

A Service of

ZBШ

Leibniz-Informationszentrum Wirtschaft Leibniz Information Centre for Economics

Asimakopoulos, Panagiotis

Working Paper Macroeconomic impact of tax changes: The case of Greece from 1974 to 2018

EERI Research Paper Series, No. 02/2025

Provided in Cooperation with: Economics and Econometrics Research Institute (EERI), Brussels

Suggested Citation: Asimakopoulos, Panagiotis (2025) : Macroeconomic impact of tax changes: The case of Greece from 1974 to 2018, EERI Research Paper Series, No. 02/2025, Economics and Econometrics Research Institute (EERI), Brussels

This Version is available at: https://hdl.handle.net/10419/311747

Standard-Nutzungsbedingungen:

Die Dokumente auf EconStor dürfen zu eigenen wissenschaftlichen Zwecken und zum Privatgebrauch gespeichert und kopiert werden.

Sie dürfen die Dokumente nicht für öffentliche oder kommerzielle Zwecke vervielfältigen, öffentlich ausstellen, öffentlich zugänglich machen, vertreiben oder anderweitig nutzen.

Sofern die Verfasser die Dokumente unter Open-Content-Lizenzen (insbesondere CC-Lizenzen) zur Verfügung gestellt haben sollten, gelten abweichend von diesen Nutzungsbedingungen die in der dort genannten Lizenz gewährten Nutzungsrechte.

Terms of use:

Documents in EconStor may be saved and copied for your personal and scholarly purposes.

You are not to copy documents for public or commercial purposes, to exhibit the documents publicly, to make them publicly available on the internet, or to distribute or otherwise use the documents in public.

If the documents have been made available under an Open Content Licence (especially Creative Commons Licences), you may exercise further usage rights as specified in the indicated licence.

WWW.ECONSTOR.EU


Economics and Econometrics Research Institute

Macroeconomic Impact of Tax Changes: The case of Greece from 1974 to 2018

Panagiotis Asimakopoulos

EERI Research Paper Series No 02/2025

ISSN: 2031-4892

EERI

Economics and Econometrics Research Institute Avenue Louise 1050 Brussels Belgium

Tel: +32 2271 9482 Fax: +32 2271 9480 www.eeri.eu

Macroeconomic Impact of Tax Changes, The case of Greece from 1974 to 2018

Panagiotis Asimakopoulos*

Athens University of Economics and Business

October 2024

Abstract

We adopted an empirical approach to capture the macroeconomic impact of tax changes for the examined period from 1974 to 2018. It is generally accepted that vector autoregression model (VAR) has proven useful for describing the dynamic interrelationships of multivariate series. Our empirical analysis focus on VAR models and Vector Error Correction Models to capture long term relationships Firstly, we apply a VAR (1,1) estimation that shows that the tax rate negatively affects GDP growth in the short run. The regression shows that a one percent increase in the tax rate lowers the level of GDP growth by 0,86%. The effects of a permanent change are given by the cumulative impulse response function which suggest 0,0025 decline of future GDP growth to one-unit upward shift in total tax rates. In addition, we estimate vector autoregressive model 2, VAR (1,1), and examine the short run relationship among real GDP growth, personal income taxes, tax on goods and services, property taxes, debt, general government consumption expenditure, gross fixed capital formation and household consumption. The analysis of the coefficients suggests that income taxes were the most important factor in debt servicing, which had a negative impact on growth, and taxes on goods and services (transaction taxes) served mainly to address difficulties in government spending. Increased government spending and household consumption have a negative effect on growth and investment, while property taxes are positively correlated with investment in fixed assets. Government spending is negatively correlated with gross fixed capital formation. Moreover, we estimate vector autoregressive model 3, as VAR (1,1) and examine the short run relationship among real GDP growth, debt, general government consumption expenditure and tax rates. Our estimation result suggests that debt, government spending and the level of taxation are negatively correlated with GDP growth while lagged GDP growth is positively correlated with GDP growth of current period. In this context, we conclude that policymakers should pursue a strategy that promotes the rationalization of government spending and the sustainability of debt, keeping the revenue capacity at a level that does not harm long-term growth.

JEL Classification: E6, H2

Keywords: VAR, VECM, Macroeconomic Impact, Tax Revenues, Greek Tax

*Athens University of Economics and Business. Address: Athens University of Economics and Business, 76, Patission st., Athens 10434, Greece, e-mail: asimakop@aueb.gr

1. Introduction

There are numerous macroeconomic and policy considerations that relate the structure of tax revenues and tax changes to fiscal sustainability and macroeconomic performance. Due to the fact that the Greek tax system is characterized by complexity, rigidity and frequent changes in tax legislation, our motivation is to provide with critical insights, to analyze and assess the implementation of the tax policy and to highlight the main recommendations for policy makers and the tax authorities to further contribute to strategic planning, revenue capacity and efficient tax administration. Under this scope we examine the macroeconomic impact of tax revenues on growth and other macroeconomic determinants as well as on government spending and debt under VAR models. The paper is organized as follows. At first, in section 2 we review the related literature between taxation and economic growth. Section 3 describes empirical methodology with summary statistics. Section 4 presents the empirical results of VAR model and the impulse response functions and Section 5 concludes.

2.Literature Review

Several studies examined the role of taxes and their impact on economic growth not only in the context of endogenous growth models, but also in the context of the fiscal consolidation, output growth and government spending, and the impact of tax policy. One of the first attempts to study the impact of taxes on growth was by Solow (1956). According to the neoclassical development model, the break-even point of growth does not seem to be affected by tax policy. This means that the tax effect is so small that even if tax policy causes a reduction in product in some cases, it has no effect on the long-run growth rates of the economy. In contrast, theories of endogenous growth, originally proposed by Romer (1986), develop models of economic development in which government spending and tax policy can have a long-run effect on growth. According to these models, taxes on capital and income taxes on individuals and corporations have a negative effect on growth. However, not all taxes cause the same changes, and the tax mix can be an important determinant of growth. Key studies include Barro (1990), Barro and Martin (1992), Engen and Skinner (1992), Easterly & Rebelo (1993), Alesina and Rodrik (1994), Stokey and Rebelo (1995), and Jones et al. (1993). Helms (1985) examined the relationship between tax increases and negative effects on economic growth, while Pecorino (1994) focused on the effects of tax reforms on the per capita growth rate. Koester and Kormendi (1989) examined economic growth in relation to the average tax rate and marginal tax rates. Overall, the studies of Marsden (1983), Manas-Anton (1987), Skinner (1987), Koester and Kormendi (1989), Martin and Fardmanesh (1990), Engen and Skinner (1992), Easterly and Rebelo (1993a), Easterly and Rebelo (1993b) showed a negative partial correlation between growth and the ratio of tax revenues to GDP and average and marginal tax rates. For a comparison of simulation results of growth effects on taxation in steady state, see Lucas (1990), King and Rebelo (1990), Kim (1992), Jones, Manuelli, and Rossi (1993), who compared growth effects with various parameters such as labor supply elasticity, tax rates, and depreciation of human and physical capital. In addition, Lehmussaari (1990) and Marsden (1990) and Trella and Whalley (1991, 1992) have shown that the combination of different taxes can have significant effects on savings, capital investment, and economic growth. Barro (1991) also emphasized the positive relationship of education in human capital formation and the negative association of government reforms and economic development, while Plosser (1992) found a significant negative correlation between the level of taxes on income and profits as a percentage of GDP and the growth of GDP per capita. Similarly, King and Rebelo (1990), using an endogenous growth model, simulated changes in the income tax and found that an increase from 20% to 30% reduced economic growth by 2 percentage points. Easterly and Rebelo (1993), however, find that the level of taxes does not matter in regressions using new theories of economic growth. Devereux and Love (1995) examined the qualitative and quantitative relationship between taxation and output changes based on an endogenous growth model

