; Bianchi et  al. 
2021a, b).

In line with the investment situation of a decision maker, we aim to predict the 
bond excess returns with different maturities over a holding period of 1 year in every 
month based on the information available until each respective point. We start the 
rolling out-of-sample prediction in January 1995 and predict the bond excess return 
between January 1995 and January 1996. In this step, it is important to be very care-
ful with the information on past bond excess returns that the decision maker could 
actually have in this situation. Because the most recent bond excess return the deci-
sion maker can observe initially is the one between January 1994 and January 1995, 
the data available for the training and validation sample corresponds to the period 
August 1971 to January 1994. We follow Bianchi et al. (2021a, b) and use 85% of 
these data as the training sample and 15% as the validation sample.8 After predicting 
the bond excess return between January 1995 and January 1996, we move the roll-
ing window 1 month ahead, build new models based on the training and validation 
sample that is—in total—1 month longer, and subsequently predict the bond excess 
return between February 1995 and February 1996. We continue this process until 
we reach the final time period, which corresponds to the bond excess return between 
December 2017 and December 2018.

8  We also conduct analyses with different choices of training and validation sample splits. The results are 
discussed in Sect. 5.1.
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4.2 � Predicting bond excess returns with machine learning

Our analysis uses random forests, extremely randomized trees, and artificial neural 
networks as machine learning methods to predict bond excess returns.9 We further 
benchmark these methods with a linear regression.

In the classical linear regression approach, the target of observation i is modeled 
as a random variable Yi , which has a distribution that is conditional on the values of 
the inputs xi1 , xi2,..., xip , where p is the number of inputs. Yi is assumed to be nor-
mally distributed conditional on the input variable values. The value of the response 
variable Yi of observation i is then assumed to comprise two components: First, the 
deterministic term that depends on the values of the inputs xi1 , xi2,..., xip ; second, the 
random component �i . The relationship between the inputs and the random compo-
nent and the target variable is assumed to be linear, with the parameters �0 , �1,..., �p.

The random variable �i is assumed to be independent and identically distributed and 
to follow a normal distribution. Its expected value is given by E(�ii) = 0 , and it has 
a variance of Var(�i) = �2 . The parameters �0 , �1,..., �p can be estimated using the 
least squares method.

The random forest is a tree-based prediction method introduced by Breiman 
(2001) that builds an ensemble of classification or regression trees. The classifica-
tion trees and regression trees that make up a random forest are relatively easy-to-
explain machine learning methods for approximating non-linear relationships in a 
data set and for using these relationships to make predictions about new observa-
tions. During the training phase, the training data set is used to build a binary tree 
structure that divides the data set into subsets. The data can be divided based on one 
of the input variables—in our setting, for example, a forward rate—being above or 
below a certain threshold. Each leaf node of the tree that results from these splits 
corresponds to a subset of the training data, while the internal nodes of the tree cor-
respond to a decision rule. In later prediction steps, new observations are classified 
using these decision rules. Each new observation traverses the tree according to the 
decision rules. Then, the prediction is calculated based on the final observations in 
the leaf nodes. In a regression problem such as the one studied in this setting, the 
mean of the observed responses is used as the predicted value. The splits in the tree 
are chosen to reduce the mean squared error MSE in the individual leaf nodes �

where ȳ(𝜏) is the mean target value in � . The splits of a node can then be chosen to 
minimize the overall MSE in the resulting child nodes

where �L is the left child node, and �R is the right child node.

(2)Yi = �0 + �1xi1 +⋯ + �pxip + �i

(3)MSE(𝜏) =
∑

k∈obs. in 𝜏

(yk − ȳ(𝜏))2

(4)max
s∈poss. splits

Δ(s, �) = MSE(�) −MSE(�L) −MSE(�R)

9  We use the terms artificial neural network and neural network interchangeably.
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When creating decision trees, there is a trade-off between a strong fit of the train-
ing data and its usefulness for predicting new data. If a very deep tree is constructed, 
it will fit the training data very well, but it might perform poorly when applied to 
new data, because it might overfit random characteristics of the training data. A 
tree should be deep enough to capture the important characteristics of the data but 
flat enough to be useful for making predictions. Therefore, the size of the tree will 
usually be restricted by hyperparameter choices (see Sect. 4.3) or by reducing the 
tree size via pruning (Breiman et al. 1984). For example, depth can be restricted by 
imposing some penalty on new splits or by establishing a minimum for the number 
of observations in a final node. An approach commonly used in most current studies 
deploying tree-based methods is to build ensembles of multiple models.

The use of ensembles to improve classification and regression trees was estab-
lished by several authors. In 1996, Breiman introduced a method called bagging, 
the short form for bootstrap aggregation (Breiman 1996), which involves producing 
a set of decision trees by repeatedly sampling from a data set and building a deci-
sion tree for each bootstrap sample. The main advantages of bagging are reducing 
prediction variance by averaging the outcomes of the ensemble of trees and reducing 
bias by including a larger variety of possible predictions by using the averages of the 
predictions of the single trees. Later, Breiman (2001) combined the idea of bagging 
with ideas of other authors such as random split selection (Dietterich 2000), naming 
the new method “random forest.”

The procedure used to build a random forest can be described as follows. For 
each decision tree Tk , k ∈ 1, 2, ...K where K is the number of trees, one draws a boot-
strap sample as a subset from the training data set. In each node of the tree Tk , one 
then draws a random sample of size m from the number of input variables M avail-
able for the split selection. Then, the tree is fully developed with no pruning. To 
make predictions, one determines the leaf node of the trees Tk the observation is 
categorized into and uses the mean target value of the individual leaf nodes as pre-
dictions. One then calculates an aggregated prediction over the ensemble using the 
mean prediction over the individual trees Tk.

As a second machine learning method, we use extremely randomized trees. Intro-
duced by Geurts et  al. (2006), the extremely randomized trees method also uses 
an ensemble of trees to develop multiple classification or regression trees, with 
each tree randomly selecting the input variables used to split the data. However, 
extremely randomized trees differ from random forests in two main ways. First, the 
trees that form a random forest only use a subset of the data; extremely randomized 
trees use the entire data set. Second, extremely randomized trees randomly choose 
the split values of the input variables; random forests choose the split values based 
on an optimization procedure. The method aims to make the trees even more dis-
similar to the trees in a random forest and potentially generate a smoother surface of 
the non-linear function that machine learning methods aim to approximate.

As a third machine learning method, we use neural networks. Neural networks 
comprise different layers of neurons. The features enter the model through the first 
layer, the input layer. The input layer comprises one neuron for each feature in the 
model. Then, the features are passed on (“fed forward”) to one or more hidden layers 
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of neurons.10 For fully connected hidden layers, each neuron in the layer is con-
nected to all neurons in the previous layer. The neurons assign weights to the inputs 
from neurons in previous layers and typically have non-linear activation functions 
that transform the inputs and determine whether they are passed on to the neu-
rons in the next layer. Finally, the transformed features are fed into an output layer. 
The weights in the layers are optimized via back-propagation to reduce the predic-
tion error.11 The great advantage of neural networks is their flexibility, a product 
of the connected hidden layers that allows them to powerfully model non-linear 
relationships.

