
Kanzow, Christian; Neder, Tanja

Article — Published Version

A bundle-type method for nonsmooth DC programs

Journal of Global Optimization

Provided in Cooperation with:
Springer Nature

Suggested Citation: Kanzow, Christian; Neder, Tanja (2023) : A bundle-type method for nonsmooth
DC programs, Journal of Global Optimization, ISSN 1573-2916, Springer US, New York, NY, Vol. 88,
Iss. 2, pp. 285-326,
https://doi.org/10.1007/s10898-023-01325-5

This Version is available at:
https://hdl.handle.net/10419/311752

Standard-Nutzungsbedingungen:

Die Dokumente auf EconStor dürfen zu eigenen wissenschaftlichen
Zwecken und zum Privatgebrauch gespeichert und kopiert werden.

Sie dürfen die Dokumente nicht für öffentliche oder kommerzielle
Zwecke vervielfältigen, öffentlich ausstellen, öffentlich zugänglich
machen, vertreiben oder anderweitig nutzen.

Sofern die Verfasser die Dokumente unter Open-Content-Lizenzen
(insbesondere CC-Lizenzen) zur Verfügung gestellt haben sollten,
gelten abweichend von diesen Nutzungsbedingungen die in der dort
genannten Lizenz gewährten Nutzungsrechte.

Terms of use:

Documents in EconStor may be saved and copied for your personal
and scholarly purposes.

You are not to copy documents for public or commercial purposes, to
exhibit the documents publicly, to make them publicly available on the
internet, or to distribute or otherwise use the documents in public.

If the documents have been made available under an Open Content
Licence (especially Creative Commons Licences), you may exercise
further usage rights as specified in the indicated licence.

 https://creativecommons.org/licenses/by/4.0/

https://www.econstor.eu/
https://www.zbw.eu/
http://www.zbw.eu/
https://doi.org/10.1007/s10898-023-01325-5%0A
https://hdl.handle.net/10419/311752
https://creativecommons.org/licenses/by/4.0/
https://www.econstor.eu/
https://www.leibniz-gemeinschaft.de/

Journal of Global Optimization (2024) 88:285–326
https://doi.org/10.1007/s10898-023-01325-5

A bundle-type method for nonsmooth DC programs

Christian Kanzow1 · Tanja Neder1

Received: 16 February 2022 / Accepted: 5 September 2023 / Published online: 25 September 2023
© The Author(s) 2023

Abstract
A bundle method for minimizing the difference of convex (DC) and possibly nonsmooth
functions is developed. The method may be viewed as an inexact version of the DC algo-
rithm, where each subproblem is solved only approximately by a bundle method. We always
terminate the bundle method after the first serious step. This yields a descent direction for
the original objective function, and it is shown that a stepsize of at least one is accepted in
this way. Using a line search, even larger stepsizes are possible. The overall method is shown
to be globally convergent to critical points of DC programs. The new algorithm is tested and
compared to some other solution methods on several examples and realistic applications.

Keywords DC optimization · Bundle method · Global convergence · Critical points

1 Introduction

The problem under consideration, called a DC program, is the minimization problem

min
x∈Rn

f (x) := g(x) − h(x), (1.1)

where the objective function f : R
n → R is a difference of two convex and possibly

nonsmooth functions g, h : Rn → R. Therefore, f is referred to as a DC function, whereas
g and h are the corresponding DC components of f (these DC components are, of course,
not unique).

A versatile consideration of DC programs, both in terms of theory and implementation,
can be found in [8]. These DC programs occur frequently in a variety of applications. Among
them are the detection of edges in digital images [17], techniques utilized in data mining [2],
like the minimum sum-of-squares clustering [25] or the multidimensional scaling problem
[19], and the modeling of biochemical reaction networks [1], to name only a few.

The cornerstones for numerically tackling DC programs have already been placed some
time ago (see [20] for an extensive treatment of the history of DC programs). The classical

B Christian Kanzow
kanzow@mathematik.uni-wuerzburg.de

Tanja Neder
tanja.neder@mathematik.uni-wuerzburg.de

1 Institute of Mathematics, University of Würzburg, Emil-Fischer-Straße 30, 97074 Würzburg, Germany

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s10898-023-01325-5&domain=pdf
http://orcid.org/0000-0003-2897-2509

286 Journal of Global Optimization (2024) 88:285–326

approach for solving (1.1) is the DC Algorithm (DCA) (see e.g. [21]) which can be applied
to DC programs with both DC components being nonsmooth. Provided that the first DC
component g is continuously differentiable, the convergence of DCA can often be accelerated
by applying a boosted version of the classical DC Algorithm, the so called Boosted DCA
(BDCA). The crucial point thereby is that the iterates computed by DCA can be used to
derive descent directions for the objective function, which allows to add a line search to the
algorithm (see [2]).

The idea of using bundle methods to solve DC programs is also not new. In [16], gathering
the subgradient information for each of theDC components in two separate bundles, leads to a
nonconvex cutting plane model of the objective function which incorporates both the convex
and the concave behavior of the DC function. The resulting proximal bundle method (PBDC)
keeps in the bundles only information related to points close to the current iterate. Another
algorithm presented in [10] is also based on a cutting plane approach. But this time just the
bundle with respect to the first DC component is restricted to local information, whereas the
one with respect to the second DC component keeps information related to distant points.
Once again, a nonconvex DC piecewise-affine model is derived, which gives rise to the name
DC Piecewise-Concave algorithm (DCPCA) of the resulting method. Yet another bundle
method was derived in [15] as an improved variation of the previously mentioned PBDC.
The major novelty of this proximal Double Bundle method for DC problems (DBDC) is the
procedure to escape from critical points which are not approximate Clarke stationary. Within
this procedure it is assured that the difference of subgradients of the DC components lies
in the Clarke subdifferential of the objective function itself, which is usually not the case.
In that way convergence to an approximate Clarke stationary point is achieved under the
assumption that the subdifferentials of the DC components are polytopes. The notion of a
Clarke stationary point is, in general, stronger than the frequently used notion of a critical
point.

Moreover, bundle methods for the minimization of DC functions subject to some con-
straints have also been developed during the last few years. However, these algorithms usually
are restricted to a certain structure of the constraints (see e.g. [7, 28]).

In contrast to these bundle methods, our approach utilizes the standard subproblem from
the classicalDCalgorithm. This results in a convex subproblemwhich is then solved inexactly
by a simple bundle method. We terminate this bundle method after its first serious step,
meaning that we do not require to solve these subproblems exactly or almost exactly, not
even close to a solution. Nevertheless, the resulting inexact solution is shown to yield a
descent direction. Hence, a line search can be applied to globalize the overall method. This
line search is shown to accept at least the full step, that is a stepsize of at least one, and it even
allows to take larger stepsizes. However, it is known from the boosted DCA that it may not
share the improved descent property of the boosted DCA in case both DC components are
nonsmooth. On the other hand, the new bundle-type DCmethod is shown to have nice global
convergence properties when both DC components g and h are nondifferentiable, whereas
the boosted DCA requires g to be smooth.

The paper is organized as follows. In Sect. 2 we first recall some basic concepts and defi-
nitions as well as the elementary bundle method which forms the basis of the new algorithm.
We then present the new bundle-type DC algorithm in Sect. 3, together with a convergence
theory and an additional discussion of some descent properties. The results of an extensive
numerical testing are provided in Sect. 4. We close with some final remarks in Sect. 5.

123

Journal of Global Optimization (2024) 88:285–326 287

2 Preliminaries

This section first recalls some basic definitions and results from nonsmooth and convex
analysis (see e.g. [13, 27]). We then provide some details concerning a basic bundle method
like it is outlined for example in [11, 18, 22].

2.1 Tools from nonsmooth and convex analysis

A function f : Rn → R is said to be convex if

f (λx + (1 − λ) y) ≤ λ f (x) + (1 − λ) f (y) ∀x, y ∈ R
n, ∀λ ∈ (0, 1).

It is called uniformly convex with modulusμ > 0 if f − μ
2 ‖·‖2 is convex, where ‖·‖ denotes

the Euclidean norm on R
n . Recall that uniformly convex functions always attain a unique

global minimum. The (one-sided) directional derivative of a function f : Rn → R at a point
x ∈ R

n in a direction d ∈ R
n is defined as

f ′(x; d) := lim
t↓0

f (x + td) − f (x)

t

provided that the limit on the right-hand side exists. The latter holds, in particular, for convex
functions f .

Given a convex function f : Rn → R and a parameter ε ≥ 0, the ε-subdifferential at a
point x ∈ R

n is the set

∂ε f (x) :=
{
s ∈ R

n | f (y) ≥ f (x) + sT (y − x) − ε ∀ y ∈ R
n
}

.

The special case ∂ f (x) := ∂0 f (x) is known as the (convex) subdifferential of f at x and each
element of this set is called a subgradient of f at x. For arbitrary ε ≥ 0, the ε-subdifferential
∂ε f (x) is a nonempty, convex and compact set for every x ∈ R

n . The directional derivative
of a convex function f can be calculated using its subdifferential via the formula

f ′(x; d) = max
s∈∂ f (x)

sT d. (2.1)

For a locally Lipschitz continuous function f : Rn → R (recall that every convex function
is locally Lipschitz), we denote the Clarke subdifferential of f at x by ∂C f (x). For a precise
definition and some basic properties of the Clarke subdifferential, we refer to [5]. Note that for
convex functions f the Clarke subdifferential coincides with the convex one. Furthermore,
0 ∈ ∂C f (x∗) is a necessary optimality condition for some point x∗ to be a local minimum
of f . Any point meeting this requirement is named a Clarke stationary point. Applying this
optimality condition to the DC function f := g − h and using some calculus rules of the
Clarke subdifferential leads to the stationarity condition

∂g
(
x∗) ∩ ∂h

(
x∗) �= ∅. (2.2)

Each point x∗ ∈ R
n satisfying (2.2) is called a critical point of the DC function f (see also

[12] for characterizations of a minimizer of DC functions). Due to the derivation each Clarke
stationary point is a critical point. But the opposite needs not to be necessarily true. Hence,
criticality is a weaker optimality condition than Clarke stationarity. For a convex function
f : Rn → R, the optimality condition 0 ∈ ∂ f (x∗) becomes even sufficient for having a
(global) minimum at x∗ ∈ R

n .

123

288 Journal of Global Optimization (2024) 88:285–326

Given a function f : Rn → R, we say that some vector d ∈ R
n is a descent direction of

f at x if there exists some t∗ > 0 such that f (x+ td) < f (x) for all t ∈ (0, t∗]. Note that in
case f is directionally differentiable at x in a direction d, the descent property f ′(x; d) < 0
is a sufficient criterion for d being a descent direction.

Finally, we define the (Euclidean) distance between two sets A, B ⊆ R
n by

dist(A, B) := inf
{‖a − b‖ ∣∣ a ∈ A, b ∈ B

}
.

In particular, the projection of a point y ∈ R
n onto a nonempty, closed, and convex set

X ⊆ R
n is determined as the (unique) point in X having the least distance towards y. We

write

PX (y) := argmin
x∈X

‖ y − x‖

for this projection.

2.2 A bundle method for convex optimization

This section gives a short introduction to a (simple) bundle method for minimizing a convex
function, mainly following the references [11, 18, 22]. Note that there exist more involved
bundle schemes. However, the aim is to keep the presentation as simple as possible within
this section. The bundle method and its convergence theory will later be used to solve the
(convex, but nonsmooth) subproblems resulting in our algorithm for solving DC programs.

Therefore, consider the minimization problem

min
x∈Rn

f (x) (2.3)

for a convex function f : Rn → R. Similar to the classical steepest descent method, the first
idea is to compute a descent direction dk ∈ R

n of f at the current iterate xk ∈ R
n by solving

the subproblem

min
d∈Rn

f ′(xk; d) s.t. ‖d‖ ≤ 1.

Using the relation (2.1), it is not difficult to see that

dk = − gk
		gk

		 with gk := P∂ f (xk)(0)

is the unique solution of this subproblem. This suggests to choose dk = −gk as a search
direction. Although dk can indeed be verified to be a descent direction of f at xk , simple
examples show that the resulting methodmay not converge to a minimum, and that a success-
ful version should include information of some neighboring subgradients. This idea leads to
the search direction

dk = −gk with gk = P∂ε f (xk)(0).

Unfortunately, the ε-subdifferential is difficult to compute and projections onto this set might
not be easy to calculate. The idea is then to replace the ε-subdifferential by an inner approx-
imation Gk

ε which has a simpler structure (like being polyhedral) and therefore allows the
calculation of the projection

gk := PGk
ε
(0) (2.4)

123

Journal of Global Optimization (2024) 88:285–326 289

with a significantly reduced effort. A suitable approximation Gk
ε can be obtained by using

previously computed subgradients s j ∈ ∂ f (x j), j ∈ {0, 1, . . . , k}.More precisely, denoting
the respective (nonnegative) linearization errors of f by

αk
j := f (xk) − f (x j) − (s j)T (xk − x j) ∀ j = 0, 1, . . . , k, (2.5)

the set Gk
ε is defined by

Gk
ε :=

{ k∑
j=0

λ j s j
∣∣∣∣

k∑
j=0

λ jα
k
j ≤ ε,

k∑
j=0

λ j = 1, λ j ≥ 0 ∀ j = 0, 1, . . . , k

}
.