and concluded that income, capital, and consumption taxes tend to reduce growth. At the same time, Slemrod (1995) asserted a positive, negative, or no correlation between taxation and per capita income. Zee (1996), examining a sample of a total of 100 countries, 24 of which are members of the OECD, compared the tax revenues of developed and developing countries and concluded that the statistical correlation between economic growth and the level of taxation is not significant for all groups of countries except the recently industrialized countries. Kerr and MacDonald (1999) found that a causal relationship between the logarithms of the economic and tax variables exists only in some of the countries considered. Also, Widmalm (2001) found that economic growth was positively related to corporate income tax and negatively related to personal income tax, while he found gross results for property, goods and services, and payroll taxes. Contributions such as that of Tosun and Abizadeh (2003) point out the negative relationship between payroll, goods and services taxes and GDP per capita, while on the contrary they find a positive relationship between personal and property taxes and economic growth. In the same context, Gordon and Li (2005) focus mainly on the impact of tax structure on economic growth. Also, Anastasiou and Dritsaki (2005) examined the relationship between tax revenues and economic growth for Greece. Using annual data for the period 1965 to 2002, they find that there is a one-way causal relationship between the direct tax rate and the economic growth rate, but also between tax revenues and the country's economic development. In another similar study, Dritsaki et al. (2005) examine the relationship between the different tax categories and economic growth in Greece using cointegration analysis. Myles (2007), in his theoretical analysis of the impact of tax policy on economic development, points out that lower tax rates, broadening of the tax base, and higher tax consumption relative to income tax are reforms that promote development. Johansson et al. (2008) argue that income taxes, extraordinary property taxes, and consumption taxes are significant barriers to economic development. Arnold et al. (2011), in a sample of 21 OECD countries over the period 1971-2004, found that tax revenue was negatively related to GDP per capita, while a shift from direct to indirect taxation was positively and significantly related to GDP per capita. Estimates from the model also indicated that taxes on real estate and excise taxes are more business-friendly than personal and corporate income taxes, which make them more harmful. Another endogenous growth model was developed by Barro (1990), who examined the role of taxes and their relationship with economic growth, including tax-financed policies implemented by the government to affect output. In addition, E. Engen and J. Skinner (1992) examined the impact of tax policy on economic growth. Government fiscal policy can have two opposite effects on an economy. Easterly & Rebelo (1993) examined the empirical regularities that exist between taxes, fiscal policy variables, the level of development, and the growth rate. Stokey and Rebelo (1995) examined which parameters of the endogenous growth model are crucial for determining the impact of tax reform from a quantitative perspective. Pecorino (1994) noted that replacing the income tax with a consumption tax will lead to a 1% increase in per capita growth per year. Similarly, replacing capital taxation with a higher tax on labor income will lead to a slight decline in economic growth, as shifting the burden from capital to employment will create distortions in the relationship between capital and labor in production. Mendoza et al. (1994) proposed a methodology for calculating effective tax rates and pointed out important international differences in implemented tax policies ¹. Alberto Alesina and Dani Rodrik (1994) examined the relationship between policy and economic growth using a simple model of endogenous growth that takes into account tax policy redistributive effects between capital and labor and welfare effects. L. Stokey and S. Rebelo (1995) conducted a study in which they used an endogenous growth model to assess which

¹For relevant studies of effective tax rates, see Martinez-Mongay (2000), Carey and Tchilinguirian (2000), and Carey and Rabesona (2002), which focus on a sample of OECD countries over the period 1975-2000. Trabandt and Uhlig (2011) provide a database of effective tax rates for several EU countries and the United States, while Papageorgiou et al. (2012) compare Greece with the rest of the euro area. See also McDaniel (2007). Dellas et al. (2017). For euro area and Greek effective tax rates, see Kollintzas, Papageorgiou, and Vasilatos (2010). Papageorgiou et al. (2011) find that despite high statutory tax rates, effective tax rates in Greece are much lower than in the euro area, suggesting high levels of tax evasion and avoidance.

