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Abstract

The assumption that decision makers choose actions to maximize their pref-
erences is a central tenet in economics. This assumption is often justi…ed either
formally or informally by appealing to evolutionary arguments. In contrast, we
show that in almost every game and for almost every family of distortions of a
player’s actual payo¤s, some degree of this distortion is bene…cial to the player be-
cause of the resulting e¤ect on opponents’ play. Consequently, such distortions will
not be driven out by any evolutionary process involving payo¤-monotonic selection
dynamics, in which agents with higher actual payo¤s proliferate at the expense
of less successful agents. In particular, under any such selection dynamics, the
population will not converge to payo¤-maximizing behavior. We also show that
payo¤-maximizing behavior need not prevail even when preferences are imperfectly
observed.
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1 Introduction

The assumption that decision makers choose actions to maximize their preferences is a
central tenet in economics. This assumption is often justi…ed either formally or informally
by appealing to evolutionary arguments. For example, in their classic work, Alchian
(1950) and Friedman (1953) argue that pro…t maximization is a reasonable assumption
for characterizing outcomes in competitive markets because only …rms behaving in a
manner consistent with pro…t maximization will survive in the long run. Under this
argument, …rms failing to act so as to maximize pro…ts will be driven out of the market
by more pro…table rivals, even if none of these …rms deliberately maximizes pro…ts or is
even aware of its cost or revenue functions. Similar arguments that consumers behave
“as if” maximizing preferences due to myriad market forces that exploit non-optimal
behavior are pervasive. More recently, Sandroni (2000) gives such a justi…cation for
rational expectations equilibria, showing that a market populated by agents who initially
di¤er in the accuracy of their predictions will nonetheless converge to a competitive
rational expectations equilibrium as those agents who make inaccurate predictions are
driven out of the market by those who are more accurate.

In contrast, this paper shows that in almost every strategic interaction, payo¤ max-
imization cannot be justi…ed by appealing to evolutionary arguments. Speci…cally, we
show that in almost every game and for almost every family of distortions of a player’s
actual payo¤s, some degree of this distortion is bene…cial to the player because of the
resulting e¤ect on opponents’ play. Consequently, we show that such distortions will
not be driven out by any evolutionary process involving payo¤-monotonic selection dy-
namics, in which agents with higher actual payo¤s proliferate at the expense of less
successful agents. In particular, under any such selection dynamics, the population will
not converge to payo¤ maximizing behavior.

The idea that in strategic situations players may gain an advantage from having an ob-
jective function di¤erent from actual payo¤ maximization dates back at least to Schelling
(1960), and his discussion of the commitment value of decision rules. Related ideas run
through work ranging from Stackelberg’s (1934) classic work on timing in oligopoly to
the theories of reputation in Kreps and Wilson (1982), and Milgrom and Roberts (1982).
For similar reasons, Frank (1987, 1988) argues that emotions may be a bene…cial commit-
ment device. Recently, a large and growing literature has emerged that formalizes some
of these ideas by explicitly studying the evolution of preferences. This work shows that in
strategic interactions, a wide array of distortions of actual payo¤s, representing features
such as altruism, spite, overcon…dence, fairness, and reciprocity, that bias individuals’
objectives away from actual payo¤ maximization, may be evolutionarily stable.1

1For a brief overview of this literature, see Samuelson (2001). Examples include Güth and Yaari
(1992), Huck and Oechssler (1999), Fershtman and Weiss (1997, 1998), Fershtman and Heifetz (2002),
Rotemberg (1994), Bester and Güth (1998), Possajennikov (2000), Bolle (2000), Bergman and Bergman
(2000), Koçkesen, Ok, and Sethi (2000a, 2000b), Guttman (2000), Sethi and Somanathan (2001), Kyle
and Wang (1997), Benos (1998), Heifetz and Segev (2003), and Heifetz, Segev and Talley (2004).
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Unlike most standard evolutionary game theory, in which individuals are essentially
treated as “machines” programmed to play a speci…c action, the work on the evolution
of preferences treats individuals as decision makers who choose actions to maximize
their preferences, and then studies how the distribution of these preferences evolves over
time. Preferences that are distortions of true payo¤s – or “dispositions” – drive a wedge
between an individual’s objectives and actual payo¤s. Dispositions may nonetheless
be evolutionarily stable because the resulting bias in a player’s objectives may induce
favorable behavior in rivals that may more than compensate for the loss stemming from
departures from actual payo¤ maximization. Thus the literature on the evolution of
preferences illustrates the point that in a variety of strategic interactions, individuals who
fail to maximize their true payo¤s due to the bias created by various dispositions may
actually end up with higher payo¤s than individuals who are unbiased. Such bene…cial
dispositions would then not be weeded out by any selection dynamics in which more
successful behavior proliferates at the expense of less successful behavior, where success
is measured in terms of actual payo¤s.

Much of the work on the evolution of preferences, however, focuses on speci…c kinds of
dispositions, such as altruism or reciprocity, and addresses these questions using speci…c
functional forms for both the individuals’ payo¤s and dispositions. Such results then
provide conditions on the parameters of the particular model at hand that guarantee
that some non-zero degree of this disposition will survive evolutionary pressures. Our
results generalize this work in an important way by isolating the general principle driving
these results and by showing that the evolutionary emergence of dispositions is in fact
generic.

Our genericity results are fairly intuitive. Having a disposition a¤ects a player’s payo¤
in two ways: directly, through the player’s own actions, and indirectly, by in‡uencing
other players’ actions. A crucial observation is that a some small nonzero degree of
disposition leads to a slight deviation from payo¤-optimizing behavior, and therefore has
only a negligible direct e¤ect on the player’s payo¤. The crux of our argument is that for
generic combinations of games and dispositions, the indirect e¤ect on the player’s payo¤
resulting from such a small degree of the disposition is not negligible. Interestingly, this
result also implies that, generically, players can gain strategic advantage over opponents
by hiring delegates whose preferences di¤er from theirs to play the game on their behalf.
This implies in turn that earlier results obtained in the strategic delegation literature in
the context of speci…c models (e.g. Green 1992; Fershtman and Judd, 1987; Fershtman,
Judd and Kalai 1991; Katz 1991) are in fact generic.

Central to our results are appropriate parameterizations of games and dispositions.
Since our analysis is based on …rst-order conditions, we restrict attention to pure-strategy
equilibria in games with continuous action sets. Because we are interested in the evo-
lutionary viability of payo¤ maximization rather than the emergence of one particular
type of bias, such as altruism or overcon…dence, we consider a disposition to encompass
a family of biases indexed by a degree that can be positive, negative, or zero. In this
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framework a zero degree means that the player is unbiased and interested in maximizing
his actual payo¤. The interpretation of a positive or negative degree will typically de-
pend on the speci…cation of the given family of dispositions; for example, the disposition
might re‡ect other-regarding preferences, with a positive degree corresponding to altru-
ism and a negative degree corresponding to spite. For a generic set of payo¤ functions
and dispositions, however, some nonzero degree of the disposition has a positive indirect
e¤ect. This guarantees that such dispositions will not be eliminated from the population
under any payo¤ monotonic selection dynamics. We …rst prove this result for a class of
…nite-dimensional manifolds of payo¤ and disposition functions, and then generalize it
to the in…nite-dimensional families of all payo¤ and disposition functions.

Our main results are derived under the assumption that players’ preferences are per-
fectly observable. We then show that dispositions may remain evolutionarily viable even
when the players’ preferences are only imperfectly observed. Here the natural solution
concept given the imperfect observability of preferences is Bayesian equilibrium. This
highlights a technical obstacle surrounding results about the evolutionary viability of
dispositions. Unlike Nash equilibria with perfect observability, Bayesian equilibria are
typically not locally unique (see, e.g., Leininger, Linhart, and Radner, 1989). In such
cases an equilibrium selection is not well-de…ned even locally, and di¤erent selections
from the equilibrium correspondence may result in contradictory conclusions regarding
the e¤ects of dispositions. While this precludes a general analysis of imperfect observ-
ability, in the context of an example with a unique Bayesian equilibrium we show that
the population does not converge to payo¤-maximizing behavior even if preferences are
observed with noise.

The paper proceeds as follows. Section 2 contains the development of our framework
and our main results, showing generically that dispositions do not become asymptotically
extinct under payo¤-monotonic selection dynamics. We prove this result both in the
case where the payo¤ and disposition functions vary over a particular class of …nite-
dimensional sets, as well as for the case where they vary over the in…nite-dimensional
set of all payo¤ and disposition functions. In Section 3 we relax the assumption that
types are perfectly observed and assume instead that they are observed with noise. We
show, by means of a speci…c example, that our main results carry over to this setting.
All proofs are collected in the Appendix.

2 The genericity of dispositions

2.1 Payo¤s and dispositions

Two players, i and j, engage in strategic interaction. The strategy spaces of the two
players, X i and Xj, are open subsets of RM and RN ; respectively, where, without loss
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of generality, M · N .2 Typical strategies are denoted xi = (xi1; : : : ; x
i
M) and x

j =
(xj1; : : : ; x

j
N): The payo¤s of the two players are given by the C

3 functions

¦i;¦j : Xi £Xj ! R:

In what follows we denote the partial derivatives of ¦i by

¦ii ´ Di¦i =
µ
@¦i

@xi1
; : : : ;

@¦i

@xiM

¶
and ¦iij ´ Dj¦ii =

0BB@
@2¦i

@xi1@x
j
1

¢ ¢ ¢ @2¦i

@xi1@x
j
N

. . .
@2¦i

@xiM@x
j
1

¢ ¢ ¢ @2¦i

@xiM@x
j
N

1CCA :
The partial derivatives of ¦j and of other functions are denoted similarly.

