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Abstract 
With the rapid digitization of financial transactions, central banks have given considerable focus 
in recent years to the research and development of central bank digital currencies (CBDCs). 
While CBDCs could offer several advantages, there are concerns about end-user privacy. 
Traditional methods of protecting confidentiality in banking and financial systems have 
primarily relied on data encryption and access control techniques. However, these techniques 
alone are inadequate, especially in cases where data are shared across different entities because 
privacy in such situations is typically governed by legal frameworks. Privacy-enhancing 
technologies (PETs) can offer robust protection for data throughout their lifecycle, whether 
stored, in transit or during processing, and ensure privacy is maintained even when data are 
extensively shared or analyzed. This study explores the use of PETs in the design of CBDC 
systems, potentially paving the way for solutions that better safeguard end-user privacy and 
meet rigorous data protection standards. While PETs promise significant advancements in 
privacy protection, they present some challenges in implementation. They can introduce 
performance overheads and add complexity to systems, and their effectiveness and 
applicability are currently limited due to their early stage of development. As these 
technologies evolve, it is crucial for organizations to carefully consider these factors to fully 
leverage PET benefits while managing associated challenges. This paper provides a 
comprehensive overview of how PETs can transform privacy design in financial systems and the 
implications of their broader adoption. 

Topics: Central bank research, Digital currencies and fintech, Financial system regulations and 
policies, Payment clearing and settlement systems 

JEL codes: E, E4, E42, O, O3, O31 

Résumé 
La numérisation rapide des transactions financières a amené les banques centrales à 
s’intéresser de près aux études consacrées aux monnaies numériques de banque centrale 
(MNBC) et à leur conception. Ces monnaies auraient plusieurs avantages, mais elles soulèvent 
des questions par rapport à la protection des données personnelles des usagers. Les méthodes 
généralement employées pour protéger la confidentialité des données des systèmes bancaires 
et financiers reposent tout d’abord sur e chiffrement de données et des dispositifs de contrôle 
de l’accès. Seuls, ces dispositifs sont toutefois inadéquats, tout particulièrement dans les 
situations où plusieurs entités s’échangent des données car, dans ces cas, la protection des 
données personnelles est encadrée normalement par des cadres juridiques. Les technologies 
d’amélioration de la confidentialité peuvent sécuriser les données tout le long de leur cycle de 
vie, que ces données soient stockées, en transit ou en traitement. Ces techniques permettent 
de préserver la confidentialité même lorsque les données sont fréquemment échangées ou 
analysées. Notre étude porte sur l’usage de telles techniques dans la conception des systèmes 
reposant sur les MNBC. Elle pourrait ouvrir la voie à des solutions qui améliorent la protection 
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de la vie privée et répondent à des normes strictes dans le domaine de la protection des 
données. Bien que des progrès majeurs puissent découler des technologies d’amélioration de 
la confidentialité, le déploiement de telles techniques demeure difficile. Elles peuvent allonger 
le temps-système et complexifier les systèmes. Par ailleurs, leur efficacité et leur applicabilité 
sont pour le moment limitées, car ces techniques sont au tout premier stade de 
développement. À mesure qu’elles évolueront, il sera déterminant de prendre en compte les 
complications qui leur sont associées si les organisations veulent tirer pleinement profit de 
leurs retombées. Notre étude dresse un tableau complet de la manière dont ces techniques 
peuvent transformer la conception de la protection des données des systèmes financiers et 
présente les conséquences de leur adoption accrue.   

Sujets : Recherches menées par les banques centrales, Monnaies numériques et technologies 
financières, Réglementation et politiques relatives au système financier, Systèmes de 
compensation et de règlement des paiements  

Codes JEL : E, E4, E42, O, O3, O31 



1 Introduction

In an era marked by the rapid digitization of financial transactions and the declining use of cash, central
bank digital currencies (CBDCs) have emerged as a focal point of research and development. This shift
toward digital payments is accompanied by the proliferation of blockchain, cryptocurrencies and stablecoins,
posing both opportunities for and threats to the financial landscape. As central banks, including entities like
the Bank for International Settlements, engage in extensive research and development of CBDCs, it becomes
imperative to address the escalating privacy concerns associated with these advancements.

Privacy, broadly defined, encompasses the right of individuals and entities to control their personal
information, ensuring it is collected, used and shared in ways that respect their autonomy and safeguard
against unwanted disclosure or exploitation. Privacy concerns in the context of CBDCs are multifaceted,
involving apprehensions of end users and merchants alike. The interconnected nature of our digital world
has led to an increased collection of personal information, making it crucial for individuals and businesses
to manage privacy risks and protect against unauthorized access and data misuse. Central banks, entrusted
with the responsibility of introducing CBDCs, face challenges in balancing the imperative for privacy with
the compliance demands of a digital financial landscape.

Existing privacy laws and regulations, such as the General Data Protection Regulation (European
Parliament and Council of the European Union 2016) and the Personal Information Protection and
Electronic Documents Act (2000), provide a fundamental framework for safeguarding individuals’ data.
However, as the digital environment evolves, accompanied by a proliferation of sensitive data, these laws
are evolving to address emerging challenges. Designers of CBDCs must take a proactive approach that
prioritizes user-data protection rights from the outset. This involves handling sensitive user data and
necessitates a privacy-by-design approach, including integrating privacy-enhancing technologies (PETs)
and embedding privacy considerations within the architecture to ensure the protection and confidentiality
of user information. Such an approach not only ensures compliance with existing regulations but also
anticipates and addresses emerging concerns.

Lately, PETs have emerged as a crucial means to address privacy concerns associated with CBDCs.
A CBDC designed with PETs could minimize personal data exposure and maximize data integrity and
confidentiality. While no consensus exists on a common definition of PETs, in this paper we investigate a
diverse set of technologies that preserve the confidentiality of transactions and mitigate the risks posed by
increased data collection and cyber threats. We further classify and describe candidate privacy solutions
for a CBDC in Section 2. As central banks explore the integration of these PETs into the design of CBDC
systems, understanding the implications and benefits of such technological advancements becomes essential.

Potential PETs that are applicable in digital payments are broad, covering cryptographic, statistical and
procedural technologies. Asrow and Samonas (2021) and the Bank of England (2023) have summarized
existing PETs that could potentially be used in the design of a CBDC system. The blockchain industry has
seen the implementation of many cryptographic PET technologies to protect the confidentiality of senders,
receivers and transaction amounts. For instance, Monero (van (Saberhagen 2013) has implemented a ring
confidential transactions protocol consisting of ring signatures (Rivest, Shamir, and Tauman 2001) and a
Pedersen commitment (Pedersen 1992); Zcash (Hopwood et al. 2021) has implemented zero-knowledge
proofs (ZKPs) (Ben-Sasson et al. 2018) to provide transaction confidentiality; and the Swiss National Bank
and the Bank for International Settlements (2023) have explored the feasibility of blind signatures (Chaum
1983) in CBDC design.

The primary inquiry of this research focuses on using PETs within the framework of CBDC design to
protect consumers’ personal data while simultaneously addressing the imperative of regulatory compliance.
Consequently, this paper introduces a CBDC design paradigm to explore the use of cutting-edge PETs in
providing high levels of privacy. The objective of the system is to give consumers control over their
personal data in the CBDC system, striking a delicate balance between user privacy expectations and the
demands of regulatory frameworks concerning anti-money laundering (AML) and counter-terrorism
financing. We first present a comprehensive and systematic description of PETs that could be applied to
digital currencies. Then we unveil a privacy-centric CBDC design framework encompassing key
components such as user onboarding, identity and access management, transaction processing, regulatory
compliance, data analytics and digital wallets. We conduct an in-depth analysis of privacy objectives for
each component, followed by an investigation into the possible integration of PETs within the design of
each component. Furthermore, we identify and address the inherent challenges associated with
incorporating PETs into the proposed CBDC design.

The rest of the paper is organized as follows. Section 2 briefly summarizes existing PET technologies
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that could be applied in digital currencies. Section 3 discusses a potential CBDC design with privacy. The
subsequent sections consider specific components in a CBDC system, including user onboarding in
Section 4, identity and access control in Section 5, value transportation and transaction processing in
Section 6, compliance in Section 7, data analytics in Section 8 and wallets in Section 9. For each
component, we start by briefly describing its functionalities, followed by a discussion of the privacy
objectives required for that specific component. Next, we introduce potential PETs that could be used and
discuss the challenges associated with incorporating them into the design and implementation. Finally, we
present conclusions and open research questions in Section 10.

2 Taxonomy of privacy-enhancing technologies

PETs play an essential role in balancing the benefits of data-driven technologies with the protection of
individual data. Many PET techniques have been introduced over time, along with the development of
digital systems and the expansion of data privacy regulations. The first principle for preserving individuals’
privacy is minimizing the information collected, processed and stored. Data anonymization (Dalenius 1986;
Samarati and Sweeney 1998a) and pseudonymization (Samarati and Sweeney 1998b) are two of the first
approaches to provide privacy for published data. These techniques alter data and aim to break the link
between original data and published data. Encryption for data in rest and transit is quite prevalent in
modern digital systems. Ideas for protecting data during processing using cryptographic solutions were
introduced in the 1970s and 1980s. These ideas included computing on encrypted data (Rivest, Adleman,
and Dertouzos 1978), secure multiparty computation (SMPC) (Yao 1982), ZKPs (Goldwasser, Micali, and
Rackoff 1989) and many other cryptographic primitives.

We cover a broad range of software and hardware technologies in this paper. Most of these technologies
use advanced cryptography to provide data protection. While the techniques are not fundamentally new,
the exploration of new applications is gaining momentum in academia and industry. The following are some
of the main contributing reasons for the recent uptake in interest in PETs:

• Distributed ledger technology (DLT)/blockchain systems: These systems provide weak privacy
since the ledger is available and visible to many entities. Many projects (e.g., Zcash, Aztech) and
research are ongoing to apply PETs for better data protection in systems based on distributed ledger
technology.

• Digital money and digital payments: In response to the decline in cash use and the emergence
of cryptocurrencies, central banks are working on the potential digital form of countries’ fiat currency
or CBDC (Mikhalev et al. 2021). Similar to cash, CBDCs should provide a high level of privacy to
consumers in their technical design. In the payment industry, while customer data must be privately
protected, it is important to follow AML regulations as well as those combating the financing of
terrorism to prevent illicit usage. A PET must satisfy both privacy and these latter regulations.

• Monetizing of data: Data owners are gathering vast amounts of data and seeking innovative business
models to monetize this data while adhering to laws and regulations. These models often involve sharing
data with other entities, which introduces many privacy challenges. PETs can be crucial in addressing
these challenges by facilitating secure data sharing that protects user privacy.

• Strict privacy regulations: Awareness about privacy and strict privacy regulations (e.g., the General
Data Protection Regulation) have motivated many to find innovative solutions to design privacy-centric
systems.

2.1 Classification of existing privacy-enhancing technologies

PETs can be classified according to different criteria, such as privacy controls (e.g., governance controls, data
minimization or statistical disclosure controls); cryptographic solutions versus non-cryptographic solutions;
or their technical designs. The literature has introduced several PET classifications (Seničar, Jerman-Blažič,
and Klobučar 2003; Montjoye et al. 2015; Privacy Commissioner of Canada 2017; Asrow and Samonas 2021).
In this section, we present a taxonomy for PETs based on the classification system introduced by the US
Federal Reserve Bank of San Francisco (Asrow and Samonas 2021).
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• Altering data: These techniques primarily alter data to enhance privacy by breaking the association
between individuals and their data. Some of these techniques include anonymization, data masking,
differential privacy and synthetic data. This class of PETs can be used in statistical disclosure of data,
such as for data analytics.