factors are important for the impact of tax reform on the long-run growth rate of the economy. Alesina and Perotti (1995) also examined the expansion of the government budget, with debt, fiscal policy, and the effects of tax policy being key determinants, while Engen and Skinner (1996) examined the growth effects following the implementation of a major tax reform. In addition, J. Agell, T. Lindlh, and H. Ohlsson (1996) examined the relationship between economic growth and the size of the public sector in the context of a trade-off between the negative effects of imposing higher taxes and the positive effects of public investment and government intervention. Jang-Ting Guo and Kevin J. Lansing (1997) examined the effects of the structure of the tax system on the welfare of the economy in the context of an excellent fiscal policy model. In particular, they seek to examine the effects on welfare of two features of the tax system. Mendoza et al. (1997) provided both theoretical and empirical evidence on how tax changes significantly affect investment and long-run growth. Myles (2000) assesses the theoretical and empirical evidence on how taxation affects the rate of economic growth. Myles (2009) also points out that economic growth must be viewed as the foundation for greater prosperity and that the relationship between sustainable growth and taxation is an important goal for policymakers. In addition, Steven P. Cassou and Kevin J. Lansing (2003) examined the impact of changing the tax system from progressive to proportional on growth. Daveri and Tabellini (2000) examined the impact of the tax rate on the level of unemployment and economic growth. First, an increase in taxes on labor leads to a reduction in labor demand and thus to unemployment, and second, the marginal product of capital falls in the long run, reducing the incentive to invest and grow Widmalm (2001) examined the impact of the tax structure on growth using cross-sectional data for three OECD countries over the period 1965-1990. Despite the limitations of using only three OECD countries, the following methodology was adapted from Levine and Renelt (1992), but uses four basic variables, namely income, the ratio of investment to GDP, population growth, and the average tax rate². Padovano and Galli (2001) propose refined econometric estimates of effective marginal tax rates and conclude that they are negatively correlated with economic growth for a data set of 23 OECD countries. Gale and Potter (2002) evaluated EGTRRA and conclude that its implementation has negative effects on growth and fiscal sustainability, as well as on interest rates and fiscal complexity. Li and Sarte (2004) examined the effects of progressive taxes on heterogeneous growth models. Lee and Gordon (2005) examined how tax policy affects a country's growth rate, and Tosun and Abizadeh (2005) empirically examined the correlation of tax changes in personal, property, service, and payroll taxes with GDP per capita and economic growth. Pjesky, (2006) examined the relationship between the corporate income tax and economic performance and concluded that the top tax rate has little effect on income and employment, while Marcellino, (2006) focused on a set of stylized facts about tax policy and the effectiveness of fiscal and monetary policy. Bania et al, (2007) studied the linear incremental effect of taxes on fiscal policy in the U.S., while Reed, (2008) estimated the negative relationship between taxes and income growth using U.S. data from 1970-1999. The result showed that taxes used to finance general expenditures are associated with significant, robust negative effects on income growth. Arnold (2008) examined the relationship between the composition of taxes and economic growth and concluded that income taxes are generally associated with lower economic growth than consumption and property taxes. Also, K. Angelopoulos, J. Malley, A. Philippopoulos (2008) examined the quantitative effects of a change in tax composition on the long-run growth and expected lifetime utility of the UK economy for the period 1970-2005. Arnold et al. (2011) identified fiscal policies that both accelerated the fiscal recovery and contributed to long-term sustainable growth. Gemmell et al. (2011) point out that the estimated longrun growth effects of fiscal policy tend to be achieved quickly, which is consistent with empirical results from short-run models. Ferede and Dahlby (2012) also examined the effects of tax rates on economic growth and found that a higher statutory corporate tax rate is associated with lower private investment and slower economic growth, while a reduction in the corporate tax rate has a statistically significant

² First, the share of the various tax categories in total revenues was considered (corporate income tax, personal income tax, property tax, taxes on goods and services, and payroll tax)

positive effect on the growth rate. In the same context, McBride (2012) and Huang and Frentz (2014) have highlighted that it is relatively unclear whether tax cuts promote growth when applied as nonexogenous changes in tax policy. Hungerford (2012) also attempts to explore whether or not there is a relationship between the level of tax rates and taxpayer income with economic growth, long-term debt reduction, and productivity. Gravelle (2014) summarizes evidence on the relationship between tax rates and economic growth by outlining the framework of tax reforms and indicating whether broadening the tax base or changes in tax rates have an impact on the economy. Gemmell et al. (2014) also concluded that direct taxes tend to hurt economic growth because the tax impact on GDP is largely through factor productivity rather than factor accumulation. Gale and Samwick (2014) argue that the positive effects of tax cuts are offset by negative policy changes, which include subsequent tax increases or cuts in government spending to reduce government debt and deficits. Gale et al. (2015) finds that neither tax revenues nor top income tax rates in U.S. states have a stable relationship with economic growth or employment, while Li and Lin (2015) analyzed the impact of the sales tax on economic growth in the United States over the 1960-201 3period and find that economic growth is negatively related to the sales tax in the long run but has a positive impact in the short run. Akgun et al. (2017) also showed that lowering corporate and personal income taxes while raising taxes on recurrent wealth and consumption could increase GDP growth. Galindo (2011) and Blochliger (2015) study that taxes on corporate or personal income reduce incentives to increase supply, while property tax has no disincentive effect. Jelena et al. (2018) provide econometric models to estimate the tax impact on economic growth using a panel of OECD countries, while Karras (2019) examines the macroeconomic impact of tax changes by showing that changes in the tax rate have temporary effects on the real growth rate but permanent effects on the level of output. Zidar (2019) examines how tax changes affect aggregate activity for different income groups. Alinaghi (2021) conducts an analysis of the impact of taxes on economic growth in OECD countries when part of the tax package is taxed positively or negatively. The main finding is that a 10% tax increase is associated with a decline in annual gross domestic product (GDP) growth of about -0.2% in the case of a negative tax package. VAR approaches include Blanchard and Perotti (2002), who studied the dynamic effects of shocks in government spending and taxes on economic activity in the U.S. in the postwar period using a mixed structural VAR approach. Similarly, Barro and Redlick (2011) examine tax multipliers for U.S. annual data including World War II, focusing on changes in defense spending and other components of GDP, particularly investment, and show that increases in average marginal tax rates had negative effects on GDP. Perotti (2002) examined the effects of fiscal policy on GDP, prices, and interest rates using a structural VAR model. Alesina et al. (2018) also examine the impact of fiscal adjustments on output, while Mertens and Olea (2018) use the ProxySVAR model together with the instrumental variable method for local projections³, to examine the macroeconomic effects of changes in marginal tax rates on output and unemployment. They conclude that reductions in marginal tax rates have positive effects on output and negative effects on unemployment. Alan et al. (2021) applies an SVAR to U.S. federal spending, revenue, and GDP to examine the effects of tax shocks. In addition, Mountford and Uhlig (2002, 2009) examined the effects of fiscal policy on U.S. data using vector autoregressions and conclude that the best fiscal policy to stimulate the economy and improve GDP appears to be a deficit-financed tax cut. Hussain and Malik (2016) use the ProxySVAR methodology and, applying the identification strategy of Romer and Romer (2010), find that tax cuts have a positive and significant effect on output. Afonso and Sousa (2012) examined the macroeconomic impact of fiscal policy using a Bayesian Structural Vector Autoregression (B-SVAR) approach and conclude that government spending shocks generally have a negative impact on GDP. A newly built up method for measuring the macroeconomic impact of tax