One can verify that this set has indeed the property that Gk
ε ⊆ ∂ε f (xk) holds, which justifies

to call it an inner approximation. Since Gk
ε is a nonempty, convex, and compact set, the

projections (2.4) do exist. Numerically, these projections require the solution of the quadratic
program

min
1

2

∥∥∥
k∑

j=0

λ j s j
∥∥∥
2

s.t.
k∑

j=0

λ jα
k
j ≤ ε,

k∑
j=0

λ j = 1, λ j ≥ 0 ∀ j = 0, 1, . . . , k.

(2.6)

If λk := (λk
0, λ

k
1, . . . , λ

k
k) denotes a solution of this quadratic program, then the projection

gk := PGk
ε
(0) is given by

gk =
k∑

j=0

λk
j s

j .

In practice, the coefficients gathered in λk are often computed by considering the closely
related quadratic program

min
1

2

∥∥∥
k∑

j=0

λ j s j
∥∥∥
2 +

k∑
j=0

λ jα
k
j s.t.

k∑
j=0

λ j = 1, λ j ≥ 0 ∀ j = 0, 1, . . . , k. (2.7)

Altogether, this (almost) motivates the following algorithm.

Algorithm 2.1 (Bundle method)

(S.0) Choose x0 ∈ R
n, s0 ∈ ∂ f (x0), m ∈ (0, 1), set k := 0, y0 := x0, α0

0 := 0, J0 :=
{0}.

(S.1) Compute λk
j , j ∈ Jk , as a solution of the quadratic program

min
1

2

∥∥∥
∑
j∈Jk

λ j s j
∥∥∥
2 +

∑
j∈Jk

λ jα
k
j s.t.

∑
j∈Jk

λ j = 1, λ j ≥ 0 ∀ j ∈ Jk .

(S.2) Set

gk :=
∑
j∈Jk

λk
j s

j , εk :=
∑
j∈Jk

λk
jα

k
j , dk := −gk, ζk := −‖gk‖2 − εk .

(S.3) If ζk = 0: STOP.

123

290 Journal of Global Optimization (2024) 88:285–326

(S.4) Set yk+1 = xk + dk , choose sk+1 ∈ ∂ f (yk+1).
If

f (xk + dk) ≤ f (xk) + mζk,

set (“serious step”)

tk := 1, xk+1 := xk + dk,

otherwise set (“null step”)

tk := 0, xk+1 := xk .

(S.5) Set

J p
k := { j ∈ Jk | λk

j > 0}, Jk+1 := J p
k ∪ {k + 1},

αk+1
j := f (xk+1) − f (y j) − (s j)T (xk+1 − y j) ∀ j ∈ Jk+1.

(S.6) Set k ← k + 1, and go to (S.1).

In order to restrict the number of constraints in (2.7) and to limit the amount of subgradients
and linearization errors to be stored, the index set in the algorithm is reduced to a suitable
subset Jk ⊆ {0, . . . , k}. Moreover, the linearization errors in (S.5) are slightly modified in
comparison to (2.5), since the intermediate points y j , j ∈ Jk , are also taken into account. The
underlying principle is very simple: If the search direction dk provides a sufficient decrease
in the function value, one proceeds in this direction (with stepsize tk = 1). Otherwise one
sticks with the current iterate, but adds some further information to the bundle in order to get
a better search direction during the next iteration. Furthermore, the termination criterion in
(S.3) gets motivated by the subsequent observation.

Lemma 2.2 If ζk = 0 holds for some k ∈ N0, then the corresponding iterate xk is already a
minimizer of the convex objective function f .

This last assertion comes from the elementary observation that

gk ∈ ∂εk f (xk) ∀k ≥ 0. (2.8)

In case a solution of the convex optimization problem (2.3) exists, one gets the following
global convergence result for Algorithm 2.1.

Theorem 2.3 Assume that the solution set S := {
x∗ ∈ R

n
∣∣ f (x∗) = inf x∈Rn f (x)

}
is

nonempty. Then every sequence {xk} generated by Algorithm 2.1 converges towards a mini-
mizer x∗ ∈ S of the convex objective function f .

3 A bundle method for DC optimization

This section introduces the new algorithm for DC optimization using the approach of the
classical DC Algorithm in combination with the previously presented bundle method. The
precise statement together with a convergence theory is given in Sect. 3.1, whereas some
additional descent properties are discussed in Sect. 3.2.

123

Journal of Global Optimization (2024) 88:285–326 291

3.1 Algorithm and convergence properties

The aim of our approach is to develop an algorithm which, similar to the Boosted DCA
(BDCA), computes descent directions of the objective function using the subproblems arising
in the classical DC Algorithm (DCA) (see [2, 21]). This allows a line search to determine
the subsequent iterate. In contrast to BDCA, however, the new algorithm is applicable to
DC functionswith bothDCcomponents beingnonsmooth. Togain a suitable descent direction
from the convex subproblems, we allow an inexact solution of these subproblems by the
previous bundle technique.

Having a DC function f as defined in (1.1) to be minimized, the classical DCA approach
replaces, in each step l ∈ N0, the second DC component h by some linear minorization

hl(x) := h(xl) + (sl)T (x − xl)

with some subgradient sl ∈ ∂h(xl). That way, a convexmajorization of the objective function
f is obtained. Minimizing this model function is then equivalent to minimizing

φl(x) := g(x) − (sl)T x. (3.1)

To guarantee the existence of a minimizer one usually assumes g to be uniformly convex.
This can be done without loss of generality by adding a uniformly convex term, for example
ρ
2 ‖ ·‖2 with ρ > 0, to each convex DC component, if necessary. In contrast to the BDCA, the
new algorithm does not require the exact minimization of the convex function φl in order to
obtain a descent direction of the objective function. Instead, the bundle method from Sect. 2.2
is applied until a serious step is carried out. It turns out that the search direction of this step
is a descent direction of f at the current iterate xl . A subsequent line search is then used to
compute the next iterate. The convergence theory shows that this line search always accepts
the full step, which means a stepsize of one. Even larger stepsizes are possible.

Algorithm 3.1 (DCBA–DC Bundle Algorithm)

(S.0) Choose x0 ∈ R
n, β ∈ (0, 1), m ∈ (0, 1), μ ∈ (0, m], set l := 0.

(S.1) Choose sl ∈ ∂h(xl), and define φl as in (3.1).
(S.2) Apply the bundle method from Algorithm 2.1 to minimize φl(x) until a serious step is

carried out or until it terminates. Retain (dl , εl , ζl) from the corresponding quantities
of the serious step or the termination step, respectively.
In case of termination of the bundle method: STOP.

(S.3) Choose τ̄l ≥ 1, compute τl = max
({

τ̄lβ
j
∣∣ j ∈ N0

} ∪ {1}) such that

f (xl + τldl) ≤ f (xl) + μτ 2l ζl .

(S.4) Set xl+1 := xl + τldl , l ← l + 1, and go to (S.1).

To guarantee that (S.2) always terminates, we have to make sure that the function φl attains
a minimum (cf. Theorem 2.3). Recall that this automatically holds if g is uniformly convex.
Hence, we state this assumption explicitly in the following, which is implicitly supposed to
hold throughout our convergence analysis.We stress oncemore, however, that this assumption
is not at all restrictive since we can always add and subtract a uniformly convex function to
the DC decomposition of f .

Assumption 3.2 The DC component g is a uniformly convex function.

123

292 Journal of Global Optimization (2024) 88:285–326

Some comments are in order regardingAlgorithm 3.1. First note that l denotes the iteration
counter for the (outer) DC-type method, whereas we will use the letter k to denote the
iterations of the inner (bundle) method. Hence, Jk,l denotes the index set that occurs in
iteration k of the bundle method, called in iteration l of Algorithm 3.1. The notation dk,l is
defined similarly.

Note that the bundle method executes null steps only except possibly in the last iteration.
This, in particular, allows a simplified calculation of the linearization errors. Since the iterate
xl does not change in such a situation, only the computation of the linearization error corre-
sponding to the new intermediate point is required, but not the computation for each index
j ∈ Jk,l . Hence, in the kth sub-iteration with the search direction dk,l and corresponding
subgradient vk+1,l ∈ ∂φl(xl + dk,l), the required linearization error can be obtained by

αk+1
l := φl(xl) − φl(xl + dk,l) + (vk+1,l)T dk,l . (3.2)

Furthermore, a subgradient vk+1,l ∈ ∂φl(xl + dk,l) can be computed by selecting some
element tk+1,l ∈ ∂g(xl + dk,l) and setting vk+1,l := tk+1,l − sl .

The line search is an Armijo-type one but with two modifications. First, a quadratic
stepsize is considered. This idea already occurs in [6] but with a more involved procedure
for determining a suitable stepsize. Second, we look for a decrease in the function value
of at least μτ 2l (−ζl). At first glance, one might expect ‖dl‖2 instead of the enlarged value
−ζl = ‖dl‖2 + εl . This adjustment is motivated by Lemma 3.4 below. In addition, the initial
stepsize τ̄l can be determined as a self-adaptive trial stepsize like the one suggested in [2].
One only needs to ensure τ̄l ≥ 1.

Before proving a global convergence result for Algorithm 3.1, we begin with some pre-
liminary observations. To this end, we first justify the termination criterion in (S.2).

Lemma 3.3 Suppose ζl = 0 holds for some l. Then the current iterate xl is a critical point
of the objective function f .

Proof As the iterate does not change during the bundle process, having ζl = 0 for some
l together with Lemma 2.2 implies that xl minimizes φl . Hence, we have 0 ∈ ∂φl(xl) =
∂g(xl)−sl . On the other hand, sl ∈ ∂h(xl) by our choice. Consequently, ∂g(xl)∩∂h(xl) �= ∅
follows, showing that xl is indeed a critical point of the DC function f . ��

Motivated by Lemma 3.3, we assume, from now on, that ζl < 0 holds for all l, which
means Algorithm 3.1 does not stop after finitely many iterations. The following result then
shows that the Armijo-type line search is always well-defined (together with Assumption 3.2
this implies that the entire Algorithm 3.1 is well-defined), and that the full step satisfies the
line search criterion.

Lemma 3.4 At each iteration l, there exists a stepsize τl , τl = 1 or τl = τ̄lβ
j ≥ 1 with some

j ∈ N0, such that

f (xl + τldl) ≤ f (xl) + μτ 2l ζl (3.3)

holds.

Proof Let l be arbitrarily chosen. Then

f (xl + dl) − f (xl) = g(xl + dl) − g(xl) − h(xl + dl) + h(xl)

≤ g(xl + dl) − g(xl) − (sl)T dl

= φl(xl + dl) − φl(xl)

≤ mζl ≤ μζl ,

123

Journal of Global Optimization (2024) 88:285–326 293

where the first inequality exploits the fact that sl ∈ ∂h(xl), the penultimate inequality comes
from the serious step termination of the bundle method, and the last estimate usesμ ∈ (0, m]
as well as ζl < 0 (see the previous discussion). This shows that at least τl = 1 has the desired
property. Taking into account the construction of the stepsize yields the desired claim. ��

Finally, we need the following auxiliary result for proving global convergence of Algo-
rithm 3.1.

Lemma 3.5 Assume that Algorithm3.1generates an infinite sequence {xl}. Then the sequence
{ f (xl)} is monotonically decreasing. If, in addition, there exists a lower bound f ∗ ∈ R such
that f (xl) ≥ f ∗ holds for all l, then the estimate

∞∑
l=0

(
‖dl‖2 + εl

)
≤ f (x0) − f ∗

μ

holds. In particular, we then have dl → 0 and εl → 0 for l → ∞.

Proof The monotonicity of the function values follows directly from ζl being negative and
the line search in (S.3).

To establish the second assertion, note that (S.3) can be written as −μτ 2l ζl ≤ f (xl) −
f (xl+1) for all l. Taking the sum over l = 0, . . . , j − 1, we get

μ

j−1∑
l=0

τ 2l (−ζl) ≤ f (x0) − f (x j) ≤ f (x0) − f ∗ ∀ j ∈ N

by the boundedness assumption. Letting j → ∞ therefore gives

∞∑
l=0

τ 2l (−ζl) ≤ f (x0) − f ∗

μ
.

Using τl ≥ 1 and inserting the definition of ζl gives the desired inequality. ��
The following is the main global convergence result for Algorithm 3.1.

Theorem 3.6 Every accumulation point of a sequence {xl} generated by Algorithm 3.1 is a
critical point of the objective function f .

Proof Let x∗ be an accumulation point of the sequence {xl} and {xl}L be a corresponding
subsequence converging to x∗. Since sl ∈ ∂h(xl) for all l, the convergence of {xl}L implies
the boundedness of the sequence {sl}L . Hence, without loss of generality, wemay assume that
{sl}L converges to some limit s∗. Due to the closedness property of the convex subdifferential,
it follows that s∗ ∈ ∂h(x∗).

By continuity of f , we have f (xl) →L f (x∗). Hence, the monotonicity of the entire
sequence { f (xl)} yields convergence of the entire sequence { f (xl)} to f (x∗). The mono-
tonicity also implies f (xl) ≥ f (x∗) for all l. Thus, the previous lemma can be applied to
obtain dl → 0 and εl → 0 for l → ∞.