In the course of their strategic interaction, the players perceive their payo¤s to be

U i(xi; xj; ¿) ´ ¦i(xi; xj) +Bi(xi; xj ; ¿); (2.1)

U j(xi; xj ; µ) ´ ¦j(xi; xj) +Bj(xi; xj ; µ);

where

Bi : X i £Xj £ Ei ! R

Bj : X i £Xj £ Ej ! R

are the dispositions of players i and j; and ¿ and µ are the players’ (one-dimensional)
types, which are drawn from domains Ei; Ej µ R each containing a neighborhood of 0.
The introduction of dispositions then drives a wedge between the objectives of the players,
which are to maximize their perceived payo¤s U i and U j, and their eventual realized
payo¤s ¦i and ¦j. We assume that Bi and Bj are C3. Moreover, as a normalization we
assume that when ¿ or µ is zero, the players’ perceived payo¤s coincide with their actual
payo¤s:

Bi(xi; xj ; 0) ´ Bj(xi; xj ; 0) ´ 0: (2.2)

That is, a type 0 player has no disposition and simply chooses actions to maximize his
actual payo¤.3

Our framework captures a wide range of situations. For instance, the players might
be altruistic or spiteful, and thus care not only about their own payo¤s but also about
their rival’s payo¤s. To model this idea we can, as in Bester and Güth (1998) and

2The restriction to two players is just for notational convenience; all of our results carry over directly
for games with an arbitrary number of players. For games with more players and more general strategy
sets, see Remarks 2 and 3 below.

3Notice that this formulation in terms of an additive disposition term is equivalent to specifying
instead that a player has preferences given by a utility function U i(xi; xj ; ¿) such that U i(xi; xj ; 0) ´
¦i(xi; xj). To see this, given such a utility function simply set Bi(xi; xj ; ¿) ´ U i(xi; xj ; ¿)¡¦i(xi; xj).
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Possajennikov (2000), write the players’ dispositions as Bi(xi; xj ; ¿ ) = ¿¦j(xi; xj) and
Bj(xi; xj ; µ) = µ¦i(xi; xj). When ¿ and µ are positive, the players are altruistic as they
attach positive weights to their rival’s payo¤, while when ¿ and µ are negative the players
are spiteful.

Another example of this framework is concern about social status. Here suppose that
M = N = 1 (the strategies of the two players are one-dimensional) and let ¦i and ¦j

represent the monetary payo¤s of the two players. Then, as in Fershtman and Weiss
(1998), we can write the dispositions as Bi(xi; xj; ¿ ) = ¿¾(xi ¡ xe) and Bj(xi; xj; µ) =
µ¾(xj ¡ xe); where ¾ is either a positive or a negative parameter and xe is the average
action in the population. Here the revealed preferences of the players are to maximize
the sum of their monetary payo¤s and their social status, where the latter is linked to
the gap between the players’ own actions and the average action in the population. The
players’ types, ¿ and µ, represent the weights that the players attach to social status.

2.2 The evolution of dispositions

Let ¡ = (X i; Xj;¦i;¦j ; Bi; Bj) denote the game in which players i and j choose actions
from X i and Xj, respectively, to maximize their perceived payo¤s, U i(¢; ¿ ) and U j(¢; µ),
and obtain true payo¤s ¦i and ¦j. If for (¿ ; µ) the game has a pure strategy Nash
equilibrium, let (yi(¿ ; µ); yj(¿ ; µ)) denote such an equilibrium.4 We assume for this dis-
cussion that the selection (yi(¿ ; µ); yj(¿ ; µ)) from the Nash equilibrium correspondence is
continuously di¤erentiable at (¿ ; µ) = (0; 0).5 The true payo¤s of players i and j in this
Nash equilibrium are

f i(¿ ; µ) ´ ¦i ¡yi(¿ ; µ); yj(¿ ; µ)¢ and f j(¿ ; µ) ´ ¦j ¡yi(¿ ; µ); yj(¿ ; µ)¢ : (2.3)

Since we cast our analysis in an evolutionary setting, these equilibrium payo¤s, f i and
f j, will represent …tness. This formulation leads directly to a natural selection process
among di¤erent types in the population.

To assess the evolutionary viability of various dispositions, we begin by asking which
dispositions are bene…cial to a player. Since we are interested in characterizing whether
having no disposition (i.e., maximizing true payo¤s) can survive evolutionary pressures,
we introduce the following notion:

De…nition 1 (Unilaterally bene…cial dispositions) The disposition Bi (Bj) is said to be
unilaterally bene…cial for player i (player j) in the game ¡ if there exists ¿ 6= 0 (µ 6= 0)
such that f i(¿ ; 0) > f i(0; 0) (f j(0; µ) > f j(0; 0)).

4Since the strategy spaces Xi and Xj are open, the equilibrium is interior. For a discussion of the
issues of existence and interiority of pure strategy equilibria, see Remarks 1 and 3.

5We show in the Appendix that such a selection is feasible for generic games.
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It is important to note that this de…nition says that a disposition is unilaterally
bene…cial for player i if, given that player j has no disposition (i.e., µ = 0), there exists
some non-zero type of player i whose …tness is higher than the …tness of type 0. In
particular, the de…nition does not require this property to hold for all types of player
i: a unilaterally bene…cial disposition might be bene…cial for some types of player i but
harmful for others.6

To study how dispositions evolve, suppose that there are two large populations of
individuals, one for each player, and with a continuum of individuals of each type. At
each point t ¸ 0 in time, this pair of populations is characterized by the pair of distribu-
tions (Tt;£t) 2 ¢(Ei)£¢(Ej) of (¿ ; µ), where ¢(Ei) and ¢(Ej) denote the set of Borel
probability distributions over Ei and Ej. We assume that T0 has full support over Ei and
£0 has full support over Ej : At each instance in time, an individual in one population is
randomly matched with an individual of the other population to play the game ¡: The
average …tness levels of the individuals of types ¿ and µ at time t are given byZ

f i(¿ ; µ)d£t and
Z
f j(¿ ; µ)dTt: (2.4)

We assume that the selection dynamics are monotonically increasing in average …tness.
That is, we assume that the distributions of types evolve as follows:

d
dt
Tt(Ai) =

R
Ai
gi(¿ ;£t)dTt; Ai µ R Borel measurable,

d
dt
£t(A

j) =
R
Aj
gj(Tt; µ)d£t; Aj µ R Borel measurable,

(2.5)

where gi and gj are continuous growth-rate functions that satisfy

gi(¿ ;£t) > gi(~¿ ;£t) ()
Z
f i(¿ ; µ)d£t >

Z
f i(~¿ ; µ)d£t; (2.6)

gj(Tt; µ) > gj(Tt; ~µ) ()
Z
f j(¿ ; µ)dTt >

Z
f j(¿ ; ~µ)dTt:

To ensure that Tt and £t remain probability measures for each t, we also assume that gi
and gj satisfy Z

gi(¿ ;£t)dTt = 0; and
Z
gj(Tt; µ)d£t = 0 for each t: (2.7)

Equations (2.5)-(2.7) re‡ect the idea that the proportion of more successful types in the
population increases from one instance or period to another at the expense of less suc-
cessful types. This may be due to the fact that more successful individuals have more

6Consider for instance the altruism/spite example mentioned above. Suppose that f i¿ (0; 0) 6= 0.
Then if a small degree of altruism (¿ > 0) is bene…cial, a small degree of spite (¿ < 0) would be harmful
and vice versa.
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descendants, who then inherit their parents’ preferences either genetically or by educa-
tion. An alternative explanation is that the decision rules of more successful individuals
are imitated more often.

The same mathematical formulation is also compatible with the assumption that
successful types translate into stronger in‡uence rather than numerical proliferation.
Under this interpretation, not all individuals are matched to play in each instance of time,
and more successful individuals take part in a larger share of the economic interactions,
and so are matched to play with a higher probability.

To guarantee that the system of di¤erential equations (2.5) has a well-de…ned solution,
we require some additional regularity conditions on the selection dynamics as follows.

De…nition 2 (Regular dynamics) Payo¤-monotonic selection dynamics are called regu-
lar if gi and gj can be extended to the domain R£ Y; where Y is the set of signed Borel
measures with variational norm smaller than 2, and on this extended domain, gi and gj

are uniformly bounded and uniformly Lipschitz continuous. That is,

sup
¿2Ei

¯̄
gi(¿ ;£t)

¯̄
< M i; sup

¿2R

¯̄̄
gi(¿ ;£t)¡ gi(¿ ; e£t)¯̄̄ < Ki

°°°£t ¡ e£t°°° ; 8£t;f£t 2 Y;
sup
µ2Ej

¯̄
gj(Tt; µ)

¯̄
< M j ; sup

µ2R

¯̄̄
gj(Tt; µ)¡ gj(eTt; µ)¯̄̄ < Kj

°°°Tt ¡ eTt°°° ; 8Tt; eTt 2 Y;
for some constants M i;M j ; Ki; Kj > 0; where k¹k = sup

jhj·1

¯̄R
R
hd¹

¯̄
is the variational

norm of the signed measure ¹.