³ Using new narrative measures of exogenous variation in marginal tax rates associated with postwar tax reforms in the United States (1946-2012); see also Jordà and Taylor (2016), Fieldhouse et al. (2017), Stock and Watson (2018), Mertens and Olea (2017), Ramey and Zubairy (2018)

changes was the narrative approach⁴. This method relies on legislative acts to identify tax shocks and estimate their macroeconomic impact. This approach has been used extensively to estimate the effects of monetary policy in Romer and Romer (1989, 2004), government spending in Ramey and Shapiro (1998) and Ramey (2011), and for fiscal consolidations in Guajardo et al. (2011). First, Romer and Romer (2010) examined the impact of tax changes on economic activity by using the record to identify the size, timing, and main reasons for all major tax policies in the postwar period. Similarly, Favero and Giavazzi (2009) estimate tax multipliers by plotting differently the time series constructed by Romer and Romer for tax changes in the U.S., including output, government spending and revenue, inflation, and the nominal interest rate. Also, Favero and Giavazzi (2010, 2012) reconcile evidence of tax shocks in VAR and shocks obtained using the narrative method. In an application of the narrative approach to the United Kingdom, Cloyne (2011) finds results very similar to the original work for the United States-a tax increase of 1% of GDP lowers GDP by 2.5% over three years. Devries et al. (2011) focus on discretionary changes in taxes and government spending. Perotti (2012) also argues that, from a theoretical perspective, the discretionary component of taxation should be granted different effects than the automatic response of tax revenues to macroeconomic variables. Alesina, Favero, and Giavazzi (2012) emphasize that the main advantages of the narrative approach lie in the distinction between different shifts in fiscal policy and between anticipated and unanticipated components of fiscal policy shocks, which is important to avoid biases in the estimation of fiscal multipliers. Guajardo et al, (2014) examine the short-run effects of fiscal consolidation on economic activity in OECD economies by identifying changes in fiscal policy that are motivated by a desire to reduce the fiscal deficit rather than by a response to prospective economic conditions. In addition, Mertens and Ravn (2013) estimated the dynamic effects of tax changes in the United States by developing a new narrative representation of changes in federal tax liability on personal and corporate income. Also, Cloyne (2013) provided new estimates of the macroeconomic impact of tax changes using a new narrative dataset for the United Kingdom using the Romer and Romer narrative strategy and found that a 1% tax cut increases GDP by 0.6% in the first quarter and by 2.5% over three years. Guajardo et al. (2014) examine the short-run effects of fiscal consolidation on economic activity in OECD countries by examining contemporaneous historical records. In addition, Romer and Romer (2014) examined the incentive effects of marginal tax rates in the United States during the interwar period. Mertens and Ravn (2014) also use narrative measures as proxies for structural shocks to total tax revenues in a SVAR and estimate tax multipliers. Nughen et al. (2016) find that income tax shocks have large short-run effects on GDP, private consumption, and investment. Gunter et al. (2017) estimate the impact of global VAT changes on output using the narrative approach. Kato et al. (2018) use the narrative approach to identify tax changes unrelated to current economic conditions and estimate the impact of these changes on macroeconomic variables during and outside the zero lower bound periods in Japan. Dabla-Norris and Lima (2018) build a new narrative dataset of tax changes to analyze the macroeconomic impact of tax changes in years of fiscal consolidation, distinguishing between tax rate and tax base changes and, moreover, between personal, corporate, and value-added tax changes. Hebous and Zimmermann (2018) found that narrative tax measures are only weakly correlated with cyclically adjusted tax revenues for the U.S. and the U.K., while Cloyne et al. (2018) apply a narrative study to examine the impact of tax policy on economic activity in the U.K. and find that tax changes have a significant impact on GDP, with impact multipliers around 0.5 and exceeding 2 within two years. Nguyen et al. (2020) estimate the macroeconomic impact of exogenous changes in income and consumption taxes using narrative tax shocks to changes in tax liability in the United Kingdom. Wan der Wielen (2020) examines

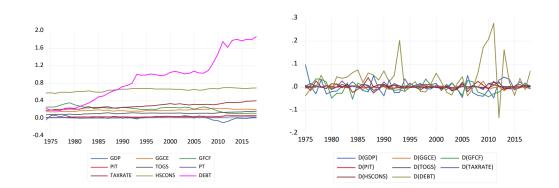
⁴ As a rule, the narrative approach has appreciated greater multipliers. Favero and Giavazzi (2012) and Perotti (2012) discuss and compare the two approaches in detail. For narrative tax datasets, see Romer and Romer (2010), Cloyne (2013), Uhl (2013), Lopes (2015), Pereira and Wemans (2015), Gechert et al (2016), Gil et al (2018), Loate et al (2021) for country-specifics. For cross-country, see Devries et al (2011), Alesina et al (2015, 2017), Gunter et al (2019), David and Leigh (2018). For the identification problem in narratives and VAR, see Leeper (1997).

the macroeconomic effects of anticipated and unanticipated tax changes in the European Union between 2000 and 2016 and provides narrative panel estimates of output and employment multipliers for tax changes.

3. Data and Methodology and Empirical Strategy

At this point we set up the empirical strategy to assess the macroeconomic impact of Greek Tax system⁵. To capture the dynamic relationship between tax rates and macroeconomic variables, our multivariate data analysis is conducted within the framework of vector autoregressive models and vector error correction models. We begin by creating the dataset that we will use for our empirical analysis. In terms of variables, the total tax revenue-to-GDP ratio is defined the total tax revenue as a percentage of GDP (TAX RATE) and applied to annual real GDP growth (GDP) to examine the overall effect of taxation on economic growth. Thus, at first place, we apply a general VAR model that enables us to estimate the impacts of total tax rate on economic growth. In addition, instead of looking only at the GDP growth and bearing in mind that taxes is not the only factor for economic growth, we also examine the relationship on other macroeconomic variables such as gross fixed capital formation (GFCF) as a proxy for investment, government consumption expenditure (GGCE) and household consumption (HSCONS) which are expressed as percentage of GDP. Having in mind, the crucial role of debt sustainability we also include debt (DEBT) in our analysis. In addition, another extension is the partial decomposition of tax revenues. More specifically, we focus on personal income tax (PIT), tax on goods and services (TOGS) and property taxes (PT) and their impact. Furthermore, we assess the dynamic relationship between total tax rate, government expenditures, debt and GDP growth. Data are already percentages or percentage of GDP so there is no need for log transformation.