4.3 � Hyperparameter search

Several technical choices that can be made when designing and building specific 
machine learning models can affect prediction quality. These include, for exam-
ple, the minimum size of nodes in the trees of a random forest. Deciding how these 
hyperparameters are chosen is a crucial step in any machine learning study.

When searching for the best hyperparameter set for a machine learning model, 
we generally apply a random search. This approach involves sampling various com-
binations of hyperparameter values using random distributions. Based on these 
hyperparameter combinations, we then build different models on the training data 
and validate those models on a separate partition of the available data, namely, the 
validation data in every month.12 We then use the model with the best performance 
in predicting the bond excess returns in the validation data to make a prediction for 
the test data. Because we use a rolling training, validation, and test split, different 
hyperparameter combinations could be selected while the rolling window proceeds. 
As such, we ensure that only information available to decision makers at the time is 
used.

For the random forest, we consider as hyperparameters the number of variables 
used in each node of the trees, the number of trees, the minimum size of terminal 
nodes, the maximum depth of the trees, and the number of observations considered 
for building each tree. For the extremely randomized trees, the same hyperparam-
eters are used, with the exception of the number of observations. This is because 
the full training data set is typically used in these models to build each tree. Fur-
thermore, the number of trees is not a typical hyperparameter for either tree-based 
method because a larger number is always beneficial when reducing measures such 
as mean squared error while computational effort increases (Probst and Boulesteix 
2017). Consequently, we set the number of trees to the reasonably large and typical 
value of 1,000 (Probst et al. 2019). For neural networks, hyperparameters related to 

10  Due to the relatively small number of observations in the sample, we use neural networks with one 
hidden layer.
11  For a more detailed description of neural networks, see, e.g., Hastie et al. (2009).
12  Due to restrictions regarding computational power, we deviate from monthly hyperparameter tuning 
for neural networks and follow Bianchi et  al. (2021a, b). Details about their procedure appear in their 
online Appendix.
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the architecture of the neural network, such as the number of neurons within the hid-
den layer(s), are commonly tuned (e.g., Bergstra and Bengio 2012). Neural networks 
have recently been found to very successfully predict bond excess returns when a 
certain network architecture is specified ex-ante (Bianchi et al. 2021a, b). Despite 
these intriguing results, one typically does not know which network architecture pro-
duces optimal results ex-ante. Therefore, we choose as hyperparameters the neurons 
within the hidden layer, the dropout rate (the proportion of neurons in the hidden 
layer that is omitted during model training to avoid overfitting), and the penaliza-
tion parameters that decrease the weight of uninformative predictors. Furthermore, 
we allow the neural network to process the yield data and the macroeconomic data 
jointly or separately. The exact hyperparameters used for the three machine learning 
methods appear in Table 5 in the Appendix.

4.4 � Performance measures and statistical testing

To assess the performance of the machine learning and linear benchmark models, 
we compare their predictions of bond excess returns to a naive prediction of bond 
excess returns based on the historical mean. This involves calculating the out-of-
sample R2 of the predictions according to Campbell and Thompson (2008) using the 
following equation:

where T is the number of predicted periods in the test sample, x̄r(n)
t+1

 is the naive 
historical mean prediction of the bond excess returns with maturity n between t and 
t + 1 based on the training and validation sample until t − 1 , and x̂r(n)

t+1
 is the predic-

tion produced by a machine learning model or a linear benchmark model.
In a classical (in-sample) linear regression, R2 values are necessarily between 0 

and 1 because the linear regression is fit to reduce the squared errors in the same 
data. In this way, the prediction produced by linear regression cannot be less accu-
rate than the mean. However, this study calculates the out-of-sample R2 values 
based on the test data, meaning the out-of-sample R2 from Campbell and Thompson 
(2008) is not bound to the interval between 0 and 1.

To evaluate whether the out-of-sample R2 values significantly exceed zero, we 
use a Clark–West test. This step follows Clark and West (2007), who derive a statis-
tic for the difference in MSE between models. This statistic accounts for prediction 
models being susceptible to overfit noise in-sample when the data provide limited or 
no true information. In such cases, out-of-sample predictions are usually less accu-
rate than simple averages in MSE performance (Clark and West 2007). According to 
Clark and West (2007), t-statistics rejection regions can provide significance levels.

(5)R2

oos
= 1 −

∑T−1

t=0
(xr
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4.5 � Explainable artificial intelligence approach

Our study proposes using explainable artificial intelligence to derive interpretable 
results concerning what determines bond excess returns and how these determinants 
relate to bond excess returns. This can allow decision makers to obtain useful infor-
mation from machine learning models. Following Lundberg and Lee (2017), we use 
SHAP values for this purpose, which provide insight into how much a certain input 
variable has contributed to a particular prediction produced by a machine learning 
model. This is referred to as local explainability. Meanwhile, aggregating the SHAP 
values for each input variable across all predictions enables global explainability.

To derive the contribution of an input variable for a particular prediction, SHAP 
calculates the change to a target value upon adding an input variable to a model. 
However, the input variables previously used in the model affect how much the tar-
get value changes when the input variable is added. Consequently, determining the 
contribution of a specific input variable becomes a challenge. To resolve this prob-
lem, SHAP uses concepts from game theory that were developed to share the out-
come of a game between players making mutually non-exclusive contributions to 
that outcome (Shapley 1953). SHAP does this by weighting the contribution of the 
input variables across the different models in which the variables could be added. 
Interestingly, the resulting SHAP values sum the difference between the mean pre-
diction of the target variable for the training data and the prediction of the target 
variable for the test data.

This is a particularly useful property if the approach is compared with traditional 
variable importance techniques. In SHAP, the contribution of each input variable is 
directly interpretable with regard to the dimension of the target variable and the indi-
vidual prediction. Traditional global techniques, such as permutation importance, 
usually only develop an ordering of the importance of individual input variables.

5 � Results

5.1 � The predictability of U.S. bond excess returns

In the first step of our analysis, we investigate the predictability of U.S. bond excess 
returns across maturities ranging from 2 to 10 years using the machine learning 
methods described in Sect.  4.2. We then compare the predictions of the machine 
learning models with those produced using a traditional linear regression. This ena-
bles us to revisit recent findings from the literature suggesting that machine learning 
models significantly predict U.S. bond excess returns and substantially outperform 
linear models (Bianchi et al. 2021a, b).

