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Abstract

This paper examines the implications of using VARs in levels under the Max Share identi-

fication approach when variables exhibit unit or near-unit roots. We derive the asymptotic

distributions of the Max Share estimator, demonstrating that it converges to a random matrix,

resulting in inconsistent reduced-form impulse responses and eigenvector estimates for structural

shock identification. Monte Carlo simulations highlight that VAR models in levels can exhibit

significant bias and higher RMSEs at intermediate and long horizons compared to stationary

representations (e.g., first-difference VARs or VECMs), particularly in the presence of multiple

permanent shocks. An empirical application focusing on investment-specific technology and

TFP news shocks underscores the sensitivity of results to the nonstationarity of variables and

the identification order of structural shocks when using VARs in levels.
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1 Introduction

Structural VARs are now routinely applied in empirical macro research to assess and understand

key mechanisms in macroeconomics, such as the impact of technology shocks or the primary drivers

of business fluctuations. Building upon the seminal works of Sims (1980b; 1980a), moving from

atheoretical/unrestricted VAR models to structural VAR models requires making identifying as-

sumptions grounded in economic theory and related priors. This implies that VAR results cannot

be interpreted independently of a more structural macroeconomic model (Cooley and Leroy, 1985;

Bernanke, 1986).

Recent contributions have often concentrated on forecast error variance decompositions of some

target variables, known as the Max Share identification, to pinpoint one structural shock (Faust,

1998; Uhlig, 2004) or multiple structural shocks (Ben Zeev and Khan, 2015; Carriero and Volpi-

cella, 2024). For example, this approach identifies technology shocks as those explaining the most

significant proportion of the forecast error variance decomposition of labor productivity over a 10-

year period (Francis et al., 2014). Applications include identifying technology shocks (DiCecio and

Owyang, 2010), news shocks (Barsky and Sims, 2011; Kurmann and Otrok, 2013; Forni et al., 2014;

Kurmann and Sims, 2021; Bouakez and Kemoe, 2023; Kilian et al., 2024), neutral and investment-

specific shocks (Chen and Wemy, 2015; Ben Zeev and Khan, 2015), credit shocks (Mumtaz et al.,

2018), inflation target shocks (Mumtaz and Theodoridis, 2023), sentiment shocks (Fève and Guay,

2014; Levchenko and Pandalai-Nayar, 2020; Benhima and Cordonier, 2022) and a main business

cycle shock (Angeletos et al., 2020).

A common practice in these contributions involves estimating unrestricted VARs in levels even

when roots may be at or near unity. For instance, the structural identification of technological

news shocks relies on a TFP (Total Factor Productivity) measure (e.g., Fernald, 2014), which in-

herently exhibits an exact unit root due to its construction.1 Additionally, other macroeconomic

variables of interest, such as the relative price of investment goods to consumption and real personal

consumption expenditures per capita, may exhibit trending behavior and potentially near-unit root

processes. Some of these variables may also be cointegrated, indicating the presence of common

stochastic trends.

The rationale for specifying models in levels is that individual regression coefficients can be con-

sistently estimated in any unrestricted VAR model in levels, regardless of the potential presence

of unit roots and cointegration, as long as the model includes an intercept and sufficient lags, as

shown by Sims et al. (1990). Kilian and Lütkepohl (2017) argue that the uncertainty regarding the

presence of unit roots justifies this approach, as VAR models in levels encompass both integrated

1Starting from quarterly estimates of TFP growth (or the first-difference of the logarithm of TFP), the level

(non-stationary) series can be derived, typically with initial levels normalized to zero.
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VAR models and stationary models without a trend. Furthermore, uncertainty about the presence

of unit roots in the variables and cointegration relationships between these unit root variables can

lead to model misspecification and thus yield inconsistent estimates when pre-test procedures are

used to transform some variables within the multivariate dynamic representation.

The application of the Max Share approach requires selecting a truncated forecast error variance

horizon to capture short-to-medium or long-run cycles, which typically constitutes a substantial

fraction of the sample size. For example, with quarterly observations spanning 60 years, a truncated

horizon of 40, 60, or even 80 quarters represents a significant part of the sample size. Consequently,

the rate at which the maximal truncated horizon increases relative to the sample size is crucial for

both the small sample and asymptotic properties of the Max Share approach.

Unfortunately, combining the estimation of VARs in levels with a substantial horizon-to-sample size

ratio can lead to undesirable statistical properties for impulse responses and forecast error variance

decompositions. Phillips (1998) demonstrates that estimated impulse responses and forecast error

decompositions are inconsistent at all horizons except the shortest ones when unit root processes or

local-to-unity processes are present. These estimates tend to converge to random matrices rather

than the true impulse responses, even though the individual autoregressive VAR parameters are

estimated consistently (Sims et al., 1990).

The results of Phillips (1998) have several implications for the Max Share approach. Most notably,

the Max Share identification relies on finding the largest eigenvalue(s) of the Max Share matrix

derived from the forecast error variance decomposition, along with the associated eigenvector(s).

Inconsistent estimates of the forecast error variance decomposition affect the eigendecomposition

of this matrix, which, in turn, influences the distribution of the maximum eigenvalue and the cor-

responding eigenvector. The severity of this issue naturally varies with the forecast error variance

horizon. Consequently, including nonstationary variables in unrestricted VARs in levels may result

in the identification of a hybrid shock instead of a primitive shock, potentially causing a confound-

ing effect.2

Therefore, using the Max Share approach involves a trade-off between using a nonstationary rep-

resentation, like an unrestricted VAR in levels with some unit or near-unit roots, and a stationary

representation, such as a VECM that accounts for common trends, or an unrestricted VAR with

some first-differenced variables. In other words, there is no ”free lunch”; estimating unrestricted

VARs in levels can lead to inconsistent estimates of structural shocks and impulse responses. Con-

versely, estimating a VECM (or a VAR with differenced variables) may encounter misspecification

2See Dieppe et al. (2019) and Francis and Kindberg-Hanlon (2022) for discussions on confounding effects with the

Max Share approach from other sources than the possible presence of unit root processes or local-to-unity processes.
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issues arising from pre-test procedures.

It is therefore crucial to thoroughly understand the consequences of using variables in levels when

applying the Max Share identification approach in the presence of unit-root or near-unit-root pro-

cesses. This paper makes several key contributions: First, we derive the asymptotic results for the

estimator of the Max Share matrix, including its eigenvalues and the corresponding eigenvectors,

when (weakly) stationary variables are present. Notably, these asymptotic distributions have not

been previously addressed in the literature. Second, building upon the seminal work of Phillips

(1998), we derive the Max Share asymptotics when roots are at or near unity. Specifically, when

the horizon represents a fixed fraction of the sample size, we show that the estimator of the Max

Share matrix is inconsistent when the unrestricted VAR is estimated in levels, converging instead

to a random matrix that represents a continuous average of a matrix quadratic form in the limiting

(reduced-form) impulse responses. Consequently, the estimators of both the largest eigenvalue and

the associated eigenvector are also inconsistent, converging towards a random variable/vector. We

illustrate our results using a bivariate structural VAR in relevant cases for applied macroeconomics.

Third, we conduct Monte Carlo simulations using a flexible bivariate data-generating process (DGP)

that accommodates a unit-root process, a highly persistent process, and a potential confounding

effect involving two permanent structural shocks. Through these simulations, we compare the per-

formance of a stationary representation, achieved by appropriately transforming the variables of the

DGP, with a VAR in levels. We use OLS-based estimates for the stationary specification, along with

OLS-based estimates, bias-corrected estimates (Pope, 1990), and bootstrapped estimates (Kilian,

1998; Inoue and Kilian, 2002) for the level specification, across various impulse response horizons

and truncated forecast error variance horizons.3

In this respect, we highlight the following key insights:

1. Structural impulse responses: Structural impulse responses derived from VAR models

in levels show a significant loss in terms of bias and RMSE properties at intermediate and

long horizons compared to those from the stationary representation of VAR models (e.g.,

first-difference specification), despite performing similarly at (very) short horizons.

2. Bias Correction and estimation methods: Bias-corrected, bootstrap, or Bayesian meth-

ods can reduce the bias in OLS-based impulse response estimates in unrestricted VARs in

levels. However, these methods may increase RMSEs and generally perform worse than esti-

mates derived from a stationary representation (e.g., first-difference model).

3. Confounding effects: The presence of a potential confounding effect, such as two permanent

3Bayesian estimates using Minnesota priors and estimates from short-run identification are also available upon

request.
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shocks, further amplifies the discrepancies between first-difference estimates and level -based

estimates.

Finally, we illustrate our theoretical and simulation results through an application identifying two

permanent shocks, namely investment-specific technology and TFP news shocks, using the Max-

share approach (see Fisher, 2006; Chen and Wemy, 2015; Ben Zeev and Khan, 2015; Kurmann and

Sims, 2021). The results critically depend on the integration order of the variables, and thus on

the chosen specification in levels or in first differences, as well as the identification order of struc-

tural shocks. Notably, in the specification using level variables, the impulse response functions

differ substantially depending on whether the TFP measure or the relative price of consumption-

to-investment is placed first. However, this discrepancy vanishes when stationary transformations

of the variables are applied.

Both theoretical and empirical results underscore that the application of the Max-share approach

using variables in levels, especially when some of the variables are characterized by unit or near-unit

root processes (and possibly cointegration relationships), can adversely affect the identification of

structural shocks and their corresponding impulse response functions. These issues are exacerbated

when a long forecast error variance horizon is chosen and multiple permanent shocks are present.

Therefore, it is strongly recommended to also report results using stationary transformations of the

variables, such as with a VECM or a VAR with first-differenced variables.

The rest of the paper is organized as follows. Section 2 reviews notation and presents the Max-share

identification strategy. Section 3 presents the asymptotic results in the presence of (weakly) sta-

tionary variables and extends the results to cases where unrestricted VAR models are estimated in

levels and there are some roots at, or near, unity. Section 4 provides Monte Carlo simulations, while

Section 6 discusses an empirical application regarding the identification of investment-specific and

technology long-term shocks. The last section contains concluding comments and future extensions.

Proofs are gathered in the Appendix.

2 Max share identification of structural VAR models

In this section, we first introduce preliminary notation and provide an overview of the Max Share

approach.
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2.1 Notation

Let yt = (y1,t, · · · , yN,t)
′ be a N-vector time series generated by the following pth order vector

autoregressive model in levels:

yt =

p∑
i=1

Aiyt−i + ut = A(L)yt−1 + ut (2.1)

where L is the lag operator, the (N ×N) autoregressive matrices Ai are fixed, ut = (u1t, · · · , uNt)
′

is a N -dimensional weak white noise with E [ut] = 0N×1 and E [utu
′
t] = Σu. The reduced-form (2.1)

is initialized at t = −p + 1.....0 and we let these initial values be any random vectors including

constants.The presence of deterministic regressors does not affect our main results and thus we

proceed without them to keep the derivations as simple as possible.

The reduced-form VAR can also be written in companion form as:

Yt = AYt−1 + Ut (2.2)

where Yt =
(
y′t, . . . , y

′
t−p

)′
, Ut = (u′t, 0, . . . , 0)

′, and

A =


A1 A2 . . . Ap−1 Ap

IK 0 . . . 0 0
...

...
. . .

...
...

0 0 . . . IK 0

 . (2.3)

Up to some initial conditions, the vector moving average (VMA) representation of the reduced-form

VAR is then defined by:

Yt =

t−1∑
i=0

AiUt−i (2.4)

and one can retrieve the reduced-form VMA representation of yt:

yt =
t−1∑
i=0

Φiut−i, (2.5)

where Φ0 is the identity matrix of order N , denoted by IN , and Φi =
∑i

j=1Φi−jAj . Notably,

equation 2.5 can be decomposed as follows:

yt =

t−1∑
i=0

Φiut−i =

i∗∑
i=0

Φiut−i +

t−1∑
i=i∗+1

Φiut−i. (2.6)

This decomposition of the VMA representation is useful for studying the impulse response and

forecast error variance asymptotics in nonstationary VARs (Phillips, 1998). In particular, for a
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small fixed i∗, it is worth emphasizing that the estimates of the impulse responses matrices Φ̂i

have asymptotic normal distributions (as in the stationary case) even in the presence of unit root

or near-unit root processes. In contrast, the estimates of impulse-response matrices in the second

term on the right-hand side, which are those associated to a lead time i that can be written for-

mally as i = fT , where f > 0 is a fixed fraction of the sample, are inconsistent for all i > i⋆. More

specifically, the limits are random variables with unit root or local-to-unity distributions.

