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Abstract 
Derivatives exchanges often determine collateral requirements, which are fundamental to 
market safety, with dated risk models assuming normal returns. However, derivatives returns 
are heavy-tailed, which leads to the systematic under-collection of collateral (margin). This 
paper uses extreme value theory (EVT) to evaluate the cost of this margin inadequacy to market 
participants in the event of default. I find that the Canadian futures market was under-margined 
by about $1.6 billion during the Great Financial Crisis, and that the default of the highest-impact 
participant generates a cost of up to $302 million to be absorbed by surviving participants. 
I show that this cost can consume the market’s entire default fund and result in costly risk 
mutualization. I advocate for the adoption of EVT as a benchmarking tool and argue that the 
regulation of exchanges should be revised for financial products with heavy tails. 

Topics: Financial institutions; Financial stability 
JEL codes: G10, G11, G20 

Résumé 
Les bourses de produits dérivés établissent souvent leurs exigences en matière de garantie – 
qui sont essentielles à la sûreté des marchés – en utilisant de vieux modèles de risque qui 
supposent une distribution normale des rendements. Cependant, la distribution des 
rendements sur les produits dérivés présente des queues épaisses. Résultat : les garanties 
(marges) perçues sont systématiquement insuffisantes. Dans cette étude, j’utilise la théorie des 
valeurs extrêmes pour évaluer le coût de cette insuffisance de marges qu’assument les 
participants au marché en cas de défaillance. Je constate que le déficit de marges dans le 
marché canadien des contrats à terme était d’environ 1,6 milliard de dollars pendant la grande 
crise financière. Je conclus également que si le participant dont la défaillance aurait la plus 
grande incidence en dollars faisait effectivement défaut, les coûts pour les participants restants 
pourraient atteindre 302 millions de dollars. Je montre que ce coût pourrait vider la totalité du 
fond de défaillance du marché et entraîner une mutualisation des risques dispendieuse. Je 
préconise l’adoption de la théorie des valeurs extrêmes comme outil de référence, et soutiens 
que la réglementation des bourses concernant les produits financiers dont les distributions de 
rendement ont des queues épaisses devrait être revue.  

Sujets : Institutions financières; Stabilité financière 
Codes JEL : G10, G11, G20 
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This work does not represent a supervisory assessment or a risk assessment of any finan-

cial entity mentioned therein. The analysis presents strictly hypothetical risk scenarios
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be attributed to the Bank of Canada, to any of its departments, or to its Governing
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1 Introduction

Derivatives exchanges play a fundamental role for the safety and efficiency of financial markets.

They establish the rules of the marketplace, manage counterparty risk, and collect collateral, also

referred to as margin, to buffer that risk. The amount of margin pledged for a transaction plays

a key role in whether institutions are affected by counterparty defaults, whether default stress

spills over to healthy entities, and whether distressed institutions go out on the market to seek

liquidity, potentially worsening market disruptions (Brunnermeier and Pedersen, 2009). Hence,

adequately computed margin requirements are key for the smooth functioning of financial markets

(CPMI-IOSCO, 2012).

Many exchanges calculate margin requirements with standard but dated risk models assuming

normal returns, contrary to the heavy-tailed nature of financial return distributions. This leads

to the systematic undercollection of margin (Cotter and Dowd, 2017; Longin, 1999), which can be

costly to market participants in the event of default. This paper revisits the tail risk adequacy

of the most prevalent normal-based risk model for futures margining, SPAN, and quantifies the

cost to market participants from the inadequate normal distribution assumption. To do so, I use

recent advances in extreme value theory (EVT), specifically designed for heavy tail estimation, and

leverage on proprietary futures positions data from the Montreal Exchange between 2003 and 2011.

SPAN was developed by the Chicago Mercantile Exchange in the 1980s and adopted by 54 lead-

ing exchanges and clearing organizations, such as the London Stock Exchange (via LCH.Clearnet),

Eurex Exchange, NYMEX exchange, the Montreal Exchange, and Options Clearing Corporation,

to name a few. The de facto standard for futures margining, SPAN estimates margin requirements

based on a parametric distribution of returns to achieve computational simplicity, transparency,

and ease of use. For futures margining, the normal distribution is most often assumed. However,

this simplifying assumption comes at a cost. The more heavy-tailed the actual distribution of

risks is, the larger is the deviation from normality, and, as a consequence, the lower the level of

margin charged relative to the model’s stated nominal coverage – a phenomenon I henceforth refer

to as under-margining.1 If a market participant defaults, this under-margining can facilitate risk

spillovers above posted margin. The paper quantifies these spillovers and shows that they are large

1This term is not an indication of an exchange’s actual compliance with relevant risk management regulations or
targets. Exchanges can, for example, set the target coverage high enough above the regulatory minimum so that
empirically, they still meet regulation even if the risk model makes unrealistic theoretic assumptions.
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enough to consume not only the defaulter’s pre-pledged resources, but also those of remaining mar-

ket participants, effectively disabling the market’s default fund as a risk mitigation device. This

calls for a fresh rethink of the risk models in place and their underlying assumptions.

The paper quantifies the cost of under-margining conditional on the default of the highest-

impact participant by simulating the Montreal Exchange’s actual default management process. To

gauge the degree of under-margining, the paper estimates margin requirements with EVT, which

allows more accurate estimation of tail risk quantiles based on power function approximations. This

approach, which relies on estimating a parameter α, called a tail index, permits inference about “the

tail of the tail” based on the fact that heavy-tailed distributions exhibit scaling behavior described

by Pareto power laws (De Haan and Ferreira, 2006). Thus, EVT can predict the severity of a

given financial event and its frequency even outside the range of observed data without restrictive

distributional assumptions; this feature makes EVT a prime candidate for examining heavy-tailed

data. Recent developments in EVT have resulted in more frequent finance applications, which have

provided significant insights for financial risk management and market behavior (e.g., Jansen and de

Vries, 1991; Van Oordt and Zhou, 2016; Davydov, Vähämaa, and Yasar, 2021. For a compendium,

see Longin (editor), 2017).

By contrast, SPAN was designed under the limitations of the 1980s statistical theory and

computing technology, which sometimes required significant computational shortcuts. Since margin

requirements aim to protect market participants with a high level of statistical confidence (often

as high as 99.87%), SPAN’s designers addressed the need to deal with events outside of the range

of observed data by adopting a parametric distribution – the normal distribution – to compute

extreme quantiles. However, derivatives returns and futures returns in particular are heavy-tailed

rather than normal (Cotter and Dowd, 2017; Longin, 1999).

The main problem with the normality assumption in this context is that it can be financially

costly. The first cost is the potentially inadequate margin level and reduced protection of the rest of

the market against counterparty risk. However, in most markets served by exchanges, default risks

above a certain level are mutualized,2 which causes a second cost: default risk spillovers to non-

defaulting entities, referred to as survivors, which need to absorb residual default costs according

to the exchange’s rules. This risk-propagation potential is a major concern in a number of studies

2Post-2008, most standardized derivatives markets are centrally cleared consistent with the G20 mandate on
central clearing.
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(Duffie and Zhu, 2011; Menkveld, 2017; Raykov, 2022; Paddrick, Rajan, and Young, 2020). The

default of an under-margined participant therefore poses not only the risk that collateral may be

insufficient to address the default, but also that survivors end up paying for the inadequate margin.

At the same time, centrally cleared markets also feature elaborate mechanisms for the diffusion of

spillovers among participants using a complex sequence of defaulter- and survivor-pledged resources

such as default funds, reviewed in Section 2.3. Thus the effect of under-margining on surviving

participants is far from apparent.

To estimate more accurate margins and quantify risk spillovers from under-margining, I rely

on recent advances in EVT in the estimation of a distribution’s tail index – the shape parameter

determining the heaviness of the tail. Tail index estimation is traditionally performed with the Hill

(1975) quasi maximum-likelihood estimator. Two traditional obstacles in this literature are the

large number of observations required by the Hill estimator as well the lack of a universally agreed

method to determine the tail threshold. To overcome these challenges, I use three cutting-edge

tail threshold selection methods, some of which are geared specifically towards small samples: the

Huisman et al. (2001) small-sample method, the Danielsson et al. (2019) KS-quantile method, and

an automated version of the heuristic “eyeballing” method.

My results point to three major findings. Firstly, under-margining due to SPAN’s normality

assumption is pervasive and results in significant costs to market participants. In the aggregate, the

Canadian futures market under-collected margin amounting to 1.6 billion CAD during the Great

Financial Crisis, with the default of the highest-impact participant generating a maximal cost of 254

to 302 million solely due to the difference between EVT and SPAN margins. In a centrally cleared

market, this cost would have to be mutualized by surviving participants; I show that this would

be sufficient to deplete the survivors’ entire default fund, thereby exhausting the market’s second

line of defense and resulting in replenishment calls averaging at about half of the representative

participant’s default fund deposit.

Secondly, I find SPAN’s under-margining is not limited to crises and occurs despite the risk

model largely meeting the 99% confidence interval required by financial market regulation; this

happens because, far into the tail, small differences in probability coverage translate into large

differences in margin. As a consequence, I recommend that regulators should reconsider if the 99%

minimum threshold is adequate for heavy-tailed data, and that exchanges should consider using
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EVT to benchmark existing risk models.