Furthermore, since we have −dl ∈ ∂εl φl(xl) in view of (2.8), we get

φl(x) ≥ φl(xl) − (dl)T (x − xl) − εl ∀x ∈ R
n ∀l ∈ N0.

Using the definition of φl , this can be rewritten as

g(x) − (sl)T x ≥ g(xl) − (sl)T xl − (dl)T (x − xl) − εl ∀x ∈ R
n ∀l ∈ N0.

123

294 Journal of Global Optimization (2024) 88:285–326

Taking l →L ∞ and exploiting the continuity of g therefore yields

g(x) − (s∗)T x ≥ g(x∗) − (s∗)T x∗ ∀x ∈ R
n

or, equivalently,

g(x) ≥ g(x∗) + (s∗)T (x − x∗) ∀x ∈ R
n .

Consequently, we have s∗ ∈ ∂g(x∗). Together with s∗ ∈ ∂h(x∗), this shows that ∂g(x∗) ∩
∂h(x∗) �= ∅. Hence, x∗ is a critical point of the DC function f . ��

Recall that we terminate our method(s), for our theoretical considerations, only if ζl = 0.
Numerically, one should replace this condition in (S.3) of the bundle method 2.1 by a more
practical condition like

|ζk | < δ or, equivalently, ζk > −δ (3.4)

with some given tolerance δ > 0. The following result then shows that Algorithm 3.1 termi-
nates after finitely many iterations in a point which approximately satisfies the condition of
being a critical point of the DC function f .

Theorem 3.7 Assume that f is bounded from below. Then Algorithm 3.1, with the modified
termination criterion (3.4), terminates after finitely many iterations in a point xL satisfying

dist
(
∂εL g(xL), ∂h(xL)

)
<

√
δ with εL < δ. (3.5)

Proof First recall that, in each outer iteration l, due to Assumption 3.2, the bundle step (3.2)
terminates after a finite number of inner iterations either meeting the termination criterion
or detecting a descent direction dl . This is based on the fact that carrying out only null steps
within the bundle iteration leads to {ζk} tending to zero (see e.g. [11]). Hence, the condition
(3.4) eventually holds.

We next show that Algorithm 3.1 terminates after finitely many iterations. Assume, by
contradiction, that an infinite sequence {xl} is generated. Then each call of the bundle method
ends with a serious step and hence the computation of a descent direction dl . The subsequent
line search then yields

f (xl+1) ≤ f (xl) + μτ 2l ζl ≤ f (xl) + μζl ∀l ∈ N0,

where the final inequality results from τl ≥ 1 and ζl being negative. Summation over l =
0, . . . , j − 1 gives

f (x j) − f (x0) ≤ μ

j−1∑
l=0

ζl ≤ −μδ j ∀ j ∈ N,

since ζl ≤ −δ for all l by assumption (the inexact termination criterion never holds). Letting
j → ∞, the right-hand side tends to −∞, whereas the left-hand side is bounded from below
by assumption. This contradiction shows that Algorithm 3.1 terminates within a finite number
of iterations.

Let xL denote the point of termination. It remains to show that xL satisfies the properties
from (3.5). To this end,wefirst note that a simple calculation shows that ∂εφl(x) = ∂εg(x)−sl

holds for all l ∈ N0, ε ≥ 0, and x ∈ R
n . Since−dl ∈ ∂εl φl(xl) by (2.8), we therefore obtain

the existence of an element t̃l ∈ ∂εl g(xl) such that −dl = t̃l − sl . Together with the fact that
sl ∈ ∂h(xl), we get

dist
(
∂εl g(xl), ∂h(xl)

) = inf
{‖t − s‖ ∣∣ t ∈ ∂εl g(xl), s ∈ ∂h(xl)

}

123

Journal of Global Optimization (2024) 88:285–326 295

≤ ∥∥ t̃l − sl
∥∥ = ‖dl‖ ≤ √|ζl |,

where the last inequality just exploits the definition of ζl . This definition also implies εl ≤ |ζl |.
Since, upon termination, we have |ζL | < δ, the two estimates (3.5) follow. ��
Note that (3.5) can be seen as an approximation of

dist
(
∂g(x∗), ∂h(x∗)

) = 0. (3.6)

Due to the closedness of the subdifferential, (3.6) is equivalent to ∂g(x∗) ∩ ∂h(x∗) �= ∅,
which means that x∗ is a critical point of the DC function f . We may therefore view the
point of termination as an approximate critical point of the objective function.

3.2 Descent properties of search directions

The subject of this section is to discuss some additional properties of the search direction dl .
We will see that dl is indeed a descent direction of the objective function f at the current
iterate xl , but, in general, not in the point xl + dl . Note that this latter property holds for
the boosted DCA method from [2] if g is smooth. We also discuss a modified version for
determining a suitable stepsize in (S.3).

Note that the convergence theory in Sect. 3.1 is completely independent of any descent
properties of dl . In particular, the line search in (S.3) makes no explicit use of this feature (see
also Lemma 3.4). Nevertheless, it is interesting to see that dl is indeed a descent direction of
f in xl .

Proposition 3.8 The directional derivative of the objective function satisfies

f ′(xl; dl) ≤ φ′
l (x

l ; dl) < 0 ∀l ∈ N0.

Hence, dl is a descent direction of f in xl .

Proof Let l be fixed. We then obtain

f ′(xl; dl) = g′(xl; dl) − h′(xl ; dl)

= g′(xl; dl) − max
s∈∂h(xl)

sT dl

≤ g′(xl ; dl) − (sl)T dl

= φ′
l (x

l ; dl),

where the relation (2.1) together with sl ∈ ∂h(xl) was exploited. By construction, dl results
from a serious step of the bundle method, hence φl(xl + dl) < φl(xl) holds. A standard
characterization of the directional derivative for convex functions therefore yields

φ′
l (x

l ; dl) = inf
t>0

φl(xl + tdl) − φl(xl)

t
≤ φl(xl + dl) − φl(xl)

1
< 0.

Putting both estimates together completes the proof. ��
Recall that Lemma 3.4 shows that a full step in the direction dl is always accepted by the

line search criterion (S.3). Using a minor modification in the bundle procedure ensures that
DCBA even allows to take a stepsize τl strictly larger than one. The details are given in the
subsequent proposition.

123

296 Journal of Global Optimization (2024) 88:285–326

Proposition 3.9 Assume that we replace the inequality in (S.4) of the Bundle Algorithm 2.1
by a strict one. Then there exists a stepsize τl > 1 such that (3.3) holds.

Proof For arbitrary l, one can follow the proof of Lemma 3.4 to see that the sharp estimate

f (xl + dl) < f (xl) + μζl

holds. Consequently, (3.3) is satisfied for τl = 1, but with a strict inequality. Since the
mapping τ �→ f (xl + τ dl)− f (xl)−μτ 2ζl is continuous, (3.3) holds on an interval [1, τ∗)
for some τ∗ > 1 (depending on l). This completes the proof. ��
The previous result motivates to search for a suitable stepsize by using a strategy like

τl = max
{
1 + τ̄lβ

j
∣∣ j ∈ N0

}
such that f (xl + τldl) ≤ f (xl) + μτ 2l ζl

for some β ∈ (0, 1), where τ̄l can be determined by the self-adaptive trial stepsize strategy
introduced in [2]. In this way, our approach shares some properties of the boosted version of
DCA, but for general nonsmooth functions g and h.

At first glance, this modified stepsize seems to be rather promising, and is more likely to
yield a stepsize larger than one than the original stepsize rule from (S.3). However, numerical
tests indicate that the overall results are often better for the original stepsize rule, at least
for most applications considered in this work. The computation of stepsizes larger than one
by the modified rule sometimes leads to the situation where the method crosses a valley
with a one-dimensional minimizer, ending up in a region of ascent again. Therefore, the
progress in the function value of the objective is often less than accepting a stepsize of one.
As this behavior accumulates, one keeps jumping from one side of the valley to the other,
sometimes even on a straight line. We illustrate this behavior in Fig.1 where Example 3.10
(see below) is used, with the standard choice of parameters given in Sect. 4.1 and initial point
(x0, y0)T := (2.5, 1)T . It is remarkable that the vector provided by the bundle method often
seems to be a pretty good choice for updating the iterate without any scaling.

Recall that Lemma 3.4 and Proposition 3.9 show that the full step in the direction dl is
always accepted by our line search rule(s). Similar to [2], one may therefore ask whether dl

is also a direction of descent at the point xl + dl . Note, however, that this cannot be expected
for nonsmooth functions g since it was already shown in [2] that this property does not hold,
in general, even if the convex subproblems are solved exactly. It is therefore not surprising
to see that this descent property is also violated for our inexact solution dl of the convex
subproblem. This is shown by the following counterexample taken from [2].

Example 3.10 (Failure of a boosted version of DCBA) Consider the function

f : R2 → R, f (x, y) := −5

2
x + 1

2
(x2 + y2) + |x | + |y|

with uniformly convex DC components g, h : R2 → R chosen as

g(x, y) := −5

2
x + x2 + y2 + |x | + |y|, h(x, y) := 1

2
(x2 + y2).

Taking (x0, y0)T := (0.5, 0.1)T as a starting point, the bundle method applied to
min(x,y)∈R2 φ0(x, y)with m = 0.1 stops after two iterations with the detection of the descent
direction

d0 = 1

10, 820
(6610,−3061)T ≈ (0.61091,−0.28290)T .

123

Journal of Global Optimization (2024) 88:285–326 297

0.5 1 1.5 2 2.5 3
-1

-0.5

0

0.5

1

1.5

original step size
adapted step size

Fig. 1 Variants of stepsize strategies

Let us note, for the sake of completeness, that selecting m in a different way would not open
the door for gaining a descent direction in the first iteration, as the first search direction
(d0,0

1 , d0,0
2)T satisfies φ0(x0 + d0,0

1 , y0 + d0,0
2) − φ0(x0, y0) = 2 > 0.

Before verifying analytically that d0 is indeed not a descent direction of f at the interme-
diate point

(x0, y0)T + d0 = 1

10, 820
(12, 020,−1979)T ≈ (1.11091,−0.18290)T ,

let us have a look at Fig. 2, which contains a contour plot of the function f , revealing the
basic situation. Starting at (x0, y0)T = (0.5, 0.1)T and heading in the direction d0, one
initially achieves a decrease in the function value. This was expectable as d0 is known to be a
descent direction of f at (x0, y0)T . But proceeding further (below the line y = 0 to be more
precise), one leaves the region of descent, entering a region of ascent. Accepting a full step
τ0 = 1, one touches the region of ascent. Therefore, moving further in the direction d0 from
(x0, y0)T + d0 would result in a continuing increase of the function value. Consequently,
d0 is not a descent direction of f at the point (x0, y0)T + d0. Analytically this claim is
confirmed by the corresponding scalar product

∇ f (x0 + d0
1 , y0 + d0

2)T d0 ≈ 0.09695

being positive (note that one can indeed consider the gradient of the objective, as the con-
sidered point is located in a region where f is differentiable). In addition, this instance
shows that the search direction d0 is not running tangential towards the contour line through
(x0 + d0

1 , y0 + d0
2)T , which is marked pink in Fig. 2, although it might seem to be the case

at first glance.

Recall that in [2] (making use of the notation therein) it is proven that for continuously
differentiable functions g computing the exact solution yl of the convex subproblem arising in

DCA leads to d̄
l := yl − xl being a descent direction of f at the optimal point yl = xl + d̄

l
.

123

298 Journal of Global Optimization (2024) 88:285–326

0.5 0.6 0.7 0.8 0.9 1 1.1 1.2 1.3 1.4 1.5

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

Fig. 2 Change of the function value in the direction d0 starting at (0.5, 0.1)T

The boosted version of the DC Algorithm, BDCA, is based on this observation. But this
descent property does not necessarily hold for our approach where dl is only computed by
means of an inexact solution of the convex subproblem. This is illustrated in the following
smooth example which results from the previous one by replacing the absolute value function
using a scaled and shifted version of Huber’s loss (see [14]).

Example 3.11 (Failure of a boosted version of DCBA in case of smooth DC components)
Consider the smoothed function

f̃ : R2 → R, f̃ (x, y) := −5

2
x + 1

2
(x2 + y2) + ψε(x) + ψε(y)

with

ψε : R → R, ψε(x) :=
{

|x | if |x | ≥ ε,
1
2ε x2 + ε

2 if |x | < ε

being the described smooth adaption of the absolute value function for sufficiently small
ε > 0, for example ε = 10−3. Similarly to the previous example the uniformly convex DC
components g̃, h̃ : R2 → R are chosen as

g̃(x, y) := −5

2
x + x2 + y2 + ψε(x) + ψε(y), h̃(x, y) := 1

2
(x2 + y2).

Note that the smoothmodification f̃ coincideswith the function f from the previous example
on the set Qε := {

(x, y) ∈ R
2

∣∣ |x | ≥ ε, |y| ≥ ε
}
. Therefore, taking ε > 0 sufficiently

small, and starting again in (x0, y0)T = (0.5, 0.1)T , the approximation function φ̃0 matches
the corresponding one from Example 3.10 at least on the relevant part of the domain of
definition, namely Qε . Thus, all calculations from Example 3.10 remain valid, as we stay
inside Qε during the whole computation. Consequently, also in case of a smooth first DC
component the accepted search direction turns out not to be a descent direction of the smooth
objective f̃ at the intermediate point (x0 + d0

1 , y0 + d0
2)T .