Table  1 presents the results of our analysis. In the table’s first section, we see 
the predictive power of linear regression and machine learning models based on 
information from the yield curve. We estimate the linear regression using the first 
three principal components of the yield data as predictors. As discussed, these are 
typically associated with the level, the slope, and the curvature of the yield curve. 
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The linear approach produces negative R2
oos

 values, indicating that the predictions 
are substantially less accurate than naive predictions based on the historical mean of 
U.S. bond excess returns. We subsequently turn to a linear approach based on yield 
data and macroeconomic data. Specifically, we estimate a linear regression using the 
first eight principal components across the 1-year spot rate, the forward rates, and 
all 124 macro variables for the U.S. described in Sect. 3.1 and presented in Table 3 
in the Appendix. Again, the linear approach cannot generate positive R2

oos
 values. 

Therefore, even the addition of macroeconomic variables seems not to enable a lin-
ear regression to significantly predict bond excess returns in a realistic out-of-sam-
ple setting.

Turning to machine learning methods, we first investigate the predictive power of 
a random forest model, an extremely randomized trees model, and a neural network 
model based solely on yield data. While the random forest and the extremely rand-
omized trees model produce negative R2

oos
 values across all maturities when using 

the first three principal components of the yield data as predictors, the neural net-
work produces positive but statistically insignificant R2

oos
 values in the short term 

and negative R2
oos

 values in the long term. Considered alongside the results produced 
by the linear approach, this indicates that predicting U.S. bond excess returns using 
only yield data is difficult regardless of the choice of predictive method.

However, combining yield and macroeconomic data substantially changes the 
capacity of machine learning models to predict U.S. bond excess returns. The lower 
part of Table  1 displays positive R2

oos
 values for all three machine learning mod-

els. While the neural network model produces statistically significant positive values 
across all maturities, the extremely randomized trees model produces statistically 
significant positive values from maturities of five years onward and the random for-
est model from maturities of three years onward. For long maturities, the tree-based 
models are superior to the neural networks, explaining up to 20.5% and 14.3% of the 
variation in U.S. ten-year bond excess returns. These positive R2

oos
 values are statis-

tically significant. Furthermore, our findings concerning the predictability of U.S. 
bond excess returns using machine learning methods and the performance ranking 

Table 1   Prediction of U.S. bond excess returns

This table reports out-of-sample R2

oos
 values as in Campbell and Thompson (2008) from predicting 

U.S. bond excess returns across different maturities with a linear regression and machine learning mod-
els using yield data only and using yield data and macroeconomic data together. p-values for the null 
hypothesis R2

oos
≤ 0 are calculated following Clark and West (2007). ∗ , ∗∗ , and ∗∗∗ denote significance at 

the 10%, 5%, and 1% levels
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of the models are generally robust against different choices of training and valida-
tion sample splits and where the mean squared error is adopted as a measure of pre-
diction accuracy (see Tables 6 and 7 in the Appendix for further details).

Taken together, our results indicate that machine learning models can signifi-
cantly predict U.S. bond excess returns by using both yield and macroeconomic 
data, a finding that challenges the idea that the yield curve reflects all information 
relevant to bond excess return predictions (the spanning hypothesis). This means 
that the results broadly align with a recent study by Bianchi et  al. (2021b), dem-
onstrating that machine learning models outperform the traditional linear approach 
in terms of predicting excess returns on U.S. bonds. However, closer consideration 
of the results shows that our findings differ from previous findings in two ways. 
First, we observe a lower predictive accuracy for neural networks than Bianchi et al. 
(2021b). This is because we have adopted a flexible approach to constructing the 
neural networks. Because we cannot know ex ante what the optimal architecture for 
the neural network is, our approach allows the neural network to choose the optimal 
number of neurons in the hidden layer and the joint or separate processing of yield 
and macro data as part of its hyperparameter tuning (see Table 5 in the Appendix 
for further details).13 Second, the predictive performances of the tree-based models 
also differ from Bianchi et al. (2021b). Again, this is due to differences in the meth-
odological approach. For instance, we use the first three principal components of the 
yield data as input data for the tree-based models rather than using the yield data 
directly, because the principal components have been shown to provide insights into 
bond excess returns and have useful interpretations. Furthermore, our hyperparam-
eter tuning deviates from the approach of Bianchi et al. (2021b) (see Table 5 in the 
Appendix and Sect. 4.3 for further details on our hyperparameter tuning).

The results regarding the predictive performance of the machine learning models 
are certainly intriguing. However, several important questions remain unanswered: 
Why do the models predict what they predict? That is, what are the most important 
determinants of bond excess returns in these models? How exactly do the determi-
nants relate to bond excess returns? Do key determinants differ between bond mar-
kets? To answer these questions, our analysis proceeds with the use of SHAP, an 
explainable artificial intelligence technique that allows us to open the black box of 
machine learning models.

5.2 � The determinants of U.S. bond excess returns

This section uses explainable artificial intelligence to address the central shortcom-
ing of machine learning models, namely, the lack of transparency. This enables us 
to better understand which determinants drive bond excess returns. For this analy-
sis, we focus on the machine learning model with the best predictive performance, 

13  Using the specific neural network architecture chosen in Bianchi et  al. (2021b) based on one layer 
with 32 neurons for the macroeconomic variables and two separate layers with three neurons each for 
the yield data, we find comparably strong results, with R2

oos
 values of 3.40%∗ , 11.05%∗∗∗ , 14.78%∗∗∗ , 

17.07%∗∗ , 18.01%∗∗∗ , 19.56%∗∗∗ , 19.93%∗∗∗ , 19.94%∗∗∗ , and 20.37%∗∗∗.
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namely, the extremely randomized trees model for the 10-year U.S. bond excess 
return. We calculate the mean absolute SHAP values for the model’s input variables 
to examine the average absolute impact of each input variable on the model output. 
Then, we aggregate the macroeconomic variables to the eight macroeconomic cat-
egories according to McCracken and Ng (2016).

Figure 2 presents the results of our analysis. The x-axis shows the mean abso-
lute SHAP values of the first three principal components of the yield data and the 
aggregated mean absolute SHAP values of the eight macroeconomic categories. We 
present the principal components and the macroeconomic categories on the y-axis 
in descending order of relative importance. This means listing the more influential 
determinants of excess bond returns at the top and the less influential ones at the 
bottom.

In line with the explanations of theoretical asset pricing models (Wachter 2006; 
Gabaix 2012; Bansal and Shaliastovich 2013), we can see that information from the 
yield curve is very important for predicting bond excess returns. According to those 
models, the yield curve, and especially the slope of the yield curve, captures infor-
mation such as inflation expectations, making it helpful for predicting bond excess 
returns. Indeed, we observe that the second principal component of the yield data, 
which is typically associated with the slope of the yield curve, most impacts the 
model prediction. This provides evidence in favor of our first hypothesis, namely, 
that the slope of the yield curve is among the most important determinants of bond 
excess returns. Furthermore, the first principal component of the yield data, which 
is typically associated with the level of the yield curve, and—to a somewhat lesser 
extent—the third principal component of the yield data, which is typically associ-
ated with the curvature of the yield curve, also have a considerable impact on the 
model prediction.