Thirdly, my results are not sensitive to the choice of period (crisis versus calm period) and are

not driven by differences in the transitional dynamics of SPAN versus EVT following a shock. I

find that the aggregate margin shortfall peaked at 1.6 billion during 2008, and at 1.06 billion in

the calm period. Similarly, the default cost for the highest-impact defaulter was 254 million at the

crisis peak and 148 million in the calm period, consuming 110% and 122% of the survivors’ default

fund, respectively. In this light, the ad hoc margin add-ons implemented by some exchanges may

have been justified, but their absence in normal periods still leaves some uncovered exposures.

These results are consistent with Cotter and Dowd (2017), who use EVT to find under-margining

in 12 European stock futures, and those of Longin (1999), who reports similar findings for silver

futures. My work improves on theirs in two major ways: (1) by calculating time-varying, rather than

unconditional, margins with EVT and (2) by quantifying the cost of under-margining to survivors

in centrally cleared markets by leveraging on actual trading positions data. To my knowledge, the

latter improvement is entirely new to the literature.

Therefore, the paper adds insight to several streams of literature. On the one hand, it con-

tributes to the literature on the safety of derivatives markets, which has featured lively recent

discussions about the desirability of central clearing, margining and systemic risk, crowded trades,

and the joint exposures they create. This literature has debated the costs and benefits of central

derivatives clearing (Duffie and Zhu, 2011) and the risks associated with it. For instance, Menkveld

(2017) discusses the risk of crowded trades, while Cruz Lopez et al. (2017) is concerned with the

adequacy of initial margin to absorb joint defaults. Raykov (2022) shows that SPAN, although

dated, buffers joint risks adequately because of the loss-equals-default assumption. Paddrick, Ra-

jan, and Young (2020) discuss risk propagation in CDS markets via the variation margin channel

and debate the adequacy of default funds calibrated to withstand the default only of the largest

one or two participants.

On the other hand, this paper also offers an econometric application: a comparison of the perfor-

mance of EVT tail threshold selection methods on futures returns data. Earlier EVT applications

by Longin (1999), Cotter (2001), and Cotter and Dowd (2017) tend to select thresholds based on

minimizing the asymptotic mean squared errors, which has subsequently been shown to perform

poorly in finite samples. Offering three tail selection methods, one of which specifically geared
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towards small samples, provides valuable comparison of their performance. Most importantly, the

paper shows the economically significant costs that can be incurred by market participants relying

on normality-based risk models.

2 Market background and data

2.1 The SPAN model

The SPAN risk model, introduced by the Chicago Mercantile Exchange in 1988, is the de facto

industry standard for futures margining. SPAN margins are designed to cover future price moves

with 99.87% statistical confidence by calculating the maximum likely loss that a portfolio might

sustain daily, based on a measure of how difficult it is to liquidate a defaulting position of an

asset with a given volatility. (The 99.87% target aims to meet and exceed the 99% minimum

confidence level mandated by the international regulation applicable to exchanges.)3 The formula

for base initial margin (IM) determines the fraction of an open position’s market value that must

be pledged to the exchange as collateral. SPAN divides the portfolio into contract families with the

same underlying asset, called combined commodity groups, and independently estimates a margin

charge for each combined commodity group (Chicago Mercantile Exchange, 2019). For futures, the

SPAN base initial margin during our sample period (2003–2011) was calculated by the Montreal

Exchange as

IM =
√
τ 3σ, (1)

where IM stands for initial margin (the fraction of the position value that needs to be collateralized),

τ is the number of liquidation days (for futures, the model assumes τ = 2), and σ is a volatility

estimator of the contract’s daily price variation. Since volatility can be estimated over different

time horizons, SPAN conservatively takes volatility σ as the maximum standard deviation of the

contract return over 20, 90, and 260 business days (corresponding respectively to approximately

4 weeks, 4 months, and 1 year calendar time). This is done in an effort to reflect the maximum

severity of a tail event across different horizons (however, as I show, even taking the maximum is

not adequate when normality is involved). Increases in volatility, which is recalculated monthly,

3According to CPMI-IOSCO’s (2012) Principles for Financial Market Infrastructures, Principle 6, Key consider-
ation 3: “Initial margin should meet an established single-tailed confidence level of at least 99 percent with respect
to the estimated distribution of future exposure.”
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directly lead to higher initial margin. This setup reflects the original CME implementation effective

at the Montreal Exchange during the sample period (2003–2011); post-2011 improvements to risk

management are therefore not reflected.4 Likewise, following Cruz Lopez et al. (2017), I do not

calculate several discretionary margin adjustments unrelated to the normality of the tail, called

intra-commodity and inter-commodity spread charges, which constitute a very small fraction of

margin.5

The base initial margin, calculated by SPAN is subsequently fed into an array of 16 prede-

termined risk scenarios, each varying the price of the underlying asset up and down by a fixed

multiplicative factor. These scenarios aim to reflect any non-linearities between the derivative’s

price and that of its underlying asset for instruments such as options. However, since futures are

linear in the price of the underlying, for the pure futures portfolios in my data, the base initial

margin is given directly by equation (1).

The literature on SPAN has historically interpreted SPAN’s base initial margin formula as a

normal distribution-based estimate of the 0.13% quantile corresponding to 99.87% coverage, since,

for a normal distribution, this quantile is located exactly 3 standard deviations away from the

mean.6 Using value-at-risk terminology, the 0.13% quantile can be denoted as VaR0.13%. The

adjustment
√
τ with τ = 2 is applied to the 1-day loss above to produce the 2-day loss, as the

exchange estimates it may take up to 2 days to liquidate a defaulting futures position (Canadian

Derivatives Clearing Corporation, 2012). In line with this, I follow Longin (1999) and Cotter and

Dowd (2017) to dispense with the normality assumption and generalize SPAN’s formula to

IMEV T =
√
τ VaR0.13%, (2)

where the corresponding tail quantile VaR0.13% is estimated with EVT, instead of being assumed to

equal 3σ as dictated by the normality assumption. Under these authors’ approach, the difference

between this quantile’s EVT estimate and the normal-based estimate provides a measure of under-

4Post-2011, the Montreal Exchange amended its SPAN implementation with margin floors, procyclicality-
mitigating smoothing of the volatility estimator σ, and various other enhancements.

5These charges adjust the base margin for existing price correlations between same-type contracts expiring in
different months, or for mutually offsetting positions of correlated but non-identical contracts expiring in the same
month. They constitute a small percentage of margin and are not consistently implemented across exchanges.

6For other products, such as options, the theoretical t distribution is also frequently used. I focus on futures because
their tails are sufficiently heavy to deviate from normality without being as heavy as those of the t distribution.
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margining from assuming normality.

2.2 Data

I use data on contract returns, prices, and proprietary market positions in the three most liquid

futures contracts traded at the Montreal Exchange between January 2, 2003, and March 31, 2011.7

These contracts are the BAX future over the 3-month CDOR interest rate, the CGB future over the

10-year Government of Canada bond rate, and SXF future over the S&P/TSX 60 index capturing

the 60 most liquid Canadian stocks. Collectively, these three contracts represent over 90% of the

value of futures positions and over 75% of all Canada-issued derivatives, and are highly representa-

tive of Canada’s derivatives market (Campbell and Chung, 2003; TMX Montreal Exchange, 2013a,

2013b, 2013c). The institutions with open futures positions are listed in Table 1. The positions

and price data, provided at daily frequency, contains a total of 117 contracts of the above three

types with 39 expiry dates for BAX contracts and 34 expiry dates for CGB and SXF contracts.

Contracts with different expiry dates allow market participants to bet on or hedge against move-

ments in interest rates and the stock market in concrete future periods. I calculate monthly SPAN

base initial margins during the sample period using equation (1), along with their EVT analogs,

matching the Montreal Exchange’s actual update schedule. Table 2, Panel A, shows that, overall,

the BAX future over the 3-month rate was by far the most popular with a market share of 71%,

followed by the government bond future CGB at 16%, and the stock market future SXF at 13%.

Since margins are calculated by contract type, contract volatility matters for a portfolio’s margin

adequacy. Table 2, Panel A, shows that BAX was the least volatile contract, with an average return

of 0.003%, standard deviation of 0.07%, and a maximum price move of 0.55%; the CGB future was

more volatile, with an average return of 0.02%, standard deviation of 0.35, and largest price move

of -1.99%; and SXF was the most volatile, with mean return 0.05%, standard deviation of 0.27%,

and largest price move of -10.20%. Quantile normal plots give a visual indication of how the three

distributions’ tails differ from the respective normal. Figure 1 displays a quantile normal plot for

each contract type; deviations from normality are plotted as deviations from the main diagonal.

The plots show all three contracts’ returns are symmetric8 and heavy-tailed. For BAX, for

7I thank the Canadian Derivatives Clearing Corporation (CDCC) for providing the data.
8In section 3.2.4, I confirm with a formal test that the left and right tails are symmetric using the split-sample

statistic of Loretan and Phillips (1994).
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Figure 1: Quantile normal plots for the returns of the BAX, CGB, and SXF contracts between
January 1, 2003, and March 31, 2011.

example, the maximum deviation from normality in the left tail amounts to almost half of the

maximum price move (0.0025), with similar results for the right tail. For CGB, the extreme left

tail falls by 0.008 below the left tail of the respective normal quantile, also close to half of the

maximum price move; the right tail is a bit thinner, but still symmetric. For SXF, the maximum

deviations from normality, in both the left and the right tail, amount to about 0.006, more than

half of the maximum price move. Assuming normality for these heavy tails therefore biases tail

quantile estimates towards the center, resulting in under-margining. In centrally cleared markets,

such as those for standardized derivatives, this can create default risk spillovers.