The structural VAR model can be written as:

B0yt =

p∑
i=1

Biyt−i + wt = B(L)yt−1 + wt (2.7)

where wt is an N × 1 random vector of structural shocks with E [wt] = 0 and E [wtw
′
t] = Γ. A

common identification assumption is Γ = IN . Taking equations (2.4) and (2.7), the error terms of

the reduced-form model are a linear combination of structural shocks:4

ut = B−1
0 wt = A0wt, (2.8)

with B−1
0 B(L) = A(L). The structural infinite VMA representation is then defined by:

yt =

∞∑
i=0

ΦiB
−1
0 wt−i =

∞∑
i=0

Θiwt−i

where Θi = ΦiB
−1
0 = ΦiA0. Using equation (2.8), one has Σu = B−1

0 B−1′

0 = A0A
′
0. Let Σtr

denote the lower triangular Cholesky decomposition of Σu (with the diagonal elements normalized

to be positive), and let Q be a N × N orthogonal matrix. Since Q′Q = QQ′ = IN and hence

(ΣtrQ)(ΣtrQ)′ = ΣtrΣ
′
tr, the set of possible solutions for B−1

0 can be written as ΣtrQ. Then identi-

fication involves pinning down some or all columns of Q.

Finally, Equation (2.1) can also be equivalently written in the levels and differences format as:

yt = Πyt−1 +Υ(L)∆yt−1 + ut (2.9)

where Π = A(1), Υ =
∑p−1

i=1 ΥiL
i−1 with Υi = −

∑p
m=i+1Am. Assumptions regarding nonstation-

ary components and the presence of cointegration (i.e., the dimension of the cointegrating space

and the form of the cointegration vectors) will be specified in Assumption 3.2. Furthermore, the

formulation (2.9) proves to be useful when deriving the asymptotic properties of the Max Share

matrix estimator.

4For a more general presentation, see Amisano and Giannini (1997), Lütkepohl (2007), Kilian (2013), and Kilian

and Lütkepohl (2017).
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2.2 Max share approach

Starting with the seminal contributions of Faust (1998) and Uhlig (2004; 2003), the Max Share iden-

tification scheme focuses on maximizing the contribution of a (structural) shock to the forecast-error

variance of a given variable at a long but finite horizon, say h. To illustrate it, consider the bi-

variate structural VAR model of Gaĺı (1999) that attributes variation in U.S. labour productivity

and hours worked to a technology shock and a non-technology shock. The first structural shock,

labelled a technology shock, can be identified by maximizing its contribution to the forecast-error

variance of labor productivity (Francis et al., 2014).

Using the VMA representation of the reduced-form VAR, the starting point is to define the h-step-

ahead forecast error for yt as a function of realized reduced-form errors:

yt+h − Et [yt+h] =

h−1∑
ℓ=0

Φℓut+h−ℓ. (2.10)

Accordingly, the h-step-ahead forecast-error variance matrix is given by:

MSE(h) =
h−1∑
ℓ=0

ΦℓΣuΦ
′
ℓ =

h−1∑
ℓ=0

ΦℓΣtrQQ′Σ′
trΦ

′
ℓ. (2.11)

Then the share of forecast-error variance of a given variable k that is attributed to a given shock j

at horizon h is:

τkj(h) =
q′jSk(h)qj

e′kMSE(h)ek
=

e′jQ
′Sk(h)Qej

e′kMSE(h)ek
(2.12)

where ek is the k-th column vector of the identity matrix, qj = Qej is the j-th column of the

orthogonal matrix Q, and Sk(h) is the Max Share matrix at horizon h for the variable k:

Sk(h) =

h−1∑
ℓ=0

Σ′
trΦ

′
ℓeke

′
kΦℓΣtr =

h−1∑
ℓ=0

Ψ′
k.,ℓΨk.,ℓ (2.13)

with Ψk.,ℓ = e′kΦℓΣtr the k-th row of ΦℓΣtr. According to the decomposition of the VMA represen-

tation (2.6), the Max Share matrix depends not only on the impulse responses at short-run horizons

but also on those at longer horizons when h constitutes a substantial fraction of the sample size.

We consider the first structural shock j = 1, which is identified by solving, for a given horizon

h, the following maximization of the Max Share statistic with respect to q1:

q1,k(h) = argmax
q1

q′1Sk(h)q1
e′kMSE(h)ek

(2.14)
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subject to q′1q1 = 1.5 Note that the solution, denoted as q1,k(h), depends on the choice of a

truncated forecast error variance horizon h. Following Faust (1998) and Uhlig (2004; 2003), it can

be shown that q1 is the eigenvector associated to the largest eigenvalue of the Max Share matrix

or, equivalently, is the first principal component:

Sk(h)q1,k(h) = λmaxq1,k(h). (2.15)

Thus, the structural IRFs from the identified shock are given by:

Θ·1,i(h) = ΦiΣtrq1,k(h) (2.16)

where Θ·1,i is the first column of the impulse response matrix Θi. The identified shocks and the

corresponding IFRs then depend on the finite sample and the asymptotic properties of the Max

Share matrix for a given horizon h (i.e., Sk(h)), as well as the largest eigenvalue λmax and the

associated eigenvector q1,k. As aforementioned and according to the VMA decomposition (2.6),

the Max Share matrix depends not only on the impulse responses at short-run horizons but also

on those at longer horizons when h constitutes a substantial fraction of the sample size. The next

section examines the asymptotic properties of these elements.

As a final remark, other Max Share matrices have been considered in the literature. On the one

hand, as stated in Uhlig (2003) and Barsky and Sims (2011), an accumulated Max Share approch

can be employed, i.e., the (partial) sum of the contributions of a given structural shock to the

forecast-error variance of a given variable between two finite horizons, say h and h (with h ≥ h).

Notably, the accumulated Max Share matrix, denoted by Sk(h, h), is then given by:

Sk(h, h) =

h∑
h=h

Sk(h)

e′kMSE(h)ek
=

h∑
h=h

∑h−1
ℓ=0 Ψ′

k.,ℓΨk.,ℓ∑h−1
ℓ=0 Ψk.,ℓΨ

′
k.,ℓ

.

In this expression, the weight decreases for ℓ = h, · · · , h, and thus the accumulated Max Share

matrix places more weight on short horizons than long horizons. Similarly to the non-accumulated

Max Share approach, the first structural shock j = 1 is identified by maximizing, for a given horizon

interval [h;h], the following Max Share statistics with respect to q1:

q
(k)
1 = argmax

q1

q′1

 h∑
h=h

Sk(h)

e′kMSE(h)ek

 q1 (2.17)

subject to q′1q1 = 1.

On the other hand, building on the contribution of DiCecio and Owyang (2010), Francis et al.

5Without loss of generality, note that further structural constraints can be added, such as the absence of contem-

poraneous effect of a structural shock (e.g., Ben Zeev and Khan, 2015; Bouakez and Kemoe, 2023).
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(2014), and Angeletos et al. (2020), the Max Share approach in the frequency domain aims to

maximize the contribution of a given structural shock to the spectral density of a given variable

over a frequency interval, say [ω;ω]. Provided the multivariate spectral density, denoted by f , is

well-defined ∀ω ∈ [−π;π], one has:

f(ω) =
1

2π
Φ (exp(−iω))ΣuΦ (exp(−iω))

where Φ (exp(−iω) =
∞∑
ℓ=0

Φℓ(exp(−iωℓ)), and Φ denotes the complex conjugate transpose of Φ.

Therefore, the Max share statistics in the frequency domain, representing the contribution to the

spectral density of a given variable k attributable to a given shock j, say j = 1, over a frequency

band [ω;ω] is defined by:

q′1Sk (ω;ω) q1
e′k(ω, ω)ek

, (2.18)

where the frequency Max Share matrix over the frequency band [ω;ω] is:

Sk (ω;ω) = 2Re

∫ ω

ω
Ψk.(exp(−iω))Ψk.(exp(−iω))dω. (2.19)

where Ψk.(exp(−iω)) = [Φ(exp(−iω))Σtr]k. =

[ ∞∑
ℓ=0

Φℓ(exp(−iωℓ))Σtr

]
k.

and Re is the real part of

any complex. The identification and interpretation of the first structural shock then follows the

same procedure as in the case of the non-accumulated Max Share approach at a given horizon

h. In the frequency domain, the Max Share matrix relies on the infinite sum of the (reduced-

form) impulse responses irrespective of the frequency interval. A truncated sum may weaken the

statistical performances in the presence of persistent stochastic processes.6

3 Max Share asymptotics

This section delves into the asymptotic properties of the Max Share estimator. We start by ex-

amining the asymptotic distribution of the estimator for the Max Share matrix in the context of

a weakly stationary multivariate process yt. These results are also valid for VAR models in levels

with a fixed i in the VMA decomposition (2.6), i.e., for short horizons. Next, we characterize the

asymptotic distribution of the (maximal) eigenvalues and their corresponding eigenvectors. We

then provide the asymptotic distribution of the Max Share estimator in the presence of roots at

or near unity. As highlighted by the decomposition (2.6), the small sample properties of the Max

Share approach based on a VAR in levels stem from the finite-sample approximations associated

with these two asymptotic behaviors.

6Note that the multivariate spectral density is no longer defined at ω = 0 in the presence of unit or near-unit root

processes.
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3.1 Max Share asymptotics with weakly stationary processes

We suppose that:

Assumption 3.1.

(a) ut is an i.i.d. process with zero mean, covariance matrix Σu > 0 and finite fourth cumulants;

(b) The determinantal equation |IK −
∑p

i=1AiL
i| = 0 has roots outside the unit circle.

Following Lütkepohl (2007) and using the Delta method, the asymptotic distribution of the esti-

mator of the Max Share matrix at a fixed horizon is then given in Theorem 3.1.

Theorem 3.1. Let Assumption 3.1 hold and let α̃ = vec ([A1, . . . , Ap]), σ = vech (Σu), Y =

(Yp+1, . . . , YT ) ∈ RNp×(T−p), and ΓY (0) := E
[
(Y − E(Y )) (Y − E(Y ))′

]
. Then, as T → ∞, the

estimator of the Max Share matrix Sk(h), denoted Ŝk,T (h), at a fixed and finite forecast error

variance horizon h is weakly consistent and is asymptotically normally distributed:

√
T vec

(
Ŝk,T (h)− Sk(h)

)
d→ N (0,Ω(h))

with

Ω(h) =
[
Dα̃(h) Dσ(h)

]ΓY (0)
−1 ⊗ Σu 0

0 2D+
N (Σu ⊗ Σu)D

+′

N

D′
α̃(h)

D′
σ(h)


where D+

N := (D′
NDN )−1D′

N is the Moore-Penrose generalized inverse of an appropriate N2 ×
N(N + 1)/2 duplication matrix, and the gradients Dα̃(h) and Dσ(h) are defined in Appendix 1.

Proof: See Appendix 1.

This theorem can be readily adapted to apply to the accumulated Max Share approach (Uhlig,

2003; Barsky and Sims, 2011), which sums the contributions of the jth structural shock to the

forecast error variance of the kth variable between two finite horizons. It can also be extended to

the Max Share approach in the frequency domain (DiCecio and Owyang, 2010; Francis et al., 2014;

Angeletos et al., 2020).7

We can now provide the asymptotic distribution of the eigenvalues of Sk(h). We begin with the

spectral decomposition of Sk(h):

Sk(h) = Q(h)Λ(h)Q(h)′, (3.20)

7The online Appendix provides the results for the accumulated Max Share matrix and the frequency-based Max

Share approach.
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where Λ(h) is the diagonal matrix associated with the N ordered eigenvalues λi(h), i = 1, . . . , N ,

and Q(h) is the corresponding matrix of (orthonormal) eigenvectors for a given forecast error vari-

ance horizon h. By convention, we assume that the eigenvalues are always arranged in algebraically

non-increasing order:

λmax(h) ≡ λ1(h) ≥ λ2(h) ≥ · · · ≥ λN (h) ≡ λmin(h).