Table 1 presents briefly descriptive statistics as well as Figure 13 shows the plot of level and difference graphs which suggest that most series show a trend, while the presence of structural breaks is also evident. Moreover, we can clearly see that the first difference of the variables is stationary and that have mean reversion, which means that oscillates around zero ⁶. Before we perform the VAR estimation, it is important that we conducted a diagnostic estimation for the research variables. The first test that must be performed is the stationary test to assess the presence of unit roots in the variables. More specifically, the test is performed using the Augmented Dickey Fuller test which uses both the intercept and trend structure of the data to test the null hypothesis that a unit root is present on a time series. The Augmented Dickey-Fuller test shows that variables (except for GDP growth) are nonstationary in their level form for both the intercept and trend terms. Consequently, they exhibit a unit root in their level form. However, all variables became stationary after their first difference was taken. Therefore, all research variables are stationary at I (1) and do not have a unit root in their trend and intercept structure. When the time series are not stationary, we generally take differences of the data to make them stationary, and then fit a model VAR and is estimated using the principle of least squares. In this way, the time series are adjusted for an underlying trend and seasonal or cyclical effects are more easily captured. The adjustment is made through differencing⁷ them except for GDP growth,


⁵ All data from the OECD and The Conference Board Total Economy Database, the IMF, and AMECO covered the period from 1974 to 2018 and expressed as percentage or percentage/GDP. We remove trend information from time series by detrending (differentiating) and we also use lagged growth.

⁶ A stationary time series oscillates around its mean μ and has a constant variance for all t. However, many economic series exhibit upward (or broken) trends over time. There are two approaches to capturing these trends. The deterministic trends (trend-stationary) and the unit root process (first-difference process - integrated of order d=1 - I (1))

⁷ By doing this, overall upward trend has been removed. Stationary differences and stationary cointegrated relationships between non-stationary variables allow us to analyze economic data as short-term variations around moving long-term equilibria.

which is stationary, but we used lagged growth to remove a time-varying mean as well as control for historical factors that might directly affect GDP growth in the current period. Nevertheless, by differentiating the time series eventually make them stationary, but we experienced the cost of ignoring possible long-term relationships between levels. As far as cointegration is concerned, a usual approach is to use the Johansen method to test whether or not there is cointegration ⁸. In the presence of cointegrated series we use VECM to capture a long-term relationship between some non-stationary variables in the data. Except for the above critical preparatory test, we analyzed the adequacy of the estimated VAR in the context of diagnostic tests. The stability of the VAR model exists when all inverse roots of the characteristic polynomial are within the unit circle and the absolute value is less than one. Granger causality tests also tested whether endogenous variables could be treated as exogenous. The lag exclusion test shows whether all lags of endogenous variables are jointly significant and Lag Length Criteria specify the maximum lags to VAR. Furthermore, the results of VAR are confirmed and tested for autocorrelation, normality and heteroskedasticity of the residuals. Once the model is tested, we provide with an impulse response function analysis, we estimate VAR system using Ordinary Least Squares methods, perform Wald test for coefficients and provide with variance decomposition analysis.

Mean Median Maximum Minimum Std. Dev. Skewness Kurtosis	GDP 0.014676 0.020000 0.067000 -0.101500 0.035668 -1.146762 4.473706	GGCE 0.183769 0.182600 0.233100 0.145700 0.022189 0.194667 2.279479	GFCF 0.221424 0.236900 0.354100 0.107700 0.060017 -0.488918 2.959064	PIT 0.038844 0.035600 0.070700 0.016700 0.012878 0.578778 2.856215	TOGS 0.115598 0.116100 0.158000 0.080500 0.019143 0.367266 2.911134	PT 0.017618 0.019000 0.031700 0.006500 0.007837 0.208531 2.024324	TAXRATE 0.285211 0.284600 0.400000 0.182500 0.058738 0.100126 2.073238	HSCONS 0.649794 0.661569 0.702175 0.567792 0.037652 -0.630202 2.155383	DEBT 0.916742 0.989600 1.864000 0.179000 0.524810 0.289986 2.116325
Jarque-Bera Probabilitv Sum Sum Sq. Dev.	13.93511 0.000942 0.660400 0.055976	1.257619 0.533226 8.269600 0.021664	1.795949 0.407394 9.964100 0.158488	2.551145 0.279271 1.748000 0.007297	1.026440 0.598565 5.201900 0.016125	2.111033 0.348013 0.792800 0.002703	1.685603 0.430503 12.83450 0.151808	4.316246 0.115542 29.24075 0.062377	2.094843 0.350841 41.25340 12.11873
Observations	45	45	45	45	45	45	45	45	45

Descriptive Statistics of the research variable (%), Estimations based on EViews

Figure1: Levels and Difference Presentation of the variables

⁸ In a presence of cointegration instead of using VAR in levels, we estimate Vector Error Correction Models that combines levels and differences. Therefore, to determine if there exists a long run relationship between dependent and independent variables we proceed with Johansen tests. If the series are cointegrated efficiently represented with error correction models which link short run with long run behavior. The cointegrated variables have a moving average (MA) representation of their 1st-difference. Vector Error Correction Mechanism/model (VECM) includes the error terms of the cointegrating relationships as an error correction term.

4. Empirical Results

Total Tax Revenue and GDP growth

The estimation result on VAR (1,1) shows that the tax rate negatively affects GDP growth in the short run. The regression shows that a one percent increase in the tax rate lowers the level of GDP growth by 0,86%. In addition, the tax rate and GDP in the previous period can have a strongly positive effect on the figures in the following year. Although the results from VAR provide information on the short-run relationship between macroeconomic variables-in our case, it is crucial to know their long-run behavior⁹. So, we test for cointegration we can conclude that VAR model is useful both in short and long run as both trace and max-eigenvalue indicate no cointegration at 5% level. Thus, we do not need to follow error correction methods. In addition, we conducted a Granger causality¹⁰ test to examine the causal relationship between GDP growth and tax rates. As part of the VAR Granger causality/block exogeneity Wald test, we perform the test which results of which are shown in Table 6. The null hypothesis is that excluded variable does no Granger cause equation variable. The probability (pvalue=0.2002 > 0.05) suggests that GDP growth has no causal effect on tax rate. However, the probability (p-value=0.0144 < 0.05) suggests that tax rate has Granger causality with GDP growth. An important preparatory step in the analysis of impulse response is the VAR Lag Order Selection Criteria. Based on VAR selection from the below table we estimate VAR model with 1 lag. After estimating a VAR model, further analysis is performed focusing on diagnostic tests such as autocorrelation, heteroskedasticity, and non-normality. Thus, we performed the normality test on the residuals and found that the p-value is greater than the 5% significance level. The calculated values for the a p-value for Skewness (0,3829), and Kurtosis (0,1426) and Jarque-Bera (0,2134) are greater than 5% and therefore residuals are multivariate normal. Moreover, an important aspect of VAR process is its stability. This means that it generates stationary time series with time invariant means, variances and covariances structure. Technically, the stability of a VAR system is evaluated by the roots of the characteristic polynomial. More specifically, if the moduli of the eigenvalues of the coefficient matrix are less than one, the VAR process is stable¹¹ and VAR model variables are stationary. Thus, the stability of a VAR model is indicated by roots that are all less than 1, as shown in the inverse roots of the AR Characteristic Polynomial. It is important to confirm the results of VAR after estimating the autocorrelation of the residuals. To achieve this, we test the autocorrelation of the residuals using VAR Residual Serial Correlation LM and Portmanteau Test. The null hypothesis of Portmanteau test as well as Serial Correlation LM test is that there is no autocorrelation between residuals. The test results indicate that there is no serial correlation at lags h and at lags 1 to h, as the calculated p-values are greater than 5%. To use the VAR model, we also need to confirm that there is no heteroskedasticity of the residuals. We use the VAR Residual Heteroscedasticity Test, and the test results are shown in the following table. The p-value is greater than 5%, which means that we confirm that the residuals are heteroskedastic. From the below table we can see that system shows model with six coefficients, from whom first three are for defining the model of GDP as dependent variable and another three are for defining tax rate. Therefore, based on Wald test, VAR model results confirms that coefficient for the lag of tax revenues are statistically significant for the lag GDP growth; coefficient for the lag of GDP growth are statistically significant for the current GDP growth. Moreover, we confirm the null hypothesis that