• Shielding data: These techniques focus on hiding the data from different entities or systems. They
include encryption techniques, special signatures, ZKP and privacy-enhancing hardware. This class of
measures could be used to protect the privacy of data when they are at rest, in use or in transit.

• System and architecture: This class of techniques focuses on organizing and processing data.
Techniques include SMPC, data dispersion, privacy-preserving identity, access control and federated
learning.

Table 1 lists the existing PETs based on the above classification. We briefly outline further technical
details of these PETs in the remainder of this section.

Table 1: Classification of existing privacy-enhancing technologies

PETs

Altering data Shielding data System and architecture

Data suppression Special signatures Multiparty computation
Anonymization Homomorphic encryption Data dispersion
Pseudonymization Cryptographic commitments Privacy-preserving digital identity
Synthetic data Zero-knowledge proof Federated learning
Differential privacy Privacy-enhanced hardware Onion routing

Transaction tumbler

2.2 Altering data

2.2.1 Data suppression

This technique provides data protection by deleting or removing information (columns, rows or specific
records) that is not required in the shared data. Two types of data suppression exist:

• Attribute suppression refers to the removal of a column of data in a dataset when this column is not
required in the anonymized dataset or when it cannot be suitably anonymized with another technique.
This technique should be applied at the start of the anonymization process, as it is an easy way to
decrease identifiability at this point.

• Record suppression refers to the removal of a row in the dataset. This technique affects multiple
attributes at the same time. It aims to eliminate outlier records that are unique or easily re-identifiable
or that do not fulfill criteria such as k-anonymity. This technique can be applied before or after other
techniques (e.g., generalization) have been applied.

2.2.2 Anonymization

Data anonymization (Dalenius 1986), a classical PET used in publishing data, is the process of protecting
sensitive information by removing direct or indirect identifiers from a dataset. Anonymizing data can help
avoid compliance risks with privacy regulations (such as the Personal Information Protection and
Electronic Documents Act and General Data Protection Regulation) by ensuring that personal information
is not traceable to individuals. According to paragraph 26 of the preamble to the General Data Protection
Regulation (European Parliament and Council of the European Union 2016): ”The principles of data
protection should therefore not apply to anonymous information, namely information which does not relate
to an identified or identifiable natural person or to personal data rendered anonymous in such a manner
that the data subject is not or no longer identifiable.” Various techniques are available for anonymizing the
user data:
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• Data perturbation: This method protects data by incorporating ”noise” to make personally
identifiable information (PII) unlinkable for unauthorized users. There are generally two noise-adding
techniques: additive noise (R. Agrawal and Srikant 2000; D. Agrawal and Aggarwal 2001) and
multiplicative noise (Liu, Kargupta, and Ryan 2006). Although additive noise techniques can be
mitigated by certain signal-processing methods (Kargupta et al. 2003), multiplicative perturbation
techniques such as those based on random projection can circumvent this problem (Liu, Kargupta,
and Ryan 2006).

• Data permutation: This technique splits the data records into several groups. It then shuffles the
values of the sensitive attributes within each group, de-associating them from the identifiers within
each group. This technique can provide high privacy, but may produce inaccurate analysis.

The data anonymization method has been shown to be relatively insecure when multiple data sources
are merged. With the rapid expansion of digital information, along with advancements in machine learning
models and data mining tools, attackers can more easily extract personal information. Even when identifiers
are removed from data, attackers can employ de-anonymization techniques to reverse the data anonymization
process, as data are often shared across multiple sources. This allows attackers to cross-reference these sources
and uncover personal information. (See paper by Al-Azizy et al. (2016) for more details of de-anonymization
approaches.)

2.2.3 Pseudonymization

Pseudonymization involves replacing identifiable data with fabricated values, a technique also known as
coding. Pseudonyms can be either irreversible or reversible (by the owner of the original data). In the
case of irreversible pseudonymization, the original values are permanently discarded and the process is
non-reversible. Conversely, with reversible pseudonymization, the original data are securely stored and
can be re-associated with the pseudonym if necessary. This capability sets pseudonymization apart from
anonymization. Various methods can be used in pseudonymization:

Generalization Generalization entails substituting individual attribute values with broader
categories (Samarati and Sweeney 1998b). For instance, this can involve converting a specific age into an
age range, or a precise location into a more general one. The purpose of generalization is to obscure
demographic information to meet privacy standards while still enabling meaningful data analysis.
Generalization strategies can be classified into two categories: global and local.

• In global generalization, a given value for a given column will always be generalized in the same way.
For example, if you decide to transform age 34 into age range 30–35 for one record, all records that
have ages between 30 and 35 will be transformed into this fixed range.

• Local generalization does not have this constraint. It allows you to pick a different generalization for
each record. For example, a value 34 in the age column might stay untouched for one record and be
generalized for another.

Data masking Data masking or data obfuscation, involves altering the original data with modified
content, such as different characters or other data types. This technique can protect sensitive information
by making it unreadable and useless to unauthorized viewers, without affecting the data’s usability for
legitimate processing and analysis. (Hush Hush, nd). Data involved in any data-masking or obfuscation
must remain meaningful on several levels:

• The data must still be meaningful for the application’s logic. For instance, if elements of addresses,
such as cities and suburbs, are replaced with alternative names, any features within the application
that validate postal codes must continue to function correctly and as intended.

• The data should be sufficiently altered to ensure that it is not apparent that the masked data originate
from a production data source.

• When multiple databases within an organization contain the specific data element being masked, the
masked values may need to be consistent across all these databases.

The techniques available for data masking include substitution, shuffling and applying variances to
numbers and dates.
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Tokenization Tokenization is a process that replaces a sensitive data element with a token. In payment
systems, tokens—usually random strings of numbers—replace the 16-digit primary account number of
payment cards. These tokens can be device-based, as seen in Apple Pay, or cloud-based, as used in Google
Pay. Entities called token server providers will perform tokenization in a secure environment and hold a
key that allows tokens to be securely matched to the true primary account number they represent. This
approach has become standard practice in the card payment industry (Stapleton and Poore 2011) to
protect both consumers and businesses from the risks associated with unauthorized access to sensitive
payment information. Single-use tokens are generated for specific transactions, adding an extra layer of
security to payment transactions.

2.2.4 Synthetic data

Unlike anonymization methods, these techniques are employed primarily to generate new datasets rather
than altering the existing dataset. They do this through learning from the original dataset and using
this information to create new independent samples. Synthetic data ideally retain the statistical patterns,
properties, features and characteristics of the original data not limited to format and relationships among
attributes. This technique is best employed when a large amount of data is required for system testing but
use of the actual data is limited or prohibited. The synthetic data are broadly classified into three categories:

• Fully synthetic data: These data are completely synthetic and do not contain original data. To
achieve this, the fully synthetic data generators first identify the density function of attributes in
the original data and estimate the parameters of these density functions. Then, for each attribute,
privacy-protected series are generated by randomly picking up the values from the estimated density
functions.

• Partially synthetic data: In contrast to the fully synthetic data, the method used to generate
partially synthetic data replaces only values of the selected sensitive attribute with synthetic values.
The original values are replaced only if they possess high risk of confidentiality. Disclosure risk is higher
in partially synthetic data than in fully synthetic data because the former contain original data along
with imputed synthetic data.

• Hybrid synthetic data: These data are generated using both original and synthetic data. For each
record of original data, a nearest record in the synthetic data is chosen, and both are combined to form
hybrid data. The hybrid synthetic data hold the advantages of both fully and partially synthetic data.

2.2.5 Differential privacy

The concept of differential privacy was introduced by Dwork et al. (2006). An algorithm is considered
differentially private if an observer, upon seeing its output, cannot determine whether a specific individual’s
information was included in the computation. Differential privacy arises frequently in discussions about
pinpointing individuals whose data might be present in a database. While this concept does not explicitly
address identification and reidentification attacks, algorithms that are differentially private are likely to
withstand such attacks. Differential privacy offers strong and robust guarantees that facilitate modular design
and analysis of differentially private mechanisms due to its composability, robustness to post-processing, and
graceful degradation in the presence of correlated data. Dwork et al.’s paper presents both a mathematical
definition of differential privacy and a mechanism based on the addition of Laplace noise that satisfies the
definition as follows:

Definition of 𝜖-differential privacy: Let 𝜖 be a positive real number and A be a randomized algorithm
that takes a dataset as input (representing the actions of the trusted party holding the data). Let im(A)
denote the image of A. The algorithm A is said to provide 𝜖-differential privacy if, for all datasets 𝐷1 and
𝐷2 that differ on a single element (i.e., the data of one person), and all subsets 𝑆 of im(A):

Pr[A(𝐷1) ∈ 𝑆] ≤ 𝑒𝜖 × Pr[A(𝐷2) ∈ 𝑆],

The Laplace mechanism: The Laplace mechanism adds Laplace noise (i.e., noise from the Laplace
distribution), which can be expressed by probability density function noise(𝑦) ∝ exp(−|𝑦 |/𝜆), having mean
zero and standard deviation

√
2𝜆. Now, in our case we define the output function of A as a real valued

function (called the transcript output by A) as TA (𝑥) = 𝑓 (𝑥) + 𝑌 , where 𝑌 ∼ Lap(𝜆) and 𝑓 is the original
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real valued query/function we plan to execute on the database. Now clearly TA (𝑥) can be considered to be
a continuous random variable, where

pdf (TA,𝐷1
(𝑥) = 𝑡)

pdf (TA,𝐷2
(𝑥) = 𝑡) =

noise(𝑡 − 𝑓 (𝐷1))
noise(𝑡 − 𝑓 (𝐷2))

,

which is at most 𝑒
| 𝑓 (𝐷1 )− 𝑓 (𝐷2 ) |

𝜆 ≤ 𝑒
Δ( 𝑓 )
𝜆 . We can consider Δ( 𝑓 )

𝜆
to be the privacy factor 𝜖 . Thus, T follows a

differentially private mechanism (as can be seen from the definition above). Though we have used Laplacian
noise here, other forms of noise, such as the Gaussian noise, can be used, but they may require a slight
relaxation of the definition of differential privacy.

In payment systems, differential privacy can be applied to enhance the confidentiality of transaction data.
For example, a financial institution might use a differential privacy algorithm to add noise to transaction
datasets, such as the transaction amounts or timestamps. This modification makes it impossible to identify
individual transactions or link them back to specific customers while still allowing the institution to analyze
overall spending patterns and trends.

2.3 Shielding data

2.3.1 Special digital signatures

While the aim of using digital signatures is to maintain authenticity of messages and non-repudiation,
special signatures exist to enhance privacy by, for example, hiding the signer in a group of users (e.g., group
signatures, ring signatures) or hiding the content of a signed message (e.g., blind signatures). This section
will briefly recall some special signature schemes.