Since Sk(h) is not necessarily of full rank, suppose that the first r eigenvalues are different from

zero, and thus the last N − r eigenvalues are equal to zero. Accordingly, the orthonormal matrix

Q(h) can be partitioned as Q(h) =
[
Qr(h) QN−r(h)

]
, where Qr(h) =

[
q1(h) Q2:r(h)

]
, with

q1(h) being the eigenvector associated with λmax(h), Q2:r(h) the matrix of eigenvectors associated

with λ2(h), . . . , λr(h), and QN−r(h) the matrix of eigenvectors associated with the N − r smallest

eigenvalues λr+1(h), . . . , λmin(h). Notably,

λmax(h) = q′1,k(h)Sk(h)q1,k(h),

λ2:r(h) = vec
(
Q′

2:r(h)Sk(h)Q2:r(h)
)
.

Combining this decomposition with Theorem 3.1, the asymptotic distribution of the eigenvalues

follows.

Theorem 3.2. Let Assumption 3.1 hold. Then, the (ordered) eigenvalue estimators λ̂i,T (h), which

solve the spectral decomposition (equation 3.20) for Ŝk,T (h), are weakly consistent estimators of

λi(h), i = 1, . . . , N . Furthermore, the asymptotic distribution of λ̂max,T (h) at a fixed and finite

forecast error variance horizon h is given by:

√
T
(
λ̂max,T (h)− λmax(h)

)
d→ N

(
0, (q1,k(h)⊗ q1,k(h))

′Ω(h)(q1,k(h)⊗ q1,k(h))
)
,

where Ω(h) is the asymptotic variance-covariance matrix of
√
T vec

(
Ŝk,T (h)− Sk(h)

)
as given in

Theorem 3.1. Additionally, the asymptotic distribution of λ̂2:r,T =
(
λ̂2,T (h), · · · , λ̂r,T (h)

)′
is:

√
T
(
λ̂2:r,T (h)− λ2:r(h)

)
d→ N

(
0, (Q2:r(h)⊗Q2:r(h))

′Ω(h)(Q2:r(h)⊗Q2:r(h))
)
.

Proof: See Appendix 1.

There are three points worth noting. First, the weak convergence of the eigenvalue estimator

stems from the continuity property. Specifically, this implies that λ̂i(h)
p→ λi(h) for i = 1, . . . , r

and λ̂i(h)
p→ 0 for i = r + 1, . . . , N . Second, a consistent estimate of the asymptotic variance-

covariance matrix of the largest eigenvalue relies on a consistent estimate of both Ω(h) and the

eigenvector associated with λmax(h). This creates two sources of uncertainty in finite samples.

Third, it is straightforward to show that the asymptotic distribution of the largest eigenvalue (and
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of λ2:r(h), respectively) in the case of the accumulated or frequency-based Max Share approach has

the same expression as in Theorem 3.2, except for the appropriate asymptotic variance-covariance

matrix Ω defined in the online Appendix.

Finally, we derive the asymptotic distribution of the eigenvector associated with the maximal

eigenvalue, as well as the joint distribution of the r− 1 eigenvectors associated with the remaining

r − 1 largest (nonzero) eigenvalues, denoted by λ2:r(h). For simplicity, q1,k(h) is abbreviated as

q1(h), and the results apply to any variable k = 1, · · · , N .

Theorem 3.3. Let Assumption 3.1 hold. Suppose that λmax(h) > λ2(h) + ϵ for ϵ > 0, i.e., the

maximum eigenvalue of Sk(h) is well-separated from the second highest eigenvalue. Then,

i) q̂1,T (h)
p→ q1(h) and the asymptotic distribution of q̂1,T (h) is:

√
T (q̂1,T (h)− q1(h))

d→ N (0,Σq1(h)) ,

where Σq1(h) = (q′1(h) ⊗ IN )F ′
1(h)Ω(h)F1(h)(q1(h) ⊗ IN ), with F1(h) =

∑N
j=2(λmax(h) −

λj(h))
−1Pλ1(h)⊗P ′

λj
(h), and Pλj

(h) = qj(h)q
′
j(h) is the eigenprojection associated with λj(h);

ii) Q̂2:r,T (h)
p→ Q2:r(h) and the asymptotic distribution of vec(Q̂2:r,T )(h) is:

√
T
(
vec(Q̂2:r,T (h))− vec(Q2:r(h))

)
d→ N (0,ΣQ2:r(h)) ,

where ΣQ2:r(h) = (Q′
2:r(h)⊗IN )F ′

2(h)Ω(h)F2(h)(Q2:r(h)⊗IN ), with F2(h) =
∑N

j=2

∑
i ̸=j(λj(h)−

λi(h))
−1Pλj

(h)⊗ P ′
λi
(h).

Proof: See Appendix 1.

As a consequence of the above results, considering the expression of the structural IRFs using

the first (identified) structural shock associated with the largest eigenvalue (equation 2.16), the

estimates of the structural IRFs depend on the reduced-form estimates Φ̂i, the lower-triangular

factor from the Cholesky decomposition, and the eigenvector q̂1,T (h), which are nonlinear functions

of the estimates of the autoregressive parameters. In the weakly stationary case, all these estimates

converge in probability to their respective true values, implying that the structural IRFs associated

with the largest eigenvalue are weakly consistent.8

In the special case where the error terms of the reduced-form VAR are normally distributed and

the eigenvalues are all distinct, according to Anderson (1963), the expression of Σq1(h) is given by:

Σq1(h) = Q2:r(h)
(
Λ̃(h)

)2
Q′

2:r(h),

8See Lütkepohl (2007) for the asymptotic properties of the reduced-form moving average coefficients in the sta-

tionary case.
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where

Λ̃(h) =


(λ1(h)λ2(h))

1/2/(λ1(h)− λ2(h)) · · · 0
...

. . .
...

0 · · · (λ1(h)λN (h))1/2/(λ1(h)− λN (h))

 .

In the general case, the expression of Σq1(h) (respectively, ΣQ2:r(h)) depends on F1(h) (respectively,

F2). Specifically, F1(h) is a linear combination of the Kronecker products between the eigenpro-

jection associated with the maximal eigenvalue λmax(h), denoted by Pλ1(h), and those associated

with each other eigenvalue λj(h), denoted by Pλj
(h). The weight of each Kronecker product is

determined by the discrepancy between λmax(h) and λj(h), specifically by λmax(h)−λ2(h), that is,

the difference between the two largest eigenvalues. When these two eigenvalues are roughly of the

same magnitude, the presence of at least two driving structural shocks cannot be ruled out, causing

F1(h) to become arbitrarily large. Thus, an examination of the empirical eigenvalues is necessary.

3.2 Max Share asymptotics with some roots at, or near, unity

We now discuss the asymptotics of the Max Share estimator in the presence of nearly unit root

and/or nonstationary processes when the VAR model is estimated in levels. In the spirit of Phillips

(1998), our primary interest is in the behavior of Ŝk,T when the sample size T goes to infinity and

the horizon h is a fixed fraction f of T , that is, h = fT .9

Consider the general specification in levels and differences:

yt = Πyt−1 +Υ(L)∆yt−1 + ut.

We construct the orthogonal matrix B = [β⊥ β], where β⊥ is an N × (N − r) orthogonal full-rank

matrix containing the unit roots or near unit roots linear combinations of yt, and β is an N × r

orthogonal full-rank matrix containing the stationary linear combinations of yt.

Following Phillips (1998), we assume that:

Assumption 3.2.

(a) ut is an i.i.d. process with zero mean, covariance matrix Σu > 0, and finite fourth cumulants;

(b) The determinantal equation |IK −
∑p

i=1AiL
i| = 0 has roots on or outside the unit circle;

(c) Π = β⊥ exp(T−1Γ)β′
⊥ + ββ′ + αβ′, where α, β ∈ RN×r and 0 ≤ rank(α) = rank(β) = r ≤ m.

Without loss of generality, β is orthonormal, and Γ ∈ Rs×s is a constant matrix;

9One could also consider the case where both h and T go to infinity such that h/T → 0. However, this case is less

relevant from a macroeconomic perspective.
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(d) The matrix α′
⊥ (IN −Υ(1))β⊥ is nonsingular, and α⊥, β⊥ ∈ RN×s, with s = N − r, are the

orthogonal complements of α and β, respectively.

The standard condition (a) is necessary for deriving the asymptotic variance matrix. Condition

(b) allows for the inclusion of both stationary and nonstationary components. Condition (c) en-

compasses the unit root and local-to-unity cases. Specifically, the matrix Γ can be interpreted as a

noncentrality parameter matrix (see Phillips 1998).10 Moreover, note that Π = αβ′ in the presence

of unit roots and cointegration. Lastly, condition (d) specifies that the stochastic process yt is

driven by s random walks and/or nearly integrated processes. Consequently, the linear combina-

tions β′
⊥yt exhibit unit roots or near unit roots (or a mixture of both), while β′yt remains stationary.

Interestingly, Assumption 3.2 covers several cases of interest. Notably, empirical macroeconomic

applications often focus on one of the following four cases.

• Case 1: Some variables have a unit root while other variables are weakly stationary. For

instance, in the bivariate case, one variable possesses a unit root (e.g., a TFP measure) and

the other is stationary with an autoregressive coefficient (e.g., a financial spread), say ρ = 0.9.

In this case, s = 1, Γ = 1, and α = [0 ρ− 1]′.

• Case 2: All variables in the vector yt possess a unit root without cointegration (Lütkepohl

and Velinov, 2016). Accordingly, β⊥ = I, β is the null matrix, and exp(T−1Γ) = I.

• Case 3: All variables possess a unit root, but there are r cointegration relationships (e.g.,

the baseline quarterly model of King et al. (1991), exp(T−1Γ) = I, and Π = αβ′.

• Case 4: Some variables have a unit root (e.g., a TFP measure), while other variables have

near unit roots (e.g., hours worked). In particular, Γ can be a diagonal matrix where some

series may be I(1) processes corresponding to the components with Γii = 0, and some series

may be stable processes with near unit roots (that is, Γii < 0).11 The matrix Γ can be

partitioned such that the first diagonal elements correspond to the I(1) variables, and the

remaining elements correspond to the nearly integrated variables.

We are now in a position to present the asymptotics of the impulse responses and the Max Share

matrix in the presence of unit or near-unit roots when the unrestricted (reduced-form) VAR is

estimated in levels. To avoid any confusion, note that in the sequel, we use the index i (respectively,

the notation h) to denote the impulse response horizon or lead time (respectively, the forecast error

variance horizon).

10An alternative and asymptotically equivalent approach is to replace the matrix exponential representation with

deviations from Is of the form Is + T−1Γ.
11Note that if Γ has some nonzero off-diagonal elements, one can have series that are near integrated of different

orders.
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Theorem 3.4. Consider the reduced-form VAR in levels (equation 2.1). Let Assumption 3.2 hold,

and let f, g ∈ [0, 1]. Then,

i) If the lead time i = gT , where g > 0 is a fixed fraction of the sample, the limiting reduced-form

impulse response matrix Φi is nonzero as T → ∞:

Φi ⇒ Φ̄ = β⊥ exp(gUΓ)β
′
E , (3.21)

ii) If h = fT , where f > 0 is a fixed fraction of the sample, then the limiting non-accumulated

Max Share matrix and the h-step-ahead forecast-error variance matrix at horizon h are random

as T → ∞:

h−1Ŝk,T (h) ⇒ f−1

∫ f

0
Σ′
trβE exp(sU ′

Γ)β
′
⊥eke

′
kβ⊥ exp(sUΓ)β

′
EΣtrds ≡ S̄k(UΓ), (3.22)

h−1MSE(h) ⇒ f−1

∫ f

0
β⊥ exp(sUΓ)β

′
EΣuβE exp(sU ′

Γ)β
′
⊥ds, (3.23)

where ⇒ denotes weak convergence. The formal definitions of the matrices β⊥, βE, and UΓ, which

is a matrix function of a mixture of unit-root or local-to-unity distributions (or a mixture of both

distributions), are given in Appendix 2.

Proof: These results follow directly from Lemma 2.2 and Theorem 3.1 in Phillips (1998).