Oechssler and Riedel (2001, Lemma 3) show that regularity of the dynamics guar-
antees that the map (Tt;£t) 7!

¡R
gi(¿ ;£t)dTt;

R
gj(Tt; µ)d£t

¢
is bounded and Lips-

chitz continuous in the variational norm, which implies that for any initial distributions
(T0;£0), the di¤erential equation (2.5) has a unique solution.7
To characterize the asymptotic properties of the distributions (Tt;£t) we will use the

following notion.

De…nition 3 (Asymptotic extinction) The dispositions (Bi; Bj) become asymptotically
extinct in the game ¡ if (Tt;£t) converges weakly to a unit mass at (¿ ; µ) = (0; 0) as
t!1.

7In addition, the boundedness of gi and gj guarantees that any set having positive probability under
the initial distributions T0 or £0, will have positive probability under Tt or £t for all t. In particular,
since we assumed that T0 and £0 have full support on the domains Ei and Ej , so do Tt and £t for all t.
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Theorems 1 and 2 below show that generically dispositions do not become asymp-
totically extinct under any regular payo¤-monotonic selection dynamics. Theorem 1
applies to …nite-dimensional manifolds of payo¤ and disposition functions. Here we allow
payo¤ and disposition functions to vary over an arbitrary …nite-dimensional manifold
provided it contains a su¢ciently rich class of functions. We use these …nite-dimensional
results to show in Theorem 2 that the same result holds when varying over the entire
in…nite-dimensional families of all thrice continuously di¤erentiable payo¤ and disposition
functions.

2.3 Finite-dimensional manifolds

Let ~G denote the space of all pairs of C3 payo¤ functions (¦i;¦j), and let ~B denote
the space of all pairs of C3 disposition functions (Bi; Bj). We endow ~G and ~B with the
Whitney C3 topology, and ~G £ ~B with the natural product topology.8
In what follows, we will often make use of a particular class of payo¤ functions cor-

responding to games in which each pure strategy equilibrium is locally unique. We will
slightly abuse terminology by referring to a pair of payo¤ functions (¦i;¦j) as a game
(the strategy spaces X i; Xj remain …xed throughout).

De…nition 4 (Regular games) A game is called regular if at each of its Nash equilibria
(yi; yj), the (M +N)£ (M +N) matrixµ

¦iii(y
i; yj) ¦iij(y

i; yj)

¦jji(y
i; yj) ¦jjj(y

i; yj)

¶
has full rank.

We start by considering a …nite-dimensional, boundaryless submanifold G of ~G that
is rich enough to allow us to perturb each payo¤ function in each of the directions xim; x

j
n

and ximx
j
m independently and obtain a new pair of payo¤ functions in G. To formalize

this idea, let

p =
¡
p1; p2; p3

¢
=
¡¡
p11; : : : ; p

1
M

¢
;
¡
p21; : : : ; p

2
N

¢
;
¡
p31; : : : ; p

3
M

¢¢ 2 RM+N+M ;

q =
¡
q1; q2; q3

¢
=
¡¡
q11; : : : ; q

1
M

¢
;
¡
q21; : : : ; q

2
N

¢
;
¡
q31; : : : ; q

3
M

¢¢ 2 RM+N+M :

8Roughly, the Whitney Ck topology is the topology in which two Ck functions are close if their
values, and the values of all of their derivatives of orders up to and including k, are uniformly close. For
a formal description and discussion, see e.g. Golubitsky and Guillemin (1973). This is the appropriate
topology for our problem because it guarantees that all of the maps we work with, such as the …rst order
conditions for Nash equilibria, are continuous as we vary the payo¤ and disposition functions.
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Given a pair of payo¤ functions (¦i;¦j), de…ne

¹¦i(xi; xj ; p) ´ ¦i
¡
xi; xj

¢
+

MX
m=1

p1mx
i
m +

NX
n=1

p2nx
j
n +

MX
m=1

p3mx
i
mx

j
m; (2.8)

¹¦j(xi; xj ; q) ´ ¦j
¡
xi; xj

¢
+

MX
m=1

q1mx
i
m +

NX
n=1

q2nx
j
n +

MX
m=1

q3mx
i
mx

j
m:

Using this notation, we assume that the manifold G is such that for every pair of payo¤
functions (¦i;¦j) 2 G there exist open neighborhoods P;Q µ RM+N+M of zero such that
(¹¦i(¢; ¢; p); ¹¦j(¢; ¢; q)) 2 G for every (p; q) 2 P £Q. Similarly, let v = (v1; : : : ; vM) 2 RM

and w = (w1; : : : ; wN) 2 RN . Given a pair of dispositions (Bi; Bj), de…ne

¹Bi(xi; xj ; ¿ ; v) ´ Bi
¡
xi; xj ; ¿

¢
+ ¿

MX
m=1

vmx
i
m; (2.9)

¹Bj(xi; xj; µ; w) ´ Bj
¡
xi; xj; µ

¢
+ µ

NX
n=1

wnx
j
n:

We consider a …nite-dimensional submanifold B of ~B such that for every (Bi; Bj) 2 B,
there exist neighborhoods V µ RM ; W µ RN of zero such that for every (v; w) 2 V £W ,
( ¹Bi(¢; ¢; ¢; v); ¹Bj(¢; ¢; ¢; w)) 2 B.
While this framework and the resulting theorem allow for general combinations of sets

of payo¤ functions G and sets of dispositions B, notice that we could restrict attention
to manifolds G and B such that for each (¦i;¦j) 2 G and for each (Bi; Bj) 2 B, the
resulting game ¡ has pure strategy Nash equilibria for all type pro…les (¿ ; µ) in some
neighborhood of (0; 0) (see also Remark 1 below).9

In this …nite-dimensional setting, the natural notion of genericity is as follows.

De…nition 5 (Genericity) A property is said to hold for generic combinations of pairs
of payo¤ functions in G and dispositions in B if there is an open, full-measure subset A
of the product manifold G £B such that the property obtains for all (¦i;¦j ; Bi; Bj) 2 A.

We can now state the …rst version of our main result.

Theorem 1 For generic combinations of pairs of payo¤ functions (¦i;¦j) 2 G and
dispositions (Bi; Bj) 2 B:

9Because the set of regular games having pure strategy equilibria is open, such combinations of sets
of payo¤ functions and sets of dispositions exist.
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(i) The disposition Bi is unilaterally bene…cial for player i and the disposition Bj is
unilaterally bene…cial for player j.

(ii) The dispositions (Bi; Bj) do not asymptotically become extinct under any regular
payo¤-monotonic selection dynamics.

The basic idea behind this result can be summarized as follows. Suppose that both
players do not have dispositions, so that ¿ = µ = 0. The resulting Nash equilibrium of
the game ¡ is therefore (yi(0; 0); yj(0; 0)). Introducing a slight disposition for player i
would then change the player’s …tness at the rate

f i¿ (0; 0) = ¦
i
i

¡
yi(0; 0); yj(0; 0)

¢
yi¿ (0; 0) + ¦

i
j

¡
yi(0; 0); yj(0; 0)

¢
yj¿ (0; 0): (2.10)

The …rst term is the direct e¤ect on i’s equilibrium payo¤ due to the change in i’s own
behavior. The second term is the indirect e¤ect caused by the change in j’s equilibrium
behavior. For generic pairs of payo¤s and dispositions, yi¿ (0; 0) and y

j
¿ (0; 0) are well-

de…ned. As (yi(0; 0); yj(0; 0)) is an interior Nash equilibrium of ¡, it follows that

¦ii(y
i(0; 0); yj(0; 0)) = 0: (2.11)

Therefore the …rst, direct e¤ect vanishes. The essence of the proof is then to show that for
generic combinations of payo¤ and disposition functions, a perturbation in i’s disposition
ensures that the second, indirect e¤ect does not vanish. That is,

f i¿ (0; 0) = ¦
i
j

¡
yi(0; 0); yj(0; 0)

¢
yj¿ (0; 0) 6= 0: (2.12)

This implies in turn that payo¤-monotonic selection dynamics cannot converge to a unit
mass at (¿ ; µ) = (0; 0): If instead the distribution of player j’s type were to become
concentrated around µ = 0; the fact that f i¿ (0; 0) 6= 0 means that some small nonzero
value of ¿ (positive or negative, depending on the sign of f i¿ (0; 0)) increases the …tness
of player i: This in turn implies that a non-zero type of player i would fare better than
a type zero player i, and would therefore increase in number at the expense of the type
zero player. Thus in the limit the dispositions will not become extinct.10

Several remarks about Theorem 1 are now in order.

Remark 1: Theorem 1 is stated for general …nite-dimensional manifolds of games and
dispositions, which may include games that do not have pure strategy equilibria. Notice
that in this case properties (i) and (ii) hold vacuously. As we discussed above, the theorem
instead could be stated for collections of games and dispositions for which selections of

10For symmetric games, Güth and Peleg (2001) identi…ed the analogue of (2.12) as a necessary condi-
tion for evolutionary stability (in contrast with the fully dynamic analysis of the current paper). However,
Güth and Peleg did not investigate the genericity of this condition.
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pure strategy equilibria exist in a neighborhood of (0,0). We state the result as above
for ease of use in extending the result to the general class of games, where the issues
involved in restricting attention to games with pure strategy equilibria are slightly more
complicated. We discuss this in more detail below.

Remark 2: Theorem 1 can be easily generalized to games with …nitely many players.
In that case, the proof of the theorem applies verbatim with the index j being interpreted
as the vector of all players but i; and with N being the dimension of the product of the
strategy spaces of all players but i.