2.3 The risk spillover architecture in centrally cleared markets

Institutional setup. Modern exchanges buffer and diffuse default risk using a complex sequence

of defaulter and survivor resources.9 In a centrally cleared exchange, all trades are submitted to

an entity, called a central counterparty (CCP), which becomes the buyer to every seller and the

seller to every buyer, thereby novating the trade. Novation replaces the original counterparties

with the exchange’s CCP, a centralized entity with regulated risk management, thereby subjecting

all market participants to equal and rigorous standards in terms of collateral requirements. In

the event of default by one of the original transactors, the central counterparty is responsible for

9This section is loosely based on Raykov (2022).
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making good on the trade. For this purpose, a CCP uses a sequence of pre-pledged defaulter and

survivor resources, known as the default waterfall, to cover default costs.10 Figure 2 shows the

actual default waterfall used by the Montreal Exchange’s affiliated CCP, the Canadian Derivatives

Clearing Corporation (CDCC). It is highly representative of the order of resources used in CCPs

worldwide and is used in my subsequent calculations on risk mutualization. 

Category/Catégorie: Non-SensiƟve/Non-Délicat 

 

Figure 2: A schematic showing the default waterfall of CDCC, the Montreal Exchange CCP.

Figure 2 shows that the first and most important pre-funded resource to absorb an uncovered

default is the defaulter’s initial margin. If the defaulted amount is larger than posted margin, the

next tranche of resources used is the defaulter’s contribution in the CCP’s default fund – a pre-

funded resource pool shared by market participants, where each member contributes proportional

to its positions. The default fund is not transaction-specific and is maintained at all times as

a second line of pre-funded resources. Exchanges use various methodologies to size their default

funds, but they all typically involve a stress test on the one or two participants most likely to

infringe on the default fund in a hypothetical stress scenario.11 Defaults exceeding the defaulter’s

margin and default fund spill over to survivors, including the exchange’s CCP. In such cases, the

CCP first applies a capped amount of its own capital (in the case of the Montreal Exchange,

$5 million CAD, labeled “CDCC capital”12), after which survivors’ default fund contributions

10For instance, see Canadian Derivatives Clearing Corporation (2012), Schedule A, Appendix 1, pp. 1–5.
11See CPMI-IOSCO (2012), Principle 7, Key Consideration 4.
12This amount is projected to be increased to $15 million after 2024.
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are consumed pro rata, resulting in risk mutualization. Since the consumed amounts need to be

subsequently replenished, resulting in payment obligations for members, the bottom rectangle in

Figure 2 is labeled “survivors’ top-up default fund.” These mandatory top-ups, or replenishments, if

overly large, can be instrumental in propagating financial distress from a default; therefore, many

exchanges cap them. Nonetheless, despite this, Paddrick, Rajan, and Young (2020) argue that

current default fund sizing practices are inadequate, while Raykov (2022) shows that, when default

risk is properly measured, the effect on financial stability is not as extreme (although replenishment

calls can still be in the millions). The extent of survivors’ default fund utilization is therefore a key

measure of risk spillovers to surviving participants.

Category/Catégorie: Non-Sensitive/Non-Délicat

EVT-based 
initial  

margin
($) Normal-

based
initial 

margin 
($)

Defaulter’s 
DF

Exchange’s 
capital

Survivors’ 
DF

(used part)

Initial
margin
shortfall
(participant-
level, in $)

Default
waterfall

Survivor 1

Survivor 2

Survivor N

…

Risk mutualization

Survivors’ 
DF

(unused)

Figure 3: A roadmap of this paper. EVT stands for extreme value theory and DF stands for default
fund.

Roadmap. The roadmap of the paper in calculating risk spillovers is visualized in Figure 3.

First, I use EVT to calculate a margin requirement targeting the same tail quantile as SPAN for each

contract in each participant’s portfolio and arrive at an EVT-based margin requirement in dollars at

the market participant level. To gauge the cost of the normality assumption in the event of default,

I stress each contract with a price move corresponding to its 0.13% empirical quantile, that is,

just large enough to consume the participant’s EVT-based initial margin corresponding to 99.87%

coverage.13 Since the data is heavy-tailed, this quantile is typically farther out in the tail than in

13That is, I deliberately implement a multi-asset shock with the same relative severity in each asset. This shock
is likely more severe than the historical stress scenarios used by the CDCC to calibrate its default fund, hence the
results should not be interpreted as implying a deficiency in CDCC’s risk management.
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the normal distribution; hence, this price move breaches the SPAN margin. The dollar amount

of this spillover is then buffered by the pre-pledged resources from the default waterfall (Figure

2). When the breach is large enough to exceed the defaulter-pays and the exchange’s resources,

it spills over to the survivors’ portion of the default fund, thereby causing risk mutualization. I

label the participant causing the largest dollar infringement on the survivors’ default fund as the

largest-impact participant and assume this participant defaults in the event of stress, consistent with

the approach of international regulation for default fund stress testing.14 The risk mutualization

consumes each survivor’s default fund deposit pro rata according to the Montreal Exchange’s actual

default management process, thereby imposing costs on affected participants. My end goal is to

quantify these costs and the extent of risk mutualization they cause.

3 Empirical strategy

3.1 Risk measurement

To measure the risk from inadequate SPAN margining, I introduce contract-level and aggregate risk

measures. On the individual contract level, Cotter and Dowd (2017) and Longin (1999) propose

a measure of under-margining based on the difference between the EVT estimate and the SPAN

estimate of the tail quantile corresponding to a fixed value at risk (here, 0.13%, corresponding to

99.87% coverage). I therefore compute the margin shortfall for each contract c on day t as

Shortfallc,t = IMEV T
c,t − IMc,t, (3)

where IMEV T =
√
2 VaREV T

0.13%,c,t and IMc,t is the SPAN initial margin defined in equation (1).

This shortfall captures the fraction of the position value that needs to be further collateralized

(in addition to SPAN) to reach the desired single-tail confidence of 99.87%. The shortfall can be

converted to dollars when applied to the position of a market participant i in the relevant contract

c:

Shortfall$i,c,t = |Netposvali,c,t| ·
(
IMEV T

c,t − IMc,t

)
, (4)

14See CPMI-IOSCO’s (2012) Principles of Financial Market Infrastructures, Principle 4 (Credit risk).
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where |Netposvali,c,t| is participant i’s net position value in contract c, taken in absolute terms

(since, by convention, short positions are entered as negative numbers). This measure can further

be aggregated across contracts on the market participant level as

Shortfall$i,t =
∑
c

|Netposvali,c,t| ·
(
IMEV T

c,t − IMc,t

)
. (5)

From this it is clear that the extent to which a participant is under-margined depends on both its

position size and its portfolio composition. One can also aggregate margin shortfalls at the total

market level as

MktShortfall$t =
∑
i

∑
c

|Netposvali,c,t| ·
(
IMEV T

c,t − IMc,t

)
. (6)

Conditional on a price move equal to or exceeding VaREV T
0.13%, if member i defaults, its dollar

shortfall will spill over to be absorbed by the next tranche of defaulter-pays resources: i’s own

default fund deposit DFi. According to the default management process, beyond this deposit, risk

mutualization begins, consuming the CCP’s $5 million pledge and then the surviving members’

default fund deposits. Since the assumed stress scenario corresponds exactly to VaREV T
0.13%,c,t for

each contract, this ensures that any such spillovers are entirely due to the difference between EVT

and SPAN.15

To gauge how institutions are affected by risk mutualization on the individual level, I follow

Raykov (2022) and Brennan et al. (2024) to calculate the risk mutualization amounts to be levied

at each surviving member j after default of participant i according to Montreal Exchange’s actual

default management process. According to the rules of the exchange, default costs in excess of

defaulter-pays resources are distributed among survivors proportional to their respective 60-day

shares of initial margin (used as a proxy for risk-weighted activity):16

Costj,t = IMshare60j,t ·max
{
0, (Shortfall$i,t −DFi,t − 5)

}
, (7)

where IMshare60j,t is participant j’s 60-day share of initial margin, and the term inside the braces

15Since this is a multi-asset shock with equal relative severity across all contracts, this scenario is likely more severe
than the historical scenarios used by exchanges to size their default funds.

16Canadian Derivatives Clearing Corporation (2012), pp. 27–28.
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is the dollar amount that needs to be mutualized by survivors. It equals the risk spillover above

the defaulter i’s pre-pledged resources (margin and default fund deposits) and the exchange’s own

capital of $5 million, after which risk mutualization begins (cf. Figure 2). The dollar amount

Costj,t therefore is a direct measure of the dollar cost to a surviving participant j from i’s default.

Here and going forward, I will always assume the defaulter i is the highest-impact participant in

dollar terms, i.e. the one generating the largest spillover to survivors. This measure provides a

direct idea of the dollar cost to each survivor conditional on the worst-case single default scenario.