⁹ Long run behavior can be explained by the VECM not only provides an answer to the question of whether the short-run relationship of the variables is consistent, but also allows for forecasting. Estimating the VECM first requires testing for the presence of cointegration. The unrestricted VAR method explains short-run causality because the time series are cointegrated. VECM is a restricted model in differences.

¹⁰ The Granger causality tests examine the pairwise causal relationship between variables that can cause a one-way interaction, two-way interaction, or no interaction.

¹¹ If the model is not stable then the estimated results are not valid which can lead to spurious regression. Spurious regression problem arises on trending (instead to economic reasons) or non-stationarity. Possible implications large t and R²

tax rate and lagged GDP growth is Grange causal in with GDP. Also, we performed Portmanteau and Normality residual test as well as we present system cross correlations. The impulse response analysis is based upon the Wold moving average representation of VAR process and it is used to investigate dynamic interaction between endogenous variables. Therefore, as it can be seen clearly from the above chart, a one standard deviation shock in the tax rate can lead to a substantial decline in GDP growth. This negative response continues to worsen through period 2. The response remains in negative region with an upward trend through period 3. The level of GDP growth remains in steady state through periods 5 to 10. It is critical to say that the above effects are for a one-time-only change, and would fade out to zero in the long run. The effects of a permanent change are given by the cumulative sums of the above IRFs. For example, the effects on future GDP values of a permanent one-unit upward shift in TAX RATE ¹². Using the estimated model, which provides information about the long-term relationship of the variables, we also perform a variance decomposition analysis, which allows us to characterize the dynamic behavior of the model. Table 20 suggests that in the long run, the variation of real GDP growth depends also on shocks to tax rates. More analytically, in the short run, impulse or shock to GDP growth accounts 89,65 percent variation of the fluctuation in GDP growth (own shock). This implies that GDP growth is strongly endogenous. In the short run shocks to tax rates can cause 10,34 percent variation in GDP growth which indicated that taxation policy is strongly exogenous. On the other hand, in the long run impulse or shock to GDP growth accounts 88,79 percent variation of the fluctuation in GDP growth (own shock). This implies that GDP growth is strongly endogenous in the long run while shocks to tax rates can cause 11,20 percent variation in GDP growth which indicated that taxation policy is still strongly exogenous in long run. This model confirms that tax rates and tax policy in the short-run, as a policy-making tool for overall economic growth, have a Granger causality effect on GDP for the period studied from 1974 to 2018, implying that the setting and structure of taxation is important not only for fiscal consolidation issues but also for the impact on economic development.

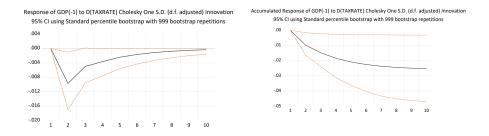


Figure2: Impulse Response Functions GDP growth and TAXRATE

Decomposition of Tax Revenue, GDP and Other Macroeconomic Variables

We estimate vector autoregressive model VAR (1,1) and examine the short-run relationship among real GDP growth, personal income taxes, tax on goods and services, property taxes, debt, general government consumption expenditure, gross fixed capital formation and household consumption. All the endogenous variable are the differenced time series except for lagged growth to avoid non-stationarity issues. Also, it is obvious that our variables are connected with short-run relationship. Our estimation result suggests personal income taxes, tax on goods and services, debt, general government consumption expenditure, and household consumption are negatively ¹³ correlated with GDP growth while lagged GDP growth is positively correlated with GDP growth of current period. Also, property taxes are positively correlated with gross fixed capital formation, debt is positively correlated with

¹² From accumulated IRF we find -0,025 at horizon t=10.

 $^{^{13}}$ t > 2, i.e., statistically significant coefficient at 5% level. Government and household consumption expenditures are also negatively correlated, but not with statistical significance at the 5% level

personal income tax and government expenditures with tax on goods and services. Government expenditures is negatively correlated with gross fixed capital formation. Our estimation result suggests thar personal income taxes (-1,97%), tax on goods and services (-0,85%), debt (-0,19%), general government consumption expenditure (-0,54%), and household consumption (-0,65%) are negatively correlated with GDP growth while lagged GDP growth is positively correlated with GDP growth of current period (0,48%). Also, property taxes are positively correlated with gross fixed capital formation (3,62%), while debt is positively correlated with personal income tax (0,04%) and government expenditures with tax on goods and services (0,29%). The analysis of the coefficients suggests that income taxes were the most important factor in debt servicing, which had a negative impact on growth, and taxes on goods and services (transaction taxes) served mainly to address difficulties in government spending. Increased government spending and household consumption have a negative effect on growth and investment, while property taxes are positively correlated with investment in fixed assets. Government spending is negatively correlated with gross fixed capital formation (-0.14%). The VAR model passes diagnostic tests such as autocorrelation, heteroskedasticity, and stability test. Also, we test for cointegration we can conclude that VAR model is useful in short run while we conclude that we should apply error correction methods (VECM model 1) to capture long term relationships Based on the test of VAR Lag Order Selection Criteria, we will first estimate the model VAR with one lag. Moreover, the following table of roots of the characteristic polynomial shows that no root is outside the unit circle and the VAR satisfies the stability condition. Also, there is no autocorrelation, heteroskedasticity between the residuals and normality test is performed.¹⁴ In addition, we performed a Granger causality test to examine the causal relationship between the endogenous variables. The results presented in the below table, demonstrate the existence of a short-run relationship between the variables. The null hypothesis states that the excluded variable has no Granger causality with the equation variable, and the ALL states that all endogenous variables except those of the dependent variable are jointly zero. In addition, the results of VAR are tested for the presence of autocorrelation. From the above table, it is clear that in both the Portmanteau test and the serial LM correlation test, the null hypothesis cannot be rejected and we can confirm that there is no autocorrelation between the residuals. Another important diagnostic test is the VAR residual heteroscedasticity test. Since the p-value is 0.30 > 0.05, the null hypothesis cannot be rejected, so the residuals can be classified as heteroscedastic. Moreover, we present the impulse response functions.