Blind signatures The first special digital signature scheme introduced to the payment system as a means
of privacy is the blind signature. It was introduced for untraceable payments by Chaum (1983). The blind
signature is a form of digital signature in which the message is disguised (blinded) before it is signed, that is
𝑚′ ≡ 𝑚𝑟𝑒 mod 𝑁. The blind signature 𝑠′ ≡ (𝑚′)𝑑 mod 𝑁, when given to the intended recipient, will have the
necessary information to remove the blinding factor to reveal the resulting signature 𝑠 = 𝑠′ · 𝑟−1 mod 𝑁. The
signature 𝑠 then can be publicly verified against the original, unblinded message in the manner of a regular
digital signature. The potential applications of Rivest, Shamir and Adleman’s (RSA) blind signatures led to
a standard recently published by the Internet Engineering Task Force (Denis, Jacobs, and Wood 2023).

The initial idea of blind signatures is for untraceable payments (Chaum 1983). Further research has
expanded its applications to include anonymous authentication. A user possessing valid blind signatures
can access a server while maintaining anonymity, meaning the service provider cannot identify the actual
user accessing the service. Additionally, it ensures unlinkability, preventing the provider from associating a
previously issued token with a specific user.

Group signature scheme A group signature scheme, introduced by Chaum and van Heyst (1991), is a
type of signature scheme in which an entity called a group manager owns a master key. When a new user
joins the group and is onboarded, they receive a signing key. A user then can sign messages anonymously
in an unlinkable fashion. The group manager is the only entity that can learn the identity of the user from
the signature. Moreover, the group manager and other members cannot forge a signature on behalf of a
non-participant member.

A group signature offers nice privacy properties, including the anonymity of signers and unlinkability—
such that given two messages and their signatures, we are unable to determine whether the signatures
originate from the same signer. The group signature scheme and its variants have a number of privacy-
preserving applications, such as e-commerce systems, auctions, trust computing groups and vehicle safety
communication (Garms 2020). A group signature scheme can be either static (Chaum and van Heyst 1991),
where membership in the group is decided at the time a group is set up and new members cannot be added
or removed, or dynamic, where group members can be added or removed (Delerablée and Pointcheval 2006;
Ling et al. 2017).

Ring signatures Ring signatures were first introduced by Rivest, Shamir, and Tauman (2001). These
allow an individual to anonymously sign a message on behalf of a group, without revealing their identity.
Unlike group signatures, ring signatures do not require a setup phase. The signer does not need the
knowledge, consent or assistance of other members of the ring to include them. Instead, all that is required
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is knowledge of their regular public keys. Ring signatures offer unconditional anonymity—that is,
untraceability and unlinkability. Untraceability makes it impossible to identify the signer, while
unlinkability makes it impossible to determine if two signatures were produced by the same user. This level
of anonymity ensures robust privacy protection for individual signing actions. However, this feature could
also be exploited for illegal activities. While all group, blind and ring signatures offer signer anonymity,
only ring signatures and their variants are used in blockchain networks because they do not require a
trusted setup phase. This makes ring signatures more adaptable and secure for use in decentralized
environments like blockchains. Noether (2015)presents a combination of three techniques: (1) ring
signatures to protect the sender’s privacy, (2) homomorphic commitment to hide the transaction amount
and (3) stealth addresses to protect the recipient’s privacy to a protocol. Ring confidential transactions, or
RingCT, is the protocol responsible for implementing private transactions in Monero.

One-time (ring) signatures A one-time signature scheme is like a signature scheme except that it is
secure as long as a secret key is used to sign only a single message. The signing key can be recovered if it
is used more than one time. The first one-time signature scheme was introduced by Lamport (1979). Its
security is based on one-way functions and allowed the signing of one message per pair of private/public
keys. van Saberhagen (2013) combines the ideas of one-time signatures and ring signatures to propose a new
primitive: that is, one-time ring signatures. Like one-time signatures, the signer in this signature scheme
uses the private key to sign only one time on behalf of a group.
In contrast to one-time signatures, which do not inherently prevent double spending on blockchains, the Link
algorithm in one-time ring signatures enables the linking of two valid signatures, 𝜎1 and 𝜎2, to determine
whether they were signed by the same private key. More details on this can be found in the CryptoNote
whitepaper (2013).

2.3.2 Homomorphic encryption

Homomorphic encryption (HE) is a form of encryption that allows computation on ciphertexts, generating
an encrypted result that, when decrypted, matches the result of the operations as if they had been performed
on the plaintext. The computations are represented as either Boolean or arithmetic circuits. This enables
sensitive data to be processed securely without exposing it, thereby preserving privacy throughout the
computation process. The initial idea of computing over encrypted data was first introduced by Rivest,
Adleman, and Dertouzos (1978). More formally, 𝑀 and 𝐶 are plaintext and ciphertext spaces, respectively.
An encryption scheme 𝐻𝐸 is called homomorphic over an operation ‘’∗” if it supports the equation 𝐻𝐸 (𝑚1) ∗
𝐻𝐸 (𝑚2) = 𝐻𝐸 (𝑚1 ∗ 𝑚2), for ∀𝑚1, 𝑚2 ∈ 𝑀.

The operation ∗ could be an addition or multiplication. Given 𝑐1 = 𝐻𝐸 (𝑚1) and 𝑐2 = 𝐻𝐸 (𝑚2), the
homomorphic properties of a fully homomorphic encryption scheme can be shown as follows:

Homomorphism over addition:
𝑐1 + 𝑐2 = 𝐻𝐸 (𝑚1) + 𝐻𝐸 (𝑚2)

Homomorphism over multiplication:
𝑐1 · 𝑐2 == 𝐻𝐸 (𝑚1) · 𝐻𝐸 (𝑚2).

To evaluate an arbitrary function, it is sufficient that a homomorphic encryption scheme supports both
addition and multiplication operations, as addition and multiplication are functionally complete sets over
finite sets. HE schemes that support only one of these two operations—either addition or
multiplication—on encrypted data are called partially homomorphic encryption (PHE). RSA (Rivest,
Shamir, and Adleman 1978) is a typical examples of PHE. Otherwise, schemes supporting both operations
are called fully homomorphic encryption (FHE). The first FHE scheme was not realized until 2009, when
Gentry (2009) introduced a construction-based ideal lattice scheme. Although this scheme was very
inefficient due to its costly bootstrapping operation, it inspired a number of subsequent works (Brakerski,
Gentry, and Vaikuntanathan 2012; Chillotti et al. 2017). The new form of FHE, Torus-FHE (Chillotti
et al. 2020), introduced programmable bootstrapping, allowing for the computation of more than
thousands of bootstrapping operations per second. This scheme led to huge performance advantages,
making FHE practical today.
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2.3.3 Cryptographic commitment

A cryptographic commitment scheme allows us to commit to a chosen message while preserving its secrecy
(with the ability to reveal it later) by publishing its hash value. A binding factor can be used when data
size is small to prevent a brute-force attack. A commitment 𝐶𝑜𝑚(𝑚, 𝑟) to message 𝑚 and a blinding factor
𝑟 has the following properties:

• Hiding: One party wants to commit the message 𝑚 without revealing the content of 𝑚 itself.

• Binding: If one party makes a commitment to 𝑚, they reveal a different message 𝑚′ instead.

Brassard, Chaum, and Crépeau (1988) provide a formal definition of a commitment scheme, as follows:
A commitment scheme consists of three polynomial-time algorithms 𝐶 = (Gen, Commit, Open) satisfying

the following constraints.

• 𝑟 ← Gen(1𝜆) : take a security parameter 1𝜆 and output a random number 𝑟.

• 𝑐 ← Commit(𝑚, 𝑟) : given a message 𝑚 and randomness 𝑟, compute as output a value 𝑐 that hides
message 𝑚 and such that it is computationally impossible to compute any pair (𝑚′, 𝑟 ′) such that
Commit(𝑚′, 𝑟 ′) = Commit(𝑚, 𝑟).

• 𝑏 ← Open(𝑐, 𝑚, 𝑟) : given (𝑐, 𝑚, 𝑟) with a commitment 𝑐, a message 𝑚 and randomness 𝑟, the algorithm
returns true if and only if 𝑐 = commit(𝑚, 𝑟).

Pedersen commitment The Pedersen commitment is a commitment scheme that is binding under a
discrete logarithm assumption (Pedersen 1992). Given an elliptic curve 𝐸 defined over a finite field 𝐺𝐹 (𝑝),
assume that 𝐸 has a group of points of large order 𝑞 in which the discrete logarithm is hard, and two random
public generators 𝑔 and ℎ. The commitment of a message 𝑚 is a point 𝑐 on the elliptic curve 𝐸 that binds
a message 𝑚 and a random 𝑟 to a point 𝑐 on 𝐸 . The Pedersen commitment is defined as follows:

𝐶𝑜𝑚(𝑚, 𝑟) = 𝑔𝑚ℎ𝑟

It would be infeasible to calculate another pair 𝑚′, 𝑟 ′ that can produce the same commitment 𝐶𝑜𝑚(𝑚).
The Petersen commitment is used in cryptocurrencies such as Monero to keep the amount of transactions
confidential. Additionally, Pedersen commitments are additively homomorphic, meaning the sum of a set of
commitments equals a commitment to the sum of the data, with the binding factor set as the sum of the
individual binding factors.

2.3.4 Zero-knowledge proofs

Goldwasser, Micali, and Rackoff (1989) first put forward and analyzed the concept of interactive proof
systems. This led to the creation of an important branch of cryptography and computational complexity
theory: that is, ZKP. In a ZKP system, a prover convinces a verifier that some statement is true or some
computations were correctly executed while leaking nothing but the validity of the assertion. ZKP has a
broad application because of this nature. As a simple example, consider the case where the prover claims
to have a way of factorizing large numbers. The verifier will send the prover a large number and the prover
will send back the factors. Successful factorization of several large integers will decrease the verifier’s doubt
about the truth of the prover’s claim. In spite of this, the verifier will learn nothing about the factorization
method.

Formally, a ZKP model is defined as an interactive proof system (𝑃,𝑉), where 𝑃 is a prover and 𝑉 is a
verifier. Protocol (𝑃,𝑉) is for proving a language membership statement for a language over {0, 1}. Let 𝐿

be a language over {0, 1}∗, for a membership instance 𝑥 ∈ 𝐿, 𝑃 and 𝑉 must share the common input 𝑥. A
proof instance is denoted as (𝑃,𝑉) (𝑥). Upon completing the interaction between two parties, the output of
the protocol should be of form (𝑃,𝑉) (𝑥) ∈ {Accept, Reject}, representing 𝑉 ’s acceptance or rejection of 𝑃’s
claim that 𝑥 ∈ 𝐿. Note that an interactive ZKP system can be converted to a non-interactive ZKP system
by using the Fiat-Shamir transformation (Fiat and Shamir 1987).

A ZKP must have the following properties:

• Completeness: If the statement is correct, then the verifier will “always” accept.

• Soundness: If the statement is incorrect, then the verifier will “always” reject.
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• Zero knowledge: No (malicious) verifier can get any extra information beyond 𝑥 ∈ 𝐿 from the proof
procedure, except the correctness of the statement (Goldwasser, Micali, and Rackoff 1989).

• Succinctness: Both the length of the proof and the verification time are bounded by polylog functions
with respect to the size of the circuit 𝐶 representing 𝑥 ∈ 𝐿 (Kilian 1992).

• Proof of knowledge (POK) or argument of knowledge (AOK): Extracting a witness from an
acceptable proof/argument would be efficient (Blum, Feldman, and Micali 1988).

