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We construct a new dataset containing parcel sizes and building footprints of

Canadian manufacturing plants and decompose industrial density (parcel size per

worker) into: crowding (floorspace per worker); building height (floorspace to build-

ing footprint); and parcel coverage (building footprint to parcel size). We find that

establishments occupy parcels more densely in big cities and central locations, and

that larger establishments use less land per worker. Floorspace per worker is unre-

lated to distance from the city centre. The estimated elasticity of substitution between

land- and non-land factors is small, between 0.14 to 0.42.
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1 Introduction

Competition for land has intensified over the past 30 to 40 years. This is due to a

combination of increased demand, on the one hand, as the population of large cities

continues to grow; and limited supply, on the other hand. Although deindustrial-

ization has freed up some space in cities—via the reconversion of former industrial

buildings into offices and apartments—a dearth of developable vacant land, admin-

istrative red-tape and restrictive land-use and building regulations, as well as the

need to reduce land consumption to meet climate goals and preserve ecosystems,

constrain land supply.1 Against this background, we need to better understand the

human footprint on land. How much land do we use? And how do we use it?

Inspired by the monocentric city model and its refinements, many studies on

residential land use address topics such as city shape and growth, the extent and causes

of urban sprawl, the determinants of housing supply, the political economy of zoning,

or the determinants of housing- and land prices (see Duranton and Puga, 2015, for

an extensive review of the literature). Given a lack of data, we know much less about

industrial land use for production purposes, outside of the residential construction

1There exist few data on vacant land in cities. Using survey information, Pagano and

Bowman (2000, p.7) document that there is on average 15% of vacant land in US cities.

However, only a fraction of that land is developable. Land use regulations also constrain

land supply. As documented by Gyourko et al. (2021, p.3), there has been little change in

the restrictiveness of land-use regulations and “to the extent there is change [between 2006–

2016], it is to strengthen the control regime.” Last, environmental concerns are likely to

further reduce land supply. See, e.g., the ‘zero net artificialization’ law passed in France

in 2021, which strives for no net new land consumption by 2050.
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sector.2 This is problematic as the share of land used for industrial and commercial

purposes within cities is sizeable, generally above 20% (e.g., around 30% in the Paris

region in 2012; Duranton and Puga 2015). Moreover, although much attention has

been directed to residential land use and sprawl, industrial and commercial land use

are major drivers of low-density development.3

In this paper, we make progress in understanding land use for manufacturing pro-

duction, both from empirical and theoretical perspectives. On the empirical side, we

build a new quantity dataset containing the parcel sizes, the footprints of the buildings,

and the number of workers for a large sample of Canadian manufacturing plants.4

Inspired by the literature on urban residential density (see, e.g., Angel et al., 2021), we

then decompose manufacturing establishments’ industrial density (number of workers

per unit of land) into three components: crowding (number of workers per unit of

floorspace); building height (the ratio of floorspace to building footprint); and parcel

coverage (the ratio of building footprint to parcel size). For a large sample of Cana-

dian manufacturing establishments, we document how industrial density and parcel
2When available, data on land and buildings are usually lumped together with capital

in balance sheets. Datasets sometimes provide values for land and buildings, but no

comprehensive quantity data on firms’ land or floorspace consumption seem to exist.
3As documented by Burchfield et al. (2006), contrary to residential development, com-

mercial land development became substantially more sprawled between 1976 and 1992

in the US. The same holds true for Canada: “The main contributors to low-density subur-

ban development are not residential uses but non-residential activities (commercial, industrial,

distributional uses) [...] Surprisingly, no one seems to notice.” (Bourne, 2001, p.27)
4Although focussing on manufacturing may seem restrictive, one should keep in mind

that it is often a land-intensive activity. Given recent signs of reindustrialization in sev-

eral developed countries, a better understanding of the needs of manufacturing estab-

lishments in terms of land is warranted, especially given the size of some new projects.
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coverage vary with establishment characteristics and attributes of their environment,

in particular establishment size (as measured by employment), city size, and distance

to the closest city centre. Using the subset of establishments in Montréal, for which

we have more detailed data, we do the same with crowding and building height.

Previewing our empirical findings, firms located in large cities and closer to city

centres occupy their parcels more densely, both in terms of employment and building

footprint. Put differently, industrial density and parcel coverage both increase with

city size and decrease with distance to the closest city centre. The number of workers

per unit of floorspace—crowding—instead does not vary with distance to the nearest

city centre.5 Last, we further find that establishments with more employees have

higher industrial density and crowding.

We then build on the empirical facts we uncover to make progress on the theo-

retical side. More precisely, we use our results to revisit the modeling of land use

for production and to infer a range for the elasticity of substitution between land and

non-land factors. Previewing our theoretical framework—which we expose in greater

detail later in the paper—we propose a setting that departs from the canonical Cobb-

Douglas specification to account for both the low elasticity of substitution between

land and non-land production factors and the observation that larger establishments

use land more intensively.

5The finding that industrial density and parcel coverage, but not crowding, change

with land prices suggests that most of the adjustment of manufacturing establishments

to land prices happens through outdoor space. This is reminiscent of the floorspace-vs-

yardspace trade-off in residential urban models (see Brueckner, 1983), although outdoor

space for industrial use—mainly parking and storage—differs from yardspace in that it

can have larger environmental costs (see, e.g., Davis et al., 2010, for parking).
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Our work contributes to two main strands of literatures. First, it relates to the

literature on the role of land in the production process of firms. The few existing

empirical studies relate either to the effects of land-use regulations on productivity

in the retail sector (e.g., Haskel and Sadun, 2012; Cheshire et al., 2014) or to the de-

terminants of commercial real estate prices (e.g., Ahlfeldt and McMillen, 2018; Liu et

al., 2018). Except for some work on the patterns and determinants of the floor-to-area

ratio (FAR; see, e.g., Barr and Cohen, 2014; Brueckner et al., 2017), we are not aware

of studies on the quantity of land used by firms. On the theoretical front, canoni-

cal urban models generally assume that production is concentrated in dimensionless

‘business districts’, i.e., production requires no land. Notable exceptions—where

firms and residents compete for land—include Ogawa and Fujita (1980), Fujita and

Ogawa (1982), Lucas and Rossi Hansberg (2002), Pflüger and Tabuchi (2010), and

Wrede (2013), but the way land enters the production function varies greatly across

existing models—sometimes it is a pure fixed cost or Leontief, but more often it is

via a Cobb-Douglas production function. The way we model land for production is

unlikely to be innocuous, which is worth emphasizing given the increasing use of

quantitative spatial models to measure the spatial effects of changes in infrastructure

and land-use regulations that affect firms. Our analysis suggests how land could be

modeled in the production function of manufacturing firms to replicate some empir-

ical patterns substantiated by the data.6

6Several recent studies document that the production function of many manufacturing

sectors is not Cobb-Douglas (see, e.g., Oberfield and Raval, 2021 for the US; Imbert et al.,

2022 for China; and Mayneris, 2022 for France). However, these studies analyze the

substitution between labor and capital without accounting explicitly for land. Epple et

al. (2010) and Combes et al. (2019) estimate production functions for housing (i.e., for the
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Second, our work speaks to the literature on the determinants of urban density. As

discussed in Duranton and Puga (2015), this literature mainly focuses on population

density. In particular, in recent years several works have proposed margin decom-

positions of population density to analyze how a given density level is compatible

with different types of the urban environment (see, e.g. Angel et al., 2021; Seidel and

Krause, 2024). We adapt this type of decomposition to dissect the density with which

manufacturing establishments concentrate employment in space. Instead of compar-

ing neighborhoods or cities, we compare manufacturing establishments—and their

land-use choices—within cities.

2 A quantity-based dataset: Decomposing density

The same overall level of density can arise from different combinations of underlying

factors. An emerging literature on ‘density accounting’ thus decomposes density

along various margins.7 We adapt the residential framework by Angel et al. (2021) to

the industrial context and decompose, at the parcel level, industrial density—number

of workers over parcel size—as follows:

Establishment employment

Establishment parcel size︸ ︷︷ ︸
Industrial density

=
Establishment employment

Establishment floorspace︸ ︷︷ ︸
Crowding

× Establishment floorspace

Establishment building footprint︸ ︷︷ ︸
Building height

× Establishment building footprint

Establishment parcel size︸ ︷︷ ︸
Parcel coverage

(1)

where we can view floorspace as the number of floors times building footprint:

Building height = Establishment floorspace
Establishment building footprint = Number of floors. Hence, industrial

density depends on how crowded and how tall buildings are, and on how much

of the parcels’ surface area is covered by them. The product of the last two terms,

construction sector) with two factors, land and non-land inputs.
7Several recent contributions have used this methodology to decompose residential

density of cities along various margins (see, e.g., Seidel and Krause, 2024 for Norway).
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Establishment floorspace
Establishment parcel size is sometimes called ‘structural density’. Provided that the estab-

lishment’s number of floors equals one, which we later show to be a good approxi-

mation for manufacturing, it is also given by Establishment building footprint
Establishment parcel size .

2.1 Data sources and dataset construction

We build a quantity-based dataset that allows us to measure and to decompose in-

dustrial density as in (1). To this end, we collect information on the amount of land

occupied by manufacturing establishments. Ideally, our data would allow us to con-

struct industrial density and its three components: crowding, building height, and

parcel coverage. Unfortunately, we do not have floorspace and height information for

all buildings in our data and cannot easily infer it. We hence focus mostly on two

key measures: industrial density and parcel coverage. Computing the first requires the

surface area of the parcel where the plant is located, whereas computing the second

requires information on the building footprint. Note that for establishments located

in single storey buildings, building footprint closely matches floorspace. We exploit

this idea later in the paper when we push further the analysis on crowding using

more detailed data on building height and floorspace for the city of Montréal.

2.1.1 Data collection and processing

We first describe the methodology used to construct our dataset. The full list of

sources, details for each step, and an extensive discussion of the quality of the final

dataset are relegated to online appendices A and B.

Establishment data. We use the proprietary Scott’s National All Business Direc-

tories, a dataset of geo-referenced manufacturing plants operating in Canada that
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draws information from Business Register records and telephone surveys. It pro-

vides a fairly exhaustive coverage of the manufacturing sector. We use cross-sectional

data for 2017, the year closest to the reference year for the polygon datasets we use.

This choice reduces potential measurement error due to changes in the delineation

of buildings and parcels. It also allows for more precise geocoding as street names

and configurations may change over time. The variables of interest for our analy-

sis include the plant’s address and industry (North American Industry Classification

System, naics 6-digit level), an estimate of the number of onsite workers, and dummy

variables for whether it is a headquarter (HQ) or has export activities. The dataset

also contains information on up to ten products manufactured by the plant and its

broad type of activity (manufacturing, wholesale, professional, scientific and techni-

cal services). We geocode plants using the procedure explained in online appendix A.

Polygon datasets. We collect parcel- and building polygons from numerous provin-

cial and metropolitan sources. For parcels, we collect more than 4.5 million polygons

covering the provinces of British Columbia (BC), Quebec (QC), and New Brunswick

(NB). For the other provinces, we obtain data for Toronto, Oshawa, Windsor, and York

in Ontario (ON); Banff in Alberta (AB); Winnipeg in Manitoba (MB); and Regina and

Saskatoon in Saskatchewan (SK). We do not have data for Nova Scotia (NS), New-

foundland and Labrador (NL), Prince Edward Island (PE), and the three Territories.

For buildings, we collect open source polygon data released by Microsoft, which con-

tain 12,663,475 building footprints covering all provinces and territories.

Other datasets. To leverage spatially fine-grained population census data, we com-

bine data from the 2016 census with boundary shapefiles of dissemination areas
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(the smallest geographic units at which census data are publicly released), census

metropolitan areas (CMA) and agglomerations (CA), economic regions, and provinces

and territories. Last, we collect information on major infrastructure such as highway

junctions (from the Canadian road network files), rail freight stations, major airports,

and major seaports (from the Open Government geographic data portal).