Part (i) of Theorem 3.4 asserts that the limiting response matrices of the moving average (reduced-

form) representation lie in the range of β⊥ in the presence of roots at or near unity. This implies

that the limiting impulse responses, denoted as Φ̄, are nonzero exclusively for nonstationary vari-

ables possessing unit roots or near unit roots, particularly for β′
⊥yt, especially when the lead time

i represents a significant fraction of the sample size. Moreover, the matrix βE captures the perma-

nent impact of the reduced-form innovations on β′
⊥yt.

Importantly, result (i) shows that for i = gT , where g > 0 is a fixed fraction of the sample, the im-

pulse response matrices in the moving average representation for the VAR in levels are inconsistent

except at the very shortest horizons. More specifically, the limits of elements of the impulse response

matrices become random variables rather than true values. The presence of roots at or near unity

accelerates the convergence of OLS estimates and leads to (super-)consistency in OLS regressions

in levels (see Sims et al., 1990). As explained by Phillips (1998), impulse response functions do not

converge faster in some directions, defined by the range of β⊥, but rather carry the effects of (near)

unit roots indefinitely as the lead time i increases. It is important to note that (near) unit roots

are estimated with some degree of error, and this error not only persists but also accumulates as

T → ∞, with the impulse response horizon constituting a non-negligible fraction of the sample size.
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The second result (ii) of Theorem 3.4 establishes that the estimator of the Max Share matrix

Ŝk,T (h) becomes inconsistent and converges to a random matrix when the unrestricted VAR is

estimated in levels. This inconsistency arises because Ŝk,T (h) depends on the reduced-form im-

pulse response estimates at medium-to-long horizons (equations 2.6 and 2.13). Specifically, this

random matrix represents a continuous average of a (matrix) quadratic form derived from the

limiting (reduced-form) impulse responses (equation 3.22). As a result, the estimators of the corre-

sponding eigenvalues and eigenvectors are also inconsistent and fail to converge to their true values.

Similarly, the mean squared error converges to a random variable, which is a continuous aver-

age of a quadratic form derived from the limiting reduced-form impulse responses. Interestingly,

the Max Share statistic can weakly converge in probability to a non-random matrix when the fore-

cast error variance horizon is a fixed fraction of the sample size and T diverges to infinity, meaning

that the mixture of unit root or local-to-unity distributions does not affect the limiting Max Share

statistic. For example, this occurs in the first experiment of our Monte Carlo simulations. However,

finite-sample approximations can be severely distorted relative to the limiting distribution.

Given that structural IRFs from the identified Max Share shock are given by equation (2.16),

the presence of some roots at, or near, unity has three significant implications. Firstly, according

to Theorem 3.4(i), structural impulse responses, which are fundamentally functions of the reduced-

form impulse responses, are inconsistent when roots are at or near unity. Their limits are altered

by the distribution of the unit root or near unit root processes. Secondly, as stated in Theorem

3.4(ii), structural impulse response functions are also inconsistent due to the estimation of the

eigenvector q1,k(h). Specifically, with a medium- to long-term Max Share identification scheme, the

(inconsistent) estimate of q1,k(h), derived from an inconsistent estimate of the Max Share matrix,

affects all structural impulse response matrices. This impact is not limited to those with a lead time

extending beyond a fixed fraction of the sample size but also contaminates the entire structural

IRF matrices. Thirdly, in combination with the inherent inconsistency of the reduced-form impulse

response matrices, non-normal asymptotics generally prevail. This results in non-normal random

limits, even in the presence of stationary components within the VAR specification. Therefore,

the structural IRFs are influenced by the stochastic nature of the eigenvector estimates and the

nonstationarity embedded within the unrestricted VAR model in levels.

4 Monte Carlo simulations

This section provides some Monte Carlo simulations to study the performances of the Max Share

procedure in the presence of misspecification regarding the integration order. We assume that the

data generating process (DGP) is a bivariate VAR model:
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 ∆X1,t

X2,t

 =

 a11 a12 + δ

a21 a22

 ∆X1,t−1

X2,t−1

+

 0 −a12

0 0

 ∆X1,t−2

X2,t−2

+

 u1,t

u2,t


(4.24)

with

ut =

 1 b12

b21 1

 w1,t

w2,t

 ,

where wt ∼ N(0, I2) is a bivariate vector of structural shocks.

The parameter δ controls the number of permanent structural shocks and the magnitude of the

permanent effect of the second shock ϵ2,t on the first variable X1,t. When δ = 0, only the first

structural shock has a permanent impact on the first variable. To some extent, the corresponding

specification can be viewed as the one often encountered in the macroeconomic literature to identify

a permanent shock, for example, the identification of a technology shock with some measures of

(labor or total) productivity and hours worked (see Section 6).12 When δ ̸= 0, the two structural

shocks have a permanent effect on the first variable (e.g., Fisher, 2006). In other words, the identifi-

cation of the first structural shock can be contaminated by the second permanent structural shock,

meaning the two permanent shocks can be confounded. By taking the transformation of the first

variable, this specification is labeled the first-difference model.

On the other hand, the corresponding specification in levels is given by: X1,t

X2,t

 =

 1 + a11 a12 + δ

a21 a22

 X1,t−1

X2,t−1

+

 −a11 −a12

−a21 0

 X1,t−2

X2,t−2

+ ut. (4.25)

In both cases, we can also consider a situation in which the second variable X2,t is nearly integrated,

that is, a22 = exp(−c/T ) with c > 0. To summarize, X1,t is integrated of order one and is either

specified in first-difference or in level, and X2,t is either weakly stationary or nearly integrated in

our Monte Carlo simulations. In the sequel, we assume that a11 = 0. Appendix 2 provides the

derivation of the asymptotic distribution of the Max Share matrix Ŝ1,T (h) for different configura-

tions of this DGP.

Using equation (4.24), we generate 10,000 samples of size T = 240 observations, a common sample

12It is worth emphasizing that the VAR(1) specification (the first set of experiments) is the DGP of Gospodinov

et al. (2012) and Chevillon et al. (2020), whereas the VAR(2) (the second set of experiments) corresponds to that of

Gospodinov (2010) and Gospodinov et al. (2011).
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size in applied macroeconomic research. To control for initial condition effects, we include 200

pre-sampled observations that are subsequently discarded during estimation. In each replication,

we set the lag order to its true value, whether considering (∆X1,t, X2,t)
′ or (X1,t, X2,t)

′, ensuring

that our results are free from lag order misspecification issues. 13 For each replication, we perform

OLS estimation for both the first difference (equation 4.24) and level (equation 4.25) VAR specifi-

cations. Additionally, for the level-based specification, we apply the analytical correction proposed

by Pope (1990) and a bootstrap procedure (Kilian, 1998; Inoue and Kilian, 2002).14 Subsequently,

we identify two structural shocks using the Max Share approach, which involves maximizing the

contribution of the first structural shock to the h-step ahead forecast error variance of the first

variable ∆X1,t or X1,t (equation 2.14). We explore different truncated forecast error variance hori-

zons for the Max Share criterion, including h = 0, 40, and 80 quarters. Notably, when h = 0, the

Max Share approach simplifies to a Cholesky decomposition of the variance-covariance matrix of

the innovations ut.

The results are evaluated across three dimensions. Firstly, after computing the (cumulative) mean

bias and root mean squared error (RMSE) for selected lead times (i = 0, 4, 8, and 40 quarters),

we analyze the average impulse response functions of the j-th variable due to the ℓ-th structural

shock at each lead time i, using a forecast error variance horizon of h = 0, 40, or 80 quarters for

the Max Share matrix. These average impulse response functions are denoted as IRFjℓ,i(h) and are

compared against the true impulse response function IRFjℓ,i. Note that we only report the impulse

responses for the first structural shock for sake of conciseness: detailed tables regarding the bias

and RMSE, along with further evidence for the second structural shock, are provided in the online

appendix. Secondly, we calculate the contemporaneous correlation between the estimated structural

shocks and true structural shocks, denoted by corr (ŵi,t, wi,t) for i = 1, 2, as well as the contem-

poraneous correlation between the estimated structural shocks and true complementary structural

shocks, denoted by corr (ŵi,t, wj,t) for i ̸= j. Lastly, we analyze the empirical distribution of the

first (and second) element of the eigenvector v1, denoted by v1,1(h) (and v2,1(h)), associated with

the maximal eigenvalue of the Max Share matrix.

In our initial experiment, we assume that (∆X1,t, X2,t)
′ is modeled as a VAR(1) system with

parameters (a11, a12, a21, a22, b12, b21, δ) = (0, 0, 0.2, 0.96, 0, 0.5, 0). Since a11 = a12 = δ = 0, X1,t

follows a random walk, while the second variable is a (persistent) stationary process driven by ρ.

This configuration corresponds to Case 1 as described in Section 4. Furthermore, with δ = 0,

only the first structural shock has a lasting impact on the first variable. As depicted in Figure 1

13Several robustness exercises, available upon request, were conducted to control for lag order selection, all of which

confirm the consistency of our results.
14Bayesian estimation with Minnesota unit root priors and consideration of short-run restrictions were also con-

ducted, although detailed results are not presented here, but are available upon request.
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for h = 0, there is no contemporaneous bias observed in the average structural impulse response

function (IRF) estimates, denoted by IRF11,0(0) and IRF21,0(0), regardless of how the nonstationary

variable X1 is handled. This absence of bias is consistent with the fact that the Max Share iden-

tification method is here essentially equivalent to a recursive Cholesky identification approach. As

demonstrated by Phillips (1998), IRFs are then consistently estimated at short horizons i, where

i = fT represents a small fraction of the sample size.

As the lead time i of structural impulse response functions (IRFs) increases, the bias and root

mean squared error (RMSE) of IRF11,i(0) increase significantly when the reduced-form VAR is esti-

mated in levels. Specifically, the (average) bias of the impulse response function of the first variable

to the first structural shock, IRF11,i(0), is approximately 0.05 at i = 20 and 0.07 at i = 40 for the

first-difference VAR, whereas these biases are notably higher at 0.35 and 0.55, respectively, for the

VAR in levels. Meanwhile, with the exception of the shortest horizons, the RMSE of the level-based

specifications rises rapidly compared to the first-difference specification, showing a multiplication

factor of two or even three at medium-to-long horizons.

Interestingly, both Pope’s correction and the bootstrap method exhibit similar bias reduction per-

formances, halving the bias compared to the (uncorrected) VAR in levels. However, the (average)

bias remains substantial, around 0.15 and 0.3 at i = 20 and 40, respectively. This bias reduction

comes at the cost of a slight RMSE increase at the shortest horizons (i ≤ 4), followed by a much

larger RMSE at medium-to-long horizons compared to the corresponding performances of the first-

difference specification.

Furthermore, similar patterns are observed when analyzing the (average) impulse response function

of the second variable to the first structural shock, as well as the corresponding RMSE at each hori-

zon. Starting from i > 4, a notable discrepancy in bias performances between the first-difference

and the level -based specifications is observed regarding IRF21. This relative performance is even

more pronounced when examining the RMSE. Indeed, using Pope’s correction or the bootstrap

procedure effectively reduces the (average) bias to levels comparable to the first-difference specifi-

cation but comes with a multiplication factor (for the RMSE) greater than two at medium-to-long

horizons.

As illustrated in Figure 2 and Figure 3, an increase in the forecast error variance horizon h within

the Max Share procedure unveils three main features. First, consistent with the findings of The-

orem 3.4, a contemporaneous bias in the impulse response function of the first variable, resulting

from the first structural shock, emerges when level -based methods are used. Additionally, neither

Pope’s correction nor standard bootstrap techniques fully mitigate this bias, particularly at the

shortest impulse response horizons i. When analyzing the effect of the first structural shock on the
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second variable, IRF21, both bias-correction methods display minimal (average) bias and perform

comparably to the first-difference method, albeit at the cost of lower efficiency. The uncertainty

associated with level-based structural IRF estimates for the second variable increases with the fore-

cast error variance horizon h. Specifically, the RMSE for bias-corrected methods is higher than

that inherited from ordinary least squares estimation of the VAR in levels when considering the

IRF of the second variable due to the first structural shock. Conversely, for the IRF of the first

variable, the RMSE from bias-corrected methods is lower.