A succinct non-interactive argument that possesses the properties of zero-knowledge and proof of
knowledge is referred to as zk-SNARK. zk-SNARK protocols can require either an initial trusted set-up
(per circuit (Groth 2016) or universal (Gabizon, Williamson, and Ciobotaru 2019)) or in zk-STARKs a
transparent set-up (no trusted set-up (Ben-Sasson et al. 2018)). A universal trusted set-up would be better
than a trusted set-up per circuit, and a transparent set-up is even better than the universal set-up. This is
because it does not use secret data, and thus anyone could verify that it ran correctly. Furthermore,
zk-STARKs rely on collision-resistant hash functions, and thus it eliminates the number-theoretic
assumptions of zk-SNARKs, which are computationally expensive and theoretically can be prone to attack
by quantum computers.

Recently, ZKP has been attracting a great deal of attention because of its applications in blockchains.
(Hopwood et al. 2021) implement zk-SNARKs, allowing a transaction to be verified without revealing any
details about the transaction itself. Data are obscured using zk-SNARKs and recorded on the Zcash network,
similar to other cryptocurrencies. Zcash’s proofs are both succinct and non-interactive, meaning that the
proofs could be verified without requiring communication between the sender and verifier. Other applications
include zk-rollup (Polygon Labs 2024), 1 which enhances the scalability of the blockchains, and zkBridge (Xie
et al. 2022), which provides security and privacy for cross-chain transactions over two different blockchain
platforms.

2.3.5 Privacy-enhanced hardware

The simplest example of privacy-enhanced hardware is the use of trusted execution environments (TEEs)
to perform secure computation on sensitive data. These technologies include Intel’s Software Guard
Extension (Intel® SGX) (Intel Corporation n.d.) and ARM’s TrustZone (ARM n.d.). In a TEE, a
software program is executed securely in an isolated and secure area. Data and programs are encrypted
outside of the microprocessor and can be decrypted and executed with the cryptographic key only inside
the microprocessor. Different from other cryptographic solutions, this technology allows any arbitrary
programs to be executed securely.

A potential security issue associated with TEE technology is side-channel analysis (Kocher 1996), which
can lead to information leakage. Given the variety of the potential privacy-enhanced hardware available
for implementation, we also need to consider the vulnerabilities of each solution independently. Thus, to
protect data confidentiality, a TEE must be securely designed and implemented. Today, a combination of
hardware-based TEEs, software, and the infrastructure to support them is offered as a complete product,
commonly referred to as confidential computing (Confidential Computing Consortium 2022). Numerous
vendors have formed a consortium (Linux Foundation 2023) to collaborate on this initiative, emphasizing
data protection during processing. This has become increasingly pertinent with the widespread shift from
on-premises systems to cloud computing.

2.3.6 Transaction tumbler

Over the development of cryptocurrencies, several designs and improvements have been made to transaction
tumblers, popularly known as ”mixers.” Originally, tumblers involved a scheme where multiple users would
combine their unspent transaction output (UTXO) funds and spend to destination addresses in a bundle,
thus providing some plausible deniability in terms of who intended to send what funds to which recipients
(Bitcoin Wiki n.d.). Later on, better schemes were invented that allowed users to tumble their funds in
zero-knowledge while hiding the transaction graph available from the original scheme. The most infamous
implementation of this scheme is Tornado Cash.

Tornado Cash operates by enabling users to deposit funds of a fixed denomination into the protocol.
Using a fixed denomination is crucial because varying amounts can increase the likelihood of correlating

1Polygon zkEVM offers an example of a zk-rollup application.
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senders and receivers within this specific scheme. When users make a deposit in the system, a secret is
simultaneously generated for a UTXO, allowing the original sender to transfer funds to a recipient without
revealing their identity. This is because the scheme only verifies the presence of a valid secret, without
disclosing which UTXO it is linked to. When the sender decides to move the funds, they can either (1)
construct a ZKP that includes proof of transaction validity, recipient details, a nullifier hash and transaction
fees and send it to a relayer who will then submit the transaction details to the on-chain smart contract on
the sender’s behalf, or (2) pass the secret directly to the recipient through an external channel, allowing the
recipient to withdraw the funds themselves.

In this scheme, relayers are essential when the recipient lacks the funds to cover fees: for example, gas in
Ethereum. The sender cannot execute the withdrawal transaction themselves, as it would compromise the
privacy protections (Pertsev, Semenov, and Storm 2019). The latest version of the protocol now includes
shielded transfers, which enable users to securely move pledged funds to other users within Tornado Cash
and also support withdrawals of arbitrary amounts.

2.4 System and architecture

2.4.1 Secure multiparty computation

SMPC (also known as secure computation, multiparty computation or privacy-preserving computation)
aims to create methods for parties to jointly compute a function over their inputs while keeping those inputs
private. For example, Alice, Bob and Charlie, with respective inputs 𝑥, 𝑦 and 𝑧 denoting their salaries,
want to find the highest of the three salaries without revealing to each other how much each of them makes.
Mathematically, this translates to them computing:

𝐹 (𝑥, 𝑦, 𝑧) = 𝑚𝑎𝑥(𝑥, 𝑦, 𝑧)

Unlike traditional cryptographic tasks, where cryptography ensures security and integrity of
communication or storage and the adversary is outside the system of participants (an eavesdropper on the
sender and receiver), the cryptography in this model protects participants’ privacy from each other. The
foundation for SMPC was introduced in (Yao 1982) and (Goldreich, Micali, and Wigderson 1987) with
work on mental poker. This cryptographic work simulates game playing/computational tasks over distances
without requiring a trusted third party. In this setting, the computation is carried out interactively
between several participating parties in such a way that sensitive data are kept hidden (e.g., encrypted or
shared among protocol participants) and only the desired output of the computation is available.

An SMPC protocol must offer the following security properties:

• Input privacy. No information about the private data held by the parties can be inferred from the
messages sent during the execution of the protocol.

• Independence of inputs: Corrupted parties must choose their inputs independently of the honest
parties’ inputs. This property is crucial in a sealed auction, where bids are kept secret and parties
must fix their bids independently of others.

• Correctness: Any proper subset of adversarial colluding parties willing to share information or deviate
from the instructions during the protocol execution should not be able to force honest parties to output
an incorrect result.

In the following sections, we show that many operations in a CBDC system could be deployed over an SMPC
system in which participants are end users, central banks and commercial banks.

Another interesting use case of SMPC is to prevent a single point of failure. A party splits its data into
many different shares stored in multiple servers, enhancing not only the resilience but also the security of
data. A typical example is SMPC-based digital wallets (Zengo Ltd. n.d.), in which the private signing key is
sharded into 𝑛 pieces and distributed to 𝑛 parties using a secret sharing scheme (e.g., Shamir (1979) secret
sharing). It then requires 𝑘 parties (Shamir’s scheme requires 𝑘 ≥ 2𝑛/3) involved in the process of recovering
the private key.

2.4.2 Data dispersion

Privacy can be enhanced by incorporating data-dispersion techniques, which apply encryption methods to
all targeted data. A widely used method is cryptographic splitting, in which data is fragmented, encrypted
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and distributed in a manner that prevents any single system from reading the data it holds. Typically, the
data are then further encrypted locally on each system. Reading the data requires the cooperation of all
the systems involved in splitting the data, otherwise there is not enough information to retrieve the original
data. Erasure coding, a forward error correction code, is another technique often used as a sub-component
of data dispersion methods. In schemes that involve sharding the data in the dispersion process, erasure
coding helps prevent data loss.

This approach is commonly used in data centres or scenarios involving distributed data storage, as
opposed to selectively encrypting messages within a secure communication protocol. These techniques are
most often used in secure cloud storage, often in conjunction with redundant array of independent disks
(RAID) solutions to improve the data security and privacy of client data.

2.4.3 Privacy-preserving digital identity

Traditionally, most systems use a centralized approach for identification and authentication. In this model,
the service provider, which offers one or more services to users, fully controls the authentication process and
manages the associated risks. The authentication information for users is stored on the service provider’s
side, but each user is required to remember their password or security question to access the services. As
the use of internet services has increased, this requirement has become cumbersome for users who need to
remember multiple credentials. This situation also introduces numerous security issues, as users often reuse
credentials across various services.

Federated identity In an attempt to resolve these issues, researchers developed the concept of a federated
identity model that allows users to reuse credentials across organizational and system boundaries. In this
model, a trusted identity provider manages users’ digital identities and allows them to use their credentials
to access resources in other domains without needing separate accounts for each service. For instance,
customers in Canada’s commercial banks could use their banks’ credentials to log into government services
such as Canada Revenue Agency or Immigration, Refugees and Citizenship Canada.

Although federated identity management offers several advantages in terms of user convenience and users’
privacy, it raises certain privacy considerations:

• Data sharing and leakage: Federated identity systems often involve the sharing of user attributes
and claims (e.g., name, email address) between identity providers and service providers. Excessive or
unnecessary data sharing can lead to the leakage of sensitive information, potentially violating user
privacy.

• User tracking: When users authenticate with a federated identity, their activities across different
service providers might be recorded and correlated by identity providers, creating a more comprehensive
profile of their online behaviour. This tracking raises concerns about how this information is used and
whether it is disclosed to third parties. For example, this information could potentially be used for
targeted advertising or other purposes without the user’s consent.

• Legal compliance: Different jurisdictions have varying data protection and privacy laws. Federated
identity systems that span multiple countries or regions need to ensure compliance with relevant
regulations, which can be complex. As a result, a digital federated identity from a specific identity
provider may be usable for only a limited range of services.

Self-sovereign identity In recent years, a new decentralized model to manage digital identities, called
self-sovereign identity (SSI), has emerged. This approach empowers users with greater control over their
personal information and how it is shared and used. SSI has the following characteristics that could enhance
users’ privacy:

• User-centric: SSI places the individual at the centre of the identity management process. Users have
full control over their identity information and can decide when and with whom to share it.

• Decentralized identifier: A core concept in an SSI is the decentralized identifier, or DID. DIDs
are unique, persistent and cryptographically verifiable identifiers that are not tied to any centralized
registry or authority. DIDs are the foundation for building SSIs.
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• Verifiable credentials: In an SSI, individuals can issue, receive and store verifiable credentials. These
are digital attestations or claims about a person’s identity, qualifications or attributes. Verifiable
credentials are tamper-proof and can be easily shared and verified without the need for a central
authority.

• Selective disclosure: With an SSI, individuals can selectively disclose only the specific pieces of
information required for a particular transaction or interaction. This minimizes the exposure of
sensitive data and enhances privacy.

• Interoperability: SSI standards and protocols are designed to enable interoperability across different
platforms and ecosystems. This allows users to use their SSIs in various contexts, from financial services
to health care to online shopping.

• No central authority: Unlike traditional identity systems, an SSI has no single central authority or
gatekeeper. Instead, trust is established through decentralized consensus mechanisms and
cryptographic proofs.

In this model, users have full control over their data. This model relies on users to create their own DIDs
using public key cryptography and to have full control over them. Users can acquire verifiable credentials
from trusted entities, such as governments, private companies or universities. Users manage DIDs, verified
credentials and the associated cryptographic keys in their digital wallets (e.g., on smartphones). This model
provides better privacy and security since no central parties have access to users’ digital identities and the
associated data.

In the realm of SSI, the current technological landscape shows significant momentum, in both industry and
academia. With a surge of interest and investment, various government and private entities are exploring the
potential of SSI. They are crafting standards to establish a robust framework for the seamless integration and
interoperability of decentralized identity solutions. Despite this progress, challenges persist in the maturity
of SSI technology. Researchers and practitioners are engaged in addressing complexities associated with
scalability, security and user adoption, essential for the widespread implementation of SSI systems.