We complement our data with more detailed administrative records that we can

access for the city of Montréal. We have the 2016 assessment roll data that allow

us to see tax lots and the associated parcel and building polygons. Crucially, this

dataset contains direct measures of floorspace and information on the number of

floors for most observations, which allows us to compute the full decomposition that

appears in equation (1). We also draw upon data from the Québec business register

that contains information on all establishments registered in the province to build

additional controls.

2.1.2 Construction of the surface measures

We use GIS tools to link plants in the establishment dataset to parcel- and building

polygons. This mapping allows us to construct the measures of land occupied by

a manufacturing establishment, namely its parcel size and building footprint. The

parcel size is the surface of the parcel polygon that contains the establishment, while

the building footprint is the ground floor area of all building polygons on the estab-

lishment’s parcel. We must deal with three potential problems.8

First, there is no one-to-one mapping between establishments and parcel- and

8Assigning geocoded data to polygons delineated from satellite imagery raises several

issues regarding quality and accuracy. We relegate a detailed discussion of these issues

to online appendix B
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building polygons. Sometimes, several establishments fall on the same parcel or

building, i.e., there is ‘sharing’ by neighboring establishments.In that case, it is un-

clear how to divide space between establishments. In our sample used for the analysis

of parcel size, the average number of neighbors—identified from the Scott’s data—is

1.3, whereas the median is 0. Hence, sharing does not seem to be a major problem

for our analysis. We still control in our regressions for the number of neighbors shar-

ing parcels or buildings using a flexible fourth-order polynomial. Doing so allows

us to compare establishments having the same number of identified neighbors. We

will also show that our main results are unchanged when focusing on establishments

with no identified neighbors.9

Second, the locations occupied by manufacturing establishments may consist of

several contiguous parcels and not just those on which the establishments fall during

the geocoding process. Following discussions with employees of the Québec Land

Registry, we think that this situation rarely occurs. This is consistent with Brooks

and Lutz (2016), who show that assembled parcels have a higher value than the sum

of the individual parcels, so that owners of contiguous parcels have incentives to

assemble them. Moreover, using the Montréal assessment roll data we can compute

the number of parcels associated with the establishments’ tax lots. We find that 85%

of the manufacturing establishments in Montréal are on tax lots composed of a single

9Although the Scott’s database provides a near exhaustive coverage of the manufac-

turing sector, it is not the universe of plants in Canada, especially for services which

are much more sparsely present in that database. There is hence potential measurement

error in the count of neighbors. We provide robustness checks using the universe of es-

tablishments in Québec to show that our results change little when using more precise

data to control for the number of neighbors.
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parcel, confirming our discussions with the Land Registry. Hence—provided that

Montréal is nationally representative—measurement error seems limited.

Last, the surface area of the parcel may be smaller than the building footprint

for some plants. This may be due to the separate assignments of establishments to

parcels and buildings: an establishment can be assigned to a building and to a parcel

that do not correspond to the same lot. Furthermore, there is some measurement

error in the original building polygons data, which may be mis-identified by Mi-

crosoft’s automated recognition procedure. In particular, adjacent buildings may get

amalgamated—being a single polygon in the data—thus yielding larger polygons that

straddle several parcels. We will show that our results are unchanged when using

only the establishments for which the parcel size exceeds the building footprint.

2.1.3 Building height

We do not have direct measures of floorspace for most of our establishments since the

building polygons report neither height nor volume information. Unfortunately, we

were not able to obtain comprehensive satellite data on building height (e.g., LIDAR

data), as some cities do not have those data or are only partially covered. We can

nevertheless provide an analysis of floorspace consumption as follows.

First, we have detailed assessment roll data for Montréal, which reports direct

measures of floorspace and number of floors. Hence, for this subsample, we can use

high quality data to investigate establishments’ floorspace consumption.

Second, we can use those data to investigate the number of floors of the build-

ings to which our manufacturing establishments are assigned. We find that 59% of

the manufacturing establishments in Montréal are located in single-floor buildings,
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18.1% in two-floor buildings, and 5.3% in three-floor buildings. Hence, less than 18%

of establishments are located in taller buildings, and those are most probably head-

quarters or sales offices (which we control for in the empirical analysis). In a nut-

shell, the Montréal data reveal that manufacturing is a relatively ‘low-rise activity’,

so that Establishment floorspace
Establishment building footprint = Number of floors ≈ 1 seems a reasonable approxi-

mation.10 However, we will further use the assessment roll data to compute sectoral

shares of establishments that operate in single-floor buildings in Montréal. We con-

sider that all industries where the median number of floors of the establishments

in Montréal is below 1.6 are ‘low-rise industries’.11 We will then provide results on

crowding for the whole of Canada using only those industries and taking building

footprint as a proxy for floorspace. The underlying idea is that being able to operate

in multi-floor buildings, as compared to single-floor buildings, is likely a technologi-

cal characteristic and can thus be extrapolated from Montréal to the country.

2.2 Data quality, representativeness, and some descriptive statistics

To assess the quality of our data obtained from the geo-coding and assignment pro-

cedure, we make use of a subset for the province of Québec (QC). The reason is

that the polygon identifiers in the QC dataset are the same as the official identifiers

recorded on the government website of the Land Registry “Infolot”. We can thus

10Montréal is an older city and manufacturing in earlier years more often occurred in

multistorey buildings in dense city centres (e.g., ‘light’ manufacturing such as apparel or

some textiles). Modern manufacturing operations in Montréal and elsewhere probably

occur mainly in single-floor facilities.
11The industries include naics 327, 332, 334, and 335. We exclude naics 313 and 324

because these two sectors have very few establishments in our Montréal sample.
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randomly draw a subset of plants in QC from our dataset and compare their par-

cel identifier from “Infolot” (obtained from the address of the establishment) to the

one obtained from our assignment procedure. Doing so allows us to build a mea-

sure of quality—which we construct for the whole dataset, not just QC—with three

categories: excellent, good, and poor (see online appendix B for details).

In the remainder of the paper, we only keep observations of excellent quality

(79.1% of the observations for which we have a measure of parcel size; see table B1

in the online appendix). Thus, our final dataset contains the plants that: (i) are pre-

cisely geo-coded; and (ii) have an excellent assignment quality to parcel- or building

polygons. We verify later that our results hold when we: (i) include observations of

lower quality; and (ii) restrict our analysis to the city of Montréal.

Of the 32,829 manufacturing plants recorded in the Scotts database for 2017, we

assign parcel sizes of excellent quality to 10,428 (31.8%) of them, and building foot-

prints of excellent quality to 25,289 (77%) of them. Focusing on observations for

which we have excellent quality data for both parcel size and building footprint, and

further removing observations that are located outside of urban areas, or for which

some values of the covariates used in the regression analysis are missing, leaves us

with a regression sample of 8,704 observations representing 30% of the manufactur-

ing employment present in the original data.12 Note that the loss of data is mainly

due to the absence of parcel polygons for some provinces and, to a lesser extent, the

accuracy of the geocoding and polygon assignments (see Table B1 for more details).

We show in online appendix B1 that our sample is sectorally (Table B2) and geo-

12Statistics Canada reports 1,767,500 manufacturing jobs in 2017. Total employment in

the 32,829 establishments in the Scott’s data is 1,531,087, which hence covers about 87%

of national employment.
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graphically (Table B3) representative, and that it displays no selection on a range of

observable characteristics (Table B4).

We finally present some descriptive statistics for our main variables of interest.

These statistics are based on our final regression samples. Table C1 and panel (a) of

Figure C2 in the online appendix show the distribution of the ratio of establishment

employment over parcel size, our measure of how densely land is occupied by man-

ufacturing establishments in terms of employees. There is substantial heterogeneity

between and within sectors: the coefficient of variation is 917% for the whole sample,

ranging from 110% to 1, 589% across industries. While some industries such as naics

314 (‘Textile product mills’) have on average lower density than others such as naics

311 (‘Food mfg’), i.e., fewer employees per unit of parcel size, differences between

industries are dwarfed by within-industry variation.

Turning to parcel coverage, Table C2 and panel (b) of Figure C2 show again sub-

stantial heterogeneity in terms of the ratio of building footprint over parcel size, both

between and within sectors. Yet, this heterogeneity is less pronounced than that for

parcels (the coefficient of variation equals 61% for the whole sample, and ranges from

35% to 81%). Some sectors, such as naics 324 (‘Petroleum and Coal Products’), or

321 (‘Wood Products’) have small building-to-parcel ratios, while 315 (‘Clothing and

Textile’) and 323 (‘Printing and Support Activities’) exhibit high ratios. This sectoral

heterogeneity likely reflects different needs for outdoor space in terms of parking,

storage, or loading and unloading. The sectors with the highest coverage belong to

what could be called ‘light manufacturing’ (clothing, printing, textiles).

The substantial amount of variation in industrial density and parcel coverage

highlight that a detailed analysis controlling for plant-level characteristics and lo-
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cational characteristics is important to better understand the patterns.

3 Empirical analysis

Since there is substantial within-industry variation in industrial density and parcel

coverage, a detailed analysis at the establishment level is required to understand the

drivers of industrial density. How does land consumption depend on establishment-

level individual or location-specific environmental characteristics? How does it vary

across and within urban areas?

3.1 Methodology

Let i index establishments, s index 4-digit industries, and z index economic regions.

When relevant, we write i(s, z) to make clear that establishment i operates in sector

s and is located in zone z. Assume that each individual density component yi(s,z)

in the decomposition (1) is a function of environmental characteristics, Envi(z), and

individual characteristics, Estabi, as follows:

yi(s,z) = αααEnvi(z) +βββEstabi + θs + ηz + εi(s,z), (2)

where yi(s,z) ∈ {industrial density, crowding, building height, parcel coverage} denotes

one component of our decomposition.

The first term in equation (2), Envi(z), is a vector of characteristics related to es-

tablishment i’s environment in zone z. We include the (log) size of the urban area,

both in terms of population and surface (as per the 2016 Census); the distance of the

establishment to the nearest city centre of its Census Metropolitan Area (CMA) or
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a Census Agglomeration (CA);13 fixed effects identifying the type of zoning (com-

mercial/industrial, residential, or recreational) in use at its location; a polynomial of

degree four in the number of neighbors on the same parcel to flexibly control for

how the ‘sharing’ or a parcel by several plants may affect land consumption; and

measures of distance to specific types of transportation infrastructure (distance to the

closest major airport, major seaport, rail freight station, and highway junction).14 In

some specifications, we also control for the local density around the plant, measured

by the (log) population density in the dissemination areas within a 500 metre radius.

The latter will show how important local density is compared to city-level density in

determining how manufacturing land use changes. As will become clear later, among

these various local characteristics, we consider distance to the closest city centre and

population density as proxies for local land prices.

The second term in equation (2), Estabi, is a vector of plant-level characteristics

related to the size and type of activities carried out by the establishment. We control,

in particular, for the (log) number of employees of the plant, dummies identifying

headquarters and exporters, as well as counts of the number of 4-digit industries, of

products, and of broad types of activity the plant is involved in (e.g., if the establish-

ment produces or is a wholesale outlet). These covariates aim to capture in the best

possible way factors related to establishment-level specific needs in terms of land that

may drive the large within-sector variations highlighted in Section 2.2.

13To identify city centres, we use a routine that detects clusters of densely populated

dissemination areas. The details of the procedure are presented in Appendix C.
14The proximity to these different types of infrastructure might influence industrial

density and parcel coverage, either because of the size of the parcels available close to

this infrastructure or because of how ‘packed’ establishments accept to be in order to

enjoy proximity to this infrastructure.
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Last, θs and ηz stand for sector and economic region fixed effects.15 They capture

technological parameters and regional determinants beyond those already included

that may drive how densely manufacturing establishments occupy land.