Moving beyond yield curve information, macroeconomic variables related to 
specific categories also importantly contribute to predictions of U.S. bond excess 
returns. Interestingly, variables related to the macroeconomic category “Housing,” 
on average, have a particularly high mean absolute impact on the model output. This 
suggests that housing market information is important for U.S. bond excess returns 
but does not appear to be fully included in U.S. yield data. These findings add to 
the relatively scarce literature on the importance of the housing market for asset 
prices. Most notably in this regard, Piazzesi et  al. (2007) develop a consumption-
based asset pricing model that explicitly includes housing as a consumption good. In 
that model, investors favor assets that hedge against negative housing consumption 
shocks and require excess returns on assets that correlate positively with housing 
consumption. The authors show that stocks and bonds indeed correlate positively 
with housing consumption, meaning investors require excess returns on these assets. 
Our findings provide evidence in favor of the model and align with more recent 
empirical evidence (Huang and Shi 2023) indicating that variables related to the 
housing market have predictive power for the excess returns on U.S. bonds. Consid-
eration of other macroeconomic categories reveals that variables related to interest 
and exchange rates and the labor market also contain information useful for pre-
dicting U.S. bond excess returns that is not spanned by the yield curve. Meanwhile, 
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the other macroeconomic categories included in this plot, on average, demonstrate 
rather small impacts on the prediction of bond excess returns.

To test the robustness of our results, we repeat the analysis for the random forest 
and the neural network. The results appear in Fig. 6 in the Appendix and generally 
confirm our findings, with all the machine learning models characterized by the high 
level of importance of several determinants, namely, the first two principal compo-
nents of the yield data and the housing variables.

After gaining a better understanding of the key determinants of U.S. bond excess 
returns, we now investigate whether the identified key determinants remain static or 
change over time. We divide the full sample period into three subperiods of roughly 
similar length including a crisis period from 2000 to 2009 covering the dotcom 
bubble and the global financial crisis, a pre-crisis period from 1995 to 1999, and a 
post-crisis period from 2010 to 2017. For these subperiods, we again calculate mean 
absolute SHAP values following the procedure previously described.

Figure 3 presents the results of this analysis. We see that over time, the sec-
ond principal component of the yield data consistently has the largest impact 
and the first principal component of the yield data consistently has the second-
largest impact on the model prediction. Focusing on the importance of different 
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Fig. 2   Importance of 10-year U.S. bond excess return determinants. This figure displays mean absolute 
SHAP values for the first three principal components of the U.S. yield data and for the macroeconomic 
variables described in Sect. 3.1, aggregated to the eight macroeconomic categories as in McCracken and 
Ng (2016). The SHAP values presented are obtained from an extremely randomized trees model predict-
ing 10-year U.S. bond excess returns
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macroeconomic categories, we find that the “Housing” category has become more 
important for the prediction of U.S. bond excess returns over the sample period. 
Interestingly, the relative importance of that category compared to other catego-
ries of macroeconomic variables increases particularly strongly in the subperiod 
after the U.S. subprime mortgage crisis of 2007–2008. This hints towards bond 
investors paying more attention to the housing market after the crisis. The obser-
vation that the importance of the determinants of excess bond returns changes to 
some degree over time offers a possible explanation for studies focusing on ear-
lier periods (e.g., Ludvigson and Ng 2009) not identifying the housing market as 
an important determinant of U.S. bond excess returns.

We can conclude that information from the yield curve, especially the slope 
of the yield curve, is important for predicting U.S. bond excess returns. Beyond 
information from the yield curve, macroeconomic information related to the 
housing market is particularly important for predicting U.S. bond excess returns. 
Moreover, we have observed that the importance of variables related to the 
housing market has increased substantially over time. While this identifies the 
key determinants of U.S. bond excess returns, it remains unclear how exactly 
these determinants relate to bond excess returns. This relationship is important 
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Fig. 3   Importance of 10-year U.S. bond excess return determinants over time. This figure displays mean 
absolute SHAP values for the first three principal components of the U.S. yield data and for the mac-
roeconomic variables described in Sect.  3.1, aggregated to the eight macroeconomic categories as in 
McCracken and Ng (2016). The SHAP values presented are obtained from an extremely randomized 
trees model predicting 10-year U.S. bond excess returns
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for an economic interpretation of machine learning predictions and, therefore, 
of considerable interest to decision makers such as investors and central banks.

5.3 � The relationship between U.S. bond excess returns and their key 
determinants

To understand how the identified key determinants relate to bond excess returns, we 
further investigate the calculated SHAP values using a different visualization. Fig-
ure 4 shows the SHAP values in the form of a sina plot. Compared to the previous 
figure, here, the SHAP values no longer appear aggregated into macroeconomic cat-
egories. Instead, they are shown for the individual input variables. Visualizing the 
SHAP values with a sina plot provides considerable useful information. First, the 
plot shows the importance of individual input variables by ranking them in descend-
ing order. Furthermore, the plot shows the impact of a particular observation of an 
input variable, because the horizontal position indicates whether the effect of that 
input variable’s observation is associated with a lower (negative SHAP values) or 
higher (positive SHAP values) bond excess return prediction. The plot also shows 
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Fig. 4   Relationship between 10-year U.S. bond excess returns and their predictors. This figure displays 
the SHAP values for the ten variables that are most important for predicting 10-year U.S. bond excess 
returns. The SHAP values presented are obtained from an extremely randomized trees model predicting 
10-year U.S. bond excess returns
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the original value of the observation of the input variable, with the color indicating 
whether that input variable value is low (yellow) or high (violet) for that observa-
tion. With the information provided by the plot, it is possible to derive relationships 
between input variables and bond excess return predictions. For example, a positive 
relationship between an input variable and bond excess returns can be identified if 
low input variable values (yellow) lead to lower predictions (negative SHAP values) 
and high input variable values (violet) lead to higher predictions (positive SHAP 
values). However, no statistical significance can be inferred from the plot.

Notably, we find a positive relationship between the slope of the yield curve and 
bond excess return predictions, indicating that a steeper slope of the yield curve 
leads to higher bond excess return predictions. This is because the second principal 
component of the yield data is strongly negatively correlated with the slope of the 
yield curve. In turn, this means that high values for the second principal component 
of the yield data (low values of the yield curve slope) lead to lower bond excess 
return predictions, and low values of the second principal component of the yield 
data (high values of the yield curve slope) lead to higher bond excess return predic-
tions. This aligns strongly with consumption-based asset pricing models. For exam-
ple, Gabaix (2012) argues that higher inflation expectations are reflected in a steeper 
slope of the yield curve. Because the slope of the yield curve is mean-reverting, 
an increase in the slope predicts a subsequent decrease and, therefore, higher bond 
excess returns.14

Interestingly, based on their high relative importance, we also observe that the 
variables “5Y Treasury rate minus Fedfunds rate” and “10Y Treasury rate minus 
Fedfunds rate” from the macroeconomic category “interest and exchange rates” 
seemingly offer further explanatory power for U.S. bond excess returns by using a 
different reference point (in this case the Fedfunds rate) to calculate the slope of the 
yield curve. Consistent with the previous finding, the plot also shows a positive rela-
tionship between the variables and the bond excess return predictions, with a steeper 
slope associated with higher bond excess return predictions.