123

Journal of Global Optimization (2024) 88:285–326 299

The previous example, of course, shows that our approach has a drawback compared to the
boosted DCA. Recall, however, that our primary aimwas to develop a method for solving DC
programs where both DC components g and h are nonsmooth. In this situation, the descent
property of dl cannot be expected at the point xl + dl even for the exact solution of the
convex subproblem.

4 Numerical experiments and applications

This section presents some numerical experiments of the new algorithm DCBA and gives a
comparison with some existing solvers for DC programs. In particular, our method is com-
pared with the solvers DCA [21], BDCA [2], PBDC [16], and DCPCA [10] which are briefly
reviewed in Sect. 4.1, together with some details of our implementations. The numerical
experiments are then carried out using a broad class of academic test problems [2, 16] as
well as some examples arising from applications, namely minimum sum-of-squares cluster-
ing [2, 25], multidimensional scaling [2, 19], and edge detection by means of a clustering
technique [17].

4.1 Methods and implementation

This section first provides some details of the DC solvers that are used in our numerical
studies. The standard method for solving DC problems is the DCA [21, 26], which can be
accelerated to a boosted version, namely the BDCA [2], in suitable cases. In addition, we use
two bundle methods, PBDC [16] and DCPCA [10]. A brief overview of these algorithms is
given in Table 1.

As already noted, DCA derives, in each iteration, a convex majorization of the objective
function by approximating the secondDC component by some linearminorization. Themini-
mizer of thismodel function yields the next iterate,whichmeansDCAsolves the subproblems
exactly and uses no line search globalization (see [21]).

BDCA is introduced in [2]. It is an accelerated version of DCA being motivated by
the observation that, in case of a smooth first DC component, the solution of the convex
subproblem occurring in DCA gives rise to a descent direction at the point that is accepted
by DCA as the next iterate. The latter detection allows to add a line search right after solving
the very same convex subproblem as in DCA. This often speeds up the convergence.

PBDC is described in [16]. This bundle method constructs two separate cutting plane
models, one for each DC component. Combining both leads to a piecewise linear, nonconvex
model of the objective function which incorporates the convex behavior of the DC function
as well as its concave one. The computation of the search direction uses a stabilizing term
which includes a proximity parameter. Thus, a line search is superfluous. The termination
criterion directly refers to the definition of a critical point of the DC function (see (2.2)) and
estimates the distance between the respective two subdifferentials.

DCPCA originates from [10]. Similar to PBDC, it develops two separate cutting plane
models, one for each DC component. This initially leads to a nonconvex piecewise linear
approximation. The twoDC components, however, are not treated equally. The bundle related
to the first DC component is restricted to local information only, whereas the bundle con-
cerning the second DC component is not. The resulting model, a pointwise maximum of
concave functions, is then approximated by a local quadratic program which, in turn, is used
to compute a (candidate) search direction. In case no satisfactory solution can be found,

123

300 Journal of Global Optimization (2024) 88:285–326

Table 1 Summary of the
methods used in our numerical
experiments

Abbreviation Denomination References

DCA Difference of Convex Algorithm [21]

BDCA Boosted DCA [2]

DCBA DC Bundle Algorithm Algorithm 3.1

PBDC Proximal Bundle method for DC
optimization

[16]

DCPCA DC Piecewise-Concave
Algorithm

[10]

the method switches to an auxiliary (also quadratic) program. Having found an appropriate
search direction, a line search follows.

In order to achieve a better comparability of the numerical results, the termination criteria
of the different algorithms are adapted to some extent. While BDCA stops whenever the
computed descent direction dl is (close to) zero, for DCBA the sum of the squared norm of
the search direction and the ε-tolerance of the current approximation of the subdifferential
is checked to be (close to) zero. This motivates to split the termination criterion for DCBA
into two parts, namely

‖dl‖ < ε̄1 and εl < ε̄2

with some given tolerances ε̄1, ε̄2 > 0. Note that suppressing the square of the norm in the
first condition is not essential. Accordingly, the termination criterion for BDCA is inherited
as ‖dl‖ < ε̄1. As the stopping condition for DCA and BDCA coincides, it is clear how to
choose the respective one for DCA.

Comparing the convergence theorems for PBDC (see Theorem 6 in [16]) with the
corresponding Theorem 3.7 for DCBA, one realizes an immediate similarity. The first
result ensures that at the point xL of termination the approximate criticality condition
dist

(
∂ε̄2g(xL), ∂ε̄2h(xL)

) ≤ ε̄1 is satisfied whenever the termination criterion
		ξ∗

1 − ξ∗
2

		 < ε̄1

is met (the notation is taken from [16]). The second one proves the final estimate
dist

(
∂εL g(xL), ∂h(xL)

)
< ε̄1 with εL < ε̄2. This suggests to stuck with the termination

criterion for PBDC as it is stated in the cited work. In addition, it indicates in which range
the second termination tolerance ε̄2 should be taken.

Having in mind Remark 2 of [10], one gets a direct connection of the termination criterion
for DCPCA to the one for DCBA, which gives rise to adapt the stopping condition of DCPCA
in the same manner as the one for DCBA towards

‖d̄‖ < ε̄1 and − ‖d̄‖2 − v̄ =
∑
i∈I

λ̄iα
(1)
i < ε̄2

(the notation is taken from [10]). Note that both, α(1)
i in terms of DCPCA and αk+1

l in terms
of DCBA, denote linearization errors corresponding to the first DC component. Indeed the
latter one was defined as a linearization error of the approximation φl in (3.2), but, as this
function differs from the first DC component g only by a linear function, αk+1

l in fact yields
the linearization error with respect to g. This last modification ensures that for DCPCA in
the point of termination xL , the estimate dist

(
∂ε̄2g(xL), h(xL)

) ≤ ε̄1 holds, similar to the
previous ones for PBDC and DCBA.

123

Journal of Global Optimization (2024) 88:285–326 301

Note that even though choosing ε̄1 � ε̄2 in the presented examples, in case of DCBA as
well as DCPCA, the second termination quantity related to the linearization errors under-
shoots even the lower critical tolerance ε̄1 in the point of terminationwith only two exceptions.
The first one is the reproduction of the Bavarianmap bymeans ofmultidimensional scaling in
Sect. 4.4. For this special instance, DCBA ended with a precision of 0.089 and DCPCA with
0.062, while having a comparatively large ε̄1 = 10−2. The second exception is Problem 7 of
the academic test collection in Sect. 4.6. Here DCBA terminates with an accuracy of 0.009
for the (combined) linearization errors and DCPCA with 0.012 while having ε̄1 = 10−3.

To be able to consider the running time for comparison at least in most applications
all algorithms are implemented from scratch using the same computer language. The
codes used in Sects. 4.2–4.6 are implemented in Matlab version 2022b and executed on
a 8xIntel®CoreTMi7-7700 CPU @ 3.60 GHz computer with 31.1 GiB RAM under an open
SUSE Leap 15.4 (64-bit) system. The only exceptions are the test runs of DCBA for the
multidimensional scaling problem in Sect. 4.4 which are run in GNU Octave 5.1.0 on a
Radeon Vega Mobile Gfx 2.00 GHz computer with AMD Ryzen 5 2500U CPU and 8.00 GB
RAM under Windows 10 (64-bit). The simple reason for this exception is that the quadratic
programming solver of Matlab claims for quite some instances to converge to the solution
although it does verifiably not.

In all numerical experiments, the initial stepsize of every line search procedure contained
in BDCA as well as DCBA gets computed by means of a self-adaptive trial stepsize strat-
egy introduced in [2]. For the remaining part of the line search within DCBA a standard
backtracking approach as described in [4] is used. With our choice of parameters γ , the
enlargement factor within the self-adaptive trial stepsize, and β, the reduction factor within
the actual line search, we ensure that, unless the line search does not terminate beforehand,
at least τ = 1 gets tested and hence approved.

Furthermore, the proximity parameter t for PBDC is chosen as t = 0.8 (tmin + tmax), as
suggested in [16], though it is not consistent with the request t ∈ [tmin, tmax]. But numerical
experiments confirm that this choice is to be preferred. In addition, we adopt the proposed
modifications from [16] while implementing PBDC.1 On the one hand, we add a subgradient
aggregation technique for the first bundle which is based on [18]. On the other hand, we
restrict the size of the first bundle to min{n + 5, 1000}, where n is the number of variables.

Moreover, the quadratic programs occurring in the bundle methods DCBA, PBDC and
DCPCA are solved using the quadprog2 command. Thereby, in case of the academic
testproblems we switch from the default option interior-point-convex for the algo-
rithm to active-set in case of the dimension n being at most 10 as the latter method
performs better for problems with a small number of variables. The solution methods applied
to the convex subproblems of DCA differ depending on the smoothness property of the first
DC component. Whenever it is nonsmooth the bundle method from Algorithm 2.1 follow-
ing [11] gets executed. Whenever the first DC component is smooth and hence, BDCA can
be applied as well, we use a Limited-Memory BFGS method (see [23, 24]).

For most of the numerical tests, a similar parameter setting is used. Unless said otherwise,
the termination tolerances are set to ε̄1 = 10−3 and ε̄2 = 10−1. The remaining parameters are
chosen as follows, referring once again to the notation in the respective papers from Table 1:
In terms of BDCA we take α = 0.1, β = 0.5, γ = 4, and λ̄1 = 4. The last two parameters

1 With the named modifications we follow the publicly available Fortran source of PBDC which can be found
on http://napsu.karmitsa.fi/pbdc/.
2 See https://de.mathworks.com/help/optim/ug/quadprog.html?searchHighlight=quadprog&s_tid=srchtitle_
quadprog_1 for the Matlab and https://octave.sourceforge.io/optim/function/quadprog.html as well as https://
github.com/AsmaAfzal/octave_workspace/blob/master/quadprog.m for the implementation in Octave.

123

http://napsu.karmitsa.fi/pbdc/
https://de.mathworks.com/help/optim/ug/quadprog.html?searchHighlight=quadprog&s_tid=srchtitle_quadprog_1
https://de.mathworks.com/help/optim/ug/quadprog.html?searchHighlight=quadprog&s_tid=srchtitle_quadprog_1
https://octave.sourceforge.io/optim/function/quadprog.html
https://github.com/AsmaAfzal/octave_workspace/blob/master/quadprog.m
https://github.com/AsmaAfzal/octave_workspace/blob/master/quadprog.m

302 Journal of Global Optimization (2024) 88:285–326

Table 2 Absolute frequency of
sequences converging to the
respective critical point by the
different DC algorithms

(−1, −1) (−1, 0) (0, −1) (0, 0)

DCA 2438 2573 2438 2551

BDCA 10,000 0 0 0

DCBA 10,000 0 0 0

PBDC 9994 2 3 1

DCPCA 9774 116 110 0

concerning the self-adaptive trial stepsize strategy are also used for DCBA. In addition, the
remaining parameters for this algorithm are set to β = 0.5, m = 0.5 and μ = 0.1. The
missing parameters for PBDC are chosen as m = 0.5, R = 107, L1 = L2 = 1000 as
well as the maximum size of the second bundle as 3 and r = 0.75 whenever the spatial
dimension n is less than 10, r = 0.99 in case of n ≥ 300, and r = � n

n+5 · 100�/100 else.
This last bunch of selections corresponds to the default values from [16]. Moreover, for
DCPCA the still missing parameters are also taken as the default values from [10], namely
η = 0.7, m = 0.5, σ = 0.5 and ρ = 0.95.

4.2 An academic test problem

The essential aim of examining the subsequent academic test problem is to investigate how
often the algorithms under consideration converge to the known global minimum of the
objective function and not just to a critical point. This test setting is inspired by Example 3.1
in [2].

For the objective function f : R2 → R with

f (x, y) := x2 + y2 + x + y − |x | − |y| x, y ∈ R,

the DC composition f := g − h to be examined is chosen as

g(x, y) := 3

2
(x2 + y2) + x + y, h(x, y) := |x | + |y| + 1

2
(x2 + y2) x, y ∈ R,

so that the DC components g, h are uniformly convex. The global minimum is at (−1,−1).
But there exist three additional critical and non-optimal points (−1, 0), (0,−1) and (0, 0).
In fact, these three points are not even local minimizers.

To investigate the ability of the different solvers to find the optimal point, 10,000 test runs
for minimizing f are considered. Thereby, all five algorithms start at the same initial points
which are chosen quasi-randomly from the rectangle [−1.5, 1.5]2. In the end, the sequences
converging to each of the critical points are counted.

The result is shown in Table 2. BDCA and DCBA are both able to find the minimizer in
every single instance. After all, PBDC succeeds in 99.9% of the test cases and DCPCA in
97.7%. However, DCA converges to each of the four critical points more or less the same
number of times and determines the optimum in only 24.4% of instances.

4.3 Theminimum sum-of-squares clustering problem

We first provide a short introduction of the minimum sum-of-squares clustering problem.
Then we present two test settings that are examined afterwards, one related to randomly

123

Journal of Global Optimization (2024) 88:285–326 303

generated data and another one referring to real data in the form of geographic coordinates
of Bavarian cities.