To account for auto-correlation between observations within urban areas, we clus-

ter all standard errors at the CMA/CA level (Moulton, 1990). As mentioned in Sec-

tion 2.2, we restrict the sample to observations for which the data on parcel size

and/or building footprint are of the highest quality.

Taking logs and the derivative with respect to distance from the closest city cen-

tre, equation (1), using the number of floors as the approximation for the second

component, yields

∂ ln Establishment employment
Establishment parcel size

∂distance
=

∂ ln Establishment employment
Establishment floorspace

∂distance
(3)

+
∂ ln Number of floors

∂distance
+
∂ ln Establishment building footprint

Establishment parcel size

∂distance
,

which is the distance-gradient version of decomposition (1). Letting α̂dist denote the

estimate of the component of ααα with respect to distance from the closest city centre,

we thus have: α̂Industrial density
dist = α̂

Crowding
dist + α̂

Building height
dist + α̂

Parcel coverage
dist .

3.2 Baseline results

3.2.1 Industrial density: Establishment employment over parcel size

Table 1 summarizes results for six regressions of industrial density (establishment

employment over parcel size) on environmental and individual characteristics. Col-

umn (1) includes only the main covariates of interest for the geographic environment

15There are 76 economic regions in Canada. They correspond to census division ag-

gregates and are a standard geographic unit for analysis of regional economic activity.
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of the establishment (CMA population size and surface area, and distance to the

nearest city centre). Column (2) adds the log employment of the establishment. Col-

umn (3) adds the other individual characteristics of the establishment (especially HQ

and exporter dummies), and column (4)—our preferred specification that we use later

for the decomposition and quantification exercises—adds controls for the distance to

transport infrastructure. Column (5) takes a more local perspective on density and

adds the log population density in a 500 metres radius around the establishment to

the set of environmental characteristics. Last, column (6) presents standardized (beta)

coefficients for our benchmark specification (4).

The results in Table 1 exhibit several clear patterns. First, plants in larger urban

areas (as measured by CMA population) and plants closer to city centres (as mea-

sured by straight-line distance) occupy their parcels more densely, i.e., use less land

per worker. This certainly reflects the fact that land prices are higher in big cities

and closer to city centres. In our preferred specification (4), the elasticity of industrial

density to city population equals 0.135 and the semi-elasticity of parcel size to the dis-

tance to the closest city centre equals −0.027. Both coefficients decrease in absolute

value when we control for the population density within 500 metres of the establish-

ment in column (5), with CMA size becoming insignificant. This reflects variation

in land prices within cities, with dense areas being on average closer to city centres

and more expensive. Note that the effect of distance from the centre, though weaker,

remains statistically significant, even when controlling for local density.

Insert Table 1 about here.

Turning to establishment characteristics, headquarters occupy their parcels more

densely in terms of employment, while the opposite is true for exporters: ‘office’ func-

18



tions require less space than functions related to production and exports for which

factory space and warehousing are more important. As shown in columns (2)–(6),

the by far most important individual characteristic is establishment size (in terms

of employees), with an elasticity between 0.62 and 0.65 depending on the specifica-

tion: larger establishments have a higher industrial density. We see three possible

explanations for this finding.

First, the Scott’s data are exhaustive for manufacturing but not for services. Hence,

we possibly mismeasure the number of neighbors on the parcel. This problem is po-

tentially more severe for small firms that are more likely to share their location with

other businesses, thus leading us to underestimate their industrial density. As shown

in Figure C1 in online Appendix D, when we run our benchmark regression sepa-

rately by establishment-size bins, the correlation between parcel size per worker and

establishment size is close to 1 for establishments with 1–5 employees, and close to

0.65, the coefficient found for the whole sample, for establishments with 5–15 and 15–

50 employees. Larger establishments (50+ employees) have a coefficient of 0.55. This

pattern is inconsistent with the idea that the positive correlation for the whole sample

stems from an underestimation of industrial density for smaller establishments.16

16Figure C1 suggests that there may be large adjustment costs for changing land con-

sumption. Moving, opening, or closing an establishment is indeed costly so that firms

adjust their land use sluggishly; only when shocks are large enough do firms adjust

land use, most likely by moving or by opening and closing establishments (Bergeaud

and Ray, 2021). When firms grow or shrink following transitory shocks, they do so by

first adjusting their number of employees and, eventually, later their land use. If large

firms have grown more relative to their initial size, the positive correlation between the

establishment employment over parcel size and establishment size could be related to the

existence of adjustment costs. We ran regressions controlling for plant-level employment
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Second, some manufacturing establishments may occupy buildings with several

floors. Larger establishments likely occupy taller buildings but not necessarily much

bigger parcels, which would then show up in a higher establishment employment

over parcel size ratio. Using detailed data for Montréal, we find in unreported re-

gressions that controlling for the number of floors does not affect the coefficient on

the number of workers, which remains positive, large, and highly significant. Hence,

differences in building height (and thus floorspace) do not explain that result.

Last, land obviously has some characteristics of a fixed cost. It is costly to negotiate

the lease or purchase, to assemble parcels, to make changes to the land, and to pre-

pare it for use (decontamination, teardown of existing structures). Furthermore, con-

cerning the buildings, some parts such as corridors, bathrooms, and meeting rooms

have a size that is partly independent of the number of workers using them. If land

were a pure variable cost, under usual functional forms of the production function

such as Cobb-Douglas or CES, land per worker would be independent of firm size,

which runs counter to our results in Table 1.

Note finally that, from a quantitative perspective, the R2s of our regressions are

fairly large, above 0.55 in our preferred specification.17 Thus, although we work with

micro data at the establishment level, the empirical model explains a substantial part

of the variation in establishment-level industrial density. The standardized coeffi-

cients in column (6) show that establishment size, the population of the CMA, and

the distance to the closest city centre have first-order effects on land use per worker.

growth between 2013 and 2017, and the coefficient on establishment size is unaffected

(available upon request).
17We checked that these R2s are not solely driven by the industry- and economic region

fixed effects.

20



3.2.2 Parcel coverage: Building footprint-to-parcel size

We now turn to parcel coverage to understand how the built density of industrial land

changes with environmental and individual characteristics. Table 2 summarizes the

results of six regressions of building footprint-to-parcel size on those different char-

acteristics. As shown, two of the four main determinants for industrial density are

also important determinants of parcel coverage: CMA population and the distance

to the nearest city centre. Building footprint-to-parcel size increases with city size

and decreases with the distance to the nearest centre. In a nutshell, establishments in

larger cities and closer to the centre occupy buildings that cover a larger share of the

parcels they are built on. However, and contrary to industrial density, all else equal

parcel coverage is only modestly correlated with establishment size.

Insert Table 2 about here.

Bearing in mind that land is more expensive in large cities and closer to city

centres, the observation that parcel coverage decreases with distance to the centre

and in smaller cities suggests that establishments use more outdoor space compared

to indoor space when land prices are lower. Outdoor space may include, e.g., parking

lots, open-air storage, or green space. It is important to recognize that outdoor space

has some contribution to the establishment’s production. However, being probably

less central to production than indoor space, firms can restrict their use of outdoor

space when land prices are high, especially when other arrangements can provide

the services otherwise provided by outdoor space. We know, for example, that the

cost of surface parking increases with the value of land, which implies that firms and

households save on land by investing in underground or structural parking when

being closer to the city centre (Brueckner and Franco, 2017). Furthermore, city centres
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are better served by public transit, which allows firms to reduce parking space for

their employees and cover their parcels more extensively with buildings. Outdoor

space thus seems fairly reactive to changes in land prices, whereas indoor space may

exhibit a stronger complementarity with the other production factors and may less

easily be compressed (a finding we corroborate in section 3.4).

3.3 Robustness checks

Table 3 summarizes a battery of robustness checks based on specification (4) in Ta-

bles 1 and 2. To save space, we only present the coefficients for the three main

variables of interest—CMA population, distance to the nearest city centre, and es-

tablishment size—but all covariates of the benchmark specification are included in

the different regressions. We report nine robustness checks. Column (1) shows the

benchmark results as a point of comparison. In column (2), we expand the sample

to include all establishments for which we have information on the dependent vari-

able, irrespective of the quality of the geocoding and the polygon assignment. In

column (3), we trim the bottom and top 1% of the distribution of the dependent vari-

able. In column (4), we restrict the sample to observations with excellent quality for

both the parcel size and building footprint measures. In column (5), we eliminate ob-

servations for which the parcel size is smaller than the building footprint. In column

(6), we restrict the sample to manufacturing establishments with less than 50 employ-

ees to mitigate the fact that large establishments may occupy several adjacent parcels,

in which case we would underestimate the amount of space they use. In column (7),

we restrict the sample to those establishments that have no identified neighbors on

the same parcel or in the same building. Despite the fourth-order polynomial con-
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trol for the number of neighbors, we may still mismeasure the actual amount of land

occupied by establishments when several manufacturing firms occupy the same par-

cel. In the same vein, in column (8), when both parcel size and building footprints

are available, we replace the number of neighbors by the average of the number of

neighbors on the parcel and in the building. In column (9), we restrict the sample

to establishments located farther than 5 kilometres from the nearest city centre to

ensure that the patterns we uncover are not driven by what happens in very central

locations. Finally, in column (10) we include CMA fixed effects to control for other

systematic differences across metro areas.

Insert Tables 3 and 4 about here.

For both industrial density and parcel coverage, Table 3 shows that the correla-

tions with CMA population, distance to the nearest city centre, and establishment

size in terms of employment are remarkably stable, both qualitatively and quantita-

tively. The only exception is the correlation between building footprint-to-parcel size

and establishment size, which is less stable but generally close to zero. We are thus

confident that our key results are robust: controlling for establishment size, manufac-

turing establishments have higher industrial density and parcel coverage in big cities

and in central locations within cities. Moreover, controlling for distance to the centre

and CMA size, larger establishments use less land per worker.

A second set of robustness checks is provided in Table 4. There, we use property

assessment roll data for the city of Montréal to verify if our results are sensitive

to the use of province-level parcel datasets and open source building polygons.18

18Property assessment rolls are decentralized in Canada and mostly available at the

municipal level. Unfortunately, we could not collect similar data for the other provinces

or cities.
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Using the geographic coordinates of the properties in the assessment roll, we merge

this information with the data used for the core analysis for 1,115 establishments.

Reassuringly, when both variables are available, the correlation between the surface

area of the parcels we have assigned to establishments in our analysis so far and the

ones filled in the property assessment roll equals 0.89. This confirms that the spatial

join procedure we have implemented generally allows us to recover reliable parcel

size information. Table 4 shows that the main results are unchanged when using

the Montréal sample. If anything, the distance gradients are a bit steeper and more

precisely estimated, and remain significant even when local density is included as a

covariate. To summarize, Montréal is representative of the Canadian sample.

3.4 Crowding: workers per unit of floorspace

Until now, we have provided estimates for industrial density and parcel coverage.

We now leverage the Montréal assessment roll data to provide estimates for crowd-

ing (establishment employment over floorspace). Indeed, the assessment roll data

contain information about the floorspace—and the number of floors—of the proper-

ties located on the parcels and allow thus for a direct measure of floorspace.

The results in column (1) of Table 5 show that, as for parcels, bigger estab-

lishments occupy floorspace more densely as the number of workers per unit of

floorspace increases with establishment size. However, conditional on establishment

size, floorspace is not significantly related to the distance to the closest city centre.

This means that establishments do not reduce the amount of floorspace they use per

worker when locating closer to city centres: they use less land (as measured by parcel

size) but a similar amount of floorspace by occupying their parcels more densely, i.e.,
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by using less outdoor space and/or increasing building height.

Insert Table 5 about here.