Visualizing the SHAP values in this way enables us to further analyze the rela-
tionship between the important housing market variables identified earlier and the 
predictions for bond excess returns in the same way. In line with our previous analy-
sis, we see four variables related to the housing market among the prediction mod-
el’s ten most important input variables. The four variables “Permits for new private 
housing midwest,” “Housing starts midwest,” “Housing starts total,” and “Permits 
for new private housing west” all indicate the same impact direction on bond excess 
returns, with a negative relationship observed between the number of new construc-
tion starts or permits and the predicted bond excess returns. That is, a lower number 
of new construction starts or permits leads to higher U.S. bond excess return pre-
dictions. Again, this finding aligns strongly with the theoretical asset pricing model 
described by Piazzesi et  al. (2007), who show that the consumption of a housing 

14  A decrease in the slope of the yield curve means that the prices of long-term bonds increase relative 
to the prices of short-term bonds, which translates into increasing bond excess returns.
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good correlates positively with stock and bond prices and, therefore, predicts excess 
returns.

Overall, implementing explainable artificial intelligence not only identifies the 
key determinants of bond excess returns but also provides insight into how these 
determinants relate to bond excess returns. For example, knowing how macroeco-
nomic information, such as housing variables, relate to U.S. bond excess returns 
gives us a better overall understanding of what drives bond excess returns, which is 
critical for decision makers, who can act based on these insights. For U.S. monetary 
policy, therefore, the housing market should be closely monitored because negative 
developments in that domain indicate increasing excess returns on long-term bonds. 
Investors should also incorporate this information into their analyses of bond mar-
kets and corresponding investment strategies.

5.4 � The determinants of German bond excess returns

Having analyzed the determinants of the predictions of U.S. bond excess returns pro-
duced by machine learning models, we now investigate whether these determinants 
differ between bond markets. This involves consideration of another highly impor-
tant bond market, namely, the German bond market. Although the realized bond 
excess returns for the German and the U.S. markets exhibit substantial co-movement 
(see Fig. 1), empirical studies have documented the important role of local factors 
in predicting bond excess returns (Barr and Priestley 2004; Pérignon et al. 2007). 
However, whether these local factors differ between bond markets remains unclear, 
demanding empirical investigation.

As for the U.S. market, we begin by assessing the predictions of German bond 
excess returns produced by the traditional linear regression and the selected machine 
learning models. The results appear in Table 2. Again, we see that a linear regres-
sion based on yield data cannot successfully predict bond excess returns, with all 
R2
oos

 values negative. We also see that, again, adding macroeconomic information 

Table 2   Prediction of German bond excess returns

This table reports out-of-sample R2

oos
 values as in Campbell and Thompson (2008) from predicting Ger-

man bond excess returns across different maturities with a linear regression and machine learning mod-
els using yield data only and using yield data and macroeconomic data together. p-values for the null 
hypothesis R2

oos
≤ 0 are calculated following Clark and West (2007). ∗ , ∗∗ , and ∗∗∗ denote significance at 

the 10%, 5%, and 1% levels
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through a PCA incorporating yield and macroeconomic data does not produce posi-
tive R2

oos
 values either. Furthermore, as for the U.S. market, machine learning mod-

els cannot predict bond excess returns solely based on yield data either. However, 
incorporating macroeconomic data enables the random forest and the extremely 
randomized trees model to obtain significantly positive predictions of German bond 
excess returns for longer maturities. For German 10-year government bonds, both 
tree-based models predict close to 10% of the variation in excess returns in an out-
of-sample setting. Given the difficulty of the task and the lower amount of available 
macroeconomic variables than in the U.S., we interpret this as a strong result.

In the next step, we analyze the key determinants for the predictions of German 
bond excess returns produced by machine learning models. As for our previous anal-
yses, we use SHAP to specifically investigate the predictions of the best-performing 
model, namely, the extremely randomized trees model. The results appear in Fig. 5. 
The x-axis of the plot again shows the respective mean absolute SHAP values of the 
first three principal components of the German yield data and the aggregated mean 
absolute SHAP values for the eight macroeconomic categories used in the analysis 
for the U.S. The aggregated SHAP values of the different principal components and 

Housing

Stock market

Output and income

Money and credit

PC 3 − Yield data

Interest and FX rates

Consumption

Labor market

Prices

PC 1 − Yield data

PC 2 − Yield data

0.0000 0.0025 0.0050 0.0075 0.0100
mean(|SHAP value|) (average absolute impact on model output)

Fig. 5   Importance of 10-year German bond excess return determinants. This figure displays the mean 
absolute SHAP values for the first three principal components of the German yield data and for the 
macroeconomic variables described in Sect. 3.1, aggregated to the eight macroeconomic categories as 
in McCracken and Ng (2016). The SHAP values presented are obtained from an extremely randomized 
trees model predicting 10-year German bond excess returns
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macroeconomic categories appear in descending order according to their relative 
importance on the y-axis.

In line with the results for the U.S. bond market, we find that, for the German 
bond market, the second principal component of the yield data is the most impor-
tant and the first principal component of the yield data is the second most important 
determinant of bond excess returns. As for the U.S., the first two principal compo-
nents closely relate to the level and the slope of the German yield curve. This find-
ing provides further evidence in favor of our first hypothesis, which asserts that the 
slope of the yield curve is an important determinant of bond excess returns. Turn-
ing to the relationship between the second principal component of the yield curve 
and the excess returns on 10-year German bonds, we again find that a steeper slope 
of the yield curve leads to higher bond excess return predictions (see Fig. 7 in the 
Appendix), confirming our previous results.

Regarding additional macroeconomic variables, again, some of these variables 
contain information pertaining to bond excess returns that is not spanned by the 
yield curve. Variables from the macroeconomic categories “Prices” and “Labor 
market” are, on average, the most important additional macroeconomic variables for 
predictions of German bond excess returns. Variables from the macroeconomic cate-
gories “Consumption” and “Interest and exchange rates” also, on average, contribute 
to the machine learning model’s predictions. Interestingly, variables from the mac-
roeconomic category “Housing,” the most important macroeconomic determinants 
for U.S. bond excess returns, have nearly no explanatory power on average beyond 
information from the yield curve for German bond excess returns. This result is con-
sistent with our second hypothesis, which asserts that the macroeconomic determi-
nants of bond excess returns that have explanatory power beyond information from 
the yield curve differ between bond markets.