Examining the eigenvector corresponding to the maximal eigenvalue, Figure 4 displays the dis-

tributions of its two elements when the forecast error variance horizon h is 40 or 80 quarters. When

employing the first-difference specification, the distribution of the first element of the eigenvector

exhibits a pronounced peak around the true value of the first unit vector element. In contrast, all

estimation methods using the level specification lead to a significantly greater dispersion for the

first element, with values ranging between 0.6 and 1. The distributions for the second element of

the eigenvector, while approximately symmetric around the true value of 0, span a broad interval

from -1 to 1.

These results can be rationalized by analyzing the asymptotic distribution of the Max Share statis-

tic. According to the derivations presented in Appendix 2, the asymptotic distribution of the Max

Share matrix is characterized as a random matrix expressed by:

h−1Ŝ1,T (h) ⇒
1

f

1 0

0 0

∫ f

0
exp (2Us) ds (4.26)

with
∫ f
0 exp (2Us) ds = 1

2U [exp(2Uf)− 1] where the real random variable U has a unit root distri-

bution. Moreover, the asymptotic distribution of the mean squared error is given by:

h−1e′1MSE(h)e1 ⇒
1

f

∫ f

0
exp (2Us) ds.

These two results imply that the Max Share statistic is weakly convergent, i.e.

q′1Sk(h)q1
e′1MSE(h)e1

p→

1 0

0 0

 . (4.27)

In this case, the limit of the Max Share statistic is consistent, and the limits in (weak) probability

of the eigenvalue estimators are one and zero, respectively. Moreover, the limit of the eigenvector

estimator associated with the maximal eigenvalue is the vector [1 0]′. This aligns with the simulation

results depicted in Figure 4. Additionally, given the definition of the structural impulse response

functions outlined in equation (2.16), the impact on these functions also depends on the distribution
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of the reduced-form impulse responses Φi. As outlined in Theorem 3.4, the latter is given by:

Φi ⇒

exp(gU) 0

0 0

 .

This distribution has a random limit, characterized by the exponential of the scalar unit root dis-

tribution, which notably exhibits left-skewness that intensifies with increasing values of g.15 For

instance, with g = 40
240 , our Monte Carlo simulations indicate that the resulting asymmetry in the

distributions of the reduced-form impulse response functions is pronounced, featuring a significant

negative skewness coefficient. This asymmetry mirrors that typically observed in unit-root distri-

butions.16

For our second experiment, we maintain the same parameter vector as in the initial experiment.

However, we now assume that both structural shocks have a permanent effect on the first variable

(δ = −0.025 ̸= 0), potentially leading to a confounding effect. Several noteworthy observations

arise from Figure 5. Firstly, consistent with Experiment 1, impulse response estimates derived

from the first-difference method consistently outperform those from the level specification across

all lead times, demonstrating superior bias and RMSE properties.17 Secondly, as the forecast error

variance horizon h increases, we observe significant differences, particularly regarding the impact

of the first structural shock on the second variable. This suggests that the Max Share identification

method may partially confound the two permanent structural shocks.

This interpretation is further supported by the correlation analysis between each estimated struc-

tural shock and the true complementary structural shock (see online Appendix 2 ). Specifically, we

note that these (absolute) correlations hover around 25% for level -based impulse response estimates,

whereas they are negligible when using the first-difference specification. Additionally, we observe

an average 10% decrease in the correlation between each estimated structural shock and the true

one for OLS-based, bias-corrected, and bootstrapped estimates derived from the level specification.

In contrast, these correlations remain unchanged and close to 100% in the case of the first-difference

specification.

Thirdly, we observe that the RMSE generally increases as the forecast error variance horizon ex-

tends in the Max Share procedure, particularly noticeable at the shortest impulse response horizons

for level -based estimates. Fourthly, consistent with the results detailed in Appendix 2, two main

features emerge regarding the distribution of the eigenvector elements (see Figure 6). On the one

hand, using the first-difference specification in the presence of two persistent structural shocks

15See also Phillips (1998, Figure 1(a)).
16Note that the asymmetry results from the nonnormal limit theory (Phillips, 1998).
17Figures for h = 0 and h = 80 are reported in the online Appendix.
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results in distributions that remain nearly invariant compared to those in the first experiment. On

the other hand, employing the specification in levels broadens the support of the two distributions.

Notably, the distribution of the second eigenvector element exhibits a right-skewed pattern, with a

negative mean and median estimate of v2,1 around -0.5, significantly deviating from the true value

of 0. Increasing the forecast error variance horizon from 40 to 80 quarters further exacerbates this

issue. This can be understood by examining the asymptotic distribution of Ŝ1,T (h) given by:

h−1Ŝ1,T (h) ⇒
1

f

 0.3735 −0.3395

−0.3395 0.3086

∫ f

0
exp (2Us) ds.

Comparing with the expression of the asymptotic distribution of the Max Share matrix estimator in

equation 4.26, one main difference is that the matrix Σ′
trβEβ

′
⊥e1e1β⊥β

′
EΣTr given in the right-hand

side now possesses four nonzero elements due to the presence of two permanent structural shocks,

thus δ ̸= 0. It turns out that the finite sample estimation of these elements further contributes

to increased uncertainty, compounding the finite sample approximation of nonnormal, asymmetric

asymptotics associated with the unit-root distribution.18

For our last two reported experiments, we focus on Case 4 (Section 3), where (∆X1,t, X2,t)
′ is

modeled as a VAR(1) system with parameter (a11, a12, a21, a22, b12, b21) = (0,−0.2, 0.2, 0.99, 0, 0.5)

and δ = 0 (experiment 3 ) or -0.025 (experiment 4 ). The second variable is modeled as a near-unit

root process. In the case of a forecasting error variance horizon of 40 quarters, Figures 7 and 8 re-

port the average impulse responses and the RMSE for δ = 0 and δ = −0.025, respectively.19 Several

points are worth noting. The presence of a near-unit root second variable substantially increases

the bias of impulse response estimates, even in the case of the first-difference specification. In par-

ticular, the bias is more pronounced for greater impulse response horizons and h = 0 or 40 quarters

when studying the effect of the first structural shock on the second variable (lower panels in Figure

7 and 8) in the presence or absence of a confounding effect. Meanwhile, the level -based estimates

of IRF21 exhibit, as in our second experiment, a significant contemporaneous bias along with large

RMSEs. With only one permanent structural shock (δ = 0), the occurrence of a near-unit root for

X2 leads to contemporaneous correlations (in absolute value) corr (ŵi,t, wj,t) of 15% between the

two structural shocks. In the case of two permanent structural shocks, these correlations increase

to around 60% for h = 40, while those between the j-th estimated level -based structural shock and

the true one, corr (ŵi,t, wi,t), drop to 74% (h = 40) and 60% (h = 80). Consistent with previous

results, in the case of first-difference estimates, the correlations corr (ŵi,t, wi,t) for i = 1, 2 remain

close to 100%, and those between ŵi,t and wj,t for i ̸= j are close to zero.

18Interestingly, when we apply the Max Share matrix estimator with a starting horizon of 20 quarters instead of

zero and a maximum horizon of 80 quarters, the medians of the first eigenvector closely match those of the asymptotic

matrix mentioned above.
19Results for h = 0 and 80 are also available in the supplementary material.
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The rationale behind the structural IRF results remains consistent with the findings of the first

two experiments. On the one hand, using the derivations detailed in Appendix 2, the asymptotic

distribution of the Max Share matrix is given by:

h−1Ŝ1,T (h) ⇒
1

f

∫ f

0

0.8615 0.6808

−0.2 0.9615

 exp(sU ′
Γ)e1e

′
1 exp(sUΓ)

0.8615 −0.2

0.6808 0.9615

 ds

where UΓ denotes a matrix function representing a mixture of unit root and local-to-unity distri-

butions and Γ =

0 c1

0 c2

, with δ = 0 (experiment 3 ) or δ = −.025 (experiment 4 ), δ = c1
T , and

c1 characterizes the root near unity (see Assumption 3.2). The finite sample approximation of this

more complex asymptotic distribution, which is nonnormal and asymmetric, significantly impacts

the eigenvector associated to the largest eigenvalue.

On the other hand, this effect is compounded with the estimation of the reduced-form impulse

responses whose asymptotic distribution, as indicated by Theorem 3.4, is given in both cases by:

Φi ⇒ exp(gUΓ)

0.9615 −0.2

0.2 0.9615

 ,

where exp(gUΓ) is a 2 × 2 matrix. Consequently, the elements of the structural IRFs of the first

variable, as identified by the Max Share approach, are adversely affected by the relationship (2.16).

Regarding the finite sample distribution of the two elements of the eigenvector associated with

the maximal eigenvalue, the simulation results (Figures 9 and 10) from the first two experiments

are further exacerbated in the context of both a near-unit root for the second variable and a possible

confounding effect (δ ̸= 0). Specifically, the distributions of level -based estimates of the eigenvector

elements exhibit either a left-skewed shape (for the first eigenvector element) or a right-skewed

shape (for the second eigenvector element) when h = 40, with only minor concentration around the

true value. As the forecast error variance horizon increases, both distributions undergo significant

distortions in the presence of both a unit root and a near-unit root in the unrestricted VAR in

levels. In particular, when δ = −0.025, the distribution of the first eigenvector element displays an

inverted U-shape with a broad range, while the distribution of the second eigenvector element is

bimodal, with values predominantly clustered around either -1 or 1.20

20The bimodal distribution can be understood with the following argument: let A =

1 + ε 0

0 1− ε

, where ε > 0

is small enough. A has two eigenvalues λmax = 1 + ε and λmin = 1− ε. One eigenvector associated with the largest

(respectively, smallest) eigenvalue is the first (respectively, second) basis vector of R2, v1 =
[
1 0

]′
(respectively,
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In conclusion, given the prevalence of such a data-generating process (DGP) in macroeconomic

applications, these simulation experiments highlight several interesting insights. First, structural

impulse responses derived from VAR models in levels show a substantial loss in terms of bias and

RMSE properties at intermediate and long horizons. This contrasts with those obtained from

the first-difference specification. Second, while bias-corrected, bootstrap and Bayesian methods

mitigate the bias issue, they still perform worse than estimates from a stationary representation,

especially in terms of RMSE. Third, the presence of a potential confounding effect, such as two

permanent shocks, exacerbates the discrepancies between first-difference estimates and level -based

estimates. This further outlines the need for caution when interpreting results from unrestricted

VAR models in levels.

5 Empirical application

Our empirical application highlights the potential issues of relying exclusively on VAR models in

levels, aligning with our theoretical and simulation results. We draw upon the study of Ben Zeev

and Khan (2015), who used Max Share identification to investigate the nature of investment-specific

technology (IST) news shocks. Interestingly, their unrestricted VAR specification, which includes

IST and TFP variables in levels, highlights two possible sources of long-run fluctuations, potentially

leading to a confounding effect.

We consider a reduced-form VAR with five (log-) variables for the US economy from 1959Q1 to

2019Q4:

yt = (logTFPt, log ISTt, logCt, logHt,∆ logPt)
′.

The first variable is the real-time, quarterly series on total factor productivity (TFP) adjusted for

variations in factor utilization, constructed by Fernald (2014). Our benchmark measure of IST is

the inverse of the real price of investment, which is defined as the ratio of the investment defla-

tor to the consumption deflator. The consumption deflator encompasses nondurable and service

consumption from the National Income and Product Account (NIPA) whereas the investment de-

flator corresponds to private fixed investment and durable consumption. Following Whelan (2002),

we use a Fisher index to obtain chain-aggregated data.21 Consumption is measured as the sum of

nondurables and services and is converted to per capita terms by dividing by the civilian noninstitu-

tionalized population aged 16 and over. The real series is then obtained by using the corresponding

v2 =
[
0 1

]′
). Consider a small perturbation of A, Aε = A + ϵ

−1 1

1 1

. The two eigenvalues remain unchanged,

while (using the same normalization as in the initial matrix) one eigenvector associated with λmax is the sum vector

of R2, v1 =
[
1 1

]′
and v2 =

[
1 −1

]′
.