We next make use of the detailed floor information for establishments in Montréal

to classify sectors into those that are ‘low rise’ and those that are ‘high rise’. More

precisely, we look at the distribution of the number of floors of the buildings occu-

pied by different manufacturing industries and consider that all industries where the

median number of floors is less than 1.6 are low rise industries. We then re-estimate

our model in column (2) using only the low rise industries for which the building

height component in (1), equal to the number of floors, is approximately one. We still

find an insignificant effect of distance on floorspace per worker, though the standard

errors increase due to the smaller sample size. Column (3) extends the analysis to

Canada, using only the low-rise industries as identified from the Montréal data. As

in column (1), the coefficient on distance from the closest city centre in column (3)

is very close to zero. Thus, we conclude that crowding in Canadian manufacturing

establishments, as measured by the ratio of workers to floorspace, is independent of

distance from the city centre.

3.5 Quantifying the decomposition

We now check whether the decomposition (3) holds exactly or approximately in the

data. To provide clean results, we use the data for Montréal and a consistent sample

of the same establishments in the four separate regressions that we run. We separately

estimate the four terms of the gradient decomposition of (3),

α̂
Ind. density
dist =

∂ ln employment
parcel size

∂dist
, α̂

Crowding
dist =

∂ ln employment
floorspace

∂dist
,

α̂
Building height
dist =

∂ ln number of floors
∂dist

and α̂
Parcel coverage
dist =

∂ ln building footprint
parcel size

∂dist
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noting that:

α
Crowding
dist = α̂

Ind. density
dist − α̂Building height

dist − α̂Parcel coverage
dist (4)

Table 6 summarizes the results. Columns (1), (2) and (4) mirror results previously

presented, while column (3) shows that the number of floors is a mildly decreasing

function of distance from the closest centre, as predicted by urban models.

Insert Table 6 about here.

Using the results in Table 6, the decomposition (3) holds approximately in our

data. Indeed, comparing columns (1) and (5) in Table 6, which report separate re-

gressions of the left-hand side and the right-hand side of equation (4) on the same

set of covariates, we see that the estimated coefficients are both close to zero and

statistically insignificant. Columns (2)–(4) further show that the insignificant coeffi-

cient on floorspace with respect to distance stems from the offsetting effects of three

significant coefficients. Firstly, industrial density, as measured by employment over

parcel size, decreases with distance to the centre (column (2)). Secondly, the number

of floors decreases slightly as we move away from the centre (column (3)). Finally,

parcel coverage decreases with distance to the centre, showing that parcel size in-

creases faster than building footprints (column (4)). Put differently, all else equal,

floorspace per worker remains constant with respect to distance to the closest city

centre because buildings are increasingly flatter with smaller groundfloor footprints

as we move away from the centre, leaving workers with the same per capita floorspace

but more outdoor space.

26



4 Some implications for theory

We now discuss in more details some implications of our findings for modeling land

for production, and then back out—through the lens our our theory—the elasticity of

substitution between land and labor compatible with our empirical results.

4.1 The canonical Cobb-Douglas production function

Consider the canonical setting with perfectly competitive factor markets.19 Let wz,

rz, and pz denote the price of labor (L), capital (K), and land (H) in zone z (we do

not specify here if land is parcel size or floorspace, but we return to this distinction

later). Assuming a Cobb-Douglas production function, the output Yi(s,z) of firm i—

operating in sector s and located in zone z—is given by:

Yi(s,z) = Ai(s,z)L
αs
i K

βs
i H

1−αs−βs
i so that

Li
Hi

=
αs

1− αs − βs
pz
wz

, (5)

where Ai(s,z) denotes TFP and αs and βs are cost shares.

Expression (5) has two testable implications. First, land per worker is independent

of establishment size Li. This property, however, contradicts our empirical finding

that the number of workers per unit of land significantly increases with establishment

size. Second, (5) predicts that ∂ ln(Li/Hi)
∂Disti

equals ∂ ln(pz/wz)
∂Disti

, i.e., the semi-elasticity

of workers per unit of land with respect to distance from the centre equals that of

the rent-wage ratio. As predicted by urban models and vindicated by substantial

empirical analyses, the price of land is a decreasing function of distance from the

centre, whereas wages for a given job are unlikely to vary much within local labor

19We remain agnostic as to competition on the product markets, which we do not

model here.
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markets. Hence, ∂ ln(pz/wz)
∂Disti

≈ ∂ ln pz
∂Disti

seems to be a reasonable approximation. We do

not have land price data to estimate land price gradients in Canadian cities. However,

Albouy et al. (2018) provide estimates of the ratio of land values per acre in the city

centre (0.5 miles from downtown) and 10 miles away from it for more than 300 urban

areas in the US. The weighted average ratio equals 6.5 (using urban area population

as weights), which corresponds to a semi-log gradient of ∂ ln(pz/wz)
∂Disti

= −0.197.20 This

value is a magnitude larger than our estimates for ∂ ln(Li/Hi)
∂Disti

, which range from −0.04

to −0.02 (see Table 1 and Table 3, panel (a)). Although Canadian and us cities are

unlikely to have the same land price gradients, the difference between our estimates

and those in Albouy et al. (2018) is so large that the elasticity of substitution between

labor and land is likely (much) smaller than that of the Cobb-Douglas specification.

Since neither the increase in workers per unit of land with firm size nor its very

small changes with respect to distance from the centre seem to fit well with the

standard Cobb-Douglas production function, we now revisit the specification of the

production function including land and then discuss its quantitative implications.

4.2 Augmenting the production function

Assume that output is given by

Yi(s,z) = Ai

ξs
[
Hi −Hi

κi(s,z)

]σs−1
σs

+ (1− ξs)
(
Lαsi K

1−αs
i

)σs−1
σs


σs
σs−1

(6)

20Assuming that the log of land price linearly depends on the distance to the city

centre, and since Albouy et al. (2018) estimate the ratio of land values at 0.5 and 10 mile

from downtown to equal 6.5 on average, the gradient is given by −ln(6.5)/9.5 = −0.197.
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where capital and labor are aggregated using a Cobb-Douglas technology, and land

and the capital-labor bundle are aggregated using a CES technology.21 The elasticity

of substitution (σs) between land and the other factors, as well as the technological

land-intensity (ξs), are specific to industry s, whereas the land-augmenting produc-

tivity (κi(s,z)) is specific to firm i. There is a fixed land requirement (Hi) for any level

of output: some space must be used irrespective of the amount of output produced.

Taking the ratio of the first-order conditions with respect to land and labor yields:

Li

Hi −Hi
=

[
ξs

αs(1− ξs)

]−σs
[κi(s,z)]

σs−1
(
pz
wz

)σs (Li
Ki

)(1−σs)(1−αs)
.

The ratio of the first-order conditions with respect to labor and capital yields:

Li
Ki

=
αs

1− αs
rz
wz

.

Log-linearizing the former relationship and substituting the latter, we obtain:

ln
(

Li

Hi −Hi

)
= −σs ln

[
ξs

αs(1− ξs)

]
+ (σs − 1) lnκi(s,z) (7)

+σs ln
(
pz
wz

)
+ (1− σs)(1− αs)

[
ln
(

αs
1− αs

)
+ ln

(
rz
wz

)]
When fixed costs Hi are not too large, the term ln(Hi −Hi) can be approximated by

ln(Hi −Hi) ≈ lnHi − Hi
Hi

, so that we finally obtain:

ln
(
Li
Hi

)
= −σs ln

[
ξs

αs(1− ξs)

]
+ (1− σs)(1− αs)

[
ln
(

αs
1− αs

)]
︸ ︷︷ ︸

β0s

(8)

+σs ln
(
pz
wz

)
− Hi

Hi
+ (σs − 1) lnκi(s,z) + (1− σs)(1− αs) ln

(
rz
wz

)
+ εi︸ ︷︷ ︸

εi

where εi is a structural error term (and εi a reduced-form error term, including the

error from the approximation).

21When σs → 1, (6) reduces to Yi(s,z) = Aiκ
−ξs
i(s,z)Hi

ξsL
αs(1−ξs)
i K

(1−αs)(1−ξs)
i , which is

isomorphic to the baseline case (5).
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The purpose of the econometric results in Section 3 was to provide a careful de-

scription of the correlations between land consumption and various characteristics

of manufacturing establishments and their environment. We now discuss how our

reduced-form empirical results relate to the theoretically grounded equation (8), and

use the structure of the equation to discuss the biases our correlations may have if

one were to interpret them more structurally.

The industry-specific term β0s, which implies that low-αs and high-ξs sectors sort

into places where land is relatively less expensive as they use relatively more land,

is captured in our regressions by industry fixed effects. The term ln
(
pz
wz

)
varies

both across and within metro areas, and in the absence of price and wage data for

Canadian cities, two of the covariates in the previous regression analysis proxy for

it: city population and the distance to the nearest city centre. Land prices increase

faster than wages with city size (see, for example, in the French case, Combes et al.,

2008, 2019), and they decrease with distance to the centre (wages vary little within

metro-areas). Through the lens of equation (8), as long as σs > 0, we thus have:

∂ ln (Li/Hi)

∂ ln Popz
= σs

∂ ln (pz/wz)
∂ ln Popz

> 0 and
∂ ln (Li/Hi)

∂Disti
= σs

∂ ln (pz/wz)
∂Disti

< 0,

which is exactly what we found in Section 3.

Finally, we do not have a direct measure of the fixed land requirement, but since

the share of the fixed requirement in overall land consumption mechanically de-

creases with establishment size, the log size of the establishment included in the

regression analysis is a proxy for −Hi
Hi

. Put differently, −Hi
Hi

increases with establish-

ment size, so that the correlation between the number of workers per unit of land

and establishment size should be positive, which is also what we found in Section 3.

How do the two remaining components in the structural error term of equa-
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tion (8) affect the correlations we estimated in our regressions? First, the presence of

the plant-specific land-augmenting productivity parameter, κi(s,z), implies that high

κi(s,z)-firms (i.e., firms with a low land-augmenting productivity) use relatively more

land when σs < 1 (see our discussion in Section 4.1), and thus sort into places where

land is relatively cheap. The battery of firm-level controls we introduced in the re-

gression analysis (dummies for headquarters and exporters, number of production

lines and functions, proximity to different types of infrastructure) are one way to

control for this unobserved parameter. However, since firms that use relatively more

land sort into places where land is relatively cheap (i.e., into small cities and far from

city centres within cities), the possible remaining bias is such that (in absolute value)

the estimated correlation between ln
(
Li
Hi

)
on the one hand, and city size or distance

to the centre on the other, are upper bounds of the ‘real’ correlations.

The structural error term also contains a function of the relative price of capital

with respect to labor, (1− σs)(1− αs) ln
(
rz
wz

)
. Assuming that capital markets are

integrated in Canada, we can consider that the price of capital does not vary sub-

stantially across and within cities. On the other hand, wages increase with city size

but do not vary within cities. Overall, it is thus reasonable to think that ln
(
rz
wz

)
de-

creases with city size but is unrelated to the distance from the city centre. Hence, the

presence of (1− σs)(1− αs) ln
(
rz
wz

)
in the error term should not affect the estimated

correlation between ln
(
Li
Hi

)
and distance from the city centre. Table 3 shows that in-

cluding city fixed effects does not affect the estimated correlation between industrial

density and distance to the city centre, in line with the foregoing discussion. Under

the assumption that both σs < 1 and αs < 1, and ignoring possible interactions with

Hi
Hi

, it will however lead to under-estimating the correlation with city size.
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To conclude, the correlation we estimate between the number of workers per unit

of land and the distance from the city centre is an upper bound in absolute value.

However, the sign of the bias is ambiguous for the correlation with city size.

4.3 Quantitative implications

We now provide some tentative estimates for the value of σs. As already mentioned,

through the lens of equation (8), we have

∂ ln (Li/Hi)

∂ ln Popz
= σs

∂ ln (pz/wz)
∂ ln Popz

and
∂ ln (Li/Hi)

∂Disti
= σs

∂ ln (pz/wz)
∂Disti

.