These individual costs do not reflect the overall rate of default fund usage, which is key to the

stability of the market (Paddrik, Rajan, and Young, 2020). I therefore also introduce an aggregate

market measure of risk mutualization: the survivors’ default fund utilization rate (SDFUR) after

a default of the highest-impact participant:17

SDFURt =
maxi

{
max

{
0, (Shortfall$i,t −DFi,t − 5)

}}
∑

j ̸=iDFj,t
, (8)

where the numerator is the dollar amount that needs to be mutualized by survivors, and DFj are

the default fund deposits of those survivors. This type of resource metric is commonly calculated

by exchanges and their regulators for internal risk management, particularly when sizing default

funds (see the regulations in CPMI-IOSCO (2012), Principle 7, Key Consideration 4.) The nu-

merator equals the risk spillover above the defaulter’s pre-pledged resources (margin and default

fund deposits) and the exchange’s own capital of $5 million, after which risk mutualization begins

(Figure 2). Taking the maximum over i finds the participant whose (presumed) default would result

in the largest spillover of risk to the remaining participants on the given day. This participant is

typically different across days, depending on the banks’ current open positions, their sizes, and the

difference between the SPAN margin and EVT margin for each contract held. The denominator is

simply the survivors’ portion of the default fund. This measure, computed daily and grounded in

the Montreal Exchange’s actual default management process, provides an effective way to gauge the

risk propagation potential caused by under-margining. For example, an SDFUR of 0 would imply

that the defaulter’s margin shortfall is entirely contained by its own default fund deposit (plus the

exchange’s capital), and there is no risk propagation among survivors; an SDFUR of 1 implies that

17One can also calculate this measure conditioning on the default of the 2, 3, . . . , k largest-impact participants,
but this is not done here due to data disclosure requirements.
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the exchange’s pre-funded resources just barely contain the shock; and any larger shock with an

SDFUR > 1 causes risk propagation, as the pre-pledged resources are insufficient. In situations

like this, an exchange may be forced to start emergency recovery operations such as cash calls or

profit gains haircutting (CPMI-IOSCO, 2017), which bring the exchange closer to either insolvency

or resolution by authorities.

3.2 Econometric methodology: extreme value theory

Heavy tails feature different properties compared to the tail of the normal distribution assumed by

SPAN. One can define a heavy-tailed distribution with cumulative density F (x) as a distribution

that satisfies18

1− F (x) ∼ x−αL(x), as x → ∞ for α > 0, (9)

where L is a slowly varying function satisfying the limit limt→∞ L(tx)/L(t) = 1 for all x > 0.

Heavy-tailed distributions are, to a first order, well approximated by the power functions family

Ax−α, where A is a positive constant and the parameter α, known as a tail index, determines the

tail’s rate of convergence to zero or ‘heaviness’ (where a higher α produces a thinner tail). As a

consequence, much of the literature has focused on how to correctly estimate α.19

The most widely used estimator of the tail index α is Hill’s (1975) estimator, computed from

the k upper-order statistics of the distribution of x.20 This estimator is consistent for heavy-tailed

data, including i.i.d. processes as well as many dependent stationary processes (Resnick and Starica,

1998). If one sorts the sample observationsXk from smallest to largest asX1,n < X2,n < . . . < Xn,n,

then the Hill estimator of α is computed from the largest k sample observations as follows:

α̂ =

[
1

k

k−1∑
i=0

log(Xn−i,n)− log(Xn−k,n)

]−1

. (10)

(Since this estimation works only on positive numbers, when estimating negative (left) tails, by

convention, negative observations are multiplied by -1.) A practical challenge is that the Hill

estimator does not prescribe the number of tail observations k to be used in the estimation. The

choice of k entails a tradeoff between the bias and variance of the estimator, with smaller k values

18This section is loosely based on Longin (editor), (2017) and De Haan and Ferreira (2006).
19The constant A is readily estimated when α is known.
20For a compendium of alternative estimators of α, see Berliant, Herrmann, and Teugels (2017).

16



producing less biased but higher-variance estimates, and large values of k introducing bias due to

encroaching on the distribution’s central region, where the approximation (9) no longer holds. This

can be shown using the so-called Hall expansion

1− F (x) = Ax−α[1 +Bx−β + o(xβ)], (11)

which provides an approximation of the tail mass 1 − F (x). In it, α > 0 is the tail index, A > 0

is a constant, β > 0 is a second-order shape parameter, and B ∈ R is another constant. Using

this expansion, the bias and asymptotic variance of the Hill estimator (often inverted to 1/α̂ for

convenience) can be shown to be

AE
[
1

α̂
− 1

α

∣∣∣Xn−i,n > s(k)

]
=

βBs−β

α(α+ β)
+ o(s−β(k)) (12)

AVar

(
1

α

)
=

sα

nAα2
+ o

(
sα(k)

n

)
, (13)

where s(k) is the tail threshold corresponding to the kth largest observation. From (12) it follows

that as the tail threshold moves towards the center of the distribution, the bias of α̂ increases; at the

same time, the asymptotic variance in equation (13) falls. For large s corresponding to thresholds

far into the tail, the bias is small, but the variance dominates. This illustrates the tradeoff between

bias and variance in the choice of k.

Much of the literature has therefore focused on how to select the ‘optimal’ tail threshold k∗.

The theoretical-based approaches (Hall, 1990; Danielsson et al., 2001; Drees and Kaufmann, 1998)

propose minimizing asymptotic mean squared errors (AMSE), but have been shown to feature

unconvincing finite-sample performance (Danielsson et al., 2019). A second set of heuristic methods,

widely used among practitioners, instead relies on graphically balancing the bias and variance of

the estimator by plotting different estimates of α̂ as a function of the tail size k and seeking a

stable region with a small k (see, e.g., Drees, de Haan, and Resnick, 2000). Such plots are called

Hill plots. For instance, the Hill plot for the CGB contract illustrated in Figure 4, Panel A, shows

the variance quickly stabilizing after k > 25, suggesting a stable region with α̂ around 3.

This method, labeled the Hill plot method or eyeballing method, can be helpful, but it introduces

the challenges of subjectivity and non-replicability. Besides, what region is stable may often not
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Figure 4: Panel A shows a Hill plot for CGB, data from 2003:03 to 2004:02. Panel B shows a Hill plot for SXF,

data from 2003:01 to 2003:12. The red dot indicates the optimal α̂ selected by automated eyeballing. The vertical

lines indicate the 10th percentile.

be apparent (Drees et al. 2000). For example, the Hill plot in Figure 4, Panel B, illustrates a

relationship α̂(k) without an obvious flat region in the 10% tail.

Another set of applications take a third, blunt approach by setting k∗ at a fixed percentage of

the total sample size, such as 4% or, in smaller samples, 10%. This approach is illustrated by the

vertical lines in Figure 4 (here set at 10% because of the relatively small samples dictated by the

SPAN’s yearly rolling time window). Clearly, there is no guarantee that any fixed percentile will

fall in a stable region, so this choice of k∗ is atheoretic. Nonetheless, some practitioners use it (see,

e.g., Van Oordt and Zhou, 2016, or Davydov, Vähämaa, and Yasar, 2021).

However, recent advances in tail threshold selection methods have scored considerable improve-

ments in the automation, feasibility, and replicability of EVT estimates. Here I use three different

threshold selection methods to estimate tail indices and use them for EVT-based margin require-

ments: an automated version of traditional eyeballing; Huisman et al.’s (2001) method geared

specifically towards small samples; and Danielsson et al.’s (2019) method based on distance min-

imization on the quantile dimension. All three methods closely agree when applied on my data,

with resulting margins being correlated around or above 0.90.
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3.2.1 Automated eyeballing

Automated eyeballing, as the name suggests, automates the heuristic Hill plot procedure with

an algorithm finding a stable region with relatively low k. The algorithm begins at k = 2 and

sequentially considers successive windows of w observations [α̂(k + 1), . . . , α̂(k + w)], moving k by

1 observation to the right at each iteration and checking whether at least h% of the observations

in the current window fall within a band of ±ε around α̂(k). The first window for which this is

true is selected as a stable region, and its midpoint k∗ = k + round(w/2) is taken as the k∗ that

produces the optimal value of α̂(k∗). This estimator of k∗ can be formalized as

keye = min

{
k ∈ S

∣∣∣ h <
1

w

w∑
i=1

1{α(k+i)<α(k)±ε}

}
, (14)

where S is the set {2, 3, 4, ..., kmax}, kmax is set to 0.10n (the maximum tail size, rounded to the

nearest integer), w is the number of observations of the window, and h is the fraction of ob-

servations required to fall within a band of ±ε of α̂(k). If the algorithm finds no stable region

within the 10% tail, the search terminates and the estimator resorts to the blunt approach, setting

k∗ = round(0.10n). (I chose 10% because the 5% tail is still within the high-variance region on

some Hill plots.)21 Following Danielsson et al. (2019), who test this estimator against several

others with Monte Carlo simulations, I set h = 0.9 and ε = 0.3. The window size varies depending

on the contract. For BAX, which on average has 2668 yearly observations, I set w = 40, or about

1.5% of the annual sample, close to Danielsson et al. (2019). For CGB and SXF, which feature

fewer contracts active at the same point in time, and therefore have a lower average of 358 and

315 observations per year, I set the window w to 12 observations, or about 3.5% of the annual

sample, since shorter windows appear too small to comprise a stable region. The value of 12 was

chosen after test runs with w from 10 to 25 observations and manual reading of each Hill plot to

make sure that the results are consistent with the heuristic Hill plot method; this step minimizes

the results’ sensitivity to the choice of window size, which is not theory-prescribed.22 With these

settings, automated eyeballing produces estimates highly comparable to the other two methods.