Clustering describes the separation of a data set into disjoint subsets, so called clusters,
by gathering points of similarity. The method is used in data mining for the analysis of huge
data sets to get a better (or condensed) overview of the information actually contained in the
given data. Thereby, the measure of similarity may differ depending on the application. In
the following, each cluster gets characterized by its centroid and the classification gets done
by considering the (minimal) squared Euclidean distance of each data point towards these
centroids. Hence, denoting with A := {a1, . . . , ak} the set of points ai ∈ R

n, i = 1, . . . , k,
to be partitioned, and letting p be the desired number of clusters, the aim is to determine p
centroids x j ∈ R

n, j = 1, . . . , p, such that the (averaged) sum over the squared distance of
each data point towards the corresponding centroid gets minimal. Thus, using the notation
X := (x1, . . . , x p) ∈ R

n×p , the problem under consideration is

min
X∈Rn×p

f (X) := 1

k

k∑
i=1

min
j=1,...,p

			ai − x j
			
2
.

In [25], a DC composition of f is derived. Adding a quadratic term to each DC component
g, h : Rn×p → R like suggested in [2], one obtains

g(X) := 1

k

k∑
i=1

p∑
j=1

			ai − x j
			
2 + ρ

2
‖X‖2 ,

h(X) := 1

k

k∑
i=1

max
j=1,...,p

∑
t=1,...,p

t �= j

			ai − xt
			
2 + ρ

2
‖X‖2 .

Thereby, a modulus ρ > 0 ensures uniform convexity and ‖X‖ denotes the Frobenius norm
of the matrix X . The following tests are carried out using ρ = 0.1.

In the first numerical experiment for a varying combination of parameters, k quasi-
randomly generated vectors in R

n with normally distributed entries having a mean of
zero and a standard deviation of ten get to be clustered in p groups. For that matter,
k ∈ {500, 750, 1000, 2500, 5000}, n ∈ {2, 5, 10, 15}, and p ∈ {5, 10, 20, 50, 75} are con-
sidered. For each triple of parameters, ten test runs with all algorithms listed at the beginning
of this section are passed. We start with p centroid candidates in R

n which get generated
according to the same rules as the points to be clustered. During the ten test runs the set of
points to be partitioned remains identical, whereas the initial centroid candidates vary with
each run. However, all algorithms start from the same initial situation.

In the process, methods are rated successful whenever they reach the smallest function
value in comparison. We call such a value an optimum although it may not connect to a
global solution of the underlying optimization problem. To cope with the nature of numerics,
we further call a method successful whenever it yields a function value deviating from the
declared optimal function value less than 0.1 in case of n = 2 and 1 in case of n ∈ {5, 10, 15}.
Throughout this experiment, the number of iterations, the running time as well as the number
of evaluations of the DC components and their (sub-)gradients are reported and evaluated
by means of the performance profiles introduced in [9]. Thereby, for the bundle methods an
iteration gets identified with a change of the iterate, whichmeans null steps are not counted as
such. Though the iterations of the respective methods, of course, are not directly comparable
in view of computational effort, the related information is added to the resulting diagrams

123

304 Journal of Global Optimization (2024) 88:285–326

shown in Fig. 3. Note that DCA does not require evaluation of the second DC component h
and thus does not appear in the corresponding profile.

While DCA, DCPCA and PBDC are able to solve the problem with nearly the same prob-
ability, BDCA and DCBA are both slightly ahead. DCBA even has a minor lead over BDCA.
But in terms of efficiency, that is requiring the least running time and number of diverse
evaluations, BDCA clearly outperforms all other algorithms. This might not be surprising
as BDCA is specifically designed for DC problems with smooth first DC component. Com-
paring the bundle methods, PBDC and DCBA show on average similar profiles, whereas
DCPCA drops behind. In particular, DCPCA usually has the longest running time.

With regard to DCBA additional analysis reveals that during all test runs the part of the
number of function evaluations of the first DC component g in context with the bundle
procedure remains pretty stable around 66%. The remaining 34% of the function evaluations
of g are allotted to the line search. Note that the latter percentage gives also the ratio of the
number of function evaluations of the secondDC component h and the first DC component g.

Moreover, further plots show some minor differences in the performance profiles with
respect to varying values of the spatial dimension n or number of clusters p. Considering
distinction with n first, the ability of solving a problem sinks with growing n, starting with
80−90%, ending upwith slightly less than 45% in terms ofBDCAandDCBAand concerning
DCA, PBDCandDCPCA30−40%.While for n = 2 PBDC is, with someminor advance, the
most likely algorithm to solve the problem, for n = 5 hardly any and for n = 10 only small
differences between the methods are visible. Surprisingly, for n = 15 the picture changes
noticeably. BDCA and DCBA are now clearly ahead of DCPCA which still outgoes PBDC
and DCA. The latter two perform nearly identical in this matter.

The distinctions with varying number of clusters p are more diffuse. Increasing p initially
results in a diminished ability of solving a problem. But in the end, further rising leads to the
methods being more likely to find the optimum again. The value of p for which the algorithm
performsworst varies frommethod tomethod.All algorithms start at p = 5with a probability
to solve the problem of about 70% with BDCA being slightly on top. For DCA, DCPCA
and PBDC, p = 20 is the value for which they perform worst with having a probability of
solving the problem around 50% in terms of DCA as well as DCPCA and 55% with regard
to PBDC. The latter percentage corresponds also to the worst performance of BDCA, which
is, however, met at p = 50. DCBA remains on a level about 60% for p = 10 to p = 50. In
the end, for p = 75 the ability of finding the optimum lies for each algorithm in the range of
60 − 70% with DCPCA falling slightly behind.

In the second illustrative example, we investigate how the administrative districts of
Bavaria would look like if their cities got grouped by the minimum sum-of-squares clus-
tering method. To this end, a data set of geographic coordinates of k = 2073 Bavarian cities
and towns is considered,3 which consequently get to be separated in p = 7 clusters. As initial
guess, seven vectors with quasi-random entries in the range [9.06, 13.80] × [47.41, 50.52]
of the geographic coordinates of the considered data set are selected.

All five algorithms determine (approximately) the same seven centroids, but differ in
convergence speed. In Fig. 4, the resulting clusters are shown with their centroids marked as
pentagrams. Additionally, the first ten iterations of each method beside the ones of DCBA
are drawn. Moreover, in Fig. 5 the evolution of the function value with proceeding iterations
is plotted for each algorithm. Essentially, the differences in convergence speed are similar
to the experiment with random data, with the exception that, in this special instance, PBDC

3 Source: http://www.fa-technik.adfc.de/code/opengeodb/?C=D;O=A, called on April 15, 2021; determina-
tion of membership towards Bavaria by means of postal code.

123

http://www.fa-technik.adfc.de/code/opengeodb/?C=D;O=A

Journal of Global Optimization (2024) 88:285–326 305

Fig. 3 Performance profiles of the minimum sum-of-squares clustering problem with random data

is the most promising solution method. BDCA is still ahead of DCBA which, in turn, beats
DCPCA as well as DCA.

123

306 Journal of Global Optimization (2024) 88:285–326

8 10 12 14
47

48

49

50

51

DCBA
DCA

8 10 12 14
47

48

49

50

51

DCBA
BDCA

8 10 12 14
47

48

49

50

51

DCBA
PBDC

8 10 12 14
47

48

49

50

51

DCBA
DCPCA

Fig. 4 Division of Bavarian cities into administrative districts bymeans ofminimum sum-of-squares clustering

Fig. 5 Evolution of the function
value with proceeding iterations
while applying minimum
sum-of-squares clustering
towards Bavarian cities

0 50 100 150
iterations l

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

f(
x

l)

DCA
BDCA
DCBA
DCPCA
PBDC

4.4 Themultidimensional scaling problem

Similar to the organization of the previous section, we first give a brief introduction of the
problem under consideration (see [2, 19]) and then use two different test settings, one based

123

Journal of Global Optimization (2024) 88:285–326 307

on random data and the other one with real data based on the geographic problem from the
previous section.

Multidimensional scaling is also a method from data mining. This time, the preprocessing
of large data sets for further analysis happens by summarizing data through reduction. To
be more precise, having a data set consisting of k points, each of dimension n, the aim is to
replace the data set by the same number of points with dimension p ≤ n. Of course, one tries
to keep the relevant information in the best possible way. To this end, the differences within
the data set are considered by means of the dissimilarity matrix δ ∈ R

k×k with entries

δi j := di j (X̃) :=
			x̃i − x̃ j

			 i, j = 1, . . . , k,

where X̃ := (x̃1, x̃2, . . . , x̃k) ∈ R
n×k contains the data points to be analyzed. Now, the

goal is to find a matrix X̂ ∈ R
p×k whose dissimilarity matrix approximates the one of the

original data (i.e. δ) in an optimal way, and hence reflects the existing differences in the data.
Therefore, the underlying optimization problem is

min
X∈Rp×k

f̃ (X) := 1

2

∑
i< j

ωi j
(
di j (X) − δi j

)2
,

where ω ∈ R
k×k is a symmetric matrix consisting of nonnegative weights with zeros on its

diagonal. In the following experiments, it is taken as

ωi j =
{
1 if i �= j,

0 if i = j .

Obviously, the case p = n does not yield a reduction in the data set, but leads towards
the question whether the original data set can be reproduced by its dissimilarity matrix.
Consequently, the optimal function value for this special instance is known to be zero.

Neglecting constant terms, the primary optimization problem can be rewritten as a DC
problem with the adapted objective function f : Rp×k → R given by its DC components
g, h : Rp×k → R,

g(X) := 1

2

∑
i< j

ωi j d
2
i j (X) + ρ

2
‖X‖2 , h(X) :=

∑
i< j

ωi jδi j di j (X) + ρ

2
‖X‖2 .

Thereby, a modulus ρ > 0 ensures the uniform convexity of g and h and ‖X‖ denotes the
Frobenius norm of the matrix X . In the subsequent experiments, ρ = 1

kp is chosen depending
on the size of the data set and the dimension of the destination space.

The first numerical experiment uses quasi-randomly generated data X̃ ∈ R
n×k consisting

of normally distributed entries, having a mean of zero and a standard deviation of ten. Repro-
ducing the data as well as reducing each data point to half its size is tested. For that matter, the
parameters are taken as k ∈ {25, 50, 75, 100, 125, 150} and p ∈ {2, 3} (and, consequently,
n ∈ {p, 2p}). For each parameter combination, ten test runs with all algorithms from the
beginning of this section are executed.

To construct a suitable initial guess X0 ∈ R
p×k , we follow the suggestion in [2]. Thus,

we first create a matrix X̃
0
of the same size as X0 with quasi-random entries drawn from the

same normal distribution as the data set itself. Afterwards,

X0 := X̃0
(
Ik×k − 1

k
Ek×k

)
(4.1)

123

308 Journal of Global Optimization (2024) 88:285–326

is set, with Ik×k denoting the identity matrix and Ek×k the matrix consisting of ones only.
Both, this initial guesses as well as the data to be approximated, change with each test run.
Nevertheless, all algorithms have to deal with the very same data.

This time, some parameters are adopted, namely in case of BDCA α = 0.05 and β = 0.1.
In addition, the quantities related to the self-adaptive trial stepsize strategy are set to γ = 10
and λ̄1 = 10. The latter two are also used for DCBA, for which β = 0.1, m = 0.2 and
μ = 0.05 are selected. Comparably, m = 0.2 is also set for the bundle methods PBDC and
DCPCA together with σ = 0.1 for the latter method.

During the overall process, in the case of p = n, a method gets rated successful whenever
approaching the (a priori known) optimal function value. In the case of p < n for each
test run we identify the algorithm among the five considered ones which yields the lowest
objective function value. (Note that, in general, there will be more than one method yielding
the lowest objective value.) It seems likely to classify this method as successful. Once again,
also methods obtaining function values which deviate less than a given tolerance, namely 1,
from the optimal or the lowest function value are graded successful.

Reporting for each test run the number of iterations and the running time as well as
the number of function and (sub-)gradient evaluations for each DC component leads to the
performance profiles shown (in extracts) in the Figs. 6 and 7. The evaluation is done separately
for the cases of data reproduction (the case p = n) and data reduction (the case p < n).
Whenever necessary to make the differences between the most efficient algorithms visible,
performance profiles are only drawn partially. To get still an impression of the extent of the
respective performance profiles, at least the factor allowing even the most inefficient method
to reach its maximum probability for solving the problem should be reported. For Figs. 6a
and 6f the factor is 63, for 6b as well as 6c 290, for 6d 354, for 7b 2900, for 7c 171 and
for 7d 199. In any case, DCPCA is the method with the highest values of the measured
quantities. Besides, for Fig. 6b the factor at which the curve of DCBA flattens is 234. Once
again, note that DCA never evaluates the second DC component h during iterations as only
linearizations of this function are considered. In specific, no line search is performed. Note
further that due to using different computers (see Sect. 4.1) the running time is not comparable
for this problem, at least not with respect to DCBA.

While considering the performance profiles, the first thing to be mentioned is that for
each algorithm the probability of being able to solve a problem is lower when reducing the
data in comparison to reconstructing the data. But in both cases the probabilities are nearly
identical for all algorithms. Further, it is noticeable that PBDC usually requires less function
and gradient evaluations of g than BDCA and DCBA, but having a look at the corresponding
figures for the function h the relationship reverses nearly completely.