21The IST series is nearly identical when using the Törnqvist-Theil discrete time approximation to a Divisia index.
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chain-weighted deflator. The hours series is the log of total hours worked in the nonfarm business

sector adjusted for the civilian noninstitutionalized population aged 16 and over. Finally, inflation

is measured as the percentage change in the GDP deflator.

Our identification strategy assumes two sources of persistent fluctuations in the system, which

we define as TFP and IST news shocks. In line with the approach of Kurmann and Sims (2021),

we sequentially apply the Max Share approach from Francis et al. (2014) to identify two structural

permanent shocks, setting the truncated forecast error variance horizon to h = 80 quarters. Let Ã0

represent the lower triangular Cholesky factor of the reduced-form covariance matrix Σu, and Q be

an orthonormal matrix such that all impact matrices are given by A0 = Ã0Q. The first structural

shock is identified by solving:

q1(h) = argmax
q1

q′1S1(h)q1
e′1MSE(h)e1

s.t. q′1q1 = 1

where q1 is the first column of the matrix Q. This vector q1 represents the linear combination

that maximally contributes to the future forecast error variance of TFP over a given horizon h,

indicating the maximum share of TFP’s future forecast error variance explained by this shock.22

The second structural shock is identified similarly, under the additional condition that this shock

is orthogonal to the first structural shock:

q2(h) = argmax
q2

q′2S2(h)q2
e′2MSE(h)e2

s.t. q′2q2 = 1 and q′2q1 = 0

where q2 is the second column of the matrix Q. This vector q2 primarily accounts for the long-term

fluctuations in IST. Consequently, the first two columns of Ã0Q encompass the TFP and IST news

shocks. To ensure the robustness of our identification strategy, we reverse the order of identification

assigning q1 to IST and q2 to TFP.

In our empirical analysis, we employ two specifications. First, we estimate an unrestricted reduced-

form VAR in levels with four lags, which is standard practice for quarterly data. Second, we esti-

mate a VECM to account for potential unit roots and long-run relationships. Unit root tests provide

evidence that the first three variables—TFP, IST, and consumption—are non-stationary. More-

over, economic theory suggests that consumption shares a stochastic trend with both TFP and IST.

More specifically, Johansen’s (1995) cointegration tests, using both the trace and maximum eigen-

value test-statistics, reject the null hypothesis of a cointegration rank of two or less, but not of three

22As pointed out by Kurmann and Sims (2021) for the TFP shock, imposing short-run restrictions, such as zero

impact restrictions used by Barsky and Sims (2011), may lead to misleading outcomes due to the imperfect mea-

surement of factor utilization. Therefore, we refrain from imposing such identifying restrictions on TFP and IST

permanent shocks.
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or less. This result implies that the data is consistent with the presence of two stochastic trends,

suggesting no more than one cointegrating relationship among TFP, IST, and consumption, assum-

ing total hours worked and inflation are covariance stationary. In contrast, the Engle-Granger test

rejects the null hypothesis of cointegration between any combinations of these three variables. To

reconcile these conflicting pre-test results, we report results based on a single cointegration vector,

although our findings remain robust even under the assumption of no cointegration, such as when

estimating a VAR with the three non-stationary variables in first differences. This dual approach,

using both a VECM and a first-differenced VAR, aims to provide a comprehensive understanding of

the underlying dynamics while enhancing the robustness of our results against varying assumptions

regarding the cointegration structure.

Figure 11 illustrates the structural impulse response functions (top panel) and the forecast er-

ror variance shares (bottom panel) due to the structural TFP shock on each variable under both

identification strategies. Figure 12 provides a similar view for the structural IST shock. Notably,

the IRFs and FEVD shares for the TFP shocks differ significantly depending on the identification

ordering. For instance, while both orderings agree that a TFP shock increases hours worked (except

at impact), the VAR in levels yields a distinct response and attributes a substantially larger share

in the variance decomposition of hours worked to the TFP shock. Specifically, TFP shocks account

for nearly 60% of the variance decomposition of hours worked after 10 quarters when identified first,

but only 20% when identified second. Thus, when TFP shocks are identified first, they are seen

as the main driver of fluctuations in hours worked; this conclusion, however, should be moderated

when these shocks are identified second.

The differences are even more pronounced with IST shocks, as depicted in Figure 12. When the

VAR in levels is employed, hours worked decline for several quarters following the impact of IST

shocks when these shocks are identified conditional on TFP shocks. If IST shocks are identified first,

they account for a significant portion of fluctuations in hours worked and consumption. However,

when IST shocks are identified second, their impact is considerably less significant. This suggests

that, in the second identification scheme, IST shocks may not be a primary driver of business cycles.

This analysis provides evidence that applying the Max Share approach to VAR in levels at a

distant horizon can lead to conflicting results, likely due to the confounding of the two permanent

shocks, as seen in our simulation experiments. By explicitly accounting for the stochastic trends

using a VECM, the impact of the identification order is substantially reduced. As detailed in

the online Appendix, this impact becomes almost negligible when employing a reduced-form VAR

model with the first three variables in first differences. Regardless of the stationary transformation

or the identification order, the impulse response functions and the forecast error variance shares

remain consistent for the two structural shocks. Importantly, neither TFP nor IST shocks emerge
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as the primary drivers of fluctuations in hours worked.

Finally, this empirical application underscores the potential pitfalls of relying solely on VAR in

levels. While this application does not settle the debate on whether TFP or IST shocks are pivotal

for business cycles, it highlights the sensitivity of results when using a VAR in levels in the pres-

ence of persistent processes with roots at or near unity. This emphasizes the importance of also

estimating stationary representations, such as a reduced-form VECM or a reduced-form VAR with

certain variables in first differences, to accurately capture the dynamics of structural shocks and

enhance the robustness of macroeconomic analysis.

6 Conclusion

This paper critically examines the implications of using VAR models in levels with the Max Share

identification approach, particularly in the presence of unit or near-unit root processes. Our the-

oretical and empirical analyses provide several key insights. First, structural impulse responses

from level-based VARs exhibit significant bias and higher RMSE at intermediate and long horizons

compared to those from stationary representations, although they perform similarly at very short

horizons. Second, although bias-corrected, bootstrap, and Bayesian methods reduce some bias,

they tend to increase RMSE and do not consistently outperform stationary specifications, such as

first-difference models. Third, the presence of multiple permanent shocks exacerbates discrepan-

cies between estimates from level-based and differenced VARs, potentially leading to confounding

effects and unreliable identification of structural shocks.

These findings emphasize the importance of using stationary transformations, such as VECMs

or differencing, and reporting the corresponding results to ensure reliable identification of struc-

tural shocks and impulse responses. Such transformations help mitigate the risk of identifying

hybrid shocks instead of primitive shocks. While unrestricted VARs in levels can be useful when

there is uncertainty about unit roots and cointegration, it is advisable to complement this approach

with stationary model estimates, such as the adaptive automated VECM estimation procedure pro-

posed by Liao and Phillips (2015), which effectively handles unknown cointegrating rank structures

and transient lag dynamic orders. Alternatively, a thorough VECM robustness analysis can be

conducted in a stepwise manner.

Additional supporting information may be found in the supplementary materiel of this paper:

Appendix 1: The accumulated Max Share approach and the Max Share approach in the frequency

domain.

Appendix 2: Monte Carlo simulations.

Appendix 3: Empirical application.
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Appendix 1: Proofs of asymptotic results in the stationary case

Proof of Theorem 3.1

Let Assumption (3.1) hold and consider the behavior of Sk,T (h) as T → ∞ for some finite, fixed h. The asymptotic

distribution can be derived from the delta method. Let α̃ = vec ([A1, . . . , Ap]), one has

Dα̃(h) :=
∂vec (Sk(h))

∂α̃′ =

h−1∑
ℓ=0

(
IN ⊗ Σ′

trΦ
′
ℓeke

′
k

) ∂vec (ΦℓΣtr)

∂α̃′ +

h−1∑
ℓ=0

(
Σ′

trΦ
′
ℓeke

′
k ⊗ IN

) ∂vec (Σ′
trΦ

′
ℓ)

∂α̃′

with (see Lütkepohl Lütkepohl (2007) p.668, rules 7 and 6, respectively)

∂vec (ΦℓΣtr)

∂α̃′ =
(
Σ′

tr ⊗ IN
) ∂vec(Φℓ)

∂α̃′

∂vec (Σ′
trΦ

′
l)

∂α̃′ =
(
IN ⊗ Σ′

tr

) ∂vec(Φ′
ℓ)

∂α̃′

=
(
IN ⊗ Σ′

tr

)
KNN

∂vec(Φℓ)

∂α̃′ .

where KNN is the N2 ×N2 commutation matrix such that vec(A′) = KNNvec(A) for any N ×N matrix. Therefore,

using the Kronecker product rules and the properties of the commutation matrix, one has:23

∂vec (Sk(h))

∂α̃′ =

h−1∑
ℓ=0

(
IK ⊗ Σ′

trΦ
′
ℓeke

′
k

) (
Σ′

tr ⊗ IN
) ∂vec(Φℓ)

∂α̃′ +

h−1∑
ℓ=0

(
Σ′

trΦ
′
ℓeke

′
k ⊗ IN

) (
IN ⊗ Σ′

tr

)
KNN

∂vec(Φℓ)

∂α̃′

=

h−1∑
ℓ=0

(
Σ′

tr ⊗ Σ′
trΦ

′
ℓeke

′
k

) ∂vec(Φℓ)

∂α̃′ +

h−1∑
ℓ=0

(
Σ′

trΦ
′
ℓeke

′
k ⊗ Σ′

tr

)
KNN

∂vec(Φℓ)

∂α̃′

=

h−1∑
ℓ=0

(
Σ′

tr ⊗ Σ′
trΦ

′
ℓeke

′
k

) ∂vec(Φℓ)

∂α̃′ +

h−1∑
ℓ=0

KNN

(
Σ′

tr ⊗ Σ′
trΦ

′
ℓeke

′
k

) ∂vec(Φℓ)

∂α̃′

=

h−1∑
ℓ=0

(IN2 +KNN )
(
Σ′

tr ⊗ Σ′
trΦ

′
ℓeke

′
k

) ∂Φℓ

∂α̃′ .

Likewise, defining σ := vech(Σu),

Dσ(h) :=
∂vec (Sk(h))

∂σ′ =

h−1∑
ℓ=0

(
IN ⊗ Σ′

trΦ
′
ℓeke

′
kΦℓ

) ∂vec(Σtr)

∂σ′ +

h−1∑
ℓ=0

(
Σ′

trΦ
′
ℓeke

′
kΦℓ ⊗ IN

) ∂vec(Σ′
tr)

∂σ′

=

h−1∑
ℓ=0

(IN2 +KNN )
(
IN ⊗ Σ′

trΦ
′
ℓeke

′
kΦℓ

) ∂vec(Σtr)

∂σ′ .

We define the Np× (T − p) matrix Y := (Yp+1, . . . , YT ) and ΓY (0) := E
(
(Y − E(Y )) (Y ′ − E(Y ))

′)
, the contempo-

raneous covariance matrix of the vector process yt. Under Assumption (3.1),

√
T

α̃T − α̃

σT − σ

 d→ N

0,

ΓY (0)−1 ⊗ Σu 0

0 2D+
N (Σu ⊗ Σu)D

+′

N


where D+

N := (D′
NDN )

−1
D′

N is Moore-Penrose generalized inverse of the N2×N(N+1)/2 duplication matrix. Using

the Delta method,

√
T vec

(
Ŝk,T (h)− Sk(h)

)
d→ N

0,
[
Dα̃(h) Dσ(h)

]ΓY (0)−1 ⊗ Σu 0

0 2D+
N (Σu ⊗ Σu)D

+′

N

D′
α̃(h)

D′
σ(h)


23Let G be (m × n) and F (p × q). Then Kpm(G ⊗ F ) = (F ⊗ G)Kqn, with Kpm and Kqn some commutation

matrices.

32



as stated.