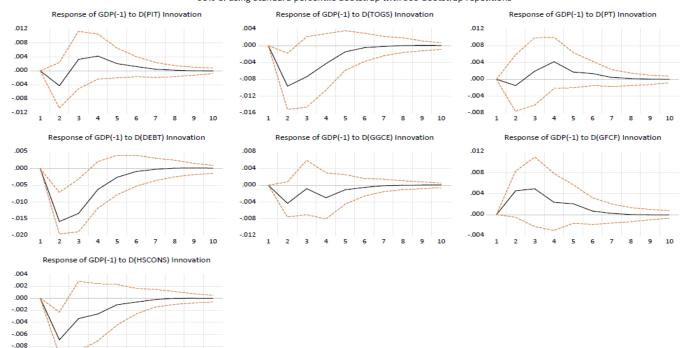
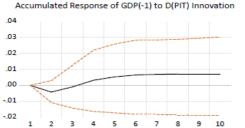
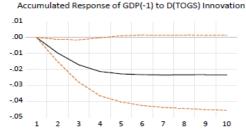
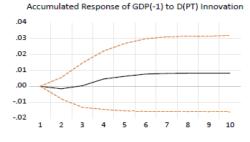

¹⁴ During the analysis of the VAR, we need to estimate coefficients that are BLUE (best linear unbiased estimators). Non normality issues are a due to the fact of small sample but no presence of autocorrelation, heteroscedasticity and stability allow us to interpret statistical significance.

Figure3: Impulse Response Functions

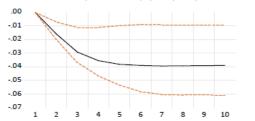
-.010 1 2 3

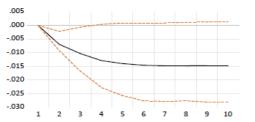

4 5 6

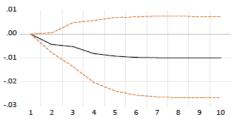

7 8 9 10

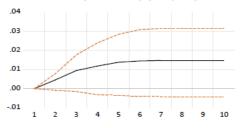


Response to Cholesky One S.D. (d.f. adjusted) Innovations 95% CI using Standard percentile bootstrap with 999 bootstrap repetitions


Accumulated Response to Cholesky One S.D. (d.f. adjusted) Innovations 95% CI using Standard percentile bootstrap with 999 bootstrap repetitions




Accumulated Response of GDP(-1) to D(DEBT) Innovation

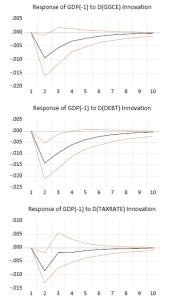

Accumulated Response of GDP(-1) to D(HSCONS) Innovation

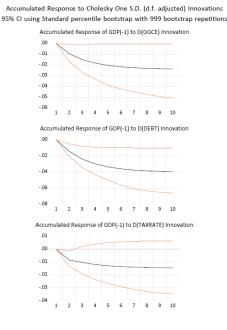
Accumulated Response of GDP(-1) to D(GGCE) Innovation

Although the results of VAR provide information on the short-run relationship between macroeconomic variables, we still do not know how they behave in the long run. The VECM not only set the framework of whether the short-run relationship between variables is persistent, but also allows us to make long term forecasts. At first, we examine for cointegration and we identify the existence of two cointegrating relationships in the VAR at the 5%. As a result, since both models exhibit two cointegrating relationships we estimate the VEC models which require not only the variables to be linked in the short run, but to be related in the long run due to the existence of cointegration. The two cointegrated equations summarize the long run behavior of the variables. More specifically, the GDP growth is related negatively with personal income tax and tax on goods and services, debt, government expenditure and household consumption. Moreover, property taxes are related positively with gross fixed capital formation and tax on goods and services. Debt is related positively with personal income taxes. Government consumption expenditures are related positively with tax on goods and services and negatively with household consumption. Using the estimated model, which provides information about the long-term relationship of the variables, we also perform a variance decomposition analysis, which allows us to characterize the dynamic behavior of the model. More analytically, the impulse or shock to GDP growth in the short run accounts for 48.82% of the variation in GDP growth (own shock). This means that GDP growth is strongly endogenous while shocks to other variables are strongly exogenous.

Taxation, Government Spending, Debt and Growth

Also, we examine the short-run relationship among real GDP growth, debt, general government consumption expenditure and tax rate. All the endogenous variable are the differenced time series except for lagged growth to avoid non-stationarity issues. Also, it is obvious that our variables are connected with short-run relationship. Our estimation result suggests that debt, government spending and the level of taxation are negatively¹⁵ correlated with GDP growth while lagged GDP growth is positively correlated with GDP growth of current period. Our analysis reveals that tax revenue (-0,77%), government spending (-0,87%) and debt ratio (-0,19%) have strong negative relationship with growth and tax revenue and government spending are more harmful to growth than debt ratio. This can be explained by the fact that poor tax collection and increased government spending are crucial factor for debt sustainability and thus policies should focus on preventive rationalization measures and adopt a strategy that limit government spending and maintain revenue capacity to a level not harmful to GDP growth as well as debt. As for the stability condition, we can confirm that all the roots of the characteristic polynomial lie in the unit circle, so that the variables of the model VAR are stationary. Also from the VAR Lag Order Selection Criteria, the indicated lag order is the lag one (1). Also, VAR results should be tested for residual autocorrelation and normality and we can confirm that there is no autocorrelation between residuals. Moreover, since the p-value is 0,1162>0,05 we cannot reject the null hypothesis which means that we can confirm the heteroscedasticity of residuals. In addition, we performed a Granger causality test to examine the causal relationship between the endogenous variables. The results demonstrate the existence of a short-run relationship between the variables. The null hypothesis states that the excluded variable has no Granger causality with the equation variable¹⁶, and the ALL states that all endogenous variables except those of the dependent variable are jointly zero. Although the results of VAR provide information on the short-run relationship between macroeconomic variables, we still do not know how they behave in the long run. The VECM not only set the framework of whether the short-run


¹⁵ t > 2, i.e., statistically significant coefficient at 5% level.