Let us note, in addition, that for DCBA 74 − 81% of the function evaluations of the first
DC component fall upon the bundle procedure and the remaining ones upon the line search.
There is a clear tendency that the higher the number k of data points to be considered, the
higher the percentage of function evaluations in conjunction with the bundle method. Keep
in mind that function evaluations of the second DC component only occur during the line
search procedure.

The second example deals, once again, with geographic coordinates of Bavarian cities.
Taking the identical set of data as in Sect. 4.3, the task is to reproduce the geographic coor-
dinates on the basis of the dissimilarity matrix related to the raw data. Thereby, the initial
guess is constructed similarly as in the previous example. For this purpose, the columns of

the auxiliary matrix X̃
0 ∈ R

2×2073 take quasi-random values ranging in [0, 4.74]×[0, 3.12],
motivated by the east–west as well as the north–south extension of Bavaria, determined on

123

Journal of Global Optimization (2024) 88:285–326 309

Fig. 6 Performance profiles (partly extracts) of reconstructing (case p = n) random data by means of multi-
dimensional scaling

the basis of the underlying data set. To each column of the resulting matrix X0 from (4.1), the
geographic mean of Bavaria (11.43, 48.93)T (once again calculated with respect to the cities
under consideration) is added. We use the standard parameter settings from the beginning of
this subsection, with the only exception that ε̄1 = 10−2.

All algorithms manage to restore the map of Bavarian cities, but with differences in the
speed of convergence. This distinction gets already foreshadowed in Fig. 8, in which next to

123

310 Journal of Global Optimization (2024) 88:285–326

Fig. 7 Performance profiles (partly extracts) of data reduction (case p < n) of random data by means of
multidimensional scaling

the map to be reproduced and the initial guess also, for each method, the current standing
at iteration 25 as well as the final result is pictured (note that the slight rotation is due
to the formulation of the problem, estimating only the distances between cities). Further
plots reveal that the major progress happens during the first 60% of iterations, whereas the
changes following afterwards can hardly be seen in corresponding images. All methods yield
satisfying results although BDCA and PBDC come out on top in terms of iterations.

123

Journal of Global Optimization (2024) 88:285–326 311

Fig. 8 Reproducing the map of Bavaria by means of multidimensional scaling

4.5 Edge detection bymeans of a DC optimization based clustering technique

Edge detection is a well knownmethod in image segmentation for carving out certain objects
in an image. It is based on the idea of determining contours of objects marked by disconti-
nuities and erratic changes in the brightness values of the grey scale image. The technique
presented in the following, using a DC optimization based clustering approach, was devel-
oped in [17]. To each pixel, a vector representing the differences in the grey scale values with
respect to nearby pixels gets assigned. Subsequently, the norms of these vectors are split into
two groups yielding a differentiation into pixels belonging to an edge and the ones which do
not.

Consider a grey scale image consisting of (n + 2) × (m + 2) pixels with coordinates
(k, l) ∈ {1, . . . , n + 2} × {1, . . . , m + 2}. To each pixel of the interior of the image with
coordinates (k, l) ∈ {2, . . . , n + 1} × {2, . . . , m + 1} a vector vi ∈ R

4, i = 1, . . . , N with
N = nm, containing the differences in the brightness values of the pixel under consideration
and the four vertical and horizontal immediately adjacent pixels gets assigned. For obvious
reasons, marginal pixels are neglected and also will not get classified in the progress. Taking
the norm ai := ‖vi‖ , i = 1, . . . , N , of each such vector, one attains a measure of change
in the grey scale values in relation to the neighborhood of the central pixel. A high value
indicates an affiliation towards an edge, whereas a low value does not. This motivates to
separate the set {ai }i=1,...,N into two groups. To this end, the well known K-means clustering
method gets applied with K = 2. Denoting with z1, z2 ∈ R the variables for determining the

123

312 Journal of Global Optimization (2024) 88:285–326

centroids, the resulting optimization problem is given by

min
z1,z2∈R

f (z1, z2) :=
N∑

i=1

min {|ai − z1|, |ai − z2|} .

Similar to the clustering method introduced in Sect. 4.3, the objective function f can be
written as a DC function with (uniformly) convex DC components g, h : R2 → R,

g(z1, z2) :=
N∑

i=1

(|ai − z1| + |ai − z2|) + ρ

2

			(z1, z2)
T
			
2
,

h(z1, z2) :=
N∑

i=1

max {|ai − z1|, |ai − z2|} + ρ

2

			(z1, z2)
T
			
2

with modulus ρ ≥ 0. In the following, ρ is chosen to be 0.1.
On the basis of [17], the starting point is selected as

(
z01
z02

)
:= κ (amax − amin)

(
1
2

)

with amax = maxi=1,...,N ai and amin = mini=1,...,N ai . However, κ varies in our experiments
with the image under consideration, as not only but especially DCBA turns out to be pretty
sensitive regarding the initial choice.

Moreover, in contrast to many other applications, the minimization of this clustering
problem does not need to be carried out with a high precision in order to yield a satisfactory
classification of edges. Therefore, for our subsequent numerical experiments with some clas-
sical test images for edge detection, the termination tolerance ε̄1 is reduced to 0.1. In addition,
the maximum number of iterations is limited to five. It turns out that these adaptions still
allow acceptably good approximations of the centroids leading to satisfactory classification
of edges.

The parameterm for all three bundlemethods is adapted to 0.1. Note that, this time, BDCA
cannot be applied to solve the optimization problem, as the corresponding first DC component
g is nonsmooth. Three classical test images for edge detection are considered. Thereby,
both, the cameraman as well as the house, contain 256 × 256 pixels whereas the moon
spans 537 × 358 pixels. For determining the initial point we choose κ = 1

3 in terms of the
cameraman, κ = 0.3 with regard to the house and κ = 0.25 for the moon.

The results are shown in Fig. 9, in which also the input images are displayed in the first
column. While for the cameraman the output seems apparently identical, differences can
be seen for the moon. Here, DCPCA and PBDC detect the fading edge of the moon more
clearly than DCA and DCBA. For the house, differences only get visible while considering
DCBA. This method recognizes the top end of the chimney slightly better than the remaining
algorithms, and also identifies, in a better way, some less pronounced edges as dotted lines.

Let us note that, in connectionwith the house, the sensitivity of DCBA regarding the initial
value gets particularly clear, especially when adapting the parameterm at the same time. Only
slight modifications lead from recognizing hardly any edges over a result comparable to the
ones from the other methods to detection of every brick stone (see Fig. 10 for which m = 0.5
and κ = 0.25 is chosen). In contrast, the output of the remaining algorithms stays pretty
stable.

Although the number of iterations is not reported here in detail, it is worth mentioning
that, in many instances, the desired accuracy of ε̄1 = 0.1 is often reached within less than

123

Journal of Global Optimization (2024) 88:285–326 313

Fig. 9 Edge detection by means of a DC optimization based clustering technique

Fig. 10 Detecting brick stones
with DCBA

the maximum of five iterations. Only DCPCA exploits the full number of iterations for each
image. Altogether all remaining methods yield pretty similar results for this application,
detecting sharp edges quite reliably.

123

314 Journal of Global Optimization (2024) 88:285–326

Table 3 Instance of termination
for each method applied to the
collection of 46 academic test
problems

Known best func-
tion value f ∗

Function value
larger than f ∗

Timeout

DCA 42 4 0

DCBA 42 4 0

PBDC 37 5 4

DCPCA 31 10 5

BDCA 8 2 0

4.6 A collection of academic benchmark problems

In this section, a set of ten academic DC test problems from [16], which in parts originate
from [3], is considered to further assess the performance of the newly introduced algorithm
in comparison to the methods mentioned at the beginning of this overall section. Some of
the problems have a variable dimension n, so that a range of n = 2 to n = 50,000 is covered
by a total of 46 test instances. All functions are nonsmooth, which is why BDCA, requiring
the first DC component to be smooth, can only be applied to the Problems 9 and 10. Besides,
the initial guesses proposed in the cited paper are used as starting points.

Above all, we add to the respective termination criteria of the algorithms a further escape
procedure which is independent of the used method. Since in the paper [16] for each test
instance a known best value is reported, we also terminate a method whenever it approaches
the corresponding function value within a tolerance of min{10−3n, 0.1} where n denotes
the number of variables. Moreover, some parameters have to be adapted. For DCBA, we
set m = 0.2, μ = 0.05 as well as β = 0.05 whenever n < 10, and β = 0.6 whenever
n ≥ 10. In addition, for the self-adaptive trial stepsize strategy used for DCBA and BDCA,

the parameters are chosen as λ̄1 = γ = 20 whenever n < 10, and λ̄1 = γ = (10
6

)3
whenever

n ≥ 10. Besides, for BDCA β is selected in the same way as for DCBA and α is set to 0.05.
For PBDC as well as DCPCA m is changed to 0.2 and in terms of DCPCA, σ is chosen in
the same way as β for DCBA and BDCA, respectively.

For each instance of the academic DC test problems, we report the value of the objective
function at the point of termination, the running time, the number of iterations, as well as the
number of evaluations of the first and second DC component itself and their (sub)gradients.
The detailed listing of the results can be found in the “Appendix”. For the sake of complete-
ness, we tabulate the respective outcomes from the academic test problem (see Sect. 4.2),
clustering of the Bavarian cities by the minimum sum-of-squares approach (see Sect. 4.3),
reproducing the Bavarian map (see Sect. 4.4), and edge detection for the cameraman, the
brick house and the moon (see Sect. 4.5).

For each instance of the academic DC test problems, an algorithm is considered as failed if
the running time exceeds a limit of one hour which only happenswith the two bundlemethods
PBDC and DCPCA.Moreover, in a few cases, some of the algorithms terminate in a point for
which the corresponding function value is worse than the best known one. A quick overview
of how often these instances occur with each algorithm within the 46 problem instances, is
given in Table 3. Note that BDCA can merely be applied to ten of the test problem instances.
It is worth mentioning that DCBA together with DCA is the method with the (relatively)
least instances of not detecting the known best function value f ∗.

Let us note some distinctive features in the detailed results. Having a look at the prob-
lems with variable dimensions that finally cover large scales, clearly DCA, DCBA and, for

123

Journal of Global Optimization (2024) 88:285–326 315

Problem 10, also BDCA come out on top. The two bundle methods PBDC and DCPCA
suffer from rapidly increasing running times with growing dimensions in Problem 4, finally
exceeding the time limit. For Problem 10 in case of higher number of variables both methods
end up with function values deviating heavily from the known best ones. The results obtained
by DCA for Problem 4 are standing out. For every single test instance it requires only one
single iteration which favors quite low numbers of evaluations compared to DCBA. Though
also Problem 5 covers large dimensions, the situation here is a bit different. Following [16],
the starting point is selected in such a way that, with increasing dimension, one already has
a pretty good estimate for the optimum. This may explain, to some extent, the unexpected
and heterogeneous behavior of the algorithms. While for some methods a few measured
quantities hardly change with growing dimension, other measures show a rather continuing
but quite low increase and yet others reveal a fairly erratic behavior. At this point, we want to
thank an anonymous referee for drawing our attention to the special structure of Problem 5.

Furthermore, there are also some visible differences in the small-scale problems whose
number of variables are at most four. First of all, PBDC is the only algorithm to solve
Problem 9. Though the both bundle methods, PBDC as well as DCPCA, are able to find the
optimum for Problem 2 DCPCA requires much less evaluations than PBDC. Similarly, for
Problem 7 next to PBDC it is DCBA which succeeds and, once again, PBDC is the one with
the noticeably higher number of evaluations. Nevertheless, in case of convergence PBDC
fails to reach the known best function value only for some instances of one single problem
class, namely Problem 10.

5 Concluding remarks

In this article, a bundle method to solve unconstrained DC optimization problems (DCBA)
was introduced. In contrast to various existing bundle methods designed for this topic, the
bundles are not directly constructed with respect to the DC components of the objective
function. Instead, a convex approximation of the function to be minimized, which is already
known from the classical DCAlgorithm (DCA, see [21]), gets constructed first. Applying the
bundlemethod towards themodel function yields a descent direction for the original objective
function which allows to add a line search afterwards. Hence, the concept of DCBA is pretty
similar to the one of the Boosted DCA (BDCA) which is introduced in [2]. The latter one
considers the same convex approximation known from the DCA and constructs a descent
direction byminimizing thismodel function. Contrary toBDCA, the bundlemethod inDCBA
is not carried out until a minimizer of the approximation is found, but only until a serious
step is executed the very first time. An advantage of DCBA against BDCA is that the new
method can be applied to DC problems with both DC components being nonsmooth, whereas
the convergence theory of BDCA requires the first DC component to be smooth.

The algorithm was shown to be well-defined for functions being bounded from below. In
addition, the method was proven to be globally convergent in the sense that every accumula-
tion point is a critical point of the objective function. Moreover, termination of the algorithm
(with numerically implementable termination criterion) occurs within a finite number of
iterations in a point satisfying an approximate criticality measure.