2.4.4 Federated learning

Federated learning (FL) was introduced by McMahan et al. (2016) as a method that enables the analysis
and learning from data distributed across multiple owners without the need to share individual datasets.
Unlike traditional data analytics, which process data as a single dataset, FL handles data in a distributed
manner. A central server coordinates with participants, who aggregate only the essential data locally. Only
the minimal information required for the learning task is sent to the central server, where it is integrated
with similar data from other sources. Figure 1 illustrates the operation of FL.

Figure 1: Federated learning

FL alleviates privacy concerns by ensuring that an individual’s raw data is not transmitted to any external
parties. It enhances user confidence by retaining only the pertinent data locally on the device. It treats the
data on each device as separate training batches. Local updates to the global model are computed on each
device and then sent to a central server for integration, depending on the learning algorithm.
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Algorithm 1 Federated stochastic gradient descent

1: Initialize parameters 𝜃
2: for each client 𝑖 in 𝑁 clients do
3: Receive data 𝐷𝑖 from client 𝑖
4: Compute local gradient ∇𝜃𝑖

5: Send ∇𝜃𝑖 to server
6: end for
7: Aggregate gradients ∇𝜃 =

∑𝑁
𝑖=1 ∇𝜃𝑖

8: Update parameters 𝜃 ← 𝜃 − 𝜂∇𝜃

However, FL faces challenges such as dealing with imbalanced and not independent and indentically
distributed (non-i.i.d.) data. Additionally, concerns exist about the possibility of malicious participants or
a central server compromising privacy. A malicious participant could potentially deduce the training data
of others from the model updates sent to the central server, while the central server might infer sensitive
information from the aggregated data (for more details on advances and open problems in FL, see (Kairouz
et al. 2021)) .

2.4.5 Onion routing

The onion routing protocol in the Lightning Network is inspired by the Sphinx protocol (Danezis and
Goldberg 2009), which is an extension of the onion routing technique used for anonymous communication
over computer networks to provide privacy in transactions. Successive layers of hashed timelock contracts
(HTLCs) and encrypted payment forwarding instructions are constructed off-chain to obfuscate the origin
and destination of transactions. This ensures that, in cryptocurrency onion routing schemes, intermediaries
do not necessarily know where they reside in the layered transaction, nor do they know the source and
ultimate destination of the payment. Participants also are not aware of exactly how many other participants
were involved in the payment layer.

The fundamental principle of onion routing is that the creator or originator of the onion message possesses
sufficient information to establish shared secrets between the sender and each intermediary. This enables the
encryption of the final onion payload in multiple, sequential layers. Additionally, as each layer of the onion
is peeled away by intermediary nodes along the routing path, only partial routing information is revealed.
This ensures that each intermediary node knows only the next destination to forward the onion message,
without any knowledge of the overall path. Onion messages are also filled with pseudorandom padding to
maintain a consistent fixed length, preventing observers or intermediary nodes from deducing their position
in the routing path based on message length (Lightning Network RFC 2009).

3 Central bank digital currency design with privacy-enhancing
technology

CBDC may involve the collection and management of PII (e.g., users’ name, address, social security number
and financial details including transaction history) to provide meaningful payment services to end customers,
in observance with various laws and regulations to prevent illicit usage (e.g., Proceeds of Crime (Money
Laundering) and Terrorist Financing Act (2000) in Canada), and to inform business decision-making. Due
to the highly sensitive nature of these data, it is crucial to use privacy-by-design principles to incorporate
privacy protections into the design and development of the CBDC system. As a result, while financial
compliance (e.g., AML) is an important consideration for the CBDC system, these protections need to be
balanced with privacy. The goal of this review is to explore the potential techniques to provide a high level of
privacy to end users while ensuring that the system is compliant with the financial regulations and protected
against illicit usage.

The design of CBDC will most likely involve trusted and authorized intermediaries between the central
bank and end users to perform various operations, such as onboarding users. Privacy can be implemented
through a combination of legal contracts for safeguarding PII, making it clear to entities what they can
use data for, and through using technical controls such as encryption and access control. Our objective
is to maximize the use of technology to implement customer privacy. Most of the current similar systems
dealing with PII use conventional technologies such as access control, encryption for data at rest and in
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transit, and consent management. These technologies have limitations in terms of unencrypted data during
use, improper use of data when shared with external entities, unmanagable access control and ineffective
consent management. Recently, with cryptocurrencies gaining the attention of cryptographers and computer
scientists, advances in PET have shown promise in handling some of these challenges. We examine the use
of these technologies in the design of a CBDC system and the challenges associated with it.

The design of a CBDC system consists of various modular components, each requiring careful attention
to privacy and data protection to ensure overall privacy. We identify the following components as having a
high impact on privacy due to their involvement in the collection, storage and processing of PII.

• Onboarding service: This service is partly responsible for verifying the information required to
register a new user in the CBDC system. This process ensures due diligence related to regulatory, legal
and credit requirements. It includes know-your-client (KYC) checks and procedures such as identity
(ID) verification and document collection. This service may receive a (digital) identity from an identity
provider and validate that the user presenting the ID is, in fact, the user the ID represents. It may
also be a potential identity provider in the sense that it receives a collection of primary identification
documents to construct a usable identity for purposes that meet the requirements of registering for
CBDC. The profile constructed after onboarding will effectively act as the subset of PII that links
transactions with actual users. Thus, the onboarding service must be carefully designed both in terms
of technical implementation and governance to preserve privacy under non-criminal scenarios and be
resistant to abuse.

• Identity and access management: Effective and secure authentication and access control are
essential to prevent unauthorized access to sensitive data and to provide anonymous authentication
to end users. This service applies mainly to various actors in the CBDC system, including end users
and back-office administrators. For the end users, part of the onboarding process is to assign
authentication credentials (e.g., username and password or biometric data). These need to be
designed properly to ensure privacy for users when different entities involved in the CBDC system
create spending profiles and manage sensitive information, especially biometric data of end users.
Proper access control for back-office administrator users is also required to ensure that they have
access only to the resources and functions they are authorized to use. Access control mechanisms,
enhanced by PETs such as encryption and ZKPs, ensure that only authorized individuals can access
sensitive data, in this way safeguarding privacy and ensuring regulatory compliance.

• Transaction processor: This component plays a crucial role in the processing, settling and recording
of various types of transactions. A simple transaction consists of three main parts: payer, payee
and transaction amount. However, it can contain various other fields (e.g., timestamp, device ID or
payer location) known as transaction metadata, which can be used for purposes such as auditing,
fraud prevention and analysis. Both main transaction data and metadata can raise significant risks
if mishandled or misused. In addition to conventional technologies, PETs can potentially play an
important role in the design of a transaction processor.

• Compliance services: The design of the CBDC system will include a service to ensure compliance
with jurisdictional laws and regulations (e.g., Proceeds of Crime (Money Laundering) and Terrorist
Financing Act (2000) in Canada) to prevent financial crimes. Typically, compliance requires that
institutions with compliance obligations can view users’ transactions (e.g., financial institutions) and
have the authority to reveal suspicious activities to other entities (e.g., the Financial Transactions and
Reports Analysis Centre of Canada, or FINTRAC 2). Effective compliance also requires institutions
to collaborate by sharing data. This raises many potential privacy issues where PETs can be used in
the design to ensure effective compliance without unnecessarily revealing sensitive data.

• Wallets: Wallets are the key components of the system for individuals and entities to store, acess
and transact CBDC. Wallets in the CBDC system will manage and have access to a great deal of PII.
Along with providing security and functionality, the design must ensure the wallets protect the privacy
of the individuals.

• Data analytics: CBDC data hold significant value for various purposes such as fraud prevention,
monitoring and policy research. However, it is crucial that the design of the CBDC system safeguards
individual privacy when internal and external stakeholders share this data. Certain PETs—such as

2FINTRAC is the financial transactions regulator in Canada.
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altering data techniques, FL and SMPC—can be instrumental in meeting these objectives without
violating the privacy principles of the system.

Although the development of PETs and their application to financial systems is experiencing great
momentum, challenges still exist in the following areas:

• Performance: Can these techniques provide the desired scalability for a potential CBDC system (e.g.,
10,000 transactions per second)?

• Maturity: Are there libraries that are tested and proven in the field?

• Security: Have these techniques gone through the rigour to clear the security analysis of a CBDC
system?

• Compliance services: Can we perform required regulatory compliance (e.g., KYC and AML) when
using these techniques since most of these techniques rely on hiding or masking the data?

Table 2 shows the application of PET techniques in the design of CBDC components.

Table 2: Summary of the use of privacy-enhancing technology techniques in central bank digital currency
use-cases

Techniques Onboarding IAM
services

Transaction
processing

Compliance
services

Data
analytics

Wallets

Fully
homomorphic
encryption

✓ ✓ ✓ ✓

Secure
multiparty
computation

✓ ✓ ✓ ✓ ✓ ✓

Special
signatures

✓ ✓ ✓ ✓

Cryptographic
commitment

✓ ✓

Altering data
techniques

✓ ✓

Self-sovereign
identity

✓ ✓ ✓

Federated
learning

✓

Privacy-
enhancing
hardware

✓ ✓ ✓ ✓

Zero-knowledge
proof

✓ ✓ ✓ ✓

Onion ring ✓

Transaction
tumbler

✓

4 Onboarding

Onboarding is the process of introducing a new user to a target system and is often tied to KYC protocols
to comply with local AML and anti-terrorist financing (ATF) regulations. Efficient and cost-effective
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onboarding is a critical component of the overall CBDC system. Digital identity credentials can play a
major role in facilitating the onboarding process. If a user has already completed KYC with a trusted
financial institution, the system could leverage these existing KYC credentials to onboard the user with
another provider, eliminating the need to repeat the process. Successful onboarding would result in the
issuance of valid authentication credentials for the user.

In the context of CBDC systems, onboarding users can be facilitated through both virtual and in-person
methods, ensuring flexibility and accessibility. Virtual onboarding leverages digital platforms to verify users’
identities remotely, using tools such as video calls, biometric verification and the submission of electronic
documents. This approach offers convenience and efficiency, allowing users to complete the process from
anywhere with access to internet and sufficient hardware. In contrast, in-person onboarding involves users
physically visiting a designated location, such as a bank or service centre, where their identity can be verified
face-to-face by a representative. This method may be preferred by those who are less comfortable with
technology or who require additional assistance during the process. By offering both virtual and in-person
onboarding options, the system can accommodate a diverse range of user preferences and needs, ensuring a
more inclusive and user-friendly experience.

Processes of onboarding need to be balanced with financial inclusion and privacy objectives. For various
non-criminal reasons, users may not have the necessary documents to sufficiently meet the standard of the
service providers that are subject to identification requirements. Efforts are being made to enhance financial
inclusion for underserved populations in banking and financial services while carefully avoiding the creation of
new opportunities for criminal activity. These efforts can be facilitated with tiered onboarding with different
levels of identification requirements. On one end of this tier, fully registered users can be onboarded by
verifying the identification documents required by the law, and on the other end, non-registered users can
be onboarded with no identification but have strict controls (e.g., total holding amount, transaction amount
limits). We can potentially design other options with varying degrees of identification requirements and
controls to satisfy different users’ needs. The information collected during the onboarding process can be
used to build a unique profile to assist with AML and other compliance investigations, or for data analytics
purposes that are core to business operations such as risk management.