Hence, we can construct an estimate σ̂s as follows:

σ̂s =
∂ ln (Li/Hi)

∂ ln Popz

/ ∂ ln (pz/wz)
∂ ln Popz

=
∂ ln (Li/Hi)

∂Disti

/ ∂ ln (pz/wz)
∂Disti

. (9)

Since we estimated a zero semi-elasticity of floorspace with respect to distance from

the city centre, it follows that the elasticity of substitution between floorspace and

other production factors equals 0, which amounts to a Leontief production function

relating floorspace and the labor-capital bundle.

To operationalize (9), when land is interpreted as parcel size, we need estimates for

the (semi-)elasticity of pz/wz with respect to distance from the centre and metropoli-

tan population size. Lacking estimates for Canadian cities, we make use of the results

and data from Albouy et al. (2018) for US metropolitan areas. As explained before,

since wages do not vary much within metro areas with distance from the centre, we

can take the estimate of −0.197 from Albouy et al. (2018) as the reference value for

∂ ln (pz/wz)/∂Disti for Canada. Using equation (9) and our estimates, it follows that

σ̂s = 0.027/0.197 = 0.137 (we use our preferred estimate ∂ ln(Hi/Li)
∂Disti

= 0.027 from

column (4) of Table 1).
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Albouy et al. (2018) do not provide estimates of the elasticity of land values per

acre with respect to metropolitan population size. We can, however, combine their

data with population sizes to estimate it. We obtain an estimate of ∂ ln pz
∂ ln Popz

= 0.399

using land values for the overall MSA and of ∂ ln pz
∂ ln Popz

= 0.856 using land values for

the MSA central cities. Since we need an estimate for ∂ ln(pz/wz)
∂ ln Popz

, we further require

the elasticity of wages with respect to CMA population for US cities. Behrens and

Robert-Nicoud (2015) estimate 0.081 (unconditional) or 0.042 (controlling for MSA

education) for the population-wage elasticities across US cities. Combining this with

the above estimates, we obtain a range from ∂ ln(pz/wz)
∂ ln Popz

= 0.399− 0.081 = 0.318 to

∂ ln(pz/wz)
∂ ln Popz

= 0.856− 0.042 = 0.814. Using our preferred estimate ∂ ln(Li/Hi)
∂ ln Popz

= 0.135

from column (4) of Table 1 we obtain the following range: σ̂s ∈ [0.166, 0.425].22

The range of σs implied by our quantification exercise is 0.14 to 0.42, with three

out of four values being below 0.25. These values are far from 1 that obtains under

the ubiquitous Cobb-Douglas specification used in much of the existing literature.

They suggest that labor and land, as measured by parcel size, are little substitutable

in the production function of manufacturing establishments.23

22As an additional check, based on French data, Combes et al. (2019) find that the

elasticity of the price of parcels (per square metre) to city population is roughly equal

to 0.6, while using French data too, Combes et al. (2008) find an elasticity of individual

wages to population density of 0.03. These two elasticities are not estimated for the

same period and at the exact same spatial scale, but they are cleanly estimated with very

detailed data. Hence, the elasticity of relative land prices to city size/city population

density in France equals 0.57. Taking this as a reference value for Canada, equation (9)

implies a value of σ̂s = 0.135/0.57 = 0.237, which falls in the range of the values obtained

using the estimates of Albouy et al. (2018) with us data.
23In the conceptual framework, we assumed σs is sector specific since there is no rea-
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5 Conclusions

We have constructed a new quantity dataset for Canadian manufacturing establish-

ments containing measures of the parcel sizes they occupy and the floorspace of their

buildings. Using those data, we have decomposed industrial density (parcel size per

worker) into three components: crowding (floorspace per worker); building height

(floorspace to building footprint); and parcel coverage (building footprint to parcel

size). Using these components, we have estimated their elasticity with respect to

city size and distance to the city centre to see how density changes and along which

margins manufacturing firms adjust their land consumption.

Our results show that, controlling for establishment size, manufacturing estab-

lishments occupy parcels more densely in big cities and in central locations within

cities. This is the industrial analogue of the results for residential density substanti-

ated by the urban economics literature. It holds both in terms of industrial density

(employment over parcel size) and parcel coverage (building footprint over parcel

size). We further find that, controlling for location, larger establishments use parcels

more densely: employment-to-parcel size increases strongly with establishment size

(but parcel coverage does not depend much on establishment size). Last, our results

show that floorspace per worker appears unrelated to distance from the centre. This

latter point suggests that much of the adjustment in terms of land consumption is

son a priori to believe that land and labor are equally substitutable in all sectors. To see

whether the average σs masks heterogeneity, we investigate the cross-sectoral heterogene-

ity in the two elasticities we can estimate from our data. Table C3 in the online appendix

shows that the sectoral variation is limited, which implies that the sectoral variation in

σs is limited too.
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related to outdoor space such as parking, storage, or green space. To our knowledge

this aspect, has not been investigated in more detail until now.

Our results have implications for modeling firms’ land consumption. Since floor-

space does not change with distance from the centre, hence with land prices, this

suggests that floorspace and labor are used in (industry-specific) fixed proportions,

as in a Leontief production function. Furthermore, there is a fixed costs component

for land. Our key stylized facts can be replicated with a production function that has

fixed land requirements and that aggregates land- and non-land factors with a CES

specification. Using that framework, we have finally quantified the implied elasticity

of substitution between land- and non-land factors. As expected, this elasticity is low

at 0.14 to 0.42, way below the value of 1 implied by the Cobb-Douglas specification.

We hope that our results will be useful to other researchers interested in under-

standing how industrial activity uses land and along which margins firms adjust their

consumption of land and floorspace. This seems important for the recent quantitative

spatial models that largely use Cobb-Douglas production functions, as their results

may be sensitive to that choice. We view our analysis as a first step in the direction

of better understanding land use by firms. Our results may be specific to manufac-

turing and may not transpose to other industries such as services and retail. It thus

seems important to extend our analysis to economic activity more broadly defined.

Although the data are increasingly available, it is likely to be a challenging task.
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Table 1: Determinants of industrial density (establishment employment over parcel size).

Dependent variable Ln establishment employment over parcel size

(1) (2) (3) (4) (5) (6)

Environmental characteristics

Ln CMA population 0.217
a

0.193
a

0.193
a

0.135
a

0.051 0.143

(0.055) (0.042) (0.042) (0.046) (0.039)

Ln CMA surface area -0.131 -0.108 -0.111
c -0.111 -0.030 -0.061

(0.087) (0.065) (0.064) (0.078) (0.060)

Distance to the closest city centre -0.039
a -0.037

a -0.037
a -0.027

a -0.020
a -0.128

(0.005) (0.006) (0.006) (0.008) (0.005)

Ln Population density within 500m 0.150
a

(0.013)

Individual characteristics

Ln employment 0.622
a

0.627
a

0.629
a

0.649
a

0.601

(0.016) (0.015) (0.015) (0.017)

1 is HQ 0.077
a

0.079
a

0.057
a

0.017

(0.021) (0.021) (0.021)

1 is exporter -0.116
a -0.111

a -0.089
a -0.038

(0.023) (0.022) (0.020)

Observations 8,704 8,704 8,704 8,704 8,704 8,705

R2
0.268 0.555 0.557 0.562 0.585 0.562

Notes: OLS regressions. 1 denotes {0, 1} dummy variables. All regressions include indus-

try (4-digit) fixed effects, economic region fixed effects, dummies for local land-use category,

and a forth-order polynomial in the number of neighbors of the establishment on its parcel.

Columns (3)–(6) include, but do not report, the following individual controls (# functions in

the establishment, # of 4-digit NAICS codes of the establishment, and # of products produced

by the establishment). Columns (4)–(6) include, but do not report, the infrastructure distance

controls (Ln distance to major airport, Ln distance to major seaport, Ln distance to freight sta-

tion, and Ln distance to highway junction). Column (6) reports beta coefficients and therefore

omits standard errors. We include only observations of excellent quality for parcel size. Stan-

dard errors in parentheses are clustered at the CMA/CA level. ap < 0.01, bp < 0.05, cp < 0.1.

40



Table 2: Determinants of parcel coverage (establishment building footprint over parcel size).

Dependent variable Ln establishment building footprint over parcel size

(1) (2) (3) (4) (5) (6)

Characteristics of the local environment

Ln CMA population 0.313
a

0.313
a

0.315
a

0.287
a

0.226
a

0.355

(0.063) (0.063) (0.063) (0.078) (0.074)

Ln CMA surface area -0.203
c -0.203

c -0.206
c -0.242

c -0.183 -0.155

(0.107) (0.107) (0.107) (0.124) (0.114)

Distance to the closest city centre -0.044
a -0.044

a -0.044
a -0.033

a -0.028
a -0.184

(0.006) (0.006) (0.006) (0.010) (0.008)

Ln population density 500m 0.108
a

(0.020)

Characteristics of the establishment

Ln employment -0.024
a -0.022

a -0.024
a -0.009 -0.027

(0.008) (0.007) (0.007) (0.008)

(0.036) (0.034) (0.034)

1 is exporter -0.019 -0.018 -0.003 -0.007

(0.019) (0.020) (0.018)

Observations 8,510 8,510 8,510 8,510 8,510 8,511

R2
0.271 0.272 0.272 0.283 0.300 0.283

Notes: OLS regressions. 1 denotes {0, 1} dummy variables. All regressions include indus-

try (4-digit) fixed effects, economic region fixed effects, dummies for local land-use category,

and a forth-order polynomial in the number of neighbors of the establishment on its parcel.

Columns (3)–(6) include, but do not report, the following individual controls (# functions in

the establishment, # of 4-digit NAICS codes of the establishment, and # of products produced

by the establishment). Columns (4)–(6) include, but do not report, the infrastructure distance

controls (Ln distance to major airport, Ln distance to major seaport, Ln distance to freight sta-

tion, and Ln distance to highway junction). Column (6) reports beta coefficients and therefore

omits standard errors. We include only observations of excellent quality for parcel size. Stan-

dard errors in parentheses are clustered at the CMA/CA level. ap < 0.01, bp < 0.05, cp < 0.1.
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Table 3: Robustness checks for sample selection, data quality, and CMA fixed effects.