The performance of the algorithmwas tested bymeans of diversified nonsmooth DC prob-
lems and compared to four other DC methods, DCA, BDCA and two bundle methods,
namely the Proximal Bundle method for DC optimization (PBDC, see [16]) and the DC
Piecewise-Concave Algorithm (DCPCA, see [10]). In specific, DCBA together with DCA

123

316 Journal of Global Optimization (2024) 88:285–326

are the algorithms succeeding most frequently while considering a bunch of various aca-
demic test problems. Clearly, DCA falls behind by far performing even worse than most of
the other methods while considering the applications of minimum sum-of-squares cluster-
ing and multidimensional scaling. With these problems DCBA visibly gets outperformed
by BDCA which still has the disadvantage of only being applicable to a restricted class of
DC problems. But none of the two remaining bundle methods has proven to be apparent
advantageous over DCBA. In addition, the results for detecting edges with the new algorithm
are rather encouraging.

So far, this method is applicable to unconstrained DC programs only. Our future work
will concentrate on suitable extensions to constrained problems, first to DC programs with
convex constraints, and then also to DC programs with general DC-type constraints.

Acknowledgements The authors would like to thank two anonymous referees for their suggestions and com-
ments which helped a lot to improve the numerical tests.

Funding Open Access funding enabled and organized by Projekt DEAL. No funds, grants or other support
was received for conducting this study.

Data availability The geographic data that support the findings of this study are available from the ADFC,
http://www.fa-technik.adfc.de/code/opengeodb/?C=D;O=A.

Declarations

Conflict of interest The authors have no relevant financial or non-financial interests to disclose

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence,
and indicate if changes were made. The images or other third party material in this article are included in the
article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is
not included in the article’s Creative Commons licence and your intended use is not permitted by statutory
regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.
To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

Appendix: Detailed results for the collection of academic test problems

A quick overview over the test instances taken from [16] is given in Table 4, which is inspired
by [10]. Thereby, ID is an instance identifier, n gives the spatial dimension and f ∗ the known
best value of the objective function. Note that in [10] for Problem 10.03 f ∗ has been adapted
to a newly detected better function value. In addition, the problems AP, C_BY, R_BY, ED_C,
ED_H and ED_M refer to the academic test problem from Sect. 4.2, the clustering of the
Bavarian cities, the reproduction of the Bavarian map and edge detection for the cameraman,
the house and the moon.

The detailed results are then shown in Tables 5, 6, 7, 8 and 9. Here the value of the
objective function at the point of termination f , the running time, the number of iterations i t ,
as well as the number of evaluations of the first and second DC component itself and their
(sub)gradients, in sequence denoted by n f1 , n f2 , nξ1 , nξ2 , gets reported. Note that in case
of the problem AP the average quantities over all 10,000 test runs are tabulated. Besides,
for the problems related to edge detection the function value f at the point of termination is
not listed, as no minimization of the objective function is aspired in the first place. Instead,

123

http://www.fa-technik.adfc.de/code/opengeodb/?C=D;O=A
http://creativecommons.org/licenses/by/4.0/

Journal of Global Optimization (2024) 88:285–326 317

the algorithms may terminate after a preset number of iterations. Furthermore, DCA does
not require an evaluation of the second DC component h during the iterations. Moreover,
for DCA, BDCA, DCBA and DCPCA one has i t = nξ2 and for PBDC n f1 = n f2 . See the
references in Table 1 for clarification. Correspondingly, the respective columns are combined
or neglected. Besides, in case a method fails within a test class not only once but for all
subsequent instances, only the first fail gets reported in Tables 5, 6, 7, 8 and 9. Furthermore,
an instance is marked with † if for an algorithm the function value at the point of termination
differs significantly from the known best one f ∗.