Offboarding is the process of removing or transitioning an existing user from a target system. This
process is typically executed in accordance with established protocols and procedures to ensure compliance
with regulatory requirements and security standards. Similar to onboarding, offboarding may also involve
adherence to KYC protocols, especially in regulated industries, to facilitate the proper termination or
transition of user accounts.

Since onboarding and offboarding are the first and last step of every observable transaction chain, this is
where the engineering of privacy protections and data collection mechanisms is most crucial. In general, we
follow two principles to balance privacy and compliance requirements: (1) minimize the number of entities
that have visibility of PII; and (2) limit the data collected and PII to the minimum necessary to comply
with privacy and regulatory requirements.

4.1 Privacy-enhancing technologies for the onboarding process

Onboarding users typically involves verifying user ID documents that are issued by other trusted entities,
such as government agencies and regulated financial institutions. Individuals can use an SSI to maintain
control over their digital identity records and selectively share it for the CBDC onboarding process (Soltani,
Nguyen, and An 2018). If an SSI system exists within the jurisdiction, the CBDC system can provide
significantly more privacy to end users. SSI enables users to store their digital identity information in a
wallet on their personal devices, ensuring that they have full ownership and authority over their data. When
KYC is conducted for onboarding, only relevant selective information from the SSI is shared for verification
and validation purposes. This allows users to present specific credentials or attributes without revealing
their full identity information, enhancing the level of privacy and security.

SSI solutions can leverage a decentralized trust network, such as blockchain or distributed ledger
technology, to verify the correctness and integrity of the credentials and the authenticity of the issuers.
The SSI-based verification process is not visible to the credential issuers, providing a higher level of privacy
to the users. Cryptographic techniques like ZKPs can also be used to verify the authenticity of the identity
and protect the confidentiality of sensitive information. Depending on the construction of the ZKPs,
varying amounts of information may be revealed to the verifier. This can enable conditional linkages
between SSI and transactions. Consequently, an SSI may be partially linkable or unlinkable based on the
specific verification protocols used.
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We see a potential for using this technology for the efficient and cost-effective onboarding of users to the
CBDC system while enhancing security and privacy. However, our feasibility analysis of SSI for the CBDC
system identifies several challenges:

• Interoperability issues due to lack of standards: A major challenge arises from the absence of
uniform standards, resulting in interoperability difficulties among various identity providers.

• Absence of sufficient wallet solutions: A crucial aspect of implementing SSI involves a developed
ecosystem of wallet solutions, a lack of which poses a hurdle in realizing a seamless integration of this
identity framework.

• Technology maturity concerns: Another challenge is the relative immaturity of the technology,
which has not yet evolved to adequately support the stringent requirements of mission-critical systems
such as identity issuance/verification and CBDC systems. This necessitates a careful approach to
implementation.

• Limited adoption by public and private entities: The slow adoption of SSI by both public
and private sector entities constitutes a significant challenge, potentially hindering the widespread
acceptance and effectiveness of this identity paradigm.

• Availability of legal IDs through SSI systems: Not all users may possess or have access to digital
identification that meets the necessary verification standards.

5 Identity and access management services

To guarantee that operations involving CBDC accounts and digital wallets are restricted to authorized users,
it is essential to properly implement authentication processes for users, devices and transactions. From an
access control standpoint, we must ensure that users have access only to their own funds and transaction
records.

Assuming that a user acquires credentials upon onboarding with a designated financial institution or
entity, authentication is a critical procedure for associating these credentials with payment messages. This
ensures that activities within the payment system occur legitimately and with the explicit consent of the
original owner. For registered users, the system needs to frequently verify the identity of participants who are
interacting with it and conducting transactions in order to uphold authenticity and deter fraudulent activities.
Furthermore, for compliance with various regulations, the system must link authentication credentials to the
owner’s identity (PII), which emphasizes the importance of designing such processes to safeguard user privacy.
While incorporating additional information or factors can aid authentication in fortifying system security,
at the same time it amplifies concerns about user privacy.

Privacy concerns arise regarding how user information transmitted from devices like payment
smartcards, mobile devices or personal computers during online transactions is processed, stored and
managed by merchants or online commerce platforms. Consumers are also apprehensive about potential
leaks and the linking of this information with other data. They are equally concerned about how financial
institutions handle and safeguard their authentication information. Consequently, it is mandatory that all
authentication data used in a transaction be deleted from the recipient’s system unless the user gives
explicit consent. Additionally, authentication data must be securely protected during transit and
processing.

Various authentication methods are based on three distinct factors: knowledge (what you know),
possession (what you have) and identity (who you are). Traditional authentication, such as username and
password, relies on what the user knows. Methods such as security tokens, credentials, user devices or
smartcards validate what the user possesses. Biometric authentication, using techniques such as face
recognition or fingerprint scanning, verifies the user’s identity. Multifactor authentication (MFA) enhances
security by combining at least two of these factors. For instance, a common MFA implementation might
entail entering a password (what you know), receiving a one-time passcode on a mobile device (what you
have) and providing a fingerprint scan (who you are).
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5.1 Privacy-enhancing technologies for identity and access management
services

In this section, we offer high-level overviews of various PET techniques for privacy-preserving authentication.
Generally, these methods can be categorized into two primary types: linkable credentials and unlinkable
credentials. The linkability of a credential indicates whether a trusted entity can reconstruct a link between
PII and transactions using only data internal to the system. However, this does not preclude the possibility of
reconstructing the mapping through alternative or external datasets not involved in the system’s operation.
It is important to note that this possibility exists even with credentials that are unlinkable and anonymous.

According to this definition, a credential can be anonymous yet linkable if only a trusted entity can
reconstruct the mapping while remaining effectively anonymous to other entities or participants in the
system. Conversely, a credential cannot be both non-anonymous and unlinkable, and it is inherently linkable
if it is not anonymous. Additionally, a credential can be conditionally linkable, where information is disclosed
only under specific conditions, enforced by cryptographic techniques such as a ZKP.

5.1.1 Linkable credentials

In a linkable credential scheme, a client provides their PII to a specific organization, such as a financial
institution. Once the organization verifies the client’s PII, it issues credentials to the client, which can then
be used to conduct transactions. It is important to note that the issuer never holds the client’s private key
in any of these scenarios. In linkable schemes, verifiers have a way to obtain more details about the identity
associated with the credentials, which can be advantageous in jurisdictions with strict compliance demands
while still restricting access to sensitive information.

• Credential generation via dynamic group signature: During onboarding the user receives a
private key and an ID as part of the credential from a financial institution. The client ID is linked
to an account (or may also serve as an account). A user signs their transaction using their private
key. The fully dynamic group signature scheme (Delerablée and Pointcheval 2006) ensures that no
two transactions can be linked by anyone except the trace manager. This level of privacy is classified
as anonymous since, other than the trace manager, observers gain no information from observing the
transaction.

• Credential generation via digital signatures: In these protocols, during onboarding a user receives
a pair of public/private keys for a digital signature scheme. The financial institution associates the
user’s account with the public key and the user signs the transaction with their private key. The
transactions are verified using the corresponding public key. It is important to note that anyone can
link two transactions in this scenario. Thus, using digital signatures alone offers only pseudonymity.

5.1.2 Unlinkable credentials

A client can submit their PII to a designated organization for verification. Once the organization verifies
and validates the client’s information, it issues credentials to the client using PETs. An alternative method
would be to allow the client to generate their own anonymous credentials, with the information behind
these credentials verified and validated in zero-knowledge. Subsequently, the credentials can be used for
transactions when authenticated by the owner. In these unlinkable schemes, linkages cannot be derived
using only the internal information of the system, which means a greater effort is needed to meet compliance
requirements. This may lead organizations to record additional metadata and linkable data outside the
transactional system to comply, which could undermine the overall privacy protections the system was
designed to uphold.

• Credential generation via anonymous credentials: A user and an issuing authority participate in
a ZKP protocol, at the conclusion of which the user receives an anonymous credential. The organization
then recognizes the user as part of the verified group. The user can subsequently register with any
financial institution by presenting a ZKP of their membership. Several models of anonymous credentials
(Camenisch and Lysyanskaya 2001; Camenisch and Lysyanskaya 2004; Baldimtsi and Lysyanskaya
2013) are suitable to implement in such an onboarding system.

• Credential generation via multiparty computation: In an alternative approach, multiple entities
collaboratively assemble a credential, with each entity holding a piece of the credential. These pieces
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are combined using an SMPC protocol. The credential can be reconstructed and verified with the
cooperation of some or all participants in the protocol. However, without reaching a specific threshold,
the credential lacks sufficient information to establish linkages or map the identity to its transactions.

Once a user obtains credentials confirming successful onboarding, they can use these to authenticate in a
privacy-preserving manner before conducting operations in a CBDC system. In a CBDC system, successful
authentication grants users access solely to their own holdings. However, this linkage of an authenticated
user to their holdings and potentially other information could jeopardize the user’s privacy.

Using different PETs, we can achieve varying levels of privacy, subject to compliance with regulatory
laws. Authentication using linkable credentials may allow authorized agencies to connect accounts and
transactions, whereas authentication with unlinkable credentials through anonymous credentials or SMPCs
enhances user privacy. For example, by using an anonymous credential to authenticate in a CBDC system,
a user leaves no trace that could allow an authorized agency to link their account to subsequent operations.
The user anonymously demonstrates to a verifier that they possess a valid credential. An issuer can revoke
a user’s privileges easily. However, even if all parties (including other users, verifiers and the issuer) were to
collude, they would not be able to determine the user’s identity from the proof of validity (Baldimtsi and
Lysyanskaya 2013).

Likewise, authentication using SMPC works when multiple validating parties collaborate to set up the
SMPC protocol, which involves generating cryptographic keys, distributing shares of those keys to the
participants and establishing the necessary communication channels. These parties can use an SMPC-based
credential issuance protocol to provide the credential to the user. An authenticating user inputs the share of
credentials (e.g., password, biometric data or cryptographic keys) to each of the validating parties. Validating
parties engage in the secure computation protocol using SMPC to collectively compute a function that verifies
the authentication credentials. One could design a protocol where both credentials and holdings are shared
among SMPC participants so that no one party on its own knows the holding account that the user is
operating in. With the careful design of the protocol and cryptographic techniques, it might be possible
to achieve high throughput and low latency. However, the complexity and the maturity of the anonymous
credential and SMPC protocols remain major challenges in implementing a solution using these techniques.

6 Transaction processing

A core aspect of a CBDC system involves managing the transfer of ownership of funds and efficiently
processing these transactions on a large scale. This crucial service is responsible for handling all aspects
of data storage as well as the operational logic for transaction processing, clearing and settlement across
the entire CBDC network. This involves not only maintaining transaction integrity but also ensuring that
transactions are processed swiftly to meet the demands of a modern economy. It should also be scalable to
handle growth in transaction volume as adoption of the CBDC increases. Integrating advanced technologies
such as machine learning could further enhance monitoring and predictive maintenance capabilities, ensuring
the system’s reliability and efficiency over time.

Additionally, this component must have the capability to track and report the status of any payment
instruction that has been submitted. This is vital for providing transparency and accountability in financial
operations. It should also be able to furnish detailed data regarding transactions and endpoints upon
request, especially to the compliance component of the system. This information is essential for regulatory
compliance, helping to ensure the system adheres to legal standards and best practices in financial operations.