However, since this method was not developed for small samples, its margin estimates sometimes

21The algorithm resorts to this blunt approach in about a quarter of the BAX estimates, and slightly more than
half of CGB and SXF estimates. For relatively small sample sizes, this behavior is expected.

22The results w = 13 and w = 14 look very similar to those with w = 12.
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look noisier than the Huisman et al. (2001) small-sample method. Hence, I use automated eye-

balling predominantly as a benchmark or a proxy of what the traditional eyeballing method would

do.

3.2.2 Husiman et al. (2001) small-sample method

Motivated by the deficiencies of traditional eyeballing in small samples, Husiman et al. (2001)

propose a small-sample inference method for the selection of optimal k based on weighed least

squares (WLS). Recalling that the bias of the Hill estimator is linear in k, whereas its variance is

inversely related to k, these authors fit a WLS linear relationship between α̂ and k

α̂m = α0 + b1km + ϵm (15)

with weights proportional to k, and show that, for a broad class of distributions, the intercept α0

of this regression provides an unbiased estimate of the tail index α. This method leverages on a

large number of values of k to reduce the sensitivity to the choice of a single k in the Hill procedure,

which gives it advantages in small samples.23 The value of k∗ is determined as the k associated

with the α̂(k) closest to the intercept α̂0. Among the three threshold selection methods used, this

seems to produce the most plausible-looking and least noisy initial margins.

3.2.3 Danielsson et al. (2019) KS quantile method

Danielsson et al. (2019) propose an alternative method for the selection of optimal tail threshold

based on optimization along the quantile dimension.24 This method is a reaction to previous

work attempting to fit the tail to the empirical distribution based on minimizing the Kolmogorov-

Smirnov probability distance, supx |Fn(x) − F (x)|, between an empirical CDF, Fn(x), and the

semi-parametric CDF F (x) = 1−Ax−α implied by the Hall expansion (11). These authors observe

that “small deviations in the probability dimension lead to increasingly large distortions in the

quantile dimension,” because deep into the tail, differences in the probability dimension are of the

order of 1/n, whereas in the quantile dimension, they are of the order of (n/k)1/α. This introduces

23The authors argue their results are not sensitive to the choice of the tail cutoff point kmax, letting it go all the
way to n/2, well into the distribution’s center. In practice, given my data, I set kmax = 0.35n before estimates
become sensitive to the inclusion of large k’s.

24I thank Lerby Ergun for generously sharing his code for this calculation.
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distortions when tails are fit with the original Kolmogorov-Smirnov (KS) metric, leading to the

choice of a suboptimally low k∗ that produces high variance (Drees et al., 2018).

Instead, Danielsson et al. (2019) propose to minimize the distance between the empirical CDF

Fn(x) and the CDF F (x) = 1−Ax−α on the quantile dimension, choosing k so as to minimize the

metric

sup
j=1,...,T

|Xn−j,n − q(j, k)|, (16)

where q(j, k) is the EVT quantile estimator corresponding to cumulative probability (n− j)/n (see

Section 3.2.4). The authors label (16) the KS-quantile metric and show that this metric and the

automated eyeball method outperform other heuristic and statistical methodologies in a series of

Monte Carlo simulations performed on reasonably large samples. I use this method as an alternative

to the other two methods, allowing k’s up to 0.10n as candidates for the tail threshold. On my data,

the KS quantile method performs well on the quantile dimension, but less so on the probability

dimension, likely due to the smaller sample sizes in my study.

3.2.4 The EVT quantile estimator for VaR0.13%

Having estimated the tail index α and the associated tail threshold k∗, it is now possible to estimate

the tail quantile q(p) corresponding to any given tail probability p using the tail approximation

p = 1− F (q) = Aq−α. At tail probability p = 1− F (q), the approximation implies p = Aq−α and

hence q = (A/p)1/α. Estimating Â = X α̂
n−k∗,n

(
k∗

n

)
as in Weissman (1978) yields the EVT quantile

estimator

q̂ = Xn−k∗,n(k
∗/pn)1/α̂, (17)

where Xn−k∗,n is the observation corresponding to the tail threshold k∗ and n is the sample size

(the same estimator also appears in Cotter and Dowd, 2017, eq. (16.6)). This estimator is next

applied to the left tail of each contract’s return distribution.25 To further increase comparability

and match the monthly frequency of IM updates, I use the same annual rolling time window as

SPAN, moving it in one-month increments beginning in January 2003 and ending in March 2011. I

25Futures’ tails are most often symmetric (Cotter and Dowd, 2017), but I formally test tail stability with Loretan
and Phillips’ (1994) split-sample statistic V = (γR − γL)

2/
√

γ2
R/kR + γ2

L/kL, where γL and γR are the reciprocals of
the left and right tail index αL and αR, and kL and kR are the tail thresholds for the left and the right tail for each
contract. This tail stability test fails to reject the null that the left and right tail have the same tail index, with a
statistic of V = 0.218 and p-value of 0.83 for BAX, V = 0.01 and p-value of 0.99 for CGB, and V = 0.04 and p-value
of 0.967 for SXF.
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calculate IMEV T =
√
2 q̂(0.13%) with each EVT method and consider the average EVT estimate

as the benchmark against SPAN margins.

4 Results

4.1 Comparison of initial margin

Figure 5 shows a comparison of the initial margin computed with EVT methods against SPAN.

The vertical distance between each EVT margin estimate and the SPAN initial margin in Panels

A, C, and E is the contract-specific Shortfall measure (3) introduced in Section 3.1. For clarity,

I also plot the average shortfall by contract, taken across the three methods, in Panels B, D, and

F. Before I discuss how EVT estimates compare to SPAN, I first gauge the robustness of the EVT

approach by comparing the EVT estimates against each other.
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Figure 5: Panels A, C, and E show initial margins for BAX, CGB, and SXF contracts computed with three

different tail threshold selection methods, plotted against SPAN. Panels B, D, and F show the risk measure

Shortfall from eq. (3) calculated as the average EVT initial margin minus the SPAN initial margin.

Relationship among EVT estimates. I observe that the three EVT initial margins are

highly correlated for all three contract types. The Huisman and KS quantile method are the two
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highest-correlated methods (at .95 for BAX and CGB, and .98 for SXF), followed by the automated

eyeballing and Huisman (at .89, .92, and .97, respectively). The least correlated pair is eyeballing

versus KS (at .79, .87, and .95 for each respective contract). Comparing the levels, one can see

all three tend to rise and fall at the same times, but do not always agree on the levels, especially

for BAX and CGB during the Great Financial Crisis. This illustrates the major influence of tail

threshold selection on the tail index estimate. The Huisman estimates, followed by KS, appear the

least noisy ones across contracts, while the automated eyballing method produces the choppiest

estimates overall. This is explained by features in Huisman et al. (2001) and Danielsson et al.

(2001) that circumvent stable region selection, which is more difficult in small samples; due to this

difficulty, the automated eyeball method defaults to the blunt, fixed-size tail approach in roughly

25% of the months for CGB and in about 60% of the months for BAX and SXF. This appears to

affect the noisiness of the estimates. Overall, however, the three methods paint a coherent picture

of how margin should vary; going forward, I take the average estimate across the three methods.

Shortfall of SPAN margins. Panels B, D, and F show the shortfall between the average

EVT initial margin across the three methods and SPAN, plotted by contract type. These contract-

specific shortfalls provide a direct answer to the question whether the normality assumption results

in the undercollection of margin.

On average, the least volatile BAX contract appears the most under-margined in percentage

terms, commanding just 47% of the mean EVT margin, followed by SXF at 73%, and by the

best-margined CGB contract at 80% of the corresponding EVT margin. These estimates are

comparable with the numbers of Cotter and Dowd (2017), who calculate static EVT margins for

12 European stock futures and compare them to the normal method. The average future in their

sample commands between 28% and 55% of its EVT margin, with a cross-sectional mean of 43%.26

Longin (1999) reports similar numbers for silver futures. Cotter (2001), too, finds that normal-based

margins fall below EVT estimates. A key difference from these studies is that I calculate time-

varying margin, as in real exchanges, by leveraging newer EVT tail selection methods that work

better on smaller samples, and, for the first time, quantify the economic cost of under-margining.

In absolute terms, BAX and CGB shortfalls are small. BAX’s maximum shortfall is about 0.7

cents per dollar of open position, and for CGB, 1.9 cents per dollar; SXF has the largest peak

26Based on the quantile corresponding to 99.8% coverage.
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shortfall, about 10 cents per dollar of open position. On the other hand, BAX and CGB have

market shares of 71% and 16%, respectively, while SXF has only 13%, so it is not yet obvious

which contract causes the biggest shortfall on the participant or the market level.