(a) Industrial density: Ln establishment employment over parcel size

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)

Ln CMA population 0.135
a

0.125
a

0.138
a

0.135
a

0.089
b

0.131
a

0.119
b

0.150
a

0.104
c

(0.046) (0.036) (0.043) (0.050) (0.039) (0.048) (0.049) (0.048) (0.058)

Distance to the closest city centre -0.027
a -0.021

a -0.024
a -0.025

a -0.019
a -0.028

a -0.025
a -0.028

a -0.009
b -0.026

a

(0.008) (0.004) (0.007) (0.008) (0.006) (0.008) (0.008) (0.009) (0.004) (0.010)

Ln employment 0.629
a

0.648
a

0.569
a

0.627
a

0.628
a

0.707
a

0.546
a

0.634
a

0.628
a

0.628
a

(0.015) (0.016) (0.014) (0.014) (0.018) (0.017) (0.014) (0.018) (0.020) (0.014)

Observations 8,704 12,143 8,528 8,045 7,423 6,944 5,331 8,704 5,040 8,701

R2
0.562 0.507 0.543 0.565 0.588 0.537 0.450 0.537 0.574 0.567

(b) Parcel coverage: Ln establishment building footprint over parcel size

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)

Ln CMA population 0.287
a

0.276
a

0.222
a

0.275
a

0.220
a

0.291
a

0.232
a

0.279
a

0.233
b

(0.078) (0.061) (0.065) (0.075) (0.045) (0.082) (0.087) (0.073) (0.115)

Distance to the closest city centre -0.033
a -0.028

a -0.029
a -0.031

a -0.022
a -0.036

a -0.031
a -0.033

a -0.007
c -0.032

a

(0.010) (0.007) (0.008) (0.010) (0.005) (0.011) (0.010) (0.009) (0.004) (0.012)

Ln employment -0.024
a -0.019

c -0.004 -0.028
a

0.016
c

0.009 -0.023
b -0.012 0.011 -0.026

a

(0.007) (0.011) (0.011) (0.006) (0.010) (0.017) (0.011) (0.008) (0.015) (0.007)

Observations 8,510 11,797 8,334 8,045 7,423 6,827 5,204 8,510 4,913 8,506

R2
0.283 0.256 0.273 0.278 0.225 0.296 0.303 0.283 0.216 0.296

Notes: OLS regressions. 1 denotes {0, 1} dummy variables. (1) Benchmark; (2) no quality restrictions; (3) 1% trimming; (4) both

excellent; (5) coverage < 1; (6) less than 50 employees; (7) no neighbors; (8) parcel and building neighbors; (9) more than 5km from

centre; (10) include CMA fixed effects. All regressions include industry (4-digit) fixed effects, economic region fixed effects, and the

following controls (not shown): dummies for local land-use category; # functions in the establishment, # of 4-digit NAICS codes of

the establishment, and # of products produced by the establishment; Ln distance to major airport, Ln distance to major seaport, Ln

distance to freight station, and Ln distance to highway junction. All regressions include a polynomial of degree 4 in the number

of neighbors of the establishment on its parcel. We include only observations with the most reliable information on parcel size.

Column (6) reports beta coefficients and omits standard errors. Standard errors in parentheses are clustered at the CMA/CA level.

ap < 0.01, bp < 0.05, cp < 0.1.
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Table 4: Robustness checks using assessment roll data for Montréal.

Dependent variable Ln establishment employment over parcel size Ln establishment building footprint over parcel size

Original data Roll data Roll data Original data Roll data Roll data

(1) (2) (3) (4) (5) (6)

Characteristics of the local environment

Distance to the closest city centre -0.037
a -0.056

a -0.039
a -0.039

a -0.057
a -0.049

a

(0.009) (0.010) (0.011) (0.009) (0.011) (0.011)

Ln population density 500m 0.198
a

0.087
b

(0.035) (0.035)

Characteristics of the establishment

Ln employment 0.637
a

0.611
a

0.643
a -0.087

a -0.114
a -0.099

a

(0.028) (0.033) (0.032) (0.026) (0.034) (0.034)

1 is HQ 0.241
b

0.344
a

0.321
a

0.071 0.183 0.172

(0.098) (0.116) (0.112) (0.100) (0.128) (0.127)

1 is exporter -0.076 -0.144
c -0.140

c -0.050 -0.128 -0.126

(0.068) (0.083) (0.082) (0.063) (0.090) (0.090)

Observations 1,041 1,041 1,041 1,028 1,028 1,028

R2
0.636 0.546 0.570 0.341 0.278 0.284

Notes: The regression sample only includes establishments in Montreal. OLS regressions. 1 denotes {0, 1} dummy variables. All regressions

include industry (4-digit) fixed effects, economic region fixed effects, and the following controls (not shown): dummies for local land-use category;

# functions in the establishment, # of 4-digit NAICS codes of the establishment, and # of products produced by the establishment; Ln distance

to major airport, Ln distance to major seaport, Ln distance to freight station, and Ln distance to highway junction. All regressions include a

polynomial of degree 4 in the number of neighbors of the establishment on its parcel. We include only observations with the most reliable

information on parcel size. Column (6) reports beta coefficients and omits standard errors. Standard errors in parentheses are clustered at the

CMA/CA level. ap < 0.01, bp < 0.05, cp < 0.1.
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Table 5: Crowding with Montréal assessment roll data and our Canada-wide sample of ‘low-

rise sectors’.

Dependent variable: Ln Establishment employment over floorspace

Roll data MTL Roll data MTL Canada-wide sample

(1) (2) (3)

Characteristics of the local environment

Ln CMA population -0.080
c

(0.044)

Ln CMA surface area 0.022

(0.065)

Distance to the closest city centre -0.009 -0.040 0.006

(0.013) (0.026) (0.006)

Characteristics of the establishment

Ln employment 0.686
a

0.696
a

0.658
a

(0.034) (0.064) (0.022)

1 is HQ 0.055 -0.100 0.050

(0.115) (0.270) (0.064)

1 is exporter -0.142
c -0.126 -0.160

a

(0.080) (0.153) (0.037)

Observations 873 188 2,191

R2
0.719 0.683 0.537

Notes: (1) Sample includes establishments in Montreal with floorspace information; (2) sample includes

establishments in Montreal associated with ‘single floor (flat)’ industries; (3) sample includes estab-

lishments in Canada associated with ‘single floor (flat)’ industries. OLS regressions. 1 denotes {0, 1}

dummy variables. All regressions include industry (4-digit) fixed effects, economic region fixed ef-

fects, and the following controls (not shown): dummies for local land-use category; # functions in the

establishment, # of 4-digit NAICS codes of the establishment, and # of products produced by the es-

tablishment; Ln distance to major airport, Ln distance to major seaport, Ln distance to freight station,

and Ln distance to highway junction. All regressions include a polynomial of degree 4 in the number

of neighbors of the establishment on its parcel. We include only observations with the most reliable in-

formation on parcel size. Standard errors in parentheses are clustered at the CMA/CA level. ap < 0.01,

bp < 0.05, cp < 0.1.
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Table 6: Decomposing the density distance gradient.

Dependent variable Ln Establishment employment Ln Establishment employment Ln number Ln building footprint (2)-(3)-(4)

over floorspace parcel size of floors over parcel size

(1) (2) (3) (4) (5)

Characteristics of the local environment

Distance to the closest city centre -0.001 -0.052
a -0.014

b -0.052
a

0.014

(0.014) (0.012) (0.006) (0.013) (0.014)

Characteristics of the establishment

Ln employment 0.688
a

0.657
a -0.027 -0.071

c
0.755

a

(0.036) (0.036) (0.019) (0.040) (0.043)

1 is HQ -0.007 0.101 0.117
c

0.119 -0.136

(0.125) (0.124) (0.061) (0.141) (0.158)

1 is exporter -0.172
b -0.168

c
0.008 -0.148 -0.029

(0.085) (0.096) (0.042) (0.097) (0.089)

Observations 723 723 723 723 723

R2
0.758 0.631 0.328 0.725 0.771

Notes: The regression sample only includes establishments in Montreal. To provide the decomposition, we restrict ourselves to the largest sample that allows

for estimation of each component. OLS regressions. 1 denotes {0, 1} dummy variables. All regressions include industry (4-digit) fixed effects, economic

region fixed effects, and the following controls (not shown): dummies for local land-use category; # functions in the establishment, # of 4-digit NAICS

codes of the establishment, and # of products produced by the establishment; Ln distance to major airport, Ln distance to freight station, and Ln distance

to highway junction. All regressions include a polynomial of degree 4 in the number of neighbors of the establishment on its parcel. We include only

observations with the most reliable information on parcel size. The dependent variable in column (5) is the difference between the dependent variable in

column (2) and those in columns (3) and (4). Standard errors in parentheses are clustered at the CMA/CA level. ap < 0.01, bp < 0.05, cp < 0.1.
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A Data Appendix

Census geography. Since we largely draw on the standard Canadian census geogra-

phy, which may be little known to many readers, we provide here some information

on its fundamental structure and concepts. A census metropolitan area (CMA) or a

census agglomeration (CA) is formed by one or more adjacent municipalities centered

on a population center (known as the core). A CMA must have a total population of

at least 100,000 of which 50,000 or more must live in the core based on adjusted data

from the previous Census of Population Program. A CA must have a core population

of at least 10,000 also based on data from the previous Census of Population Program.

To be included in the CMA or CA, other adjacent municipalities must have a high de-

gree of integration with the core, as measured by commuting flows derived from data

on place of work from the previous Census Program. An economic region (ER) is a

grouping of complete census divisions (CDs), created as a standard geographic unit

for analysis of regional economic activity. There are 76 economic regions in Canada

that constitute a partition of the country. They are much smaller than provinces but,

except for the very largest metropolitan areas, much bigger than cities. Finally, the 10

provinces and 3 territories are the federal political units in Canada.

1



Census data is published at different geographic levels. For our work, we rely

on the most disaggregated public data, which is published at the dissemination area

(DA) level. A DA is a small area that is composed of one or more neighbouring

dissemination blocks. It has about 400 to 700 residents.

Geocoding. The recent years of the Scott’s dataset already reports geographic coor-

dinates for each plant. However, some of these are based on postal code centroids,

which are necessarily less accurate than coordinates obtained from rooftop geocoding

and do not permit to precisely associate plants with parcel- or building polygons. We

hence geocode all plants based on their address information.

Geocoding consists in providing an address to a geocoder—a particular Applica-

tion Programming Interface (API) used to recover geographic coordinates of addresses–

which returns the latitude and longitude of the corresponding address. The geocoder

also provides the address related to the coordinates of the points it returns so that we

can verify if the input address and the return address match.

For the sake of precision, we use three different options to perform the geocoding.

The first option uses the commercial API of the Google Map server to geocode each

plant based on the address recorded in the Scotts database. The second option uses

the same API but combines the company’s name with the address as the input for

the geocoder. In doing so, small errors in the address reported in the Scotts data

can be corrected and the accuracy of the geocoding improved. The third option uses

the point coordinates provided in the DMTI database, which is an extensive database

containing more than 15 million feature points representing Canadian addresses and

their related geographic coordinates with ‘rooftop’ precision.24 We merge the Scotts

24See https://www.dmtispatial.com for more information.
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addresses with the DMTI address using the API of ArcGIS, a commercial Geographic

Information Systems (GIS) software.

Once we have geocoded the addresses, we compare the coordinates (latitude, lon-

gitude) returned by the three options and assign to each plant the coordinates that

are most likely the accurate ones. Accuracy is based on two criteria: (i) the distances

between the point coordinates yielded by the three options (so as to identify probable

errors, i.e., points that are very far away from the other return values); and (ii) the

match between the postal codes recorded in the Scotts database and the postal codes

returned by the geocoder for each option (so as to keep only the points for which

the postal code corresponds to the one recorded in the Scotts database). If several

different points are returned for the same establishment, the coordinates retrieved

from Google Maps based on the company name and the address are preferred to the

coordinates obtained via Google Map using the address only, which are themselves

preferred to the DMTI coordinates.

Finally, we construct a variable with three categories to grade the accuracy of

the geocoding process for each plant based on how convergent the three options

are in terms of establishment location. We retain only observations that are either

‘rooftop’ (i.e., exactly coded) or ‘range interpolated’ (i.e., interpolated based on a

range of address numbers); we do not consider the rest (e.g., postal-code level) as

being accurate enough to assign plants to polygons.

Data sources. We extensively explored existing open-access data sources on various

websites and got in touch with several institutions to obtain information on parcel-

and buildings polygons and footprints in Canada. The main relevant data sources for

our work are the following:

3



• Statistics Canada, via the official website of the Canadian Government, provides

several datasets including data on buildings that are open for public use.

• Some Assessment Rolls of different municipalities—which are in charge of com-

puting the value of the tenure taxes based on the nature, the location, and the

scope of the properties—provide open-access data.

• Cadastral information: Some provinces and cities in Canada do have informa-

tion on the parcels where buildings are located.

• GIS databases of cities: The websites of some cities provide GIS data which

record parcels polygons and/or footprints of buildings of their localities.

• Open source data on building footprints in Canada released by Microsoft: These

datasets contain 12,663,475 building footprints covering all provinces and terri-

tories.25

Table A1 provides the complete list of polygon datasets that we collected along

with the links where they can be accessed.