Remark 3: The proof of Theorem 1 relies on the …rst-order necessary conditions that
obtain at interior Nash equilibria of ¡. If we allow the strategy spaces of the players,
X i and Xj, to be closed subsets of RM and RN ; then some Nash equilibria may be
on the boundary. In such a case, the analysis carries over when restricting attention
to the set of directions for which the …rst-order conditions do hold at equilibrium.11

No …rst-order conditions need to hold at Nash equilibrium strategies that are extreme
points in the strategy sets Xi and Xj, however. This will be the case for instance for pure
strategy Nash equilibria whenX i andXj are simplices of mixed strategies. Such extreme
equilibria are not perturbed when the game is perturbed with a slight disposition, so the
marginal analysis in the proof does not apply in this case. In such games, types with
small dispositions may have the same …tness as zero types with no disposition.

Our genericity analysis is also inappropriate for pure strategy Nash equilibria in games
with …nitely many pure strategies. For such games a global analysis rather than a
marginal one is appropriate for characterizing equilibria. Nonetheless, similar results
may hold in some such games. For example, in symmetric games with …nitely many
pure strategies, Dekel et al. (1998) show that for any symmetric Nash equilibrium dif-
ferent from the payo¤-maximizing symmetric outcome (as, for example, in the prisoners’
dilemma), the lack of dispositions is not evolutionarily viable.

Remark 4: A similar result holds when the strategy spaces X i and Xj are in…nite-
dimensional. Unfortunately, in the most obvious examples of such games, such as in-
…nitely repeated games or games with incomplete information, Nash equilibria are typi-
cally not locally unique. For in…nitely repeated games this follows from the Folk Theo-
rem, while incomplete information games typically have a continuum of Bayesian-Nash
equilibria (see e.g., Leininger, Linhart, and Radner, 1989). In such cases, an equilibrium
selection is not well-de…ned even locally, so when small dispositions are introduced it is
unclear which equilibrium to consider. Di¤erent selections from the equilibrium corre-
spondence may result in contradictory conclusions regarding the e¤ects of the disposi-

11Dubey (1986) and Anderson and Zame (2001) employ a similar approach to demonstrate the generic
Pareto-ine¢ciency of “non-vertex” Nash equilibria.
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tions.12 We wish to emphasize however that this problem arises not from any inherent
limitation of the argument itself; rather, the evolutionary analysis ceases to be predictive
because the equilibrium is not locally unique.

Remark 5: Theorem 1 has an interesting implication for the strategic delegation liter-
ature. This literature has demonstrated that players can gain strategic advantage over
rivals by hiring a delegate whose preferences di¤er from theirs to play the game on their
behalf (e.g. Green 1992; Fershtman and Judd, 1987; Fershtman, Judd and Kalai 1991;
Katz 1991). Viewing the perceived payo¤ function of player i as representing the pref-
erences of a delegate hired by player i to play the game on player i’s behalf, part (i) of
Theorem 1 implies that earlier results obtained in the strategic delegation literature are
in fact generic. That is, in almost every strategic interaction hiring a delegate whose
preferences di¤er from the player’s own preferences is bene…cial to the player because of
its resulting e¤ect on opponents’ play.

2.4 All games and dispositions

The genericity result established in the previous subsection might appear to be somewhat
limited in scope because of its restriction to certain …nite-dimensional submanifolds G
and B. Next we show that an analogous result holds when we vary over the in…nite-
dimensional sets of all possible pairs of payo¤ functions and dispositions.

To extend our genericity results to the space of all payo¤ and distribution functions,
we will need a notion of genericity that is suitable in an in…nite-dimensional setting. Un-
fortunately, there is no natural analogue of Lebesgue measure in an in…nite-dimensional
space, and standard topological notions of “almost all” such as open and dense or residual
are not entirely satisfactory, particularly in problems like ours in which “almost all” is
loosely interpreted in a probabilistic sense as a statement about the likelihood of partic-
ular events. For example, open and dense sets in Rn can have arbitrarily small measure,
and residual sets can have measure 0. Nevertheless, Christensen (1974) and Hunt, Sauer,
and Yorke (1992) have developed measure-theoretic analogues of Lebesgue measure 0 and
full Lebesgue measure for in…nite-dimensional spaces, called shyness and prevalence.

De…nition 6 (Shyness and prevalence) Let Y be a topological vector space. A universally
measurable subset E ½ Y is shy if there is a regular Borel probability measure ¹ on Y with
compact support such that ¹(E+y) = 0 for every y 2 Y .13 A (not necessarily universally
measurable) subset F ½ Y is shy if it is contained in a shy universally measurable set.
A subset E ½ Y is prevalent if its complement Y n E is shy.

12In speci…c cases, however, there may be more natural candidates for such selections; see for example
the analysis in Section 3 below and in Heifetz and Segev (2003).
13A set E ½ Y is universally measurable if for every Borel measure ´ on Y , E belongs to the completion

with respect to ´ of the sigma algebra of Borel sets.
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If A ½ Y is open, then a set E ½ A is relatively shy in A if E is shy, and a set
F ½ A is relatively prevalent in A if A n Y is relatively shy in A.

Christensen (1974) and Hunt, Sauer and Yorke (1992) show that shyness and preva-
lence have the properties we ought to require of measure-theoretic notions of “smallness”
and “largeness.” In particular, the countable union of shy sets is shy, no relatively open
subset is shy, prevalent sets are dense, and a subset of Rn is shy inRn if and only if it has
Lebesgue measure 0. It is straightforward to show that the corresponding properties hold
for relatively shy and relatively prevalent subsets of an open set as well. Hunt, Sauer,
and Yorke (1992) also provide simple su¢cient conditions for their notions of shyness and
prevalence (here we adopt the somewhat more descriptive terminology from Anderson
and Zame 2001).14

De…nition 7 (Finite shyness and …nite prevalence) Let Y be a topological vector space.
A universally measurable set E ½ Y is …nitely shy if there is a …nite dimensional subspace
V ½ Y such that (E¡y)\V has Lebesgue measure 0 in V for every y 2 Y . A universally
measurable set E ½ Y is …nitely prevalent if its complement Y n E is …nitely shy.

Sets that are …nitely shy are shy, hence sets that are …nitely prevalent are prevalent.
Using this fact together with the results we established for …nite-dimensional submani-
folds will yield a general version of our results when payo¤s and dispositions vary over
the entire in…nite-dimensional spaces ~G and ~B.
We can now state a second version of our main result.

Theorem 2 There exists an open, prevalent subset P of ~G £ ~B such that for each
(¦i;¦j ; Bi; Bj) 2 P;

(i) The disposition Bi is unilaterally bene…cial for player i and the disposition Bj is
unilaterally bene…cial for player j.

(ii) The dispositions (Bi; Bj) do not asymptotically become extinct under any regular
payo¤-monotonic dynamics.

In particular, let ~Rp ½ ~G be the set of regular games with pure strategy equilibria.
Then ~Rp £ ~B contains an open, relatively prevalent subset satisfying (i) and (ii).
14Anderson and Zame (2001) have extended the work of Hunt, Sauer and Yorke (1992) and Christensen

(1974) by de…ning prevalence and shyness relative to a convex subset that may be a shy subset of the
ambient space. Their extension is useful in many applications, particularly in economics, in which the
relevant parameters are drawn not from the whole space but from some subset, such as a convex cone or
an order interval, that may itself be a shy subset of the ambient space. Here we use the original notion
as formulated in Hunt, Sauer and Yorke (1992).
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As with Theorem 1, here too we could give other versions of this result restricted
to games with pure strategy Nash equilibria. This becomes somewhat more delicate,
however, due to the fact that the subset of ~G £ ~B for which each game has pure strategy
equilibria is not necessarily open, nor necessarily convex. The di¢culty lies in extending
the notion of prevalence to a relative one. Anderson and Zame (2001) provide one such
extension, but, crucially, they require the domain to be convex. To restrict to games with
pure strategy equilbria, we have taken the simplest approach by considering the subset
~Rp ½ ~G of regular games with pure strategy equilibria, which is open. Then it follows
immediately that ~Rp£ ~B contains an open, relatively prevalent subset satisfying (i) and
(ii) above. Alternatively, given any convex subset C ½ ~Gp, one can show that there exists
a relatively prevalent subset of C £ ~B satisfying (i) and (ii). Justifying a restriction to a
convex set of games with pure strategy equilibria seems di¢cult, however.

3 Noisy observability of dispositions

Thus far, we have assumed that players i and j play a Nash equilibrium given their
perceived payo¤ functions. One justi…cation for this assumption is that players’ perceived
payo¤s are perfectly observed. Of course, by standard arguments, Nash equilibrium play
does not necessarily require observability of payo¤s. If the interaction lasts several rounds,
in important classes of games play can converge to a Nash equilibrium even if players
have very limited knowledge or adapt their behavior myopically, for instance by following
some version of …ctitious play (see e.g. Fudenberg and Levine, 1998).

In this section, we pursue further the possibility that preferences may not be perfectly
observed. Speci…cally, we assume that players observe each other’s preferences with some
randomly distributed noise. The natural solution concept for this setting is Bayesian
equilibrium. Unfortunately, as we discussed in the introduction, Bayesian equilibria
are typically not locally unique; consequently, it is impossible to generalize Theorems 1
and 2 to this setting. Nonetheless, using a speci…c example that gives rise to a unique
Bayesian equilibrium for any given distribution (T ;£) of types, we show that in the
absence of this technical obstacle, the evolutionary viability of dispositions is maintained.
Qualitatively similar results would obtain for any other example that admits a unique
Bayesian equilibrium at least in some weak neighborhood of the unit mass at (¿ ; µ) =
(0; 0).