To reconcile this finding with economic intuition, we consider two possible 
explanations. First, it is possible that the risks associated with the local housing mar-
ket for local bond prices differ between the two markets. Second, it is possible that 
the risks associated with the local housing market for local bond prices are already 
reflected in the local yield curve to differing degrees. Based on our findings, we 
conjecture that the U.S. housing market includes substantial risks for U.S. bonds that 
are not already fully reflected in the yield curve. Notably, the existence of such risks 
for U.S. bonds stemming from the local U.S. housing market was particularly evi-
dent during the subprime mortgage crisis. For Germany, such risks from the housing 
market were not observed in the past. Therefore, we suspect that the German hous-
ing market poses less risk to German bonds than the U.S. housing market poses to 
U.S. bonds. However, it is theoretically possible that substantial risks for German 
bonds from the local housing market exist and are already largely reflected in the 
yield curve. We leave further analysis of this issue for future research.
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6 � Conclusion

There is an ongoing debate about the determinants of bond excess returns. A thor-
ough understanding of these determinants and their relationship with bond excess 
returns is important for decision makers, such as investors and central banks. Recent 
studies show that machine learning models can predict bond excess returns and 
clearly outperform linear models. However, a central shortcoming of these machine 
learning models is their lack of transparency, which complicates the economic inter-
pretations of the relationship between the predicted bond excess returns and their 
determinants. To address this issue, we have used the state-of-the-art explainable 
artificial intelligence technique SHAP to open the black box of these machine learn-
ing models.

We contribute to the literature by providing a deeper understanding of the deter-
minants of bond excess returns. Specifically, we have identified the key determinants 
in machine learning models and revealed the relationship between these key deter-
minants and the bond excess returns. By comparing the U.S. and German contexts, 
we have highlighted differences between the determinants in the two bond markets. 
Methodologically, we contribute an empirical approach based on explainable artifi-
cial intelligence that is suited to opening up black-box machine learning models to 
predict the returns on assets in general, not only bonds.

Our results have important implications for practitioners and academics. Inves-
tors can better understand which factors determine their bond portfolio’s returns, 
and central banks can better understand the excess returns that investors demand of 
long-term bonds. This is important for the transmission of monetary policy because 
central banks can only control the short-term interest rates directly. For research-
ers investigating empirical asset pricing, our study encourages the use of explain-
able artificial intelligence to increase the transparency of the predictions of machine 
learning models.
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Appendix

Table 3   Macroeconomic variables U.S.

Variable Description Tr. Source

Group 1: Output and income
 CUMFNS Capacity utilization: Manufacturing 2 FRED
 INDPRO IP Index 5 FRED
 IPB51222s IP: Residential utilities 5 FRED
 IPBUSEQ IP: Business equipment 5 FRED
 IPCONGD IP: Consumer goods 5 FRED
 IPDCONGD IP: Durable consumer goods 5 FRED
 IPDMAT IP: Durable materials 5 FRED
 IPFINAL IP: Final products (market group) 5 FRED
 IPFPNSS IP: Final products and nonindustrial supplies 5 FRED
 IPFUELS IP: Fuels 5 FRED
 IPMANSICS IP: Manufacturing (SIC) 5 FRED
 IPMAT IP: Materials 5 FRED
 IPNCONGD IP: Nondurable consumer goods 5 FRED
 IPNMAT IP: Nondurable materials 5 FRED
 RPI Real personal income 5 FRED
 W875RX1 Real personal income ex transfer receipts 5 FRED

Group 2: Labor market
 AWHMAN Avg weekly hours: Manufacturing 1 FRED
 AWOTMAN Avg weekly overtime hours: Manufacturing 2 FRED
 CE16OV Civilian employment 5 FRED
 CES0600000007 Avg weekly hours: Goods-Producing 1 FRED
 CES0600000008 Avg hourly earnings: Goods-producing 6 FRED
 CES1021000001 All employees: Mining and logging: Mining 5 FRED
 CES2000000008 Avg hourly earnings: Construction 6 FRED
 CES3000000008 Avg hourly earnings: Manufacturing 6 FRED
 CLAIMSx Initial claims 5 FRED
 CLF16OV Civilian labor force 5 FRED
 DMANEMP All Employees: Durable goods 5 FRED
 HWI Help-wanted index for United States 2 FRED
 HWIURATIO Ratio of help wanted/no. unemployed 2 FRED
 MANEMP All employees: Manufacturing 5 FRED
 NDMANEMP All employees: Nondurable goods 5 FRED
 PAYEMS All employees: Total nonfarm 5 FRED
 SRVPRD All employees: Service-providing industries 5 FRED
 UEMP15OV Civilians unemployed - 15 weeks & over 5 FRED
 UEMP15T26 Civilians unemployed for 15–26 weeks 5 FRED
 UEMP27OV Civilians unemployed for 27 weeks & over 5 FRED
 UEMP5TO14 Civilians unemployed for 5–14 weeks 5 FRED
 UEMPLT5 Civilians unemployed - less than 5 weeks 5 FRED



1580	 L. Beckmann et al.

1 3

Table 3   (continued)

Variable Description Tr. Source

 UEMPMEAN Average duration of unemployment (weeks) 2 FRED
 UNRATE Civilian unemployment rate 2 FRED
 USCONS All employees: Construction 5 FRED
 USFIRE All employees: Financial activities 5 FRED
 USGOOD All employees: Goods-producing industries 5 FRED
 USGOVT All employees: Government 5 FRED
 USTPU All employees: Trade, transportation & utilities 5 FRED
 USTRADE All employees: Retail trade 5 FRED
 USWTRADE All employees: Wholesale trade 5 FRED

Group 3: Housing
 HOUST Housing starts: Total new privately owned 4 FRED
 HOUSTMW Housing starts, midwest 4 FRED
 HOUSTNE Housing starts, northeast 4 FRED
 HOUSTS Housing starts, south 4 FRED
 HOUSTW Housing starts, west 4 FRED
 PERMIT New private housing permits (SAAR) 4 FRED
 PERMITMW New private housing permits, midwest (SAAR) 4 FRED
 PERMITNE New private housing permits, northeast (SAAR) 4 FRED
 PERMITS New private housing permits, south (SAAR) 4 FRED
 PERMITW New private housing permits, west (SAAR) 4 FRED

Group 4: Consumption, orders, and inventories
 AMDMNOx New orders for durable goods 5 FRED
 AMDMUOx Unfilled orders for durable goods 5 FRED
 ANDENOx New orders for nondefense capital goods 5 FRED
 BUSINVx Total business inventories 5 FRED
 CMRMTSPLx Real manu. and trade industries sales 5 FRED
 DPCERA3M086SBEA Real personal consumption expenditures 5 FRED
 ISRATIOx Total business: Inventories to sales ratio 2 FRED
 RETAILx Retail and food services sales 5 FRED