Polygon dataset quality. We collected polygon datasets from the above sources.

These datasets come in different data formats (KML, shapefile, geodataset, etc) and

are for different reference years. During their processing, we identified and solved

the following challenges linked to the quality of the data:

• Quality of the collected files: The polygon datasets we collected are not homo-

geneous. The formats of the files are not always the same and the reference

units of the polygon datasets are different in some cases (feet, meters, etc.) and

25For additional information, see https://blogs.bing.com/maps/2019-03/microsoft-releases-12-million-

canadian-building-footprints-as-open-data.
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sometimes not indicated at all in the files. To solve this problem we converted

all the files into shapefile format (.shp), harmonized the units to meters, and

projected each dataset into a suitable coordinate system according to the posi-

tion of the locality it refers to. We consider as a suitable coordinate system one

which does not alter distances. In most cases, the ‘Albers conic conformal sys-

tem’ is used, as generally recommended for Canada. We also construct for each

polygon dataset the following key variables: a unique identifier, the surface

area, and the number of neighbors of each polygon recorded in the dataset. The

latter variable is useful to check for the quality of the area assignation process

for each plant. The LIDAR dataset source gives the building footprints along

with an estimation of the height of the building. These files report the minimum

and the maximum height detected by the signal used to scan the space.

• Matching buildings to parcels: The polygon datasets we collected have two

different features. The first one is the parcel-polygon that represents the amount

of land used by a plant to host its main building and possibly some other spaces

(auxiliary buildings, parking, storage, etc.). The second polygon type is the

building-polygon that represents only the building of the plant. Theoretically,

the building footprint should be included in the parcel outline. Yet, in some

cases the building overlaps with more than one parcel. As a result, the surface

of the building footprint is greater than the surface of the parcel to which its is

related. We solve this issue by aggregating up all the parcels that overlap with

the building.
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Assignment to polygons. We have, on the one hand, a geocoded establishment-

level dataset and, on the other hand, different polygon datasets. To merge them, we

use the spatial join tools available in the open-source software Quantum GIS (QGIS)

to map each plant to a polygon. More precisely, we overlay the polygon datasets

(parcels and buildings) with the coordinate point layers representing the geocoded

establishments. Figure A1 shows an example of how the geocoded Scott’s plants are

overlaid on the building polygon layer for the spatial join process. Figure A2 shows

the same for the building- and parcel polygons using the Montréal assessment roll

data.

Figure A1: Polygon layer with overlaid geocoded establishments.

As is well known, spatial join can be a somewhat noisy process. Hence, not all

plants fall exactly onto a polygon (neither parcels nor buildings). For each plant,

we thus perform three assignment options. The first option relates each plant to

the polygon onto which it falls; in that case, the distance between the plant and the

7



Figure A2: Establishments (yellow), parcels (green), and buildings (red) from the roll data.

polygon is assumed to be 0. If the plant does not fall exactly onto a polygon, it has

no associated polygon. The second option then relates each plant to the polygon

whose centroid is the closest, and we compute the distance between the plant and

that centroid. Finally, the third option relates each plant to the polygon whose border

is the closest; we again compute the distance between the plant and that border. We

then compare the three (or two) distances obtained in the three option and we take as

the final assignment the polygon corresponding to the shortest distance. Obviously,

when the plant falls onto a polygon, it is that polygon which is assigned to the plant

since the distance is zero. When the shortest distance is greater than 75 meters we

consider that the process is too noisy and we do not assign that polygon to the plant.

In addition, to avoid assigning the surface of corridors to plants, we compute for each

polygon its number of neighbors. If an assigned polygon has more than 10 neighors,

we consider that the polygon is a corridor or a common space and we do not assign

that polygon to the plant.

We then construct a variable corresponding to the combination of assignments
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pointing in the direction of the polygon the establishment is assigned to. For example

if the options "Border" and "Center" assign the plant to the same polygon whereas

the "Within” option points to a different polygon for the same plant, then assignment

variable for that plant will be "Center-Border". Thus, the assignment variable has the

following 7 categories : (1) "Within-Center-Border"; (2) "Within-Center"; (3) "Within-

Border"; (4) "Center-Border" (5) "Within"; (6) "Center"; (7) "Border".

Based on this assignment variable, we construct a quality variable as follows: i) we

cross-tabulate the assignment variable with the dummy we could build for the obser-

vations from Quebec and that identifies those establishments which are assigned to

the right polygon (described in section 2.2); ii) for all of our observations, we define

as "Excellent" those observations whose assignment category has a high probability

of being located on their actual polygon as measured based on observations from

Quebec; "Good" is for observations whose assignment category has an intermediate

probability of being located on their actual polygon; and "Poor" is for all the cate-

gories with a low probability of being located on their actual polygon. Doing so, we

implicitly assume that the mapping between the assignment variable and the dummy

identifying correct observations in Quebec is representative of the entire country.

For the Parcel-based measure, the process leads to grade as "Excellent" the plants

whose assignment category is "Within-Border-Center" or "Within". These plants with

an "Excellent" parcel-based measure have a 89% probability of being positioned on

their actual polygon. Plants graded as "Good" are those whose assignment cate-

gory is "Within-Border" or "Within-Center". The plants of "Good" quality have a 60%

probability of being positioned on their actual polygon. Finally, "Poor” is the grade

for observations whose assignment category is "Border"; "Center-Border" or "Center";

9



these observations have a 16% probability of being located on their actual polygons.

For the Building-based measure, the category "Excellent" comprises the plants

whose assignment category is "Within-Border-Center", "Within-Center", "Within-Border"

and "Border-Center". The observations rated as "Excellent" for the Building-based

measure have a 78% probability of being positioned on their actual polygon. The

quality "Good" is for observations whose assignment category is "Within"; for them,

the probability of being positioned on their actual polygon is equal to 66%. The grade

"Poor" encompasses observation whose assignment category is "Border" or "Center".

These plants have a 36% probability of being positioned on their actual polygon.

Summary: step-by-step data-construction procedure. Below is a summary of the

main workflow to construct our dataset.

Step 1. Creating a unique addresses. From the Scotts dataset, unique addresses

are identified since several plants can share the same location. We create a unique

identifier for each address. This step prepares the geocoding process, and will avoid

to geocode several times the same address. A dataset of unique addresses is then

generated with variables, the detailed address, and the address identifier.

Step 2. Geocoding unique addresses. We use the dataset of unique addresses as

input for the geocoding process described above. The output file contains geocoded

addresses, in addition to the inputs variables, the geographic coordinates of each

address, the detailed address as recorded in the database of the geocoder (Google or

DMTI) as well as a quality variable indicating the degree of accuracy of the returned

coordinates.

Step 3. Extracting polygon surfaces. Using a Geographic Information System, the
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geocoded addresses are overlaid on the polygons featuring parcel or building foot-

prints. Then spatial join techniques are used to associate parcel and/or building

polygons to addresses. Three different spatial join approaches are used to associate

polygon areas to addresses. The output contains for each address, the associated

polygon area from each of the three spatial join approach, as well as the distance

between each associated polygon and the geographic coordinates of the address.

Step 4. Extracting location characteristics. Using a Geographic Information System,

the geocoded addresses are overlaid on shapefiles of dissemination areas, Census

Metropolitan Areas (CMAs), zoning restrictions, highways, seaports and airports to

compute various location variables : population and surface area of dissemination

areas and CMA, distance to closest seaport, freight station, airport and highway junc-

tion as well as dummies for zoning categories.

Step 5. Creating a raw land variable. This process compares the results of the three

different spatial join approaches and finally assign to each address the ‘best’ result.

Quality variables are constructed.

Step 6. Creating the final dataset. The Scotts dataset is merged with location char-

acteristics and land measures to obtain the final dataset used in the paper.

B Quality assessment and representativeness.

Beyond the measurement challenges mentioned in the previous subsection, geocod-

ing data and assigning them to polygons retrieved from satellite data inherently bring

issues regarding the quality of the data and the methodology employed to assign

plants to polygons.

First, there can be errors in the polygon datasets. Representing a parcel or a build-
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ing by a polygon is subject to minor errors. For example, the algorithm used to con-

vert satellite building images into polygon building outlines may fail in some cases

to fit exactly the building into its representative polygon. The level of such errors—

known as the matching precision—is estimated at 1.3% by the data provider.26 This

type of error only affects the building polygons. Parcel polygons are derived from

administrative data and should, therefore, not be subject to measurement error of the

type inherent to satellite data.

Second, there can be errors in the plant-to-polygon assignments. Geocoding mi-

crodata is an inherently noisy process. Even minor errors in the geocoding of plants

can lead to their mis-assignment to polygons. To gauge the scope of false assign-

ments in our dataset, we make use of the subset of data for the province of Quebec

(QC). The reason is that the polygon identifiers in the QC dataset are the same as

the official identifiers of the polygons as recorded on the governmental website of

the land register “Infolot”.27 We can, therefore, randomly draw a set of addresses of

plants in QC from our dataset and compare the parcel identifiers from “Infolot” to

those obtained by our assignment procedure. Using a sample of 1,667 addresses, we

find 1,320 correct assignments. Put differently, the probability for a plant in QC to be

located exactly on its actual polygon is 79.16%.

As explained in the part “Assignment to polygons” of the Appendix, the assign-

ment of plants to polygons is based on three options that can potentially point to

different polygons. Among the 1,667 addresses that we use for validation, if we

restrict ourselves to the subset of observations for which the three options in the

26See https://github.com/Microsoft/CanadianBuildingFootprints on the GitHub website where the data
are released.

27On that website, it is possible to recover the identifier of a parcel by providing the address of a location. See
https://appli.mern.gouv.qc.ca/infolot/.
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Table B1: Assignment quality.

Assignment quality
Parcel (PB) Building (BB)
N % N %

Excellent 10,428 76.98 25,289 95.45

Good 843 6.22 775 2.93

Poor 2,275 16.79 431 1.63

Total 13,546 100.0 26,495 100.0

Notes: Distribution of geocoded establishments in 2017 by
quality categories. The classification includes the quality of
the geocoding and the quality of the polygon assignment
process. Concerning the geocoding quality, all observa-
tions with a less than excellent quality are removed, and
the remaining observations are used to construct the three
groups: excellent, good, and poor. The final sample we use
includes observations of excellent quality located in CMAs
and CAs and for which the values of the covariates used
in the regression analysis are not missing. We have a final
regression sample of 8,704 parcels.

assignment procedure point to the same polygon, the share of correct assignments

increases to 91.3%. In other words, plants for which the three assignment options

point to the same polygons are very likely to be correctly assigned. Making use of

that observation, we finally construct a ‘quality’ variable based on: (i) how accurate

the geocoding of the establishment is; and (ii) how likely a correct assignment to a

polygon is. This quality variable—which we construct for the whole dataset, not just

Quebec—has three categories: excellent, good, and poor (see the part “Assignment

to polygons” for more details). Table B1 summarizes the distribution of observations

across data-quality categories for parcels and building footprint. In the remainder of

the paper, unless noted otherwise, we only keep observations of ‘excellent’ quality.

Representativeness of the final sample. Table B2 shows that the distribution of the

3-digit industries is broadly similar to that in the raw Scotts database. The correlation

between these distributions exceeds 0.97. Turning to geography, Table B3 shows the

distribution of plants across provinces. As explained in the paper, we lack parcel
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polygons for entire provinces which are thus missing from our final dataset. Yet,

the correlation of the distribution of establishments in our sample across provinces

with the raw Scott’s data remains reasonably high at 0.62. Last, although our final

dataset is sectorally and geographically representative of manufacturing in Canada,

there could still be selection on observables. We hence use a probit model to assess

the extent to which the establishments in the final sample exhibit specific observable

characteristics compared to the others. Table B4 shows that, beyond the geographic

fixed effects, the only characteristic that is significantly related to the probability to

be included in the regression sample is the size of the CMA, with a slight over-

representation of establishments from large urban areas. Moreover, the pseudo R2

of the regression is small, and only 5 percentage points are related to establishment

characteristics. Put differently, there is little selection on observables in the sample

used for our analysis.