Proof of Theorem 3.2

Suppose that the Max Share matrix Sk(h) is of rank r ≤ N . The spectral decomposition of Sk(h) is given by:

Sk(h) = Q(h)Λ(h)Q′(h),

where Λ(h) is the diagonal matrix whose diagonal elements are the eigenvalues arranged in algebraically nonincreasing

order, and Q(h) is the orthogonal matrix with Q(h)Q′(h) = IN containing the associated eigenvectors. Given that the

Max Share matrix is not necessarily of full rank (e.g., Case 1, Section 4), we assume that the first r eigenvalues are

different from zero and the last N − r eigenvalues are equal to zero. Accordingly, the submatrix Qr(h) contains the

eigenvectors associated with the first r eigenvalues, and the submatrix QN−r(h) contains the eigenvectors associated

with the last N − r eigenvalues, so that Q(h)Q′(h) = Qr(h)Q
′
r(h) + QN−r(h)Q

′
N−r(h). Additionally, Qr(h) can be

partitioned as Qr(h) = [q1(h) Q2:r(h)], where q1(h) = qk(h) denotes the eigenvector associated with the maximal

eigenvalue when the target is the kth variable. Therefore, the matrix Λ(h) can be written as:

Λ(h) ≡

 Λr(h) 0

0 ΛN−r(h)


= Q′(h)Sk(h)Q(h) =

 Q′
r(h)Sk(h)Qr(h) Q′

r(h)Sk(h)QN−r(h)

Q′
N−r(h)Sk(h)Qr(h) Q′

N−r(h)Sk(h)QN−r(h)

 ,
where Q′

r(h)Sk(h)Qr(h) =

 q′1(h)Sk(h)q1(h) q′1(h)Sk(h)Q2:r(h)

Q′
2:r(h)Sk(h)q1(h) Q′

2:r(h)Sk(h)Q2:r(h)

. Using the vectorization of the matrix

Λr(h), we have:

vec (Λr(h)) = vec
(
Q′

r(h)Sk(h)Qr(h)
)
=

(
Q′

r(h)⊗Q′
r(h)

)
vec (Sk(h)) .

Using Theorem 3.1, T 1/2vec
(
Ŝk,T (h)− Sk(h)

)
d→ N (0,Ω)(h), and assuming a weakly consistent estimate of the

submatrix of eigenvectors Qr(h), Q̂r,T (h)
p→ Qr(h), the two results of Theorem 3.2 follow by virtue of the Slutsky

theorem.

Proof of Theorem 3.3

Theorem 3.3 is an application of Theorem 4.1 and Theorem 4.2. (p. 729) of Tyler (1981) and Theorem 1 in Bura

and Pfeiffer (2008). The expression of the variance-covariance matrix of the eigenvector associated to the maximal

eigenvalue results from Anderson Anderson (1963).

Appendix 2: Asymptotic properties of the Max Share matrix for

the bivariate DGP

We first provide some preliminary notations.

33



Rotating the System in Separate I(1) and I(0) Components

Some of the results in the paper rely on rotating the system into separate I(1) and I(0) components following Phillips

(1998). Define C := (β⊥, β), zt := C′yt, ηt := C′ut and Ãi := C′AiC. Then,

zt =

p∑
i=1

Ãizt−i + ηt.

Letting Π̃ := C′(Π)C, we get

zt = Π̃zt−1 + C′Γ(L)C∆zt−1 + ηt.

Furthermore, we defineWt :=
(
∆z′t−1, . . . ,∆z

′
t−p+1

)′
=

(
∆y′t−1, . . . ,∆y

′
t−p+1

)
(Ip−1 ⊗ C) and F := C′ (Γ1, . . . ,Γp−1) (Ip−1 ⊗ C)

whence

FWt = C′Γ(L)C∆zt

⇒ zt = Π̃zt−1 + FWt + ηt. (6.28)

We now obtain a partition of the matrix Π̃. Under (c), one gets

Π̃ =

exp(n−1Γ) β′
⊥α

0r×s Ir + β′α

 .
Two Random Matrix distributions

Following Phillips (1998) we define the random matrices U and UΓ. Recall that ηt := C′ut are the residuals in the

separated system and define S̄(.) as a vector of uncorrelated Brownian motions. Under assumption (c), we further

define η̃1t := β′
⊥αz2,t−1 +F1Wt + η1t, its long-run covariance matrix as Λ, the long-run covariance matrix of η1t as P

and the correlated Brownian motions Sη(.) = PS̄(.) and S1(.) = ΛS̄(.). Then, the so-called unit root matrix is given

by

U :=

∫ 1

0

dSη(ν)S1(ν)
′
(∫ 1

0

S1(ν)S1(ν)
′dν

)−1

. (6.29)

Now, under assumption (c’), we must also introduce the following Ornstein-Uhlenbeck process JΓ(ν) :=
∫ ν

0
exp ((ν − s)Γ) dS1(s)

and the so-called local-to-unit matrix

UΓ :=

∫ 1

0

dSη(ν)JΓ(ν)
′
(∫ 1

0

JΓ(ν)JΓ(ν)
′dν

)−1

. (6.30)

Specific derivations for the experiments

We discuss part (i) of Theorem 3.4 (i.e., the limiting distribution of IRFs) in the special case of the DGP used in

Section 4: y1t
y2t

 =

1 + a11 a12 + δ

a21 a22

y1t−1

y2t−1

+

−a11 −a12
−a21 0

y1t−2

y2t−2

+

u1t

u2t

 .
Equivalently, the reduced-form VECM form can be written as:∆y1t

∆y2t

 =

0 δ

0 a22 − 1

y1t−1

y2t−1

+

a11 a12

a21 0

∆y1t−1

∆y2t−1

+

u1t

u2t

 .
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More generally, y1t
y2t

 =

1 δ

0 a22

y1t−1

y2t−1

+

a11 a12

a21 0

∆y1t−1

∆y2t−1

+

u1t

u2t

 .
Following Phillips (1998), the system of equations admits the following alternate companion form such that x̃t =

Ex̃t−1 + Ut with x̃t = (y1t, y2t,∆y1t,∆y2t)
′:

y1t

y2t

∆y1t

∆y2t

 =


1 δ a11 a12

0 a22 a21 0

0 δ a11 a12

0 a22 − 1 a21 0




y1t−1

y2t−1

∆y1t−1

∆y2t−1

+


u1t

u2t

u1t

u2t

 .

where Ut = J̃ ′ut with J̃ = [I2, I2].

The (modified) companion matrix E can be partitioned as follows:
exp(T−1Γ) E12

0r×s

exp(T−1Γ)− Is

0(p−1)×s

 E22

 . (6.31)

where s is the number of unit root or near unit root variables, r the number of stationary variable and p the number

of lags in the level-based specification. Note that the DGP imposes that the matrix Γ can be either a scalar or a 2×2

matrix depending on the number of unit roots or near-unit roots. In particular, when Γ is a matrix, the exponential

function exp(·) is understood as the matrix exponential.

As shown in Phillips (1998, p.28), the impulse response matrices can be rewritten in terms of this companion form

as follows

Φi = JEiJ̃ ′

= J

exp(iT−1Γ) exp(iT−1Γ)E12(I + · · ·+ Ei−1
22 )

O(T−1) Ei
22 +O(T−1)

 J̃ ′.

and J = [I2, 02×2] and the moving average (MA) representation of yt is

yt =

t−1∑
i=0

JEiJ̃ ′ut−i =

t−1∑
i=0

Φiut−i.

For i = fT for a fixed fraction f > 0, then Φi → Φ̄ where

Φ̄ =

exp(fΓ) exp(fΓ)E12 (I − E22)
−1

0 0

 J̃ ′

as T → ∞ because E22 has stable roots. Using an OLS-based estimation of the unrestricted VAR in levels, the ith

impulse response matrix estimate is given by:

Φ̂i = JÊiJ̃ ′.

where

Ê =

 B̂ F̂12

B̂ − I2 F̂22

 . (6.32)
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with

B =

1 δ

0 a22

 and F12 = F22 =

a11 a12

a12 0

 .
Let B1 denote the submatrix containing the first s columns of B (i.e., the nonstationary components of B), the limit

distribution is given by:

T (B̂1 −B1) ⇒
(∫ 1

0

dSηJ
′
Γ

)(
JΓJ

′
Γ

)−1
= UΓ

where JΓ(r) =
∫ r

0
exp {(r − s)Γ} dS1 is a vector diffusion process and S1 is vector of Brownian motion (see Phillips,

1988). In particular, when the diagonal elements of Γ are equal to zero, then JΓ(r) reduces to S1(r).

It follows that the expression of Êi is:

Êi =

B̂i
1 +Op(T

−1)
∑i

h=0 B̂
i−h
1 Ê12Ê

h
22 +Op(T

−1)

Op(T
−1) Êi

22 +Op(T
−1).

 (6.33)

and, as shown by Phillips Phillips (1998),

B̂i
1 = [Is + (B̂1 − Is)]

i = [Is + T (B̂1 − Is)/T ]
fT ⇒ exp(fUΓ)

as T → ∞ and i = fT . Finally,

Êi ⇒

exp(fUΓ) exp(fUΓ)E12(I − E22)
−1

0 0


and

Φ̂i ⇒ J

exp(fUΓ) exp(fUΓ)E12 (I − E22)
−1

0 0

 J̃ ′.

.

We now provide the complete derivations of different configurations.

• y1t is I(1) and y2t is I(0) with possibly δ ̸= 0

In this case s = 1, Γ = 0 and the matrix E is given by (assuming that a11 = 0 as in Section 5):

E =

 1 E12

03×1 E22

 =


1 δ 0 a12

0

0

0

a22 a21 0

δ 0 a12

a22 − 1 a21 0

 .

where E12 = [δ 0 a12] and

E22 =


a22 a21 0

δ 0 a12

a22 − 1 a21 0


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To determine the (random) limit, we need to compute E12 (I3 − E22)
−1. Using

(I3 − E22)
−1 =


1− a22 −a21 0

−δ 1 −a12
1− a22 −a21 1


−1

=
1

d22


1− a12a21 a21 a12a21

δ − a12(1− a22) (1− a22) a12(1− a22)

a21δ − (1− a22) 0 (1− a22)− a21δ

 ,
we have

E12(I3 − E22)
−1 =

1

d22

[
(δ(1− a21a21)− a12((1− a22)− a21δ)) δa21 (δa12a21 + a12((1− a22)− a21δ))

]
=

1

d22

[
δ − a12(1− a22) a21δ a12(1− a22)

]
where d22 = (1− a22 − a21δ). Therefore,

lim
i→∞

Ei = Ē =

 1 E12 (I3 − E22)
−1

03×1 03×3

 .
As the impulse response horizon i→ ∞, the impulse response matrix of the unrestricted (reduced-form) VAR

lin levels converge to Φ̄:

lim
i→∞

Φi = Φ̄ = JĒJ̃ ′ =

1 + a21δ
d22

δ
d22

0 0


It means that the only permanent impact is from both shocks on the first variable. Turning to the limiting

distribution of the Max Share matrix, we first define β⊥, β and βE . Taking that β′
⊥ = [1 0], β′ = [0 1] and

C = [β⊥ β], the permanent effect of the reduced-form innovations on the first variable is given by:

β′
E = β′

⊥ + E12 (I3 − E22)
−1

β′

C′



= [1 0] +

[
δ − a12(1− a22)

d22

a21δ

d22

a12(1− a22)

d22

]
0 1

1 0

0 1

 =

[
1 +

a21δ

d22

δ

d22

]
.