Suppose that the strategy spaces of the players are Xi = Xj = R, and the actual
payo¤ functions are

¦i(xi; xj) = (®¡ bxj ¡ xi)xi; ¦j(xi; xj) = (®¡ bxi ¡ xj)xj; (3.1)

where ® > 0, and b 2 (¡1; 1). Moreover, suppose that the dispositions of the players are
given by:

Bi(xi; xj ; ¿) = ¿xi; Bj(xi; xj ; µ) = µxj; ¿ ; µ 2 R: (3.2)
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Using these payo¤ and disposition functions, the perceived payo¤ functions are given
by

U i(xi; xj; ¿ ) = ¦i(xi; xj) +Bi(xi; xj ; ¿) = (®+ ¿ ¡ bxj ¡ xi)xi;
U j(xi; xj; µ) = ¦j(xi; xj) +Bi(xi; xj ; µ) = (®+ µ ¡ bxi ¡ xj)xj: (3.3)

From (3.3) it is clear that the dispositions can be interpreted as “self-esteem” biases
re‡ecting over- and under-con…dence. Here the players either overestimate the return to
their own actions, if ¿ and µ are positive, or underestimate these returns, if ¿ and µ are
negative.

This example can be used to illustrate our more general results. Here, if perceived
payo¤ functions are completely observable, then any regular payo¤ monotonic dynamics
results in a distribution of types that converges to a unit mass at a type that is positive
as long as b 6= 0, that is, as long as the game is one with nontrivial strategic interaction.
We prove this, along with some more general results, in Heifetz, Shannon and Spiegel
(2004).

To extend these results to a setting with partial observability, we assume that the
observation of opponents’ perceived payo¤s is subject to some randomly distributed noise.
Speci…cally, we assume that before choosing actions players i and j receive the following
signals about each other’s types:

si = ¿ + º; sj = µ + º; (3.4)

where º is a random variable distributed on the support [¡r; r] according to a cumulative
distribution function N with a positive density. The assumption that the support of º is
symmetric around 0 is not essential; however, the assumption that the support is bounded
is important as it makes it possible for players to distinguish between zero and non-zero
types.15

Given the signals, si and sj, the players update their beliefs about each other’s pref-
erences, and then play a Bayesian equilibrium given these updated beliefs. In this setting
we now prove the following result:

Proposition 1. Suppose that the players have the perceived payo¤ functions speci…ed
in (3.3) and they receive the signals si and sj speci…ed in (3.4), and moreover, the
initial distributions of both ¿ and µ have full support. Then the dispositions do not
asymptotically become extinct under any regular payo¤-monotonic selection dynamics.

In the working paper version (Heifetz, Shannon and Spiegel, 2003) we also establish
some positive convergence results for this game with noisy observability. When the sup-
ports of the initial bias distributions T0;£0 are con…ned to some large enough compact
15In di¤erent but related models, Dekel et al. (1998), Ely and Yilankaya (2001), Ok and Vega Redondo

(2001) and Güth and Peleg (2001) show that payo¤-maximization is evolutionarily stable if preferences
are completely unobservable. In our setting, this would correspond to the limit case in which the noise
is distributed with an improper uniform prior on the entire real line.
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interval, then under any regular payo¤-monotonic dynamics the distributions Tt;£t con-
verge weakly to a unit mass at ¿¤ = µ¤ = b2®

4+2b¡b2 . In particular, as in the case of full
observability, this value is nonzero as long as b 6= 0; thus as long as there is nontrivial
strategic interaction. Similar results hold if the preferences U i; U j are unobserved in some
fraction ½ of the interactions (in which case the corresponding Bayesian equilibrium is
played). Finally, similar results obtain in a version of this model incorporating costly
signaling of types. Here player j observes a signal mi of player i’s type ¿ ; where player i
incurs …tness cost c (mi ¡ ¿ )2 which is convex in the distance between the signal mi and
the true type ¿ ; and analogously for player j: Now the distributions of type-signal pairs
(¿ ;mi) and (µ;mj) evolve according to some regular payo¤-monotonic dynamics. Then
these distributions converge to a unit mass at values that are nonzero as long as b 6= 0:
For details and more discussion of all of these results, see Heifetz, Shannon and Spiegel
(2004).

4 Conclusion

The literature on the evolution of preferences, while successful in providing foundations
for various types of dispositions and biases, is often criticized on two important grounds
(see e.g., Samuelson, 2001). First, speci…c results typically consider preferences and
dispositions that are carefully tailored to the particular game of interest, which raises
the question of how robust such speci…c examples are and whether they extend to more
general types of preferences and dispositions. Second, most of the existing work modeling
the evolution of preferences assumes that preferences are perfectly observed, while it is
unclear whether this assumption is reasonable or whether the results obtained still hold
if this assumption is relaxed.

Our work addresses both of these questions. Under the assumption that preferences
are observable, we show that in almost every game and for almost every type of distortion
of a player’s actual payo¤s, some positive or negative extent of this distortion is bene…cial
to the player because of the resulting e¤ect on opponents’ play. Hence, any standard evo-
lutionary process in which selection dynamics are monotone in payo¤s will not eliminate
such distortions; in particular, under any such selection dynamics, the population will
not converge to payo¤ maximizing behavior. This implies in turn that the evolutionary
viability of dispositions is generic, and independent of the particular parametric models
employed in most of the literature. We also show that the viability of dispositions may
be robust to noisy observability of preferences. Although the lack of local uniqueness of
Bayesian equilibria in models in which preferences are observed with noise precludes a
general extension of our results, when the Bayesian equilibrium is unique, dispositions
remain evolutionarily viable in such settings in the sense that the population still does
not converge to payo¤ maximizing behavior.
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5 Appendix

In order to prove Theorems 1 and 2 we proceed with a sequence of lemmata. We make
repeated use of the following standard de…nition and theorem, which we include here for
completeness.16

De…nition 8 (regular value) Let X and S be boundaryless, Cr manifolds, and G : X £
S ! RK be a Cr function, where r ¸ 1. An element y 2 RK is a regular value of G if
for all (x; s) such that G(x; s) = y, the derivative Dx;sG(x; s) has rank K.

In particular, notice that if there are no points (x; s) such that G(x; s) = y, then y is
trivially a regular value of G.

Remark 6: In the arguments below we will frequently need to show that zero is a regular
value of various maps. To this end we will rely on two useful observations. First, we
will repeatedly use the assumption that these manifolds contain an open set around each
point consisting of a particular type of perturbation. More precisely, …x (¦i;¦j) 2 G
and recall that we assume that there exist open neighborhoods P;Q µ RM+N+M of zero
such that (¹¦i(¢; ¢; p); ¹¦j(¢; ¢; q)) 2 G for each (p; q) 2 P £ Q, where ¹¦i and ¹¦j are given
in (2.8). Now let h : X i £ Xj £ G ! RK be an arbitrary C1 function. Then zero is
a regular value of h provided Dh(xi; xj ;¦i;¦j) has rank K (i.e., is surjective) for each
(xi; xj;¦i;¦j) 2 h¡1(0). Given our assumptions about G, to show that Dh(xi; xj ;¦i;¦j)
has rank K it then su¢ces to show that

Dp;qh(x
i; xj ; ¹¦i(xi; xj; 0); ¹¦j(xi; xj; 0))

has rank K.

Second, if the derivative

Di;jh(x
i; xj;¦i;¦j)

does not have rank K for any (xi; xj) 2 X i £ Xj, then zero can be a regular value of
h(¢; ¢;¦i;¦j) only if h(xi; xj ;¦i;¦j) 6= 0 for all (xi; xj) 2 X i £Xj.

Theorem 3 (The transversality theorem). LetX and S be …nite-dimensional, bound-
aryless, Cr manifolds and G : X£S ! RK be a Cr function, where r > max f0; dim X¡
Kg. For each s 2 S let G(¢; s) be the restriction of G to X £ fsg. If y 2 RK is
a regular value of G, then for almost every s 2 S, y is a regular value of G(¢; s).
In addition, if s 7! G(¢; s) is continuous in the Whitney Cr topology, then fs 2 S :
s is a regular value of G(¢; s)g is open.
16For example, see Hirsch (1976).
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The …rst step in our argument is to show that equilibria are locally unique in almost
all games. This follows from the genericity of regular games, established in Lemma 1,
and the local uniqueness of equilibria in regular games, established in Lemma 2.

Lemma 1 The set of regular games R is an open, full-measure subset of G.