Panels B, D, and F of Figure 5 demonstrate how under-margining varies with time. In 2006–

2007, just before the financial crisis, the margin shortfall for all three contracts is close to zero: in

fact, even negative for BAX and CGB. However, this changes sharply in volatile periods. During

the crisis (October 2008–December 2009), the margin shortfall clearly goes up with the onset of

high volatility, although the pattern is different for each contract. For the less volatile interest rate

futures BAX and CGB, this rise is immediate; SPAN and the EVT margins react at the same time,

but SPAN doesn’t catch up in terms of level, producing a relatively large shortfall from the very

start of high volatility. In the case of the more volatile stock future SXF, by contrast, SPAN reacts

vigorously and aligns closely with all EVT-based initial margins, even briefly outpacing the EVT

estimates in October 2008. However, as the October shock subsides, SPAN goes down much faster

than EVT, producing an increasingly large difference in 2009.

This has to do with the inherently different impulse response of SPAN versus EVT to one-

off price shocks. Twenty business days after a large one-off shock, the SPAN estimator switches

to the (lower) 90-day volatility, and after 90 business days, to the 260-day volatility; thus, in

91 business days, SPAN reverts to the annual volatility measure that is least sensitive to a single

extreme observation. This taper-off rate is a design feature of SPAN; it does not appear dictated by

theoretic considerations, but rather by the implicit assumption that, given a shock, the probability

of a second shock subsides proportional to the above volatility measures. Given the ad hoc nature

of this assumption, it is unrealistic that another approach to margining will reproduce SPAN’s

dynamics. Once the EVT estimator “sees” an extreme tail observation, it will continue to fit the

tail to it (and produce high margins) as long as the observation remains in the sample window,

since the observed risk distribution continues to have a long tail. Some newer implementations of

SPAN, developed after the Great Crisis, feature slower dynamics based on features such as margin

floors, integrated stress from past periods, or time-based weights to prolong the influence of past

extreme observations on current volatility.27 Since these differences are a matter of philosophy

27One example is CDCC’s current (2024) modified SPAN implementation, which features a margin floor, a weighted
past stress component which never expires, and exponential weights discounting past stress over a long time window.
See Odabasioglu (2023).
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about what constitutes the relevant risk distribution, I do not focus on matching model dynamics,

as they are not reconcilable by mechanical means. Instead, I conduct separate margin adequacy

comparisons outside of the periods with transitional dynamics and compare results for the crisis

and normal periods, which I refer to as ‘on-peak’ and ‘off-peak.’ This is done in Section 4.5.

4.2 Statistical confidence of SPAN margins

An alternative way of gauging SPAN’s margin adequacy is inspecting the statistical confidence

afforded by SPAN margins, i.e. the probability that a potential price move falls within the SPAN

initial margin, given the heavy-tailed distribution of returns. With the heavy-tailed probability

estimator from De Haan et al. (1994), I calculate

1− pSPAN = 1− k∗

n

(
Xn−k∗,n

IM/
√
2

)α̂

, (18)

which calculates the (single-tail) statistical confidence associated with SPAN’s normal-based esti-

mate of VaR0.13%. Figure 6 shows the results of this calculation by contract type.
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Figure 6: Single-tail confidence intervals implied by SPAN margins for BAX, CGB, and SXF contracts,

calculated with 3 EVT methods. The dashed line corresponds to SPAN’s target confidence level of 99.87%.

Figure 6 and Panel A of Table 2 confirm that, as a whole, the BAX margins provided the lowest

coverage out of the three contract types: 96.6% and 96.8% according to the Huisman and automated

eyeball methods, and 90.6% according to the KS method. Although short of the intended target
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of 99.87%, most of the time the coverage was well above 95%, with the exception of the financial

crisis recovery (2010), where SPAN and EVT margin dynamics diverged – a period I deal with

separately. The Huisman and eyeball methods closely agree that coverage in that period briefly fell

to 60%–70%. The KS method, by contrast, performs out of line here, predicting a drop in 2005:7

and 2009:12 far worse than (and unconfirmed by) the remaining methods. A similar distortion is

also visible in the CGB plot in 2009:3. This poor performance on the probability dimension seems

the result of a combination of two factors: firstly, the KS method optimizing on the quantile rather

than probability dimension, resulting in probability distortions not observed with the eyeballing

and Huisman methods; and secondly, the much smaller sample sizes compared to the original study

(which uses n = 10, 000 compared to an average n between 315 and 2,668 for my data). Smaller

samples result in less densely populated tails, and therefore larger errors in matching empirical and

predicted quantiles. Such distortions are not reported in the original study with large n; therefore,

I interpret this as a small-sample shortcoming.

By contrast, the CGB and SXF contracts did much better in terms of statistical coverage:

on average, between 99.4% and 99.6% for CGB, and 99.3%–99.5% for SXF. The CGB coverage

stayed above 99% (the regulatory minimum) practically the entire time, with results only slightly

worse for SXF, where coverage dropped a few times to 98.7%. These numbers, which fall well

within regulatory expectations (see CPMI-IOSCO, 2012, Principle 4), demonstrate the tradeoff

that SPAN’s designers likely counted on: that aiming the confidence level at 99.87% under assumed

normality would, in many cases, still provide coverage above 99% with heavy-tailed data. The key

question going forward, therefore, is not one of regulatory compliance, but predominantly of cost:

how costly is the normality assumption to market participants in terms of risk-sharing?

4.3 Margin shortfall on the contract and the participant level

To gauge the cost of the normality assumption to market participants, I calculate the dollar short-

falls from equations (5) and (6) at the participant and the market level and explore how the

aggregate margin shortfall is distributed across contracts and among participants.

Figure 7 shows the distribution of the contract-level dollar shortfall (4) across participants over

time. Panels A and B in conjunction with Table 2 show that the BAX contract, despite dominating

the market with 71% market share and being the most under-margined in relative terms, generates
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Panel D: Participant-level shortfall

Figure 7: Panels A, B, and C show the distribution of the contract-level dollar shortfall (equation 4) across

participants over time. Panel D shows the distribution of the participant-level shortfall (equation 5) over

time.

a smaller average dollar shortfall than SXF (10.2 million versus 19 million) because of its low

absolute margin level, which is in the thousandths of a cent per dollar of open position. (The

CGB contract is in between, with a dollar shortfall of 4.5 million.) Similarly, the maximum BAX

shortfall, aggregated across participants, is the smallest at 81.5 million, topped by 110 million for

CGB and 286 million for SXF, because of the combined effect of portfolio composition and absolute

margin levels.

Panel D shows the distribution of the participant-level shortfall (5) over time. The largest

margin shortfall experienced by a single participant ranges from 4 million (in calmer times) to 334

million in mid-2009, with the average shortfall over time at 31 million. The second-largest peak in

panel D is 284 million in October 2008, at the start of the Great Financial Crisis. Panel D also

shows two lower peaks around 2005 and 2007, where the top under-margined participants realized

margin shortfalls of 150 to 175 million with respect to the corresponding EVT benchmark.

Figures 6 and 7 point to three important conclusions. First, the normality assumption distorts

margins for some contracts more than for others, and in some periods more than in others. Adopting

a static-distribution approach to estimating margin requirements as in the previous literature masks

this time heterogeneity, which has important economic consequences. Second, a participant’s dollar

shortfall depends both on (1) the contract’s SPAN margin as a fraction of its EVT benchmark,
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(2) the absolute levels of margin, and (3) the portfolio composition. These factors, acting jointly,

determine a participant’s margin shortfall compared to the EVT benchmark. And thirdly, the most

under-margined participants can score shortfalls in the millions of dollars during both crises and

calmer periods. Peak shortfalls in the order of 300 million become comparable with the exchange’s

default fund during the sample period (on average, 210 million in Table 2), which implies that

risks that could have been covered by the defaulter’s initial margin now become the responsibility

of surviving participants. Paddrick, Rajan, and Young (2020) and Raykov (2022) show how this

scenario can present a threat to financial stability; therefore, I turn to it next.

4.4 Risk-sharing costs to market participants

Existing margining studies do not quantify whether the under-margining caused by SPAN’s nor-

mality assumption is costly for individual market participants, which mutualize default risk when

initial margin is insufficient. The availability of daily positions data allows me to quantify these

costs, which I measure with aggregate-level and participant-level metrics.

On the aggregate level, I calculate the aggregate initial margin shortfall (6) across all positions

and market participants. It is shown in Panel A of Figure 8. This shortfall represents the dollar

difference between the total initial margin calculated by EVT (as the average of the three methods)

and the base initial margin collected by SPAN marketwide.28 This difference is time-varying and

can be substantial. The average aggregate shortfall is 484 million dollars, with standard deviation

of 291 million, and the highest two peaks are 1.59 billion on October 1, 2008 (at the start of the 2008

crisis), and 1.66 billion on June 15, 2009, when SPAN and EVT margins diverged the most (mostly

on account of SPAN’s faster decay time). To distinguish under-margining stemming from these

two sources, Section 4.5 conducts separate on-peak and off-peak cost comparisons circumventing

the decay period after a shock.