To maintain provenance and integrity of funds, traditional digital transaction processing systems record
and log many data artifacts to leave an audit trail. For consumer privacy, the following is required: (1) the
system should collect only the transaction data needed to process payments and satisfy legal obligations;
(2) transactions should not be linkable; and (3) transaction data should not be shared with outside parties,
except law enforcement for legal reasons.

6.1 Privacy-enhancing technologies for transaction processing

Tokenization is increasingly used in the card payment industry to protect sensitive information, such as the
primary account number on credit cards. This method substitutes the 16-digit credit card number with
a unique, randomly generated token. These tokens are typically created dynamically for each transaction
or when a card is registered with a system. Merchants and payment processors then use these tokens to
initiate and process transactions instead of the actual credit card numbers, enhancing user anonymity during
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payments. This strategy also reduces the risk of privacy breaches by limiting the exposure of sensitive
information in the event of a security breach at merchants or service providers. A similar tokenization
approach could be adopted for device-based CBDC systems, such as smartcards. By tokenizing unique
device identifiers, consumers can securely and anonymously make online purchases and link their CBDC
devices with their smartphones or other smart devices.

Various PET techniques have been introduced in digital currencies and cryptocurrencies. The first PET
technique for an anonymous payment was blind signature, introduced by Chaum about 40 years ago. The
purpose of Chaum’s eCash is to make payments anonymous from the issuing bank—that is, the bank does
not know who pays for what. In a Swiss National Bank working paper, Chaum, Grothoff, and Moser (2021)
describe how to issue a CBDC based on Chaum’s blind signatures. The GNU Taler project implemented a
privacy-friendly payment system based on blind signatures (GNU Taler. n.d.). While these systems provide
good privacy for consumers, they can only be used for online transactions. Furthermore, a blind signature-
based payment system can issue fixed denomination coins (e.g., $1, $5, etc.), which raises an issue with
change. Another challenge of using blind signatures is the lack of standardized protocols. The only protocol
standardized so far is RSA blind signatures (Denis, Jacobs, and Wood 2023), which is not quantum-safe.

Recent development in blockchain technology has introduced a range of PET techniques that could be
applied to provide privacy for senders, receivers and transactions. To protect the identity of a transaction’s
sender, one can use (one-time) ring signatures (see Section § 2.3.1). Monero (van Saberhagen 2013) was the
first cryptocurrency that implemented a one-time ring signature into its blockchain. This signature scheme
allows users to achieve unconditional unlinkability. The idea is to conceal the identity of the sender among a
group of users by producing a signature that can be verified by a set of public keys rather than the sender’s
key. The sender is hence indistinguishable from the other users whose public keys are in the set.

The Monero blockchain uses the Pedersen commitment (see Section § 2.3.3) to conceal the amount of
transactions. This technique was used in implementing a transaction scheme known as RingCT (Noether
2015), with the first version being published in January 2017. In this system, a commitment 𝐶 for a
transfer amount 𝑣 uses a random value as a binding factor, making it appear as a random value across
the network. The sender can later disclose both the binding factor and the amount, enabling others to
verify the correctness of the commitment submitted. Although observers or verifiers on the Monero network
cannot determine the amount of a specific transaction, they can verify that the sum of the input amounts
is equal to the sum of the output amounts, thanks to the additively homomorphic property of the Pedersen
commitment. Cryptographic commitments are implemented in conjunction with range proofs, which are
cryptographic mechanisms that prove a value falls within a specific range without revealing the actual value.
The Monero network uses range proofs to ensure that none of the outputs are negative.

The onion routing of the Lightning Network on Bitcoin can enhance the privacy of senders and receivers
in transactions. In this protocol, intermediaries do not necessarily know where they reside in the layered
transaction, nor do they know the source and ultimate destination of the payment. Participants also are not
aware of exactly how many other participants were involved in the payment layer. However, the attacker
can make some association or infer correlation of packets through a combination of traffic analysis and sybil
attack 3 , by comparing the fundamental network topology of the Tor network with the Lightning Network.
The Tor network’s topology resembles a fully connected graph, whereas the Lightning Network’s topology
resembles a graph with weakly connected components made up of numerous star-shaped subgraphs (Romiti
et al. 2021).

Blockchain technology uses a PET called stealth addresses to safeguard the privacy of recipients. This
technique allows the sender to create a unique, one-time-use payment address for each transaction directed
to a specific receiver. As a result, observers on the network are unable to link multiple transactions to
the same receiver until those funds are used in a subsequent transaction. The receiver—by leveraging their
private key, which corresponds to the stealth address, along with the ephemeral key—can derive the secret
key for the one-time-use payment address that is necessary to access the funds. Stealth addresses are used
in cryptocurrencies such as Monero and Zcash (Hopwood et al. 2021) to bolster the privacy of recipients.

ZKP (see Section § 2.3.4) is a powerful PET that preserves the privacy of both the sender and the
transaction amount. While ZKPs have a long history in cryptography, their first practical application
emerged with blockchain technology. Zcash was the pioneering blockchain to implement a ZKP protocol
known as ZK-SNARKs (Ben-Sasson et al. 2018). This technology allows individuals to prove certain
statements without revealing the data underpinning the proof, enabling a consumer to authenticate a
transaction without disclosing any PII. Additionally, by using a ZKP protocol, a consumer can demonstrate

3A Sybil attack is a security threat where a single entity creates multiple fake identities to manipulate or disrupt a system.
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sufficient funds for a transaction, hide the transaction amount and confirm these details with the verifiers.
Integrating ZKPs with a transaction tumbler not only enhances the confidentiality of the transaction

amount but also hides the identities of both senders and receivers (Bitcoin Wiki n.d.). A notable example
of this implementation is Tornado Cash, which allows users to deposit funds of fixed denominations into the
protocol while simultaneously generating a secret for a UTXO. This secret enables the original sender to
transfer funds to a recipient in zero-knowledge, as the system only verifies the possession of a valid secret
without disclosing its associated UTXO. When the sender decides to execute the transfer, they can either
(1) create a ZKP that includes proofs of transaction validity, recipient details, nullifier hash and fees for a
relayer who then submits the transaction data to the on-chain smart contract on behalf of the sender; or (2)
send the secret directly to the recipient who must then independently withdraw the funds.

Last but not least, SMPC is a PET that ensures the privacy of senders and receivers and conceals the
transferred amount. A sender, authenticated by a financial institution with valid credentials, can initiate
a transaction by splitting their credential, account number and transaction amount and then distributing
these shares to multiple validating parties in the system. These parties engage in an SMPC protocol to first
authenticate the sender (as outlined in Section 5.1). Subsequently, they collaboratively determine if the
sender has sufficient funds for the transfer and if the amount complies with established limits (e.g., $10,000).
In the final phase, the parties use another SMPC protocol to transfer the specified amount from the sender’s
account to the recipient’s account. Throughout this process, no single party has access to any information
about the transaction amount, sender, receiver or their account balances.

The integration of cryptographic PETs into a CBDC transaction processor presents both opportunities
and challenges. While these technologies enhance privacy, they also involve complex mathematical
computations that can introduce computational overhead, potentially affecting transaction processing
speed and the scalability of the CBDC system. Another challenge is the maturity and complexity of these
techniques, which may not yet be sufficiently developed to meet the robust demands of a mission-critical
system such as CBDC. This immaturity can lead to reliability and performance issues that are critical in
financial systems.

Interoperability with existing financial systems and infrastructure also poses significant challenges.
Current systems use standardized payment message formats, such as ISO 20022 (n.d.), and we do not yet
know how messages from these PETs will align with those of legacy financial systems. The lack of
universally accepted standards for ZKP, SMPC, or specific signature implementations could complicate
seamless integration across various systems.

Moreover, achieving compliance with regulations such as AML becomes more complex when using these
PETs. For instance, while ZKPs can confirm that a transaction complies with certain criteria without
revealing underlying data, they make it challenging for regulators to trace the origins of funds or identify
patterns of money laundering. This can create significant hurdles in enforcing AML regulations and other
compliance requirements.

Finally, user adoption and education pose significant challenges. Users may not be familiar with concepts
like ZKPs or SMPC, underscoring the need for effective education and communication to build trust and
facilitate acceptance.

7 Compliance services

In many jurisdictions around the world, regulations govern the permissible use of data and PII by any
organization, whether it is a private company or a public institution. Particularly in financial or transactional
contexts, additional, stringent regulations often mandate service providers to collect information to comply
with AML, KYC requirements, and anti-fraud measures. Specifically in Canada, firms generally fall under
the Personal Information Protection and Electronic Documents Act (2000), and the federal government has
proposed new rules about consumer privacy and other protections in Bill C-27, which is currently before
the House of Commons (Library of Parliament 2022). Additionally, financial institutions are also subject to
the Proceeds of Crime (Money Laundering) and Terrorist Financing Act (2000), as well as regulations from
FINTRAC, and adhere to guidelines from international regulatory bodies like the Financial Action Task
Force.

In systems that serve as definitive records for asset ownership, significant incentives and opportunities
exist for criminal and fraudulent activities. Mechanisms that ensure the integrity and correctness of such
systems typically can guarantee these properties only within the confines of the system itself. Therefore, a
compliance system is essential for monitoring adherence to the system’s correctness and to other relevant legal
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and regulatory frameworks concerning information that crosses the system’s boundaries. This compliance
system should combine human oversight and governance with automated processes and technical solutions
designed to boost efficiency and identify both recurring and unusual malicious activities.

Typically, rules-based compliance systems are straightforward to automate because they operate on
clearly defined rules and behaviours. For instance, any transaction exceeding $10,000 must be reported to
the regulatory authority. Principles-based compliance frameworks consist of broad guidelines designed to
direct behaviour across various scenarios, making them more challenging to implement in practice. These
frameworks typically depend on human judgement and intervention. However, advancements in technology
are increasingly supporting the efficiency of compliance processes through improved and earlier detection
capabilities. When a behaviour pattern or transaction is flagged as potentially suspicious, system operators
are often required to report and assist in investigations conducted by regulatory authorities. In more extensive
investigations with stronger suspicion of criminal activity, examining only a few transactions may not yield
sufficient detail to fully understand the activities of the suspected entity.

Entity resolution is a technique commonly used in middleware products that operate at the boundaries
of systems to monitor and manage complex record linkages among various participating entities. This is
often necessary because data from a single system may not provide a comprehensive understanding of the
target entity. In environments with multiple intermediaries serving end users, the challenge is to collaborate
to ensure efficient compliance through data sharing while simultaneously protecting proprietary business
information and customer privacy. By pooling and linking data from various sources associated with the
same entity, investigators can achieve a clearer insight into the activities of a suspicious entity, helping
determine the presence of criminal activity or supporting effective enforcement actions against that entity.
This technique is widely applicable and has been particularly effective in combating sanctions evasion and
ATF.

7.1 Privacy-enhancing technologies for compliance services

Achieving a high level of privacy protection in the CBDC system requires minimizing the collection and
storage of PII data. However, financial compliance requirements mandate the service providers to have
access to user identity and transaction data and to share this information with other entities (e.g., for
investigations). The conflict between privacy and compliance is inherent. Some PETs can play an important
role in the design of compliance systems to protect CBDC against illicit usage while protecting the privacy
of the end users.