C Detecting city centres.

For each establishment, we compute its distance to the nearest city centre. We use

an algorithm that identifies clusters of densely populated dissemination areas. The

latter correspond to zones that dominate—in a statistical sense—the population dis-

tribution in the metro area. The clustering algorithm works as follows:

1. For each metro area, determine all dissemination areas (DAs) that have a pop-

ulation density in the top quartile of the metro area density distribution. Flag

those with 1, and the remaining DAs with 0.

2. For each metro area, compute for each DA i the number of DAs flagged with 1

and the number of DAs flagged with 0 within a 750 metres radius around the
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centroid of the DA. Assume that there are Ni0 DA’s flagged with 0 and Ni1 DA’s

flagged with 1 within 750 metres around DA i

3. Compute the total population within the dissemination areas Ni0 and Ni1 in the

750 metres radius.

4. Use the hypergeometric probability distribution to compute the probability to

see Ni1 ones among the draw of Ni0 + Ni1 DAs within 750 metres, given the

total number of 1’s and of 0’s in the city-wide distribution.

5. Flag all DA’s that: (i) have population density in the top quartile; (ii) have a

p-value from the hypergeometric distribution below 1%; and (iii) that have a

population share in the top 5% of all the DA’s in the top quartile of the popula-

tion density distribution.

6. Put the remaining DA’s on the map. Draw buffers with 750 metres radius round

those DAs and merge all contiguous buffers. These correspond to the identified

centres.

7. Take the centroid of that merged buffer as the location of the centre.

Note that there is no a priori restriction on the number of centres in a metropolitan

area. We detect 166 centres in our 152 metro areas. We finally associate each firm with

the nearest centre and compute the great circle distance between the firm’s centroid

and the city centre’s centroid. We only consider firms that are less than 30 kilometres

from an urban centre, all firms that are more than 30 kilometres from an urban centre

are not considered as urban.
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Table B2: Distribution of plants across industries.

Regression sample (Table 1) Scotts Data
N % N %

311 Food mfg 745 8.6 2,929 8.9
312 Beverage and tobacco product mfg 77 0.9 340 1.0
313 Textile mills 32 0.4 97 0.3
314 Textile product mills 227 2.6 752 2.3
315 Clothing mfg 307 3.5 724 2.2
316 Leather, allied product mfg 40 0.5 131 0.4
321 Wood product mfg 353 4.1 1,933 5.9
322 Paper mfg 149 1.7 509 1.6
323 Printing, support activities 726 8.3 2,274 6.9
324 Petrol, coal product mfg 20 0.2 135 0.4
325 Chemical mfg 433 5.0 1,578 4.8
326 Plastics, rubber products mfg 545 6.3 1,915 5.8
327 Non-metallic mineral product mfg 387 4.4 1,985 6.1
331 Primary metal mfg 125 1.4 543 1.7
332 Fabricated metal product mfg 1,300 14.9 5,267 16.0
333 Machinery mfg 1,061 12.2 4,614 14.1
334 Computer, electronic product mfg 299 3.4 1,032 3.2
335 Electrical, appliance mfg 256 2.9 787 2.4
336 Transportation equipment mfg 295 3.4 1,117 3.4
337 Furniture, related product mfg 421 4.8 1,405 4.3
339 Miscellaneous mfg 906 10.4 2,753 8.4
Total 8,704 100.0 32,829 100.0

Notes: This table reports the distributions of the Scott’s database along with the regression
sample in Table 1 across the different industries at the NAICS 3-digit level.

Table B3: Distribution of plants across provinces.

Regression sample Scotts Data
(Table 1)

N % N %

Alberta 0 0.0 2,818 8.6
British Columbia 2,208 25.4 3,865 11.8
Manitoba 419 4.8 1,028 3.1
New Brunswick 214 2.5 713 2.2
Newfoundland 0 0.0 298 0.9
Nova Scotia 0 0.0 781 2.4
Ontario 1,881 21.6 13,850 42.2
Prince Edward Island 0 0.0 148 0.5
Quebec 3,708 42.6 8,456 25.8
Saskatchewan 274 3.1 972 2.7
Total 8,704 100.0 32,829 100.0

Notes: This table reports the distributions of the Scott’s database along
with the regression sample in Table 1 across the Canadian provinces.
We remove the three territories as they have very few establishments
in the Scotts’ data.
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Table B4: Sample selection on observables.

Dependent variable 1 is in sample
(1) (2) (3) (4)

Ln Employment -0.010 0.004

(0.015) (0.019)
# functions in the estab. 0.018 -0.006

(0.018) (0.017)
# 4-digit NAICS -0.002 0.004

(0.010) (0.008)
# products 0.006 0.006

(0.007) (0.007)
1 is HQ 0.042 -0.017

(0.030) (0.031)
1 is exporter -0.001 -0.017

(0.051) (0.039)
Ln CMA population 0.254

a

(0.058)
Ln population density 500m 0.085

(0.053)
Ln distance to major airport 0.025

(0.076)
Ln distance to major seaport -0.043

(0.093)
Ln distance to freight station 0.072

(0.058)
Ln distance to junction -0.024

(0.021)
Fixed effects:
4-digit industry Yes Yes Yes Yes
Province No No No No
Observations 24,457 24,457 24,457 24,457

R2
0.0157 0.271 0.272 0.326

Notes: Probit regressions. 1 denotes {0, 1} dummy variables. Standard errors in parentheses are
clustered at the CMA/CA level. ap < 0.01, bp < 0.05, cp < 0.1.
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D Additional tables and results.

Figure C1: Industrial density (establishment employment over parcel size) and establishment
size across size bins.

1-5 emp.

5-15 emp.

15-50 emp.

50+ emp.

.5 .6 .7 .8 .9 1
Coef. Ln Emp.

Notes: This figure shows the coefficient and the 95% confidence interval on establishment size for the benchmark regression in
column (4) of Table 1 run separately for each employment-size bin.
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Table C1: Employment over parcel size by NAICS 3-digit industry.

Employment over parcel size
N Mean Median CV

311 Food mfg 745 13.8 5.62 2.24

312 Beverage and tobacco product mfg 77 34.7 3.47 5.13

313 Textile mills 32 5.95 3.26 1.1
314 Textile product mills 227 5.03 2.49 1.69

315 Clothing manufacturing 307 12.28 4.02 2.43

316 Leather, allied product manuf. 40 8.07 3.61 1.25

321 Wood product manufacturing 353 7.05 2.49 4.15

322 Paper manufacturing 149 6.48 2.39 2.61

323 Printing, support activities 726 5.91 2.63 1.94

324 Petrol, coal product manuf. 20 4.68 1.44 2.14

325 Chemical manufacturing 433 15.26 2.59 7.57

326 Plastics, rubber products manuf. 545 6.17 3.3 1.8
327 Non-metallic mineral product manuf. 387 5.48 2.39 2.03

331 Primary metal manufacturing 125 6.96 3.35 1.99

332 Fabricated metal product manuf. 1300 7.21 3.06 7.23

333 Machinery manufacturing 1061 6.65 2.95 3.14

334 Computer, electronic product manuf. 299 9.21 3.35 3.16

335 Electrical, appliance manuf. 256 7.21 3.32 2.51

336 Transportation equipment manuf. 295 5.73 3.22 1.57

337 Furniture, related product manuf. 421 5.88 3.06 1.97

339 Miscellaneous manufacturing 906 13.64 2.58 15.89

Total 8704 8.82 3.05 9.17

Notes: This table reports descriptive statistics for the number of workers pr
unit of parcel size (in number of workers per 1,000 of square meters) across
3-digit industries. The sample is the regressions sample in Table 1.

19



Table C2: Building footprint over parcel size by NAICS 3-digit industry.

Building footprint over parcel size
N Mean Median CV

311 Food manufacturing 615 .39 .38 .6
312 Beverage product manuf. 55 .31 .3 .76

313 Textile mills 24 .51 .49 .35

314 Textile product mills 183 .35 .35 .6
315 Clothing manufacturing 216 .43 .42 .51

316 Leather, allied product manuf. 35 .37 .37 .59

321 Wood product manufacturing 321 .27 .23 .81

322 Paper manufacturing 129 .39 .38 .52

323 Printing, support activities 572 .41 .4 .53

324 Petrol, coal product manuf. 15 .11 .09 .78

325 Chemical manufacturing 388 .33 .31 .64

326 Plastics, rubber products manuf. 498 .37 .37 .56

327 Non-metallic mineral product manuf. 349 .28 .25 .76

331 Primary metal manufacturing 106 .32 .31 .61

332 Fabricated metal product manuf. 1153 .35 .34 .6
333 Machinery manufacturing 968 .32 .3 .59

334 Computer, electronic product manuf. 265 .34 .32 .6
335 Electrical, appliance manuf. 232 .35 .35 .53

336 Transportation equipment manuf. 255 .31 .29 .66

337 Furniture, related product manuf. 358 .38 .38 .55

339 Miscellaneous manufacturing 687 .37 .35 .59

Total 7424 .35 .34 .61

Notes: This table reports descriptive statistics for the ratio of building footprint
over parcel size. The sample corresponds to observations in the regression
sample of Table 2 for which parcel size exceeds the building footprint.
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Figure C2: Employment over parcel size and building footprint over parcel size by NAICS 3-digit industry.
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Employment over parcel size (per 1,000 of sq meters)

339 Miscellaneous manufacturing
337 Furniture, related product manuf.
336 Transportation equipment manuf.

335 Electrical, appliance manuf.
334 Computer, electronic product manuf.

333 Machinery manufacturing
332 Fabricated metal product manuf.

331 Primary metal manufacturing
327 Non-metallic mineral product manuf.

326 Plastics, rubber products manuf.
325 Chemical manufacturing

324 Petrol, coal product manuf.
323 Printing, support activities

322 Paper manufacturing
321 Wood product manufacturing

316 Leather, allied product manuf.
315 Clothing manufacturing

314 Textile product mills
313 Textile mills

312 Beverage product manuf.
311 Food manufacturing

0 .2 .4 .6 .8 1
Building footprint over parcel size (per 1,000 of sq meters)

339 Miscellaneous manufacturing
337 Furniture, related product manuf.
336 Transportation equipment manuf.

335 Electrical, appliance manuf.
334 Computer, electronic product manuf.

333 Machinery manufacturing
332 Fabricated metal product manuf.

331 Primary metal manufacturing
327 Non-metallic mineral product manuf.

326 Plastics, rubber products manuf.
325 Chemical manufacturing

324 Petrol, coal product manuf.
323 Printing, support activities

322 Paper manufacturing
321 Wood product manufacturing

316 Leather, allied product manuf.
315 Clothing manufacturing

314 Textile product mills
313 Textile mills

312 Beverage product manuf.
311 Food manufacturing

(a) Employment over parcel size. (b) Building footprint over parcel size.
Notes: Panel (a) shows the distribution of employment over parcel size across industries. The sample contains observations from the regression sample in Table 1. Panel (b) shows the distribution of

building footprint over parcel size across industries. The sample contains observations from the regression sample in Table 2 for which the parcel size exceeds the building footprint.
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Figure C3: Elasticity of employment over parcel size to CMA size and distance from the closest centre by NAICS 3-digit industry.
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(a) CMA size. (b) Distance from the closest center.
Notes: The industries NAICS 312 (‘Beverages and Tobacco’) and NAICS 313 (‘Textile mills’) which have very few observations have been ignored. Panel (a) shows the distribution of the elasticity of

employment over parcel size to CMA population size. Panel (b) shows the distribution of the semi-elasticity of employment over parcel size to distance from the nearest city centre.
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