Proof. Fix a game (¦i;¦j) 2 G. Since the strategy spaces X i;Xj are open, Nash
equilibria of the game are interior. Thus, at each Nash equilibrium (yi; yj) of the game,
the following system of M +N …rst order conditions holds:µ

¦ii(y
i; yj)

¦jj(y
i; yj)

¶
= 0:

De…ne the map Á : X i £Xj £ G ! RM+N by

Á(¢; ¢;¦i;¦j) =
µ
¦ii(¢; ¢)
¦jj(¢; ¢)

¶
:

Consider the derivative

Dp1;q2Á(y
i; yj; ¹¦i(¢; ¢; 0); ¹¦j(¢; ¢; 0)) =

µ
IM 0
0 IN

¶
;

where IM and IN are the M £M and N £ N identity matrices. Since the matrix has
rank M +N for each (yi; yj), it follows from Remark 6 that zero is a regular value of Á.
Therefore, the transversality theorem implies that there is a set of full measure R ½ G
such that zero is a regular value of Á(¢; ¢;¦i;¦j) for each game (¦i;¦j) 2 R. For each
(¦i;¦j) 2 R, the de…nition of regular value and the fact that zero is a regular value of
Á(¢; ¢;¦i;¦j) implies that the derivative

Di;jÁ(y
i; yj ;¦i;¦j) =

µ
¦iii(y

i; yj) ¦iij(y
i; yj)

¦jji(y
i; yj) ¦jjj(y

i; yj)

¶
has full rank M + N at each Nash equilibrium (yi; yj) of (¦i;¦j). Thus, using the
de…nition of a regular game, a game (¦i;¦j) 2 G is regular if and only if 0 is a regular
value of Á(¢; ¢;¦i;¦j), that is, R = R. Thus R has full measure.

Finally, since the map (¦i;¦j) 7! Á(¢; ¢;¦i;¦j) is continuous in the Whitney C1
topology, R is open by the transversality theorem.

The next lemma shows that in a regular game, the Nash equilibrium correspondence
is locally single-valued in a neighborhood of zero. This feature allows us to study the
e¤ects of small dispositions on the true equilibrium payo¤s in a well-de…ned manner.
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Lemma 2 Consider a regular game (¦i;¦j) and let (yi; yj) be a Nash equilibrium of the
game. For any pair of dispositions (Bi; Bj) 2 B; there is a neighborhood V0 of ¿ = 0
and a unique C1 function

Z(¢) ´ (yi (¢; 0) ; yj(¢; 0)) : V0 ! X i £Xj;

such that (yi (0; 0) ; yj(0; 0)) = (yi; yj) and (yi (¿ ; 0) ; yj(¿ ; 0)) is a Nash equilibrium of the
game (¦i +Bi;¦j) when ¿ 2 Vo. Moreover,µ

¦iii(y
i; yj) ¦iij(y

i; yj)

¦jji(y
i; yj) ¦jjj(y

i; yj)

¶µ
yi¿ (0; 0)
yj¿ (0; 0)

¶
=

µ ¡Bii¿ (yi; yj; 0)
0

¶
: (A.1)

Proof. Suppose that µ = 0 (player j has no disposition), so that Bj(¢; ¢; 0) ´ 0. Then
a Nash equilibrium (yi (¿ ; 0) ; yj (¿ ; 0)) of the game (¦i + Bi;¦j) satis…es the following
system of M +N …rst order conditionsµ

¦ii(y
i; yj) +Bii(y

i; yj ; ¿)

¦jj(y
i; yj)

¶
= 0: (A.2)

Since Bi(¢; ¢; 0) ´ 0, Bii(yi; yj; 0) ´ 0, hence at ¿ = 0 this system becomesµ
¦ii(y

i; yj)

¦jj(y
i; yj)

¶
= 0:

Since the game (¦i;¦j) is regular, zero is a regular value of the mapµ
¦ii(¢; ¢)
¦jj(¢; ¢)

¶
: RM+N ! RM+N :

The implicit function theorem then implies that the Nash equilibrium map Z(¢) ´
(yi (¢; 0) ; yj(¢; 0)) is locally de…ned and C1 in a neighborhood V0 of ¿ = 0. Finally,
since Bi(¢; ¢; 0) ´ 0, Biii(yi; yj ; 0) = Biij(yi; yj; 0) ´ 0. Then (A.1) follows by di¤erentiat-
ing (A.2) with respect to ¿ and evaluating at ¿ = 0.

Now let U = G £ B be the manifold of perceived payo¤ functions, so
U = ©¡U i; U j¢ = (¦i +Bi;¦j +Bj) : X i £Xj £R! R2j(¦i;¦j) 2 G; (Bi; Bj) 2 Bª :

(A.3)

Since, Bi(xi; xj ; 0) ´ Bj(xi; xj; 0) ´ 0, the projection PrG : U ! G maps (U i; U j) to the
corresponding game

PrG(U i; U j) ´
¡
U i(¢; ¢; 0); U j(¢; ¢; 0)¢ ;

while the projection PrB : U ! B maps (U i; U j) to the corresponding dispositions
PrB(U i; U j) ´

¡
U i ¡ U i(¢; ¢; 0); U j ¡ U j(¢; ¢; 0)¢ :

By Lemma 1, the set UR ´ R£ B is an open, full-measure subset of U :
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Lemma 3 There is an open, full-measure subset UB µ UR of perceived payo¤ functions
(U i; U j) for which Bii¿ (y

i; yj ; 0) 6= 0 at each Nash equilibrium (yi; yj) of (¦i;¦j).

Proof. Let » : X i £Xj £ UR ! RM+N+M be given by

»(¢; ¢;¦i;¦j ; Bi; Bj) =
0@ ¦ii(¢; ¢)

¦jj(¢; ¢)
Bii¿ (¢; ¢; 0)

1A :
Since (¦i;¦j) is a regular game, by de…nition the (M +N)£ (M +N) matrixµ

¦iii(y
i; yj) ¦iij(y

i; yj)

¦jji(y
i; yj) ¦jjj(y

i; yj)

¶
has rank M +N at each Nash equilibrium (yi; yj) of (¦i;¦j). Therefore, the derivative

Di;j;v»(y
i; yj ;¦i;¦j ; B

i
(¢; ¢; ¢; 0); Bj(¢; ¢; ¢; 0)) =

0@ ¦iii(y
i; yj) ¦iij(y

i; yj) 0

¦jji(y
i; yj) ¦jjj(y

i; yj) 0
Bii¿i(y

i; yj ; 0) Bii¿j(y
i; yj; 0) IM

1A

has rank M + N +M at each Nash equilibrium (yi; yj) of (¦i;¦j). Consequently, by
Remark 6, zero is a regular value of ». Therefore, the transversality theorem implies
that there is a full-measure subset UB µ UR such that zero is a regular value of the map
»(¢; ¢;¦i;¦j ; Bi; Bj) for all (¦i + Bi;¦j + Bj) 2 UB. Since the map (¦i;¦j ; Bi; Bj) 7!
»(¢; ¢;¦i;¦j ; Bi; Bj) is continuous in theWhitney C1 topology, UB is open by the transver-
sality theorem as well.

Let (¦i +Bi;¦j +Bj) 2 UB. Since the derivative

Di;j»(x
i; xj;¦i;¦j ; Bi; Bj) =

0@ ¦iii(x
i; xj) ¦iij(x

i; xj)

¦jji(x
i; xj) ¦jjj(x

i; xj)
Bii¿i(x

i; xj; 0) Bii¿j(x
i; xj ; 0)

1A
has onlyM+N columns, it cannot have rankM+N+M for any (xi; xj) 2 X i£Xj. By
Remark 6, zero can be a regular value of »(¢; ¢;¦i;¦j; Bi; Bj) only if »(xi; xj;¦i;¦j ; Bi; Bj) 6=
0 for all (xi; xj) 2 X i £ Xj. Therefore, at a (interior) Nash equilibrium (yi; yj) of the
game (¦i;¦j), where µ

¦ii(y
i; yj)

¦jj(y
i; yj)

¶
= 0;

we must have Bii¿ (y
i; yj ; 0) 6= 0.

Let ~¦jji(x
i; xj ; q) be the M £M matrix consisting of the …rst M rows of ¹¦jji(x

i; xj; q):

If ~¦jji(x
i; xj; 0) has rank M ¡ k; it takes k consecutive …rst-order perturbations (of its
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diagonal entries, for example) to produce a matrix of full rank. This idea is formalized
in the following lemma.

Lemma 4 For each k = 0; : : : ;M there is an open, full-measure subset Uk µ UB such
that for every (¦i;¦j) 2 PrG(Uk),

@M¡k

@q31@q
3
2 : : : @q

3
M¡k

det ~¦jji(y
i; yj ; 0) 6= 0

at each Nash equilibrium (yi; yj) of (¦i;¦j).