In projects lacking a single service provider accountable for compliance, viewing keys have emerged as
a potential solution, particularly in the public cryptocurrency domain, such as in the ZCash and Monero
projects. These projects have implemented a feature that enables users to create a viewing key that grants an
entity read access to specific transactions, fully disclosing the transaction details. Additionally, range proofs
are frequently used in cryptocurrencies to verify the accuracy of transactions. CBDC systems can apply
these techniques as well, allowing for verification that transactions comply with specific attributes without
requiring direct access to the data. For instance, a system could be configured to ensure that transactions
below a certain threshold remain private, with no entity having visibility into the transaction details

Entity resolution is particularly effective when firms are in partnership or belong to the same parent
organization, as analysts typically have access to and permission to use each database system. However,
collaboration becomes challenging when independent organizations are involved, as firms often have business
and economic reasons to withhold their raw data. FHE, when combined with SMPC techniques, offers
a potential solution in these cases by enabling organizations to perform analytical queries across different
entities without exposing their raw customer data. Despite advancements in FHE design (e.g.,by Chillotti
et al. (2020)), using FHE for real-time processing remains significantly challenging due to its performance
limitations.

SMPC schemes and protocols, as described in previous sections, can be configured so that information
can be decrypted and accessed when a certain threshold of collaborating entities is met. This enables the
design of a compliance system that activates under specific conditions, such as the issuance of a warrant,
allowing a court to compel designated participating entities to collaborate and disclose information about
a suspicious transaction. This approach safeguards the general privacy of transactions from any individual
system operator while still enabling detailed compliance activities.

However, employing SMPC in contexts such as CBDC systems presents significant challenges. The
cryptographic constructs required for SMPC are complex and currently have very few prototype
implementations, which complicates their deployment and scaling. Additionally, these cryptographic
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constructs are inherently slow, which poses a substantial barrier to their use in environments where
real-time or near-real-time transaction processing is crucial. We need to address these performance issues
to make SMPC a viable option for widespread use in CBDC systems. Another significant challenge with
implementing SMPC in CBDC systems is the scarcity of skilled professionals who understand the intricate
cryptographic constructs involved. The complexity of these constructs requires a high level of expertise in
both cryptography and system design, which is not widely available in the current workforce. This lack of
specialized knowledge can hinder the development and secure implementation of SMPC protocols within
CBDC platforms.

8 Data analytics

While it is essential to maintain the confidentiality of data, particularly PII, these data are invaluable for
various operations within financial institutions. These operations include fraud detection, feature extraction,
business modelling, financial computations and other forms of data analytics, such as publicly sharing trends
related to CBDC use in specific geographic areas. Additionally, there might be requirements to share PII
among CBDC service providers, which could include entities associated with central banks or collaborations
between central banks and commercial banks, such as in efforts to detect money laundering activities.

Insensitivity in handling customer or transaction data can result in substantial costs for businesses due
to penalties from regulatory bodies. Legal and compliance obligations, such as the General Data
Protection Regulation (European Parliament and Council of the European Union 2016) and the Payment
Card Industry Data Security Standard (PCI Security Standards Council n.d.), levy significant fines on
organizations following a data breach. Furthermore, major data breaches can erode trust in the safety and
security of systems, particularly those of national importance. Numerous regulatory bodies have been
established to oversee how organizations manage or misuse private data.

8.1 Privacy-enhancing technologies for data analytics

A range of PETs are available that can be used to ensure data confidentiality during analysis. In this use
case, the most commonly preferred category of PETs involves data alteration (see Section§ 2.2), which
includes methods such as anonymization, pseudonymization, synthetic data and differential privacy). These
techniques obfuscate data by processing them locally and modifying them—either by adding noise or
removing identifying elements—before releasing them publicly, sending to a research laboratory or sharing
with a third party. The goal of these methods is to transform customer data to reduce disclosure risk to an
acceptable level while maintaining the data’s utility, thereby ensuring that the quality of the published or
shared data is preserved.

One of the challenges of these techniques is to ensure that information does not leak (risk of
reidentification) through linkage attacks, which occurs when malicious users combine multiple sources of
data. For example, a hacker can combine a shared data record containing “gender,” “postal code” and
“date of birth,” with a public voter list that contains “name,” ”gender,” “postal code” and “date of birth”
to identify the customer.

Ensuring a balance between two properties—-data utility and disclosure risk—is another challenge in
this class of techniques that must be resolved. Data utility refers to a measure of how useful a dataset is
for a given task, and disclosure risk refers to the risk that a malicious user can use the protected dataset to
derive confidential information on an individual. While altered data could provide a higher level of privacy
by adding more noise, the data analysis itself may not return insightful results if the underlying quality of
the data has deteriorated through this process.

The next category of cryptographic PETs comes from the ability to compute on encrypted data, allowing
computations to run over data that are never visible or disclosed. In contrast to data altering techniques,
here the underlying data remain unmodified but are hidden by encryption. The idea was first introduced by
Rivest, Adleman, and Dertouzos (1978). Despite garnering little industrial attention early on, this technique
is quickly becoming a practical reality due to the recent developments of FHE and modern computers. The
first FHE, Gentry’s scheme (Gentry 2009), was very inefficient due to its costly bootstrapping process. But
a new form of FHE, called Torus-FHE (Chillotti et al. 2020), with efficient programmable bootstrapping
has led to huge performance advantages. However, FHE still lacks the performance capabilities to make it
viable for real-time processing.

Another technique is SMPC, which enables two (or more) parties to collaboratively perform analyses
over their input data while keeping those input data private. SMPC can aggregate sensitive data without
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requiring any parties to disclose their own data (see more in Section 2.4.1). SMPC allows institutions to
conduct analysis on private data held by other institutions without ever revealing those inputs. A challenge
in an SMPC system is to prevent cross-reference attacks on the output and other information that attempt to
infer sensitive data. Any party could carry out this attack in the protocol if they learned the true and exact
output and conducted statistical analysis to reconstruct a subset of the original dataset (Lindell 2003). To
prevent this, one could apply obfuscation techniques such as differential privacy to the outputs of an SMPC
system.

FL can also provide data confidentiality by allowing multiple parties to collaboratively train a machine
learning model in which each party uses their own dataset—that is, without sharing data. A central server
can be used to coordinate the parties. Although data are not shared among parties or with the central server,
one challenge is the imbalanced and non-i.i.d. data partitioning across parties. Malicious participants could
feed such data into an FL system to gain insights from the trained machine learning model (see Section 2.4.4
for more details).

Finally, performing data analysis in hardware-based TEEs or confidential computing environments can
help enhance assurance in data privacy. With on-premises systems becoming less common, the demand
for third-party compute resource providers to prove the security attributes of their systems has grown. A
dedicated logical boundary in a system can hold and process sensitive data and can run secure code within its
confines. It can attest to the provenance of the hardware from trusted sources and the security configurations
of the environment and can demonstrate its tamper-resistance. Even if the operating system is corrupted, the
data stored and processed inside a TEE could not be accessed or exposed. Major chip manufacturers such
as ARM, Intel and Qualcomm have implemented TEEs in their devices. Cloud providers such as Microsoft
Azure, Google Cloud and AWS all offer confidential computing services in TEEs.

Cryptographic PET techniques such as FHE and SMPC offer significant advancements in data privacy,
potentially prompting changes in legal frameworks regarding encrypted data processing. However, these
technologies face operational challenges. For instance, once data is encrypted for use in FHE or SMPC, it
becomes inaccessible for essential quality checks such as cleaning and preprocessing, which are crucial for
ensuring the accuracy of data analysis. Moreover, FHE is computationally intensive, while SMPC demands
substantial data communication, resulting in high operational costs. In addition, the lack of
standardization in these cryptographic techniques complicates integrating them into existing systems and
adhering to regulatory standards. This absence of uniform protocols can hinder widespread adoption,
particularly in sectors such as financial services that require robust compliance with data protection
regulations. Addressing these challenges involves not only technological improvements to enhance efficiency
and reduce costs but also collaborative efforts to establish standards and update legal frameworks to better
accommodate these innovative technologies.

9 Wallets

A wallet enables users to interact with a CBDC-based payment system. Typically, a wallet allows users
to view their balance, make payments and receive CBDC from other wallets. A digital wallet consists of
a data storage and computing environment where the customer’s digital credentials are stored and used.
Regardless of the specific CBDC design, digital wallets generally come in two types: (1) custodial wallets;
and (2) non-custodial wallets. In the former, account providers offer support in deployment and management
of payment credentials (e.g., private keys); in the latter, customers must maintain the payment credential
themselves.

In custodial wallets, account providers such as commercial banks have two main options for managing
payment credentials: they can either deploy these credentials directly to the customers’ devices or keep
them stored at the bank. In the former scenario, customers can authenticate and authorize transactions
independently, without any need for bank interaction. In the latter scenario, customers must authenticate
with the bank before they can perform any transactions on their accounts. The privacy of customers in
custodial wallets might be compromised if the bank does not implement effective PETs.

In non-custodial wallets, users have full control over their payment credentials, which are stored directly
on their own devices rather than with a financial institution. This arrangement allows users to execute
transactions autonomously, without needing to interact with a bank or other account provider for transaction
authentication. While this setup enhances user privacy by keeping the payment credentials solely under the
user’s control, it also places the responsibility of securing these credentials on the users. Consequently,
although non-custodial wallets offer greater control and privacy, they also increase the risk of loss or theft

25



of funds if the user’s device is compromised or if they mismanage their private keys.
Digital wallets can be designed as either hardware- or software-based solutions. Hardware wallets, like

USB dongles or smartcards, provide robust security by physically isolating the digital assets from
potentially vulnerable devices such as a user’s smartphone. However, their limited resources may restrict
their applicability to certain use cases. Regardless of the format, it is essential for payment credentials
within these wallets to be stored and managed in a secure environment to ensure safety and integrity.

9.1 Privacy-enhancing technologies for digital wallets

As previously mentioned, the initial PET technique needed to secure digital assets in a wallet involves
creating a protected environment. This can include hardware-assisted TEEs such as ARM TrustZone or
tamper-resistant elements such as smartcards. While these trusted computing devices are widely used in
existing digital wallets, they need to be evaluated for security vulnerabilities against sophisticated attacks,
including backdoors and side-channel analysis.

Implementing memory encryption and MFA can further safeguard the confidentiality of digital assets
stored in wallets. Encryption helps to protect data at rest by concealing them if the memory is dumped or
accessed without authorization. Meanwhile, MFA enhances security by preventing data leaks if the device is
lost or stolen. The second factor in MFA could involve a biometric scan, a personal identification number or
a one-time password sent to a separate device. These layers of security can ensure that even if one barrier
is breached, additional safeguards are in place to protect sensitive information.

10 Conclusions

This paper tackles the critical challenge of enhancing privacy in CBDC systems by introducing a
comprehensive range of PETs and exploring their recent developments and potential applications. Through
a deep analysis of these techniques, we evaluate their feasibility and viability for mission-critical systems
such as CBDCs.

While significant progress has been made in the design and implementation of PETs, we find that
challenges persist regarding their performance, maturity, and security in the context of CBDCs. Despite
these challenges, we recognize the potential of PETs to revolutionize privacy in digital systems like CBDC. We
emphasize the importance of continuous monitoring of developments in these technologies by organizations
that collect and manage PII. As PETs mature and demonstrate viability in real-world applications, they
should be considered for integration into CBDC system design and development.
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