123

318 Journal of Global Optimization (2024) 88:285–326

Table 4 An overview of the
benchmark problems

ID n f ∗

1.01 2 2

2.01 2 0

3.01 4 0

4.01 2 0

4.02 5 0

4.03 10 0

4.04 50 0

4.05 100 0

4.06 150 0

4.07 200 0

4.08 250 0

4.09 350 0

4.10 500 0

4.11 750 0

5.01 2 0

5.02 5 0

5.03 10 0

5.04 50 0

5.05 100 0

5.06 150 0

5.07 200 0

5.08 250 0

5.09 300 0

5.10 350 0

5.11 400 0

5.12 500 0

5.13 1000 0

5.14 1500 0

5.15 3000 0

5.16 10,000 0

5.17 15,000 0

5.18 20,000 0

5.19 50,000 0

6.01 2 −2.5

7.01 2 0.5

8.01 3 3.5

9.01 4 1.83

10.01 2 −0.5

10.02 4 −2.5

10.03 5 −3.5

10.04 10 −8.5

123

Journal of Global Optimization (2024) 88:285–326 319

Table 4 continued ID n f ∗

10.05 20 −18.5

10.06 50 −48.5

10.07 100 −98.5

10.08 150 −148.5

10.09 200 −198.5

AP 2 −2

C_BY 14 Unknown

R_BY 4146 0

ED_C 2 Unknown

ED_H 2 Unknown

ED_M 2 Unknown

Table 5 Computational results for DCA being applied to the benchmark problems

ID f Time n f1 nξ1 i t, nξ2

1.01 2.0014560657 1.01 178 178 7

2.01 1† 0.01 11 11 2

3.01 6.72795e−13 0.01 10 10 1

4.01 0 0.01 3 3 1

4.02 1.77636e−15 0.01 6 6 1

4.03 0 0.00 11 11 1

4.04 1.17234e−09 0.04 60 60 1

4.05 2.83126e−09 1.30 125 125 1

4.06 4.28008e−09 0.26 189 189 1

4.07 5.44605e−09 0.40 251 251 1

4.08 6.77755e−09 0.67 315 315 1

4.09 2.23299e−08 1.52 439 439 1

4.10 3.04426e−08 3.92 629 629 1

4.11 4.69154e−08 14.20 958 958 1

5.01 0 0.01 4 4 1

5.02 8.17124e−14 0.00 7 7 1

5.03 1.86073e−06 0.01 18 18 1

5.04 3.15173e−06 0.01 16 16 1

5.05 1.08981e−05 0.01 19 19 1

5.06 1.16688e−05 0.04 19 19 1

5.07 1.10469e−05 0.04 19 19 1

5.08 1.13287e−05 0.01 19 19 1

5.09 1.14836e−05 0.01 19 19 1

5.10 1.15818e−05 0.01 19 19 1

5.11 1.16505e−05 0.01 19 19 1

5.12 1.17393e−05 0.01 19 19 1

5.13 1.18952e−05 0.02 19 19 1

123

320 Journal of Global Optimization (2024) 88:285–326

Table 5 continued

ID f Time n f1 nξ1 i t, nξ2

5.14 1.19418e−05 0.02 19 19 1

5.15 1.19871e−05 0.02 19 19 1

5.16 1.20178e−05 0.03 19 19 1

5.17 1.20221e−05 0.03 19 19 1

5.18 1.20243e−05 0.04 19 19 1

5.19 1.20281e−05 0.08 19 19 1

6.01 −2.4999762506 0.01 27 27 1

7.01 1.0000037703 † 0.51 1445 1445 61

8.01 3.5000001213 0.02 40 40 2

9.01 9.2† 0.01 7 7 2

10.01 −0.5 0.01 3 3 1

10.02 −2.5 0.00 9 9 3

10.03 −2.5† 0.00 10 10 4

10.04 −8.5 0.00 18 18 6

10.05 −18.5 0.32 33 33 11

10.06 −48.5 0.00 78 78 26

10.07 −98.5 0.00 153 153 51

10.08 −148.5 0.00 228 228 76

10.09 −198.5 0.01 303 303 101

AP −0.9887† 1.8693e−04 28.90 28.90 7.23

C_BY 0.2213836038 1.53 620 620 155

R_BY 0.3395275599 29.35 1078 1078 77

ED_C 0.11 54 54 3

ED_H 0.09 45 45 2

ED_M 0.03 5 5 1

Table 6 Computational results for DCBA being applied to the benchmark problems

ID f Time n f1 n f2 nξ1 i t, nξ2

1.01 2.0003825803 0.05 96 13 73 5

2.01 1† 0.01 34 11 13 5

3.01 2† 0.01 38 8 22 4

4.01 0 0.01 8 4 2 1

4.02 1.77636e−15 0.01 16 6 6 2

4.03 7.10543e−15 0.02 87 26 45 8

4.04 5.45469e−10 0.19 423 60 325 19

4.05 5.54792e−11 1.40 2264 122 2060 41

4.06 4.72937e−10 4.02 5500 187 5187 63

4.07 8.17818e−09 8.99 10,446 259 10,013 87

4.08 6.54836e−11 18.25 17,253 323 16,710 110

4.09 3.56522e−10 53.21 33,341 451 32,584 153

123

Journal of Global Optimization (2024) 88:285–326 321

Table 6 continued

ID f Time n f1 n f2 nξ1 i t, nξ2

4.10 3.81260e−09 188.12 66,809 636 65,739 217

4.11 2.50293e−09 899.81 154,149 974 152,511 332

5.01 0 0.01 9 4 3 1

5.02 7.60605e−04 0.01 18 6 8 2

5.03 0.0078666857 0.02 108 29 59 10

5.04 0.0313034366 0.05 112 32 60 10

5.05 0.0529657260 0.02 67 19 36 6

5.06 0.0966214273 0.05 105 28 59 9

5.07 0.0660497863 0.04 126 35 69 11

5.08 0.0326968000 0.03 77 21 42 7

5.09 0.0713988745 0.03 79 21 44 7

5.10 0.0596119960 0.03 69 19 38 6

5.11 0.0598831112 0.03 69 19 38 6

5.12 0.0602438913 0.02 69 19 38 6

5.13 0.0609126393 0.03 69 19 38 6

5.14 0.0730848593 0.05 116 33 63 10

5.15 0.0732227854 0.05 116 33 63 10

5.16 0.0733163697 0.07 116 33 63 10

5.17 0.0733295474 0.09 116 33 63 10

5.18 0.0729041586 0.13 123 33 70 10

5.19 0.0729143051 0.22 123 33 70 10

6.01 −2.4986816434 0.01 92 41 17 17

7.01 0.5055140618 0.09 378 53 279 23

8.01 3.5000014977 0.01 38 11 19 4

9.01 9.2000020146† 0.02 57 15 28 7

10.01 −0.5 0.01 8 4 2 1

10.02 −2.5 0.01 20 8 6 3

10.03 −2† 0.01 17 6 5 3

10.04 −8.4949669717 0.01 84 36 24 12

10.05 −18.4878486549 0.75 114 50 32 16

10.06 −48.4722549152 0.04 210 90 60 30

10.07 −98.4375704937 0.08 378 162 108 54

10.08 −148.4375704936 0.09 555 239 158 79

10.09 −198.4375704936 0.14 729 313 208 104

AP -2 0.0040 20.14 7.02 7.07 3.02

C_BY 0.2213811086 0.81 311 106 123 41

R_BY 0.2480235999 112.53 1394 156 1104 66

ED_C 0.13 103 56 35 5

ED_H 0.17 134 54 68 5

ED_M 0.04 8 1 5 1

123

322 Journal of Global Optimization (2024) 88:285–326

Table 7 Computational results for PBDC being applied to the benchmark problems

ID f Time i t n f1 , n f2 nξ1 nξ2

1.01 2.0002067031 0.04 3 32 16 9

2.01 0.0019842936 17.22 7428 57,543 15,082 9708

3.01 3.80085e−14 0.10 27 213 112 55

4.01 0 0.01 1 12 3 3

4.02 1.77636e−15 0.02 3 30 17 12

4.03 0 0.05 5 54 36 18

4.04 2.70126e−06 60.50 38 1173 1133 384

4.05 1.43283e−05 245.54 286 19,042 18,754 4356

4.06 0.0896309132 2072.82 785 78,623 77,836 9770

4.07 Fail

4.08 5.49378e−04 1225.90 84 12,181 12,180 624

4.09 Fail

5.01 3.55271e−15 0.01 0 6 2 2

5.02 9.56679e−04 0.03 7 57 25 16

5.03 0.0086002902 0.01 2 24 8 7

5.04 0.0412995891 0.11 6 44 20 15

5.05 0.0749914399 0.04 4 23 7 7

5.06 0.0327626849 0.13 4 23 7 7

5.07 0.0999494987 0.05 7 33 8 8

5.08 0.0760572740 0.18 23 99 26 26

5.09 0.0433670333 0.07 3 17 8 6

5.10 0.0892753859 0.03 1 8 3 3

5.11 0.0853199242 0.03 1 8 3 3

5.12 0.0786194939 0.03 1 8 3 3

5.13 0.0324731826 0.16 9 40 10 10

5.14 0.0282671300 0.57 24 100 25 25

5.15 0.0177153034 0.13 0 5 2 2

5.16 0.0028749154 8.68 25 106 27 27

5.17 0.0018997433 10.66 20 86 22 22

5.18 0.0014116230 14.19 17 74 19 19

5.19 5.96260e−04 42.04 11 50 13 13

6.01 −2.4999982503 0.01 1 10 4 3

7.01 0.5005553918 6.76 1599 13,351 6507 5045

8.01 3.5005070834 0.01 3 26 8 6

9.01 1.8353351846 0.03 5 34 21 18

10.01 −0.4998947160 0.02 2 17 6 4

10.02 −2.4997482719 0.01 2 16 6 3

10.03 −2.4999998830† 0.04 11 67 53 34

10.04 −8.4929465556 0.01 4 26 8 5

10.05 −18.4996188085 0.12 17 83 50 22

10.06 −42.4999999582† 0.14 23 112 98 26

10.07 −88.4999999781† 4.80 28 333 315 100

123

Journal of Global Optimization (2024) 88:285–326 323

Table 7 continued

ID f Time i t n f1 , n f2 nξ1 nξ2

10.08 −10.4999999564† 0.14 14 63 54 17

10.09 −10.4999999775† 0.17 23 86 70 25

AP −1.9993 0.03 5.15 33.02 23.69 8.20

C_BY 0.2208007332 0.80 15 74 73 70

R_BY 6.98492e−08 170.48 45 105 93 68

ED_C 0.06 5 19 17 5

ED_H 0.04 3 14 11 4

ED_M 0.07 2 12 9 4

Table 8 Computational results for DCPCA being applied to the benchmark problems

ID f Time n f1 n f2 nξ1 i t, nξ2

1.01 2.0017910150 0.07 180 168 33 21

2.01 3.90799e−14 0.01 26 25 9 8

3.01 2.23210e−14 0.05 350 308 68 26

4.01 8.88178e−16 0.01 39 39 10 10

4.02 3.55271e−15 0.04 163 162 41 40

4.03 0 0.09 776 710 97 31

4.04 4.42917e−07 111.37 46,117 42,670 3756 309

4.05 4.68210e−07 261.97 323,695 299,560 24,955 820

4.06 1.90172e−06 1610.43 971,588 901,459 71,656 1527

4.07 Fail

5.01 0 0.01 12 11 3 2

5.02 8.46999e−04 0.01 42 39 10 7

5.03 0.0013435944 0.02 223 211 19 7

5.04 0.0313034366 0.05 112 32 60 10

5.05 0.0120487789 0.04 131 120 15 4

5.06 0.0172676489 0.13 316 298 24 6

5.07 0.0621247512 0.12 321 302 25 6

5.08 0.0704560942 0.14 197 178 25 6

5.09 0.0423469850 0.28 570 541 37 8

5.10 0.0475144774 0.18 272 257 20 5

5.11 0.0670609172 0.27 352 332 26 6

5.12 0.0678427869 0.38 355 335 26 6

5.13 0.0692553445 1.01 374 354 26 6

5.14 0.0696868377 1.64 375 355 26 6

5.15 0.0646056422 2.58 307 292 20 5

5.16 0.0654089843 16.43 324 309 20 5

5.17 0.0655219769 28.22 341 326 20 5

5.18 0.0655783301 46.06 342 327 20 5

123

324 Journal of Global Optimization (2024) 88:285–326

Table 8 continued

ID f Time n f1 n f2 nξ1 i t, nξ2

5.19 0.0656792602 227.08 378 363 20 5

6.01 −2.4985065896 0.03 112 112 32 32

7.01 1.0115349152† 0.02 80 73 14 7

8.01 3.7500006789† 0.03 118 104 24 10

9.01 9.2000020146† 0.03 56 50 16 10

10.01 −0.5 0.02 31 30 9 8

10.02 −2.5 0.02 115 114 24 23

10.03 −2.5† 0.02 122 121 26 25

10.04 −6.5† 0.01 48 47 8 7

10.05 −6.5† 0.13 48 47 8 7

10.06 −6.5† 0.03 52 51 8 7

10.07 −6.5† 0.02 56 55 9 8

10.08 −4.5† 0.04 61 60 10 9

10.09 −4.5† 0.03 62 61 10 9

AP −1.9774 0.01 24.72 24.06 6.33 5.66

C_BY 0.2210706670 3.97 662 662 98 98

R_BY 0.0358464699 656.53 3921 3903 292 274

ED_C 0.17 146 141 12 5

ED_H 0.16 190 184 13 5

ED_M 0.30 120 119 8 5

Table 9 Computational results for BDCA being applied to the benchmark problems

ID f Time n f1 n f2 nξ1 i t, nξ2

9.01 9.2† 0.00 7 0 7 2

10.01 −0.5 0.00 4 0 4 2

10.02 −2.5 0.00 9 3 6 2

10.03 −2.5† 0.01 12 5 7 3

10.04 −8.5 0.01 68 50 18 6

10.05 −18.5 0.01 95 62 33 11

10.06 −48.5 0.00 185 107 78 26

10.07 −98.5 0.00 338 185 153 51

10.08 −148.5 0.01 483 255 228 76

10.09 −198.5 0.01 634 331 303 101

AP −2 7.5831e−05 22.16 10.13 12.03 3.76

C_BY 0.2209037511 0.53 155 59 96 24

R_BY 0.4782017898 18.43 620 88 532 38

123

Journal of Global Optimization (2024) 88:285–326 325

References

1. Aragón Artacho, F.J., Fleming, R.M.T., Vuong, P.T.: Accelerating the DC algorithm for smooth functions.
Math. Program. 169(1), 95–118 (2018). https://doi.org/10.1007/s10107-017-1180-1

2. Aragón Artacho, F.J., Vuong, P.T.: The boosted difference of convex functions algorithm for nonsmooth
functions. SIAM J. Optim. 30(1), 980–1006 (2020). https://doi.org/10.1137/18M123339X

3. Bagirov, A.M.:Amethod forminimization of quasidifferentiable functions. Optim.Methods Softw. 17(1),
31–60 (2002). https://doi.org/10.1080/10556780290027837

4. Beck, A.: Introduction to Nonlinear Optimization: Theory, Algorithms, and Applications withMATLAB.
Society for Industrial and Applied Mathematics, MOS-SIAM Series on Optimization (2014)

5. Clarke, F.H.: Optimization and Nonsmooth Analysis. Canadian Mathematical Society Series of Mono-
graphs and Advanced Texts. Wiley, New York (1983)

6. de Leone, R., Gaudioso, M., Grippo, L.: Stopping criteria for linesearch methods without derivatives.
Math. Program. 30(3), 285–300 (1984). https://doi.org/10.1007/BF02591934

7. de Oliveira, W.: Proximal bundle methods for nonsmooth DC programming. J. Glob. Optim. 75(2), 523–
563 (2019). https://doi.org/10.1007/s10898-019-00755-4

8. de Oliveira, W.: The ABC of DC programming. Set-Valued Var. Anal. 28(4), 679–706 (2020). https://
doi.org/10.1007/s11228-020-00566-w

9. Dolan, E.D., Moré, J.J.: Benchmarking optimization software with performance profiles. Math. Program.
91(2), 201–213 (2002). https://doi.org/10.1007/s101070100263

10. Gaudioso, M., Giallombardo, G., Miglionico, G., Bagirov, A.M.: Minimizing nonsmooth DC functions
via successive DC piecewise-affine approximations. J. Glob. Optim. 71(1), 37–55 (2018). https://doi.org/
10.1007/s10898-017-0568-z

11. Geiger, C., Kanzow, C.: Theorie und Numerik restringierter Optimierungsaufgaben. Springer-Lehrbuch
Masterclass. Springer, Berlin (2002)

12. Hiriart-Urruty, J.B.: Generalized differentiability/duality and optimization for problems dealing with
differences of convex functions. In: Ponstein, J. (ed.) Convexity and Duality in Optimization, pp. 37–70.
Springer, Berlin (1985)

13. Hiriart-Urruty, J.B., Lemaréchal, C.: Fundamentals of Convex Analysis. Grundlehren Text Editions.
Springer, Berlin (2001)

14. Huber, P.J.: Robust estimation of a location parameter. Ann. Math. Stat. 35(1), 73–101 (1964). https://
doi.org/10.1214/aoms/1177703732

15. Joki, K., Bagirov, A.M., Karmitsa, N.,Mäkelä,M.M., Taheri, S.: Double bundlemethod for finding Clarke
stationary points in nonsmooth DC programming. SIAM J. Optim. 28(2), 1892–1919 (2018). https://doi.
org/10.1137/16M1115733

16. Joki, K., Bagirov, A.M., Karmitsa, N., Mäkelä, M.M.: A proximal bundle method for nonsmooth DC
optimization utilizing nonconvex cutting planes. J. Glob. Optim. 68, 501–535 (2017). https://doi.org/10.
1007/s10898-016-0488-3

17. Khalaf, W., Astorino, A., D’Alessandro, P., Gaudioso, M.: A DC optimization-based clustering technique
for edge detection. Optim. Lett. 11(3), 627–640 (2017). https://doi.org/10.1007/s11590-016-1031-7

18. Kiwiel, K.C.: An aggregate subgradient method for nonsmooth convex minimization. Math. Program.
27, 320–341 (1983). https://doi.org/10.1007/BF02591907

19. Le Thi, H.A., Pham Dinh, T.: D.C. programming approach to the multidimensional scaling problem, pp.
231–276. Springer US, Boston, MA (2001). https://doi.org/10.1007/978-1-4757-5284-7_11

20. Le Thi, H.A., Pham Dinh, T.: DC programming and DCA: thirty years of developments. Math. Program.
169(1), 5–68 (2018). https://doi.org/10.1007/s10107-018-1235-y

21. Le Thi, H.A., Pham Dinh, T., Le Dung, M.: Numerical solution for optimization over the efficient set
by D.C. optimization algorithms. Oper. Res. Lett. 19(3), 117–128 (1996). https://doi.org/10.1016/0167-
6377(96)00022-3

22. Lemaréchal, C., Mifflin, R.: Nonsmooth Optimization: Proceedings of a IIASA Workshop, March 28–
April 8, 1977. Elsevier Science (2014)

23. Liu, D.C., Nocedal, J.: On the limitedmemory BFGSmethod for large scale optimization.Math. Program.
45, 503–528 (1989). https://doi.org/10.1007/BF01589116

24. Nocedal, J., Wright, S.J.: Numerical Optimization. Springer Series in Operations Research and Financial
Engineering, 2nd edn. Springer, New York (2006)

25. Ordin, B., Bagirov, A.M.: A heuristic algorithm for solving the minimum sum-of-squares clustering
problems. J. Glob. Optim. 61, 341–361 (2015). https://doi.org/10.1007/s10898-014-0171-5

26. Pham Dinh, T., El Bernoussi, S.: Algorithms for solving a class of nonconvex optimization problems.
methods of subgradients. In: Hiriart-Urruty, J.B. (ed.) Fermat Days 85: Mathematics for Optimization,

123

https://doi.org/10.1007/s10107-017-1180-1
https://doi.org/10.1137/18M123339X
https://doi.org/10.1080/10556780290027837
https://doi.org/10.1007/BF02591934
https://doi.org/10.1007/s10898-019-00755-4
https://doi.org/10.1007/s11228-020-00566-w
https://doi.org/10.1007/s11228-020-00566-w
https://doi.org/10.1007/s101070100263
https://doi.org/10.1007/s10898-017-0568-z
https://doi.org/10.1007/s10898-017-0568-z
https://doi.org/10.1214/aoms/1177703732
https://doi.org/10.1214/aoms/1177703732
https://doi.org/10.1137/16M1115733
https://doi.org/10.1137/16M1115733
https://doi.org/10.1007/s10898-016-0488-3
https://doi.org/10.1007/s10898-016-0488-3
https://doi.org/10.1007/s11590-016-1031-7
https://doi.org/10.1007/BF02591907
https://doi.org/10.1007/978-1-4757-5284-7_11
https://doi.org/10.1007/s10107-018-1235-y
https://doi.org/10.1016/0167-6377(96)00022-3
https://doi.org/10.1016/0167-6377(96)00022-3
https://doi.org/10.1007/BF01589116
https://doi.org/10.1007/s10898-014-0171-5

326 Journal of Global Optimization (2024) 88:285–326

North-Holland Mathematics Studies, vol. 129, pp. 249–271. North-Holland, New York (1986). https://
doi.org/10.1016/S0304-0208(08)72402-2

27. Rockafellar, R.T.: Convex Analysis, Princeton Mathematical Series, vol. 28. Princeton University Press,
Princeton (1970)

28. van Ackooij, W., Demassey, S., Javal, P., Morais, H., de Oliveira, W., Swaminathan, B.: A bundle method
for nonsmoothDC programmingwith application to chance-constrained problems. Comput. Optim. Appl.
78(2), 451–490 (2021). https://doi.org/10.1007/s10589-020-00241-8

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and
institutional affiliations.

123

https://doi.org/10.1016/S0304-0208(08)72402-2
https://doi.org/10.1016/S0304-0208(08)72402-2
https://doi.org/10.1007/s10589-020-00241-8

	A bundle-type method for nonsmooth DC programs
	Abstract
	1 Introduction
	2 Preliminaries
	2.1 Tools from nonsmooth and convex analysis
	2.2 A bundle method for convex optimization

	3 A bundle method for DC optimization
	3.1 Algorithm and convergence properties
	3.2 Descent properties of search directions

	4 Numerical experiments and applications
	4.1 Methods and implementation
	4.2 An academic test problem
	4.3 The minimum sum-of-squares clustering problem
	4.4 The multidimensional scaling problem
	4.5 Edge detection by means of a DC optimization based clustering technique
	4.6 A collection of academic benchmark problems

	5 Concluding remarks
	Acknowledgements
	Appendix: Detailed results for the collection of academic test problems
	References