Finally, it involves the expression of the matrix U , which is a scalar. In so doing, we derive the expression of

η1t from the specification of ∆y1t, namely

∆y1t = δy2t−1 + a12∆y2t−1 + u1t = η1t

=

∞∑
i=0

ψiut−i

where the last expression results from the moving average representation of the innovations ut = (u1t, u2t)
′.Then,

U =

∫ 1

0

dSη(ν)S1(ν)

(∫ 1

0

S1(ν)S1(ν)
′dν

)−1

=

∫ 1

0
S1(ν)dSη(ν)∫ 1

0
S1(ν)2dν

where S1 is a scalar Brownian motion with a variance given by the long-run variance of
∑∞

i=0 ψiut−i and Sη

is a scalar Brownian motion with variance given by var(u1t). The asymptotic distribution of h−1Sk,T (h) as

T → ∞ with h = fT for f ∈]0, 1] is therefore:

h−1Sk,T (h) ⇒
1

f

∫ f

0

Σ′
trβE exp

(
sU ′)β′

⊥eke
′
kβ⊥ exp (sU)β′

EΣtrds

⇒ 1

f

∫ f

0

Σ′
tr

1 + a21δ
d22

δ
d22

 exp (sU)
[
1 0

]
eke

′
k

1
0

 exp (sU)
[
1 + a21δ

d22

δ
d22

]
Σtrds
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where Σtr is the lower triangular Cholesky decomposition of Σu, Σu = Σ′
trΣtr, and ek is the first (k = 1) or

second (k = 2) base vector of R2. When k = 1, one has:

h−1S1,T (h) ⇒
1

f

∫ f

0

exp (2sU)Σ′
tr

1 + a21δ
d22

δ
d22

[
1 + a21δ

d22

δ
d22

]
Σtrds

⇒ 1

f

∫ f

0

exp (2sU)

σ̃11 σ̃21

0 σ̃22

1 + a21δ
d22

δ
d22

[
1 + a21δ

d22

δ
d22

]σ̃11 0

σ̃21 σ̃22

 ds
⇒ 1

f

∫ f

0

exp (2sU)

σ̃11

(
1 + a21δ

d22

)
+ σ̃21

δ
d22

σ̃22
δ

d22

[
σ̃11

(
1 + a21δ

d22

)
+ σ̃21

δ
d22

σ̃22
δ

d22

]
ds

⇒ 1

f
(2U)−1

 (
σ̃11

(
1 + a21δ

d22

)
+ σ̃21

δ
d22

)2 (
σ̃11

(
1 + a21δ

d22

)
+ σ̃21

δ
d22

)
σ̃22

δ
d22(

σ̃11

(
1 + a21δ

d22

)
+ σ̃21

δ
d22

)
σ̃22

δ
d22

(
σ̃22

δ
d22

)2

 (exp (f)− 1) .

where σ̃ij are the elements of lower triangular Cholesky decomposition of Σu. Accordingly, Ŝ1,T (h) is of rank

one, the second eigenvalue converges to zero and the resulting eigenvector converges to [1 0]′. When δ = 0,

h−1Ŝ1,T (h) ⇒
1

f
(2U)−1

σ̃2
11 0

0 0

 (exp (f)− 1) .

• y1t is I(1) and y2t is I(1)

In this case, s = 2, Γ is a 2× 2 null matrix and E is given by:

E =

I2×2 E12

02×2 E22

 =


1 0 0 a12

0 1 a21 0

0 0 0 a12

0 0 a21 0

 .

Since assumption (c) is satisfied here, we first need to compute the expression of E12 (I2 − E22)
−1:

(I2 − E22)
−1 =

 1 −a12
−a21 1

−1

=
1

1− a12a21

 1 a12

a21 1

 .
It implies that:

E12(I2 − E22)
−1 = 1

1−a12a21

a12a21 a12

a21 a12a21


and thus

lim
i→∞

Ei =

I2×2 E12 (I2 − E22)
−1

02×2 02×2


Capitalizing on Lemma 2.2. of Phillips (1998), one gets:

lim
i→∞

Φi = Φ̄ =
[
I2 E12 (I2 − E22)

−1 ,
]

meaning that the only permanent impact is from both shocks on the first variable. Regarding the limiting

distribution of Sk(h), since β is the empty matrix,

β′
⊥ =

1 0

0 1

 = C
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and the permanent effect of the reduced-form innovations on the two variables is then given by:

β′
E = β′

⊥ + E12 (I2 − E22)
−1 C′ =

 1
1−a12a21

a12

a21
1

1−a12a21

 .
Finally, starting from the (infinite) moving average representation of η̃1t

η̃1t =

∆y1t
∆y2t

 =

 0 a12

a21 0

∆y1t−1

∆y2t−1

+

u1t

u2t


=

∞∑
i=0

Υi
1ut−i

where Υi
1 = Ei

12, one can define the matrix unit root distribution

U :=

∫ 1

0

dS(ν)S′(ν)

(∫ 1

0

S(ν)S(ν)′
)

where S(ν) is a two dimensional Brownian motion vector with covariance matrix Υ(1)ΣuΥ(1)′. Using Theorem

, the asymptotic distribution of h−1Ŝk,T (h) as T → ∞ with h = fT for f ∈]0, 1] is therefore

h−1Ŝk,T (h) ⇒
1

f

∫ f

0

Σ′
trβE exp

(
sU ′)β′

⊥eke
′
kβ⊥ exp (sU)β′

EΣtrds

⇒ 1

f

∫ f

0

Σ′
trβE exp

(
sU ′) eke′k exp (sU)β′

EΣtrds.

• y1t is I(1) and y2t is a nearly unit-root process with possibly δ ̸= 0

The derivation is the same, with the exception that:

UΓ :=

∫ 1

0

dSη(ν)JΓ(ν)
′
(∫ 1

0

JΓ(ν)JΓ(ν)
′dν

)−1

where

Γ =

0 δ

0 c


This is a mixture of correlated unit root distribution and a local-to-unit root distribution.
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Figure 1: Impulse response effects of the first structural shock based on a contemporaneous (h =

0) Max-Share identification (experiment 1)

(a) Variable 1

(b) Variable 2

Notes: (1) The black solid line represents the true IRF, IRF11,i and IRF21,i for i = 0, · · · , 40, whereas

the dashed line, the red solid line, the blue dashed line, and the red dotted line represent the average

IRF estimates, IRF11,i(0) andIRF11,i(0), inherited from the first-difference specification, the level

specification, the bias-correction method of Pope, and a bootstrap procedure, respectively.

(2) X1,t, is a random walk, and the second variable is a persistent stationary process with an

intrinsic persistence ρ = 0.96. (3) The top (respectively, bottom) left panel displays the average

impulse responses of the first (respectively, the second) variable to the first structural shock. The

top (respectively, bottom) right panel displays the RMSE of the corresponding structural IRF. (4)

The lagged parameters are given by a11 = a12 = 0, a12 = 0.2, a22 = 0.96, δ = 0.
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Figure 2: Impulse response effects of the first structural shock based on a non-accumulated Max-

Share identification with h = 40 (experiment 1)

(a) Variable 1

(b) Variable 2

Notes: The black solid line represents the true IRF, IRF11,i and IRF21,i for i = 0, · · · , 40, whereas

the dashed line, the red solid line, the blue dashed line, and the red dotted line represent the average

IRF estimates, IRF11,i(0) andIRF11,i(0), inherited from the first-difference specification, the level

specification, the bias-correction method of Pope, and a bootstrap procedure, respectively.
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Figure 3: Impulse response effects of the first structural shock based on a non-accumulated Max-

Share identification with h = 80 (experiment 1)

(a) Variable 1

(b) Variable 2

Note: The black solid line represents the true IRF, IRF11 and IRF21, whereas the dashed line,

the red solid line, the blue dashed line, and the red dotted line represent the average estimate of

the IRF inherited from the first-difference specification, the level specification, the bias-correction

method of Pope, and a bootstrap procedure, respectively.
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Figure 4: Distributions of the eigenvector elements associated to the largest eigenvalue (experiment

1)

(a) h = 40

(b) h = 80

Notes: (1) The top (respectively, bottom) panel illustrates the distribution of the two elements v1,1(h) and v2,1(h)

of the eigenvector associated with the largest eigenvalue when the forecast error variance horizon is set to h = 40

(respectively, h = 80). (2) For each horizon, the two upper subfigures depict the distributions of the eigenvector

elements (black solid line) when considering the first-difference model. The two lower subfigures display the distribu-

tions of the OLS-based estimates (black solid line), bias-corrected estimates (blue dashed line), and the bootstrapped

estimates (red solid line) of the level specification.
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Figure 5: Impulse response effects of the first structural shock based on a non-accumulated Max-

Share identification with h = 40 (experiment 2)

(a) Variable 1

(b) Variable 2

Note: The black solid line represents the true IRF, IRF11,i and IRF21,i for i = 0, · · · , 40, whereas the

dashed line, the red solid line, the blue dashed line, and the red dotted line represent the average

IRF estimates, IRF11,i(0) andIRF11,i(0), inherited from the first-difference specification, the level

specification, the bias-correction method of Pope, and a bootstrap procedure, respectively. (2) The

lagged parameters are given by a11 = a12 = 0, a12 = 0.2, a22 = 0.96, δ = −0.025.
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Figure 6: Distributions of the eigenvector elements associated to the largest eigenvalue (experiment

1)

(a) h = 40

(b) h = 80

Notes: (1) The top (respectively, bottom) panel illustrates the distribution of the two elements v1,1(h) and v2,1(h)

of the eigenvector associated with the largest eigenvalue when the forecast error variance horizon is set to h = 40

(respectively, h = 80). (2) For each horizon, the two upper subfigures depict the distributions of the eigenvector

elements (black solid line) when considering the first-difference model. The two lower subfigures display the distribu-

tions of the OLS-based estimates (black solid line), bias-corrected estimates (blue dashed line), and the bootstrapped

estimates (red solid line) of the level specification.
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Figure 7: Impulse response effects of the first structural shock based on a non-accumulated Max-

Share identification with h = 40 (experiment 3)

(a) Variable 1

(b) Variable 2

Note: The black solid line represents the true IRF, IRF11,i and IRF21,i for i = 0, · · · , 40, whereas the

dashed line, the red solid line, the blue dashed line, and the red dotted line represent the average

IRF estimates, IRF11,i(0) andIRF11,i(0), inherited from the first-difference specification, the level

specification, the bias-correction method of Pope, and a bootstrap procedure, respectively. (2) The

lagged parameters are given by a11 = 0, a12 = −0.2, a21 = 0.2, a22 = 0.99, δ = 0.
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Figure 8: Impulse response effects of the first structural shock based on a non-accumulated Max-

Share identification with h = 40 (experiment 4)

(a) Variable 1

(b) Variable 2

Note: The black solid line represents the true IRF, IRF11,i and IRF21,i for i = 0, · · · , 40, whereas the

dashed line, the red solid line, the blue dashed line, and the red dotted line represent the average

IRF estimates, IRF11,i(0) andIRF11,i(0), inherited from the first-difference specification, the level

specification, the bias-correction method of Pope, and a bootstrap procedure, respectively. (2) The

lagged parameters are given by a11 = 0, a12 = −0.2, a21 = 0.2, a22 = 0.99, δ = −0.025.
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Figure 9: Distributions of the eigenvector elements associated to the largest eigenvalue (experiment

3)

(a) h = 40

(b) h = 80

Notes: (1) The top (respectively, bottom) panel illustrates the distribution of the two elements v1,1(h) and v2,1(h)

of the eigenvector associated with the largest eigenvalue when the forecast error variance horizon is set to h = 40

(respectively, h = 80). (2) For each horizon, the two upper subfigures depict the distributions of the eigenvector

elements (black solid line) when considering the first-difference model. The two lower subfigures display the distribu-

tions of the OLS-based estimates (black solid line), bias-corrected estimates (blue dashed line), and the bootstrapped

estimates (red solid line) of the level specification.
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Figure 10: Distributions of the eigenvector elements associated to the largest eigenvalue (experiment

4)

(a) h = 40

(b) h = 80

Notes: (1) The top (respectively, bottom) panel illustrates the distribution of the two elements v1,1(h) and v2,1(h)

of the eigenvector associated with the largest eigenvalue when the forecast error variance horizon is set to h = 40

(respectively, h = 80). (2) For each horizon, the two upper subfigures depict the distributions of the eigenvector

elements (black solid line) when considering the first-difference model. The two lower subfigures display the distribu-

tions of the OLS-based estimates (black solid line), bias-corrected estimates (blue dashed line), and the bootstrapped

estimates (red solid line) of the level specification.
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Figure 11: TFP shock

(a) Structural Impulse Responses

(b) Forecast Error Variance Decomposition

Notes: (1) Red color corresponds to level-based estimates. Blue color corresponds to ”first-

difference” estimates. (2) A solid line indicates the TFP shock is identified before the IST shock.

A dashed line indicates the IST shock is identified before the TFP shock.
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Figure 12: IST shock

(a) Structural Impulse Responses

(b) Variance Decomposition

Notes: (1) Red color corresponds to level-based estimates. Blue color corresponds to VECM- based

estimates. (2) A solid line indicates the TFP shock is identified before the IST shock. A dashed

line indicates the IST shock is identified before the TFP shock.
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