Group 5: Money and credit
 BOGMBASE Monetary base 6 FRED
 BUSLOANS Commercial and industrial loans 6 FRED
 CONSPI Nonrevolving consumer credit to personal income 2 FRED
 DTCOLNVHFNM Consumer motor vehicle loans outstanding 6 FRED
 DTCTHFNM Total consumer loans and leases outstanding 6 FRED
 INVEST Securities in bank credit at all commercial banks 6 FRED
 M1SL M1 money stock 6 FRED
 M2REAL Real M2 money stock 5 FRED
 M2SL M2 money stock 6 FRED
 NONBORRES Reserves of depository institutions 7 FRED
 NONREVSL Total nonrevolving credit 6 FRED
 REALLN Real estate loans at all commercial banks 6 FRED
 TOTRESNS Total reserves of depository institutions 6 FRED
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Table 3   (continued)

Variable Description Tr. Source

Group 6: Interest and exchange rates
 AAA​ Moody’s seasoned Aaa corporate bond yield 2 FRED
 AAAFFM Moody’s Aaa corporate bond minus FEDFUNDS 1 FRED
 BAA Moody’s seasoned Baa corporate bond yield 2 FRED
 BAAFFM Moody’s Baa corporate bond minus FEDFUNDS 1 FRED
 COMPAPFFx 3-Month commercial paper minus FEDFUNDS 1 FRED
 CP3Mx 3-Month AA financial commercial paper rate 2 FRED
 EXCAUSx Canada / U.S. foreign exchange rate 5 FRED
 EXJPUSx Japan / U.S. foreign exchange rate 5 FRED
 EXSZUSx Switzerland / U.S. foreign exchange rate 5 FRED
 EXUSUKx U.S. / U.K. foreign exchange rate 5 FRED
 FEDFUNDS Effective federal funds rate 2 FRED
 GS1 1-Year Treasury Rate 2 FRED
 GS10 10-Year Treasury Rate 2 FRED
 GS5 5-YearTreasury Rate 2 FRED
 T10YFFM 10-Year Treasury C minus FEDFUNDS 1 FRED
 T1YFFM 1-Year Treasury C minus FEDFUNDS 1 FRED
 T5YFFM 5-Year Treasury C minus FEDFUNDS 1 FRED
 TB3MS 3-Month Treasury Bill 2 FRED
 TB3SMFFM 3-Month Treasury C minus FEDFUNDS 1 FRED
 TB6MS 6-Month Treasury Bill 2 FRED
 TB6SMFFM 6-Month Treasury C minus FEDFUNDS 1 FRED

Group 7: Prices
 CPIAPPSL CPI: Apparel 6 FRED
 CPIAUCSL CPI: All items 6 FRED
 CPIMEDSL CPI: Medical care 6 FRED
 CPITRNSL CPI: Transportation 6 FRED
 CPIULFSL CPI: All items less food 6 FRED
 CUSR0000SA0L2 CPI: All items less shelter 6 FRED
 CUSR0000SA0L5 CPI: All items less medical care 6 FRED
 CUSR0000SAC CPI: Commodities 6 FRED
 CUSR0000SAD CPI: Durables 6 FRED
 CUSR0000SAS CPI: Services 6 FRED
 DDURRG3M086SBEA Personal cons. expend.: Durable goods 6 FRED
 DNDGRG3M086SBEA Personal cons. expend.: Nondurable goods 6 FRED
 DSERRG3M086SBEA Personal cons. expend.: Services 6 FRED
 OILPRICEx Crude oil, spliced WTI and cushing 6 FRED
 PCEPI Personal cons. expend.: Chain index 6 FRED
 PPICMM PPI: Metals and metal products 6 FRED
 WPSFD49207 PPI: Finished goods 6 FRED
 WPSFD49502 PPI: Finished consumer goods 6 FRED
 WPSID61 PPI: Intermediate materials 6 FRED
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Table 3   (continued)

Variable Description Tr. Source

 WPSID62 PPI: Crude materials 6 FRED
Group 8: Stock market
 S &P 500 S &P’s Common stock price index: Composite 5 FRED
 S &P div yield S& P’s composite common stock: Dividend yield 2 FRED
 S &P PE ratio S& P’s composite common stock: PE ratio 5 FRED
 S &P: indust S& P’s common stock price index: Industrials 5 FRED
 VIXCLSx VIX 1 FRED

This table displays the U.S. macroeconomic variables used to predict U.S. bond excess returns. It con-
tains the variable descriptions, the transformation of the variables (“Tr.”), and their data source. The 
variables are transformed and grouped based on McCracken and Ng (2016). The transformation code 
denotes the following transformation for time series x: (1): no transformation; (2): Δxt ; (3): Δ2 xt ; (4): 
log(xt) ; (5): Δlog(xt) ; (6): Δ2log(xt) ; (7): Δ(xt∕xt−1 − 1.0)
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Table 4   Macroeconomic variables Germany

Variable Description Tr. Source

Group 1: Output and income
 aDECEXPB/A Merchandise exports, stand 5 Reuters
 aDECIMPB/A Merchandise imports, stand 5 Reuters
 aDECVISB/A Visible trade balance, stand 1 Reuters
 aDEEXPGDSB/A Exports total 5 Reuters
 aDEIMPGDSB/A Imports total 5 Reuters
 DEUPRCNTO01GPSAM Production: Construction: Total construction 1 FRED
 DEUPRINTO01GYSAM Production: Total industry excl. construction 1 FRED
 DEUPRMNIG01IXOBSAM Production: Manufacturing: Intermediate goods 1 FRED
 DEUPRMNTO01GYSAM Production: Total manufacturing 1 FRED
 DEUPRMNVG01IXOBSAM Production: Manufacturing: Investment goods 1 FRED
 DEUPROCONMISMEI Production of total construction 1 FRED
 DEUPROINDMISMEI Production of total industry 1 FRED
 DEUPROMANMISMEI Production in total manufacturing 1 FRED
 DEUXTEXVA01CXMLM International trade: Exports: Value (goods) 5 FRED
 DEUXTIMVA01CXMLM International trade: Imports: Value (goods) 5 FRED
 DEUXTNTVA01CXMLM International trade: Net trade: Value (goods) 2 FRED
 XTEXVA01DEM667S Exports: Value goods 5 FRED
 XTIMVA01DEM667S Imports: Value goods 5 FRED
 XTNTVA01DEM667S Net trade: Value goods 2 FRED

Group 2: Labor market
 aDECUNPO Unempl. level, stand 4 Reuters
 aDECUNPPO/A Unempl. level, % MOM, stand., chg P/P 1 Reuters
 aDECUNPYO Unempl. level, % YOY, stand., chg Y/Y 1 Reuters
 aDECUNPYQ/A Unempl. rate, YOY, stand 1 Reuters
 aDECVACPO/A Job vacancies, % MOM, stand., chg P/P 1 Reuters
 aDECVACYO/A Job vacancies, % YOY, stand., chg Y/Y 1 Reuters
 aDEWGSLHRBS.1D/C Wages & sal, hrly basis - prod sct, 2005=100 1 Reuters
 aDEWSTOT Wages and salaries, overall economy, monthly 5 Reuters
 LMJVTTUVDEM647S Total unfilled job vacancies 5 FRED
 LMUNRLTTDEM647S Registered unempl. level 5 FRED
 LMUNRRTTDEM156S Registered unempl. rate 2 FRED