Proof. We proceed by induction on k: For the base case k = 0, we claim that for
any ¦i and any (yi; yj; q)

@M

@q31@q
3
2 : : : @q

3
M

det ~¦jji(y
i; yj; q) = 1: (A.4)

This follows because the determinant of ~¦jji(¢; ¢) is a sum of products, of M factors each,
and the derivative with respect to (q31; : : : ; q

3
M) of each of these products is zero with the

exception of the diagonal product
QM
m=1

@2¦j

@xjm@xim
. For this term, note that

@2¦j(yi; yj ; q)

@xjm@xim
= q3m;

for each (yi; yj; q), so

MY
m=1

@2¦j(yi; yj ; q)

@xjm@xim
=

MY
m=1

q3m

which implies that for any (yi; yj; q),

@M

@q31@q
3
2 : : : @q

3
M

Ã
MY
m=1

@2¦j(yi; yj ; q)

@xjm@xim

!
= 1:

Now suppose that the claim holds for k = ` ¡ 1: Then we claim there is an open,
full-measure subset U` µ U`¡1 such that for games (¦i;¦j) that correspond to perceived
payo¤ functions in U`, zero is a regular value of the map

Ã(¢; ¢;¦i;¦j) ´

0B@ ¦ii(¢; ¢)
¦jj(¢; ¢)

@M¡`
@q31@q

3
2 :::@q

3
M
det ~¦jji(¢; ¢; 0)

1CA : X i £Xj £ G ! RM+N+1: (A.5)
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To see this, note that the derivative

Dp1;q1;q3
M¡(`¡1)

Ã(yi; yj ; ¹¦i(¢; ¢; 0); ¹¦j(¢; ¢; 0)) =

0BBBBBBBBBB@

IM 0 0

0 IN

0
...

yiM¡(`¡1)
...
0

0 0 @M¡(`¡1)
@q31@q

3
2 :::@q

3
M
det ~¦jji(y

i; yj; 0)

1CCCCCCCCCCA
(A.6)

has rank M +N + 1 at each Nash equilibrium (yi; yj) of the game (¦i;¦j) 2 PrG(U`¡1).
Consequently, by Remark 6, zero is a regular value of Ã. Therefore, the transversality
theorem implies that there exists a set of full measure U` ½ U`¡1 such that zero is a regular
value of Ã(¢; ¢;¦i;¦j) for each (¦i;¦j) 2 PrG(U`). Since the map (¦i;¦j) 7! Ã(¢; ¢;¦i;¦j)
is continuous in the Whitney C1 topology, U` is an open subset of UM by the transversality
theorem.

Lemma 5 Let (U i; U j) 2 UM , (¦i;¦j) = PrG(U i; U j) and (Bi; Bj) = PrB(U i; U j). For
every Nash equilibrium (yi; yj) of (¦i;¦j), yj¿ (0; 0) 6= 0.

Proof. Let (U i; U j) 2 UM , (¦i;¦j) = PrG(U i; U j) and (Bi; Bj) = PrB(U i; U j).
Let (yi; yj) be a Nash equilibrium of (¦i;¦j). Now recall from Lemma 4 that for
each k = 0; : : : ;M there is an open, full-measure subset Uk µ UB such that for every
(¦i;¦j) 2 PrG(Uk),

@M¡k

@q31@q
3
2 : : : @q

3
M¡k

det ~¦jji(y
i; yj ; 0) 6= 0:

When k =M , this implies that

det ~¦jji(y
i; yj) 6= 0:

Hence, ¦jji(y
i; yj) has rank M .

Now note from (A.1) that

¦jji(y
i; yj)yi¿ (0; 0) + ¦

j
jj(y

i; yj)yj¿ (0; 0) = 0; (A.7a)

and

¦iii(y
i; yj)yi¿ (0; 0) + ¦

i
ij(y

i; yj)yj¿ (0; 0) = ¡Bii¿ (yi; yj; 0); (A.7b)
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and suppose by way of contradiction that yj¿ (0; 0) = 0. Since ¦
j
ji(y

i; yj) has rank M , it
is injective. Then since yj¿ (0; 0) = 0, (A.7a) implies that yi¿ (0; 0) = 0. Recalling from
Lemma 3 that ¡Bii¿ (yi; yj ; 0) 6= 0; this means that (A.7b) cannot hold, a contradiction.

Lemma 6 There is an open, full-measure subset U¤ µ UM such that if (¦i;¦j) =
PrG(U i; U j) and (Bi; Bj) = PrB(U i; U j) for some (U i; U j) 2 U¤, then for every Nash
equilibrium (yi; yj) of the game (¦i;¦j),

¦ij(y
i; yj)yj¿ (0; 0) 6= 0:

Proof. Fix (¦i;¦j) 2 ~G and (Bi; Bj) 2 ~B. For each (xi; xj) 2 X i £Xj and for each
n, denote by Jn(xi; xj) the (M +N)£ (M +N) matrix obtained fromµ

¦iii(x
i; xj) ¦iij(x

i; xj)

¦jji(x
i; xj) ¦jjj(x

i; xj)

¶
after replacing the n-th column by0BBB@

¡Bii¿ (xi; xj ; 0)
0
...
0

1CCCA :
Let z : X i £Xj £ ~G £ ~B ! RN be given by

z(xi; xj ;¦i;¦j ; Bi; Bj) =
¡
detJ1(x

i; xj); : : : ; det Jn(x
i; xj); : : : ; detJN(x

i; xj)
¢

In particular, note that z is independent of p2. Now let ³ : X i£Xj £ ~G £ ~B ! RM+N+1

be given by

³(¢; ¢;¦i;¦j; Bi; Bj) =
0@ ¦ii(¢; ¢)

¦jj(¢; ¢)
¦ij(¢; ¢)z(¢; ¢; ¢; ¢; ¢; ¢)

1A : (A.8)

For the remainder of the argument, we restrict ³ to the set UM de…ned in Lemma
4. Fix (¦i;¦j) 2 PrG(UM) and (Bi; Bj) 2 PrB(UM); by de…nition (¦i;¦j) is a regular
game. Now let (yi; yj) be a Nash equilibrium of (¦i;¦j). By (A.1) and Cramer’s rule,

yj¿ (0; 0) =

0BBB@: : : ; det Jn(y
i; yj)

det

µ
¦iii(y

i; yj) ¦iij(y
i; yj)

¦jji(y
i; yj) ¦jjj(y

i; yj)

¶ ; : : :
1CCCA

=
1

det

µ
¦iii(y

i; yj) ¦iij(y
i; yj)

¦jji(y
i; yj) ¦jjj(y

i; yj)

¶z(yi; yj;¦i;¦j ; Bi; Bj)
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Since z is independent of p2 and since Dp2 ¹¦ij(¢; ¢; p) = 1;
Dp2

¡
¹¦ij(y

i; yj ; p)z(yi; yj)
¢
= z(yi; yj;¦i;¦j ; Bi; Bj)

= det

µ
¦iii(y

i; yj) ¦iij(y
i; yj)

¦jji(y
i; yj) ¦jjj(y

i; yj)

¶
yj¿ (0; 0)

By Lemma 5, yj¿ (0; 0) 6= 0, and because (¦i;¦j) is a regular game,

det

µ
¦iii(y

i; yj) ¦iij(y
i; yj)

¦jji(y
i; yj) ¦jjj(y

i; yj)

¶
6= 0

Thus if (yi; yj) is a Nash equilibrium of (¦i;¦j), then the derivative

Dp1;q2;p2³(y
i; yj; ¹¦i; ¹¦j ; Bi; Bj) =

0@ IM 0 0
0 IN 0
0 0 z(yi; yj ;¦i;¦j ; Bi; Bj)

1A
has rankM+N+1. Consequently, by Remark 5, zero is a regular value of ³. Therefore,
by the transversality theorem, there is a full-measure subset U¤ ½ UM such that zero is
a regular value of ³(¢; ¢;¦i;¦j; Bi; Bj) for all (¦i +Bi;¦j +Bj) 2 U¤. Since the map
(¦i;¦j ; Bi; Bj) 7! ³(¢; ¢;¦i;¦j; Bi; Bj) is continuous in the Whitney C1 topology, U¤ is
an open subset of UM by the transversality theorem.

Let (¦i +Bi;¦j +Bj) 2 U¤. Since the derivative

Di;j³(y
i; yj;¦i;¦j ; Bi; Bj) =

0@ ¦iii(y
i; yj) ¦iij(y

i; yj)

¦jji(y
i; yj) ¦jjj(y

i; yj)
Di
¡
¦ij(y

i; yj)z(yi; yj)
¢
Dj
¡
¦ij(y

i; yj)z(yi; yj)
¢
1A

has only M +N columns, it cannot have rank M +N + 1. By Remark 5, zero can be a
regular value of ³(¢; ¢;¦i;¦j ; Bi; Bj) only if ³(xi; xj;¦i;¦j ; Bi; Bj) 6= 0 for all (xi; xj) 2
X i £Xj. Thus if (¦i;¦j) 2 PrG(U¤) and (yi; yj) is a (interior) Nash equilibrium of the
game (¦i;¦j), so that ¦ii(y

i; yj) = ¦jj(y
i; yj) = 0, then we must have

¦ij(y
i; yj)z(yi; yj;¦i;¦j ; Bi; Bj) 6= 0:

Using this together with the fact that (¦i;¦j) is a regular game yields ¦ij(y
i; yj)yj¿ (0; 0) 6=

0 as required.

Lemma 7 For perceived payo¤s (U i; U j) 2 U¤, f i¿ (0; 0) 6= 0.

Proof. At (¿ ; µ) = (0; 0) we have

f i¿ (0; 0) = ¦
i
i(y

i; yj)yi¿ (0; 0) + ¦
i
j(y

i; yj)yj¿ (0; 0):
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where (yi; yj) is a Nash equilibrium of (¦i;¦j). Hence ¦ii(y
i; yj) = 0: By Lemma 6,

¦ij(y
i; yj)yj¿ (0; 0) 6= 0: Hence f i¿ (0; 0) 6= 0.

Next, consider the “…tness” game in which players i and j choose their types, ¿ and
µ, to maximize their …tness, f i(¿ ; µ) and f j(¿ ; µ). Note that Lemma 7 shows that for
perceived payo¤s (U i; U j) 2 U¤, the pro…le (¿ ; µ) = (0; 0) is not a Nash equilibrium
of this …tness game, since f i¿ (0; 0) 6= 0 means that player i’s best response to µ = 0 is
nonzero. Moreover, this will be enough to allow us to conclude that the dispositions do not
become asymptotically extinct under any regular payo¤-monotonic selection dynamics,
as the next lemma shows.