The time pattern in Panel A of Figure 8 confirms that SPAN’s normality assumption is problem-

atic even outside financial crises – for instance, in late 2004 or early 2007, when the total market

shortfall approached or exceeded 1 billion. This illustrates that the problem is not that SPAN

underestimates tail quantiles just when extreme observations become more frequent; it underes-

28Consistent with the actual default management process at the Montreal Exchange, I do not allow a margin
surplus for one participant to offset a margin shortfall for another member.
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Figure 8: Panel A shows the aggregate undermargining on the market level relative to the average EVT

margin. Panel B shows the total cost to be mutualized by surviving participants from the default of the

highest-impact participant. Panel C shows the same cost as a fraction of the survivors’ default fund.

timates extreme quantiles in principle, and it does so because the returns of these contracts are

heavy-tailed even in normal times. This new result, enabled by EVT estimation of time-varying

margins, leads to my first policy implication: that ad hoc margin add-ons imposed in crises (such as

those implemented by some exchanges in 2020) do not consistently solve SPAN’s under-margining

problem, even though they are justified.

The entire market’s margin vastly exceeds what would be used in the event of default of a single

participant. To inform this latter case, Panel B shows the aggregate cost from the default of the

single highest-impact participant (as defined in Section 3.1). This cost averages to 65.1 million and

peaks at 253.9 million on October 1, 2008, and at 301.7 million on June 17, 2009. Conditional on

default, these amounts would have to be absorbed by the survivors’ default fund.

To gauge the effects of this process, I consider another aggregate metric, the survivors’ default

fund utilization rate (SDFUR) defined in Section 3, which is conditioned on the default of the

participant with highest impact on the survivors’ default fund. As before, I buffer this default

through the pre-funded resources from the default waterfall in Figure 2: the defaulter’s initial

margin, the defauter’s default fund deposit, and the exchange’s 5 million pledge, after which any

residual shortfall is shared among survivors. This residual shortfall, plotted as a fraction of the
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survivors’ default fund, is shown in Panel C of Figure 8, with summary statistics appearing in Table

3. The table shows that, on average, about 36% of survivors’ default fund is used, but the figure

shows at least four periods where this utilization rate exceeds 1, i.e. when the entire default fund

is consumed,29 with peaks of 1.22 on November 2, 2008, and 1.38 on September 15, 2009.

These numbers are sobering because they imply that there are multiple periods when the ex-

change’s entire second line of defense – the default fund – is consumed by inadequacies in the first

line of defense (initial margin). This way the burden of default costs not only shifts away from the

defaulter, creating moral hazard, but also passes these costs on to survivors, potentially threatening

their financial condition.

The pattern of variation of the SDFUR in Panel C is driven by two factors: the variation of

the aggregate cost of under-margining in Panel B, and variation in the size of the survivors’ default

fund. Visually, the former factor dominates across the three panels, but some of the periods with

high SDFUR are also due to low default fund levels following a calm period. This appears to be

the case, for example, in late 2004 and early 2005, when the default fund fell to an average of 144

million, consistent with the low prior volatility, or in September 2007 to February 2008, when the

default fund averaged 180.7 million.

As a next step, I examine how this risk mutualization burden affects individual participants.

On the individual level, any uncovered default above the defaulter’s initial margin and default fund

deposit (and the exchange’s 5 million pledge) is shared among surviving participants proportional

to each one’s 60-day share of initial margin (equation (7)). I calculate these risk mutualizations in

dollar terms for each market member and normalize them by the member’s default fund deposit to

gauge the extent to which survivors bear costs that should have been absorbed by the defaulter’s

initial margin.30 As before, the assumption is that the default comes after a price shock exactly

equal to VaREV T
0.13% for each contract, such that all spillovers above initial margin are entirely due

to the differences between EVT and SPAN. The results of this calculation are shown in Table 4,

where market members are anonymized due to data disclosure requirements.

The table shows that SPAN’s under-margining consumes nearly half (49%) of the average mem-

ber’s default fund deposit for the sample period, but there are periods during which individual

participants exceed that percentage by a large scale. For instance, only three of the 19 institutions

29Because the defaulter’s portion is already used up in stage 2 of Figure 2.
30I do not present these quantities in dollar terms due to data disclosure reasons.
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in this market feature a maximum default fund deposit consumption ratio below 1; many exhibit

ratios closer to 2 or 4 times their individual deposit, with a cross-sectional maximum of 7.48 times

(assuming that the exchange does not cap that amount; such practices vary across jurisdictions).

The reason for these high numbers is that the total default fund is calibrated for the default of

the participant with the largest impact based on the exchange’s internal stress test, which is also

most likely to be the participant with the highest impact in dollar terms in my calculations. That

participant’s default fund deposit is proportionally the largest and is consumed first upon default,

thereby automatically taking out the default fund’s largest deposit. Because of this, smaller partic-

ipants with minimal default fund balances can still face potential replenishment calls that exceed

their default fund deposit by a large factor. In many exchanges, this factor is statutorily capped,

so if the exchange cannot collect these assessments, it may need to enter recovery or resolution,

or else exit the business. This underscores that the seemingly innocuous normality assumption in

SPAN can have far-reaching consequences.

It is important to note that these results stand in spite of SPAN largely meeting the high bar of

99% for statistical confidence set in international regulation. Far into the tail, the small difference

between 99% and 99.87% confidence corresponds to a large dollar difference in initial margin. In a

market where the average bank’s portfolio is worth 5.78 billion, the dollar difference between EVT

and SPAN margins quickly becomes comparable to the total default fund size (80 to 501 million

during the sample period). This is the core behind all results in this paper and is another example

of how a small difference in probability coverage can translate into millions of uncovered financial

losses.

4.5 Eliminating differences from model dynamics

The preceding discussions point to two clear peaks in under-margining and the costs associated

with it, driven by separate causes. The 2008 peak is related to the onset of extreme volatility,

which began in September 2008, whereas the mid-2009 peak stems from SPAN’s faster decay rate.

This difference in dynamics is inherent and cannot be reconciled by mechanical means. As long

as an extreme observation remains in the data, the EVT model will continue to fit the tail to it,

producing a higher margin; whereas the influence of a single extreme observation in SPAN fades as

more non-extreme observations are added. This boils down to the different parts of the distribution
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used by the two estimators (tail only versus the full distribution) and hence to the choice of whether

the model should use a tail estimator or not – a normative question much broader than the scope of

this paper. To avoid bias due to different model dynamics, I conduct separate margin comparisons

outside of the periods of transitional dynamics. To do so, I first identify large isolated shocks in

the underlying price data that could trigger transitional dynamics.

-.1
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CGB return
BAX return
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Figure 9: This figure shows realized contract returns between January 2003 and March 2011 by contract

type. The dashed lines indicate, respectively, the end of the first off-peak period (Dec. 31, 2007), the

beginning and the end of the on-peak period (Sept. 1, 2008–Dec. 31, 2008) and the start of the second

off-peak period (Jan. 1, 2010).

Figure 9, which plots the returns underpinning each contract’s margin, points to several distinct

periods in the data. From 2003 to December 2007, the data is characterized by small, frequent

shocks unlikely to trigger transitional dynamics. In January and March 2008, there are two price

shocks that exceed the maximum for the previous period; such observations will register with the

EVT quantile estimator, since EVT originates in the probabilities of exceeding existing maxima

(Berliant, Herrmann, and Teugels, 2017). September to December 2008 feature the large shocks of

the Great Financial Crisis, which certainly trigger transition dynamics in margins, clearly visible

in the next months in Figure 5, with the volatility gradually subsiding till December 2009. From

January 2010 on, the market seems to revert to the pre-crisis mode of small, frequent shocks.

Based on this, I divide the data into three periods: off-peak, spanning from January 2003 to

December 2007 and from January 2010 to the end of the sample; on-peak, from September to

December 2008; and two periods of transitional dynamics from January to August 2008 and from
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January to December 2009 (inclusive). The off-peak periods are those with small, frequent shocks

and without transitional dynamics. The on-peak period is the one where both EVT and SPAN

margins peak in Figure 5, but before transitional dynamics sets in; and the transitional dynamics

periods are those where sharp margin peaks recede. To isolate effects from transitional periods, I

compare under-margining results in off-peak and on-peak periods, dropping the transitional periods

from the sample. This comparison appears in Panels B and C of Tables 2 and 3.

Panels B and C of Table 2 show that eliminating transition periods doesn’t change the overall

results, but rather reinforces the fact that SPAN’s underestimation bias is systematic and affects

both crisis and normal periods. The ratio of the mean SPAN margin to average EVT margin is

0.58 on-peak and 0.43 off-peak for the BAX contract, 0.71 on-peak and 0.80 off-peak for CGB,

and 0.94 on-peak and 0.70 off-peak for SXF, suggesting that sizeable under-margining still occurs

relative to the EVT initial margins.31

In dollar terms, the picture is similar. The mean aggregate market shortfall, which comes to

484 million for the full sample, goes up to 545.3 million in the on-peak period and is 413 million

in the off-peak period. The on-peak maximum is 1.6 billion, compared to 1.06 billion for off-peak

and 1.66 billion for the full sample. Dropping the transition periods therefore does eliminate one

large peak ascribable to different transition dynamics – that of 1.66 billion – but the remaining

maximum is still close at 1.6 billion.

The cost of default for the highest-impact participant behaves in similar ways. Dropping tran-

sition dynamics eliminates the 2009 peak of 301.7 million, but the next highest one is 253.9 million

in the on-peak period, which cannot be ascribed to transition dynamics. The off-peak maximum

is 148.2 million. These numbers remain comparable to the size of the default fund.