Group 3: Housing
 aDEBPERMITI/A Building permits, non-residential, industrial 5 Reuters
 aDEBPERMITR/A Building permits, residential 5 Reuters
 aDEBPERMNR/A Building permits, non-residential, total 5 Reuters

Group 4: Consumption, orders, and inventories
 aDENCAR​ New passenger car registrations 5 Reuters
 aDENOMFG/CA New orders, manufacturing industry 1 Reuters
 DEUSARTMISMEI Total retail trade 1 FRED
 DEUSLRTTO02IXOBSAM Sales: Retail trade: Total value 1 FRED
 DEUSLWHTO02IXOBSAM Sales: Wholesale trade: Total value 1 FRED
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Table 4   (continued)

Variable Description Tr. Source

Group 5: Money and credit
 aDEBANKLPA Lending to enterprises & individuals 5 Reuters
 aDEDEBTD Central government debt 5 Reuters
 aDEM2BC/A Money supply - M2 6 Reuters
 aDEM3ABC/A Money supply - M3 6 Reuters
 TRESEGDEM052N Total reserves excluding gold 5 FRED

Group 6: Interest and exchange rates
 aDEBISNXNR BIS, nominal narrow effective exch. rate index 1 Reuters
 aDEBISRXNR BIS, real narrow effective exch. rate index 1 Reuters
 CCUSMA02DEM618N National currency to US Dollar exch. rate 5 FRED
 CCUSSP01DEM650N US Dollar to national currency spot exch. rate 5 FRED
 IR3TIB01DEM156N 3-month or 90-day rates and yields 2 FRED
 IRLTLT01DEM156N Long-term government bond yields: 10-year 2 FRED
 IRSTCI01DEM156N Immediate rates: Less than 24 h 2 FRED
 NNDEBIS Narrow effective exch. rate for Germany 1 FRED

Group 7: Prices
 aDECPPIE/CA PPI, stand 1 Reuters
 aDECPPIPE/A PPI, % MOM, stand., chg P/P 1 Reuters
 aDECPPIYF PPI, % YOY, stand., chg Y/Y 1 Reuters
 aDEEXP Export prices 1 Reuters
 aDEIMP Import prices 1 Reuters
 aDEWPI Wholesale prices 1 Reuters
 CPALTT01DEM659N CPI: Total all items 1 FRED
 CPGDFD02DEM657N CPI: Total food excluding restaurants 1 FRED
 DEUCP040500GYM CPI: Housing, water, electricity, gas, oth. fuels 1 FRED
 DEUCPIALLMINMEI CPI of all items in Germany 1 FRED
 DEUCPICORMINMEI CPI: All items excluding food and energy 1 FRED
 DEUCPIENGMINMEI CPI: Energy 1 FRED
 DEUCPIFODMINMEI CPI: Food 1 FRED
 DEUCPIHOUMINMEI CPI: Housing 1 FRED
 DEUPPDMMINMEI Domestic producer prices index: Manufacturing 1 FRED

Group 8: Stock market
 SPASTT01DEM657N Total share prices for all shares for Germany 1 FRED

This table displays the macroeconomic variables for Germany used to predict German bond excess 
returns. It contains the variable descriptions, the transformation of the variables ("Tr."), and their data 
source. The variables are transformed and grouped based on McCracken and Ng (2016). The transforma-
tion code denotes the following transformation for time series x: (1): no transformation; (2): Δxt ; (3): 
Δ2xt ; (4): log(xt) ; (5): Δlog(xt) ; (6): Δ2log(xt) ; (7): Δ(xt∕xt−1 − 1.0)
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Table 5   Hyperparameter tuning. This table reports the hyperparameter sets for the three machine learn-
ing methods we use to predict bond excess returns

a We deviate from this approach by tuning the neurons in the hidden layers as described in Sect. 4.3, by 
averaging the prediction using the ten best models out of 20, rather than 100 estimated models due to 
computational constraints and by allowing the neural work to process the yield and macroeconomic data 
in separate groups or jointly

Machine learning method Hyperparameter set

Random Forest Number of variables ∈ {10%, 15%, 25%, 33.33%, 40%, 50%}
Number of trees ∈ {1000}
Minimum terminal node size ∈ {1, 3, 5}
Maximum depth of the trees ∈ {4, 6, 8, 10}
Sample fraction ∈ {10%, 15%, 20%, 25%, 30%, 40%, 50%}

Extreme Trees Number of variables ∈ {15%, 25%, 33.33%, 40%, 50%}
Number of trees ∈ {1000}
Minimum terminal node size ∈ {1, 3, 5, 7, 10}
Maximum depth of the trees ∈ {4, 6, 8, 10}
Sample fraction ∈ {100%}

Neural network Our neural network design is generally based on Bianchi 
et al. (2021a, b)a. For a detailed description of the neural 
network settings, we refer to the online Appendix of 
Bianchi et al. (2021a)

Dropout rate ∈ {30%, 40%, 50%}
Penalization parameter ∈ {0.0005, 0.001, 0.0015}
Setting “Yield data”
Number of neurons ∈ {[3], [2], [1]}
Setting “Yield and macro data”
Separate processing
Number of neurons (yield data) ∈ {[3], [2], [1]}
Number of neurons (macro data) ∈ {[64], [32], [16]}
Joint processing
Number of neurons ∈ {[64], [32], [16]}
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Table 7   Prediction of U.S. bond excess returns: OOS-MSE as an alternative to measure forecasting accu-
racy

This table reports out-of-sample mean squared errors from predicting U.S. bond excess returns across 
different maturities with a linear regression and machine learning models using yield data only and using 
yield data and macroeconomic data together

Table 6   Prediction of U.S. bond excess returns: different training & validation splits

This table reports out-of-sample R2

oos
 values as in Campbell and Thompson (2008) from predicting U.S. 

bond excess returns across different maturities with machine learning models using yield data and mac-
roeconomic data together. The first section of the table contains R2

oos
 values based on a 80% / 20%-split. 

The second section of the table contains R2

oos
 values based on a 90% / 10%-split. p-values for the null 

hypothesis R2

oos
≤ 0 are calculated following Clark and West (2007). ∗ , ∗∗ , and ∗∗∗ denote significance at 

the 10%, 5%, and 1% levels
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Fig. 6   Importance of 10-year U.S. bond excess return determinants: Random forest and neural network. 
This figure displays mean absolute SHAP values for the first three principal components of the U.S. yield 
data and for the macroeconomic variables described in Sect. 3.1, aggregated to eight macroeconomic cat-
egories as in McCracken and Ng (2016). The SHAP values presented are obtained from a random forest 
model (upper plot) and a neural network model (bottom plot) predicting 10-year U.S. bond excess returns
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