Lemma 8 If the dispositions (Bi; Bj) become asymptotically extinct in the game ¡, then
the types (¿ ; µ) = (0; 0) are a Nash equilibrium of the …tness game.

Proof. Let ±0 denote the unit mass at (0; 0). Suppose, by way of contradiction,
that (¿ ; µ) = (0; 0) is not a Nash equilibrium of the …tness game. Then without loss
of generality, for some ¿ 6= 0 we have f i(¿ ; 0) > f i(0; 0): Since f i is continuous, there
exists a neighborhood A of the unit mass at 0 and neighborhoods V0 of 0 and V¿ of
¿ such that if £ 2 A, ¿̂ 2 V0 and ~¿ 2 V¿ , then

R
f i(~¿ ; µ)d£t >

R
f i(¿̂ ; µ)d£t. Now

since (Bi; Bj) becomes asymptotically extinct, there exists t0 su¢ciently large so that for
every t ¸ t0, £t 2 A, and hence for every t ¸ t0,

R
f i(~¿ ; µ)d£t >

R
f i(¿̂ ; µ)d£t for any

~¿ 2 V¿ and ¿̂ 2 V0. Because the dynamics are regular, Tt and £t have full support for
each t (see footnote 7). Then, using (2.6), the growth rates satisfy gi(~¿ ;£t) > gi(¿̂ ;£t)
for every t ¸ t0, ~¿ 2 V¿ and ¿̂ 2 V0 as well. By (2.5), this implies that for t ¸ t0 we
have d

dt
Tt(V~¿ ) > d

dt
Tt(V0): This means that Tt does not converge weakly to a unit mass at

¿ = 0; a contradiction.

Proof of Theorem 1. Lemma 7 proves the existence of an open, full-measure set of
perceived payo¤s U¤ such thatBi is unilaterally bene…cial to player i. An analogous proof
establishes the existence of an open, full-measure set of perceived payo¤s U¤¤ such that
Bj is unilaterally bene…cial to player j. Part (i) of the theorem follows by observing that
the intersection of U¤ and U¤¤ is also an open and full-measure set of perceived payo¤s.
As for part (ii), Lemma 7 implies that for perceived payo¤s in U¤; (¿ ; µ) = (0; 0) is not a
Nash equilibrium of the …tness game, and by Lemma 8 it follows that for (U i; U j) 2 U¤,
the dispositions (Bi; Bj) = PrB (U i; U j) do not become asymptotically extinct in the
game (¦i;¦j) = PrG (U i; U j). ¥

Proof of Theorem 2. With ³ as de…ned in the proof of Lemma 6, let

P = f¡¦i;¦j; Bi; Bj¢ 2 ~G £ ~B : ¡¦i;¦j¢ is regular and 0 is a regular value of ³g
By the arguments in Lemmas 6 and 7, every (¦i;¦j; Bi; Bj) 2 P satis…es part (i) of the
theorem, and by Lemma 8 it also satis…es part (ii).
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It remains to show that P is …nitely prevalent in ~G £ ~B. To this end, we …rst claim
that P is open. This follows from the fact that the set of regular games ~R is open in
~G£ ~B, that the set of functions in C1(Xi£Xj ;RM+N+1) transverse to f0g is open in the
Whitney C1 topology, and from the fact that ³ is continuous on ~G £ ~B in the Whitney
C1 topology.

Now let

V =

(
(b¦i; b¦j) 2 ~G j b¦i(xi; xj) = MX

m=1

p1mx
i
m +

NX
n=1

p2nx
j
n +

MX
m=1

p3mx
i
mx

j
m

for some p 2 RM+N+M ;

b¦j(xi; xj) = MX
m=1

q1mx
i
m +

NX
n=1

q2nx
j
n +

MX
m=1

q3mx
i
mx

j
m

for some q 2 RM+N+M
ª
;

and

W =

(
( bBi; bBj) 2 ~B j bBi(xi; xj; ¿) = ¿ MX

m=1

vmx
i
m for some v 2 RM ;

bBj(xi; xj; µ) = µ NX
n=1

wnx
j
n for some w 2 RN

)
:

Now by Theorem 1, for every (¦i;¦j ; Bi; Bj) 2 ~G£ ~B, [(V £W) + (¦i;¦j ; Bi; Bj)]\P
has full measure in V £ W. Equivalently, (P ¡ (¦i;¦j; Bi; Bj)) \ (V £W) has full
measure in V £ W . Thus P is …nitely prevalent. Since …nitely prevalent sets are
prevalent, the proof is complete. ¥

Proof of Proposition 1. Before choosing their actions, the players observe the signals
si and sj; but not the true types ¿ and µ: Player i with type ¿ and signal si chooses an
action xi so as to maximize the expected perceived payo¤

(®+ ¿ ¡ bÂj(si; sj)¡ xi)xi;

where the expectation is taken over players j who produced the signal sj when they meet
somebody with signal si; and Âj(si; sj) is the (current) average action of these players.
Player j’s problem is analogous.

The best-responses of players i and j against Âj(si; sj) and Âi(si; sj), respectively, are

xi =
®+ ¿ ¡ bÂj(si; sj)

2
; xj =

®+ µ ¡ bÂi(si; sj)
2

: (A.9)
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Let ¿(si) be the (current) average type of player i who produces the signal si and let µ(sj)
be the (current) average type of player j who produces the signal sj: Taking expectations
on both sides of (A.9) yields

Âi(si; sj) =
®+ ¿ (si)¡ bÂj(si; sj)

2
; Âj(si; sj) =

®+ µ(sj)¡ bÂi(si; sj)
2

:

Solving this pair of equations yields

Âi(si; sj) =
2®+ 2µ(sj)¡ ®b¡ b¿ (si)

4¡ b2 ; Âj(si; sj) =
2®+ 2¿(si)¡ ®b¡ bµ(sj)

4¡ b2 :

Substituting this in (A.9) reveals that the equilibrium actions of players i and j are

bxi = ®+ ¿ ¡ b2®+2µ(sj)¡®b¡b¿(si)
4¡b2

2
; bxj = ®+ µ ¡ b2®+2¿(si)¡®b¡bµ(sj)

4¡b2
2

:

The (current) average …tness of player i with type ¿ and signal si when meeting player
j with signal sj is therefore

f i(
¡
¿ ; si

¢
; sj) =

Ã
®¡ b2®+ 2µ(s

j)¡ ®b¡ b¿ (si)
4¡ b2 ¡ ®+ ¿ ¡ b

2®+2µ(sj)¡®b¡b¿(si)
4¡b2

2

!

£®+ ¿ ¡ b
2®+2µ(sj)¡®b¡b¿(si)

4¡b2
2

:

Now, suppose that £t converges to a unit mass at 0. We will show that it is impossible
for Tt to also converge to a unit mass at 0. Since £t converges to a unit mass at 0, then
the posterior belief of player i regarding player j’s type, µ(sj), also converges to a unit
mass at 0. Thus, the average …tness of player i with type ¿ who produces the signal si

converges to

f i
¡
¿ ; si

¢
=

Ã
®¡ b®(2¡ b)¡ b¿ (s

i)

4¡ b2 ¡ ®+ ¿ ¡ b
®(2¡b)¡b¿(si)

4¡b2
2

!
®+ ¿ ¡ b®(2¡b)¡b¿(si)

4¡b2
2

=
b2

4¡ b2
µ

®

2 + b
+
¿

2

¶
¿(si) +

µ
®

2 + b
¡ ¿
2

¶µ
®

2 + b
+
¿

2

¶
:

Now suppose by way of contradiction that Tt also converges to a unit mass at 0.
If player i produces a signal si 2 [¡r; r], then player j cannot rule out the possibility
that player i’s type is ¿ = 0. Therefore, ¿(si) converges to 0 for all si 2 [¡r; r]. Now,
consider player i whose type ¿ is positive but close to 0 (the argument when ¿ is negative
and close to 0 is analogous). With probability N (r ¡ ¿), the player produces a signal

28



si 2 [¡r + ¿ ; r]. Given such a signal, player j cannot rule out the possibility that player
i’s type is 0, so player i’s payo¤ in this case converges toµ

®

2 + b
¡ ¿
2

¶µ
®

2 + b
+
¿

2

¶
:

With probability 1¡N (r¡ ¿ ), the player produces a signal si 2 (r; r + ¿ ]. In that case,
player j realizes that player i’s type cannot be 0 and is bounded from below by si ¡ r:
Since ¿ > 0, f i (¿ ; si) is increasing in ¿(si): Consequently, the overall average …tness of
player i with type ¿ will be bounded from below asymptotically by

N (r ¡ ¿)
µ

®

2 + b
¡ ¿
2

¶µ
®

2 + b
+
¿

2

¶
+

Z r

r¡¿

·
b2

4¡ b2
µ

®

2 + b
+
¿

2

¶
(¿ + º ¡ r) +

µ
®

2 + b
¡ ¿
2

¶µ
®

2 + b
+
¿

2

¶¸
dN (º):

The derivative of this expression with respect to ¿ , evaluated at ¿ = 0; is

N 0(r)
rb2®

(4¡ b2) (2 + b) > 0:

Thus asymptotically some ¿ > 0 dominates ¿ = 0. The disposition is therefore unilater-
ally bene…cial to player i, which implies that Tt cannot converge to a unit mass at ¿ = 0
under any regular payo¤-monotonic selection dynamics. ¥
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