To gauge the effects on the default fund, I once again calculate on-peak and off-peak statistics

for SDFUR in Panels B and C of Table 4.32 The on-peak average SDFUR and maximum SDFUR

are very close to or the same as those for the full sample (0.50 and 7.47), thereby confirming that my

results are not driven by transitional dynamics. The corresponding off-peak average is 0.42 and the

maximum SDFUR is 5.62; thus, the issue of under-margining with SPAN’s classical implementation

31These numbers are calculated as IM/(IM + Shortfall), where Shortfall is the shortfall between IM and the
average EVT IM estimate in Table 2.

32I do not disaggregate these statistics by period in Table 4 to prevent disclosing any differences in the number of
active market participants in each period.
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is systematic, is consistent across calm and turbulent periods, and is not an artifact of different

transitional dynamics of SPAN and EVT estimators.

5 Policy implications

The above findings provide several insights for policymaking and future research. First, EVT

methods can be a valuable tool for benchmarking risk model performance in derivatives markets,

since, on heavy-tailed data, EVT provides more plausible tail risk estimates than normality-based

models. At the same time, it is clear that the different valid choices of tail threshold, and the

resulting variation of estimates, all make EVT a less-than-ideal candidate for actual margin setting.

Nonetheless, it is also clear that normal-based models underdeliver regardless of any intricacies with

EVT, and the cost of this under-margining to surviving, healthy participants can be in the millions.

Therefore, to avoid under-margining and risk propagation, one practical policy recommendation to

exchanges could be to begin using EVT as a back-testing tool comparing recent historical margin

levels to EVT estimates produced ex post. Insights from such back-testing could be used to improve

the coverage of non-EVT margin models.

A second conclusion is that the under-margining inherent in the normal method can be large

and is costly to market participants in both calm and turbulent periods. In at least four periods

in my data, three of which fall outside of the Great Financial Crisis, the difference between the

most impactful defaulter’s SPAN margin and that commanded by EVT is of the same order as the

market’s entire default fund, effectively disabling it as a risk mitigation device. In a high-stress

period, this might make the difference between the exchange surviving versus being placed into

resolution or even exiting business. Moreover, this under-margining occurs despite SPAN largely

meeting the mandatory 99% confidence minimum, since far into the tail, small changes in probability

correspond to large changes in margin. Therefore, a policy recommendation to regulators might be

to reconsider whether the 99% confidence threshold is adequate for heavy-tailed data.

Thirdly, discretionary margin add-ons imposed during crises (such as those implemented by

some exchanges in 2020) are justified, but do not consistently solve SPAN’s under-margining issue,

because that is not limited just to crises and can be just as severe in normal periods. Therefore,

a more comprehensive solution is needed. One practical solution could be moving away from
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parametric, normal-based models towards, for example, historical value-at-risk (HVAR) models,

perhaps back-tested with EVT to improve coverage. Many leading exchanges are moving towards

HVAR, which, in addition, provides better anti-procyclicality properties.

6 Conclusion

Exchanges play a key role in the safety of financial markets by setting market-wide collateral

requirements. Nonetheless, the most popular risk model used to set collateral levels counterfactually

assumes that derivatives feature normal, rather than heavy-tailed, returns. This paper quantifies

the cost of this assumption to market participants, using extreme value theory and proprietary

positions data from the Montreal Exchange.

I find that the costs to market participants are significant. On the aggregate, the Canadian

futures market was under-margined by up to 1.6 billion CAD during the 2008 crisis and 1.06 billion

outside the crisis, suggesting that the normality assumption results in sizeable undercollection of

collateral. This happens despite normal-based margins largely meeting the 99% confidence interval

required by international regulation, because far into the tail, small changes in probability coverage

translate into large changes in margin. This mechanism explains how, when aggregated across

a large market, the dollar difference between EVT and normal-based margins quickly becomes

comparable to the total default fund size.

I find that the default of the highest-impact participant generates a cost of up to 302 million CAD

purely due to the difference between the EVT-based and the normal-based margin and is capable

of consuming (or even exceeding) the entirety of the survivors’ default fund, causing costly risk

mutualization among participants. This level of risk mutualization would be avoided if margins were

set closer to their EVT estimates. Moreover, I show that the under-margining problem associated

with assumed normal returns is not limited to financial crises, is not driven by differences in model

dynamics, and can be just as severe in normal times.

To resolve this, I offer three policy implications for exchanges and regulators: to adopt EVT

as a back-testing method to improve coverage for non-EVT models; to consider revising upward

the 99% minimum for statistical confidence in cases of heavy-tailed data; and to approach under-

margining holistically, as it is not limited just to crises. The cost quantifications provided here aim
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to serve as a positive motivation for this change, since, if anything, they only confirm one thing:

assuming normality when things are not normal can be very costly.
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7 Tables

Table 1. List of Institutions

Institution Headquarters

BMO NESBITT BURNS INC. Canada

CIBC WORLD MARKETS INC. Canada

CREDIT SUISSE SECURITIES (CANADA), INC. Switzerland

DESJARDINS SECURITIES INC. Canada

FIDELITY CLEARING CANADA ULC. USA

FRIEDBERG MERCANTILE GROUP LTD. Canada

GOLDMAN SACHS CANADA USA

J.P. MORGAN SECURITIES CANADA INC. USA

LAURENTIAN BANK SECURITIES Canada

MAPLE SECURITIES CANADA LIMITED Canada

MERRILL LYNCH CANADA INC. USA

MF GLOBAL CANADA CO. USA

NATIONAL BANK OF CANADA Canada

NEWEDGE CANADA INC. France

PENSON FINANCIAL SERVICES CANADA USA

RBC DOMINION SECURITIES INC. Canada

SCOTIA CAPITAL INC. Canada

TD SECURITIES INC. Canada

TIMBER HILL CANADA COMPANY USA

This table lists the institutions participating in the Canadian futures market during the

sample period (January 2, 2003, to March 31, 2011) together with their country of head-

quarters.
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Table 3: Summary statistics for participant-level and aggregate variables

Variable Level of observation Mean SD Min Max N

Participant-level shortfall (mill.) Daily 31.0 19.4 1.2 110.6 1,819

Aggregate market shortfall (mill.) Daily 484.0 291.1 18.4 1658.7 1,819

Cost of top 1 default (mill.) Daily 65.1 51.1 0.0 301.7 1,819

Default fund size (mill.) Monthly 210.0 91.4 79.5 501.3 99

Individual DF contribution (mill.) Month-participant 4.7 11.6 0 124.7 4,455

SDFUR Daily 0.36 0.30 0 1.38 1,819

Panel B: On-peak cost statistics (09/2008 – 12/2008)

Aggregate market shortfall (mill.) Daily 545.3 323.1 215.3 1592.9 84

Cost of top 1 default (mill.) Daily 70.3 59.6 14.3 253.9 84

SDFUR Daily 0.32 0.27 0.07 1.10 84

Panel C: Off-peak cost statistics (01/2004 – 12/2007 and 01/2010 – 03/2011)

Aggregate market shortfall (mill.) Daily 413.0 198.4 80.4 1058.4 1,318

Cost of top 1 default (mill.) Daily 53.4 39.7 0 148.2 1,318

SDFUR Daily 0.31 0.28 0 1.22 1,318

This table presents summary statistics for non–contract specific (participant-level and aggregate-level) variables and their level

of observation. Summary statistics are taken with respect to the original data frequency and level of observation at which the

variable is reported. Panel A covers the full sample period from January 2, 2003 to March 31, 2011. Panel B presents margin

statistics for the on-peak period (09/2008 – 12/2008), and Panel C, for the off-peak periods (01/2004 – 12/2007 and 01/2010

– 03/2011). All margin and EVT-dependent data series start in 2004 to allow a 1-year leading estimation window consistent

with SPAN.
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Table 4: Risk Mutualization Costs for Individual Participants

Institution Mean SD Min Max

1 0.66 0.667 0 3.43

2 0.48 0.425 0 2.07

3 0.37 0.376 0 1.69

4 0.37 0.243 0.078 1.15

5 0.35 0.327 0 2.12

6 0.45 0.403 0 2.25

7 0.60 0.331 0.178 1.50

8 0.85 1.075 0 5.09

9 0.06 0.063 0 0.34

10 0.61 0.941 0 7.48

11 0.09 0.139 0 0.85

12 0.31 0.386 0 2.90

13 0.91 0.861 0 3.66

14 0.54 0.501 0 2.69

15 0.78 0.585 0.113 2.96

16 0.33 0.346 0 1.62

17 0.55 0.581 0 3.03

18 0.17 0.142 0 0.93

19 0.77 0.632 0 5.62

Cross-section 0.49 0.475 0 7.48

This table presents summary statistics for the risk mutualization cost for each market

participant, measured as a fraction of the latter’s default fund deposit, conditional on

the default of the highest-impact participant. The institutions’ identities and number

of observations per institution are suppressed due to data disclosure requirements, and

institutions are listed in random order. The sample period spans from January 2, 2003,

to March 31, 2011, but all EVT and margin estimates (and resulting comparisons) start

on January 2, 2004, to allow a 1-year margin estimation window consistent with SPAN.
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