¹⁶p<5% we reject the null hypothesis

relationship between variables is persistent, but also allows us to make long term forecasts. At first, we examine for cointegration. Our test suggests that, taking into account the Trace Statistic and the Maximal Eigenvalue Statistic, we identify the existence of one cointegrating relationship in the VAR at the 5%. As a result, since both models exhibit two cointegrating relationships we estimate the VEC models which require not only the variables to be linked in the short run, but to be related in the long run due to the existence of cointegration.

Figure4: Impulse Response Functions

Response to Cholesky One S.D. (d.f. adjusted) Innovations 95% CI using Standard percentile bootstrap with 999 bootstrap repetitions

5.Conclusions

By and large, our main research questions are valid and consistent with the relevant literature that suggest that most theoretical and empirical studies show a negative relationship between the level of taxation and economic growth. Thus, taxation policies directly affect the performance of an economy and the welfare of its citizens. From empirical point of view, we adopted an empirical approach using VAR models to capture the macroeconomic impact of tax changes for the examined period. Therefore, we apply VAR models to focus on the effects of the total tax rate ¹⁷ on real GDP growth not only at the overall level but also the effects of decomposed tax revenue¹⁸ as well we examined the dynamic relationship between tax revenues and other national accounts such as gross fixed capital formation, government consumption expenditure, and household consumption. Given the crucial role of government spending and debt sustainability, we also apply a general VAR model that allows us to estimate the impact of tax and government expenditures policies on economic growth. Therefore, our empirical analysis shows that the tax rate negatively affects GDP growth in the short run. The regression shows that a one percent increase in the tax rate lowers the level of GDP growth by 0,86%. Despite the fact that the results from VAR provide information on the short-run relationship, it is crucial to know their long-run behavior. In this context, a co integration test validated that VAR model is useful both in short and long run. The Granger causality test suggests that GDP growth has no causal effect on tax rate while tax rate has Granger causality with GDP growth. As far as the impulse response analysis is concerned, we find that a one standard deviation shock in the tax rate can lead to an initial substantial decline in GDP growth in the short run. In addition, the effects of a permanent change are given by the cumulative impulse response function which suggest -0,25% decline of future GDP growth to 1% upward shift in total tax rates. It is obvious from our analysis that increases in tax rates have negative effect on economic growth which is consistent with the prediction of neoclassical growth model. The model 1 confirms that tax rates and tax policy in the short-run, as a policy-making tool for overall economic growth, have a Granger causality effect on GDP for the period studied from 1974 to 2018, implying that the setting and structure of taxation is important not only for fiscal consolidation issues but also for the impact on economic development. In addition, we examine the short-run relationship among real GDP growth, personal income taxes, tax on goods and services, property taxes, debt, general government consumption expenditure, gross fixed capital formation and household consumption. Our estimation result suggests that personal income taxes (-1,97%), tax on goods and services (-0,85%), debt (-0,19%), general government consumption expenditure (-0,54%), and household consumption (-0,65%) are negatively¹⁹ correlated with GDP growth while lagged GDP growth is positively correlated with GDP growth of current period (0,48%). Also, property taxes are positively correlated with gross fixed capital formation (3,62%), debt is positively correlated with personal income tax (0,04%) and government expenditures with tax on goods and services (0,29%). The analysis of the coefficients suggests that income taxes were the most important factor in debt servicing, which had a negative impact on growth, and taxes on goods and services (transaction taxes) served mainly to address difficulties in government spending. Increased government spending and household consumption have a negative effect on growth and investment, while property taxes are positively correlated with investment in fixed assets. Government spending is negatively correlated with gross fixed capital formation (-0.14 %). Also, we conclude that we should apply error correction methods (VECM model 1) to capture long term relationships. Moreover, we focus on examining the short-run relationship among real GDP growth, debt, general government consumption expenditure and tax

¹⁷ The tax-to-GDP ratio is simply tax revenue/GDP.GDP which is a proxy for total tax rate. Growth is real GDP growth.

¹⁸ It is crucial to emphasize that the personal income tax and the tax on goods and services were the main instruments for generating tax revenues during the economic crisis

 $^{^{19}}$ t > 2, i.e., statistically significant coefficient at 5% level. Government and household consumption expenditures are also negatively correlated, but not with statistical significance at the 5% level

rates. Our estimation result suggests that debt (-0,19%), government spending (-0,88%) and the level of taxation (-0,77%) are negatively correlated with GDP growth while lagged GDP growth is positively correlated with GDP growth of current period (0,58%). Also, we test for cointegration and we conclude that we should apply error correction methods to capture long term relationships. In this context, policymakers should pursue a strategy that promotes the rationalization of government spending and the sustainability of debt, keeping the revenue capacity at a level that does not harm long-term growth. However, our analysis has limitations. We attempt to capture the overall picture of the changes and the effects based on vector autoregressive model analysis. It is also known that the proposed tax measures were not followed by specific quantification, we are unable to produce a reliable exogenous measure of quantitative impacts tax policy measure. Also, due to the fact that the tax system has undergone many changes and the time period is quite long, we would be better off focusing on periods of fiscal consolidation and other macroeconomic imbalances. Moreover, we attempt to examine the impact on components other than GDP, and we restrict the dataset to 2018, excluding recent developments such as the 2019 elections, the exit from enhanced fiscal surveillance, and Covid-19. An insightful extension is to model the impact of these changes in a forecasting model. Another interesting aspect is that the Greek tax measure database will be a useful tool for policymakers for further study and quantification.

References

- 1. Agell, J., Lindh, T., Ohlsson, H. (1997), "Growth and the public sector: A critical review essay", European Journal of Political Economy, Vol. 13, 33-52
- Alesina, A., Gualtiero Azzalini, Carlo Favero, Francesco Giavazzi, and Armando Miano, (2018). "Is it the 'How' or the "When' that Matters in Fiscal Adjustments?" NBER Working Paper No. 22863.
- 3. Alesina, A., Perotti, R., Giavazzi, F., & Kollintzas, T. (1995). "Fiscal Expansions and Adjustments in OECD Countries." Economic Policy, 10(21), 207–248. <u>https://doi.org/10.2307/1344590</u>
- 4. Alesina, A., & Rodrik, D. (1994). "Distributive Politics and Economic Growth." The Quarterly Journal of Economics, 109(2), 465–490. <u>https://doi.org/10.2307/2118470</u>
- 5. Angelopoulos, K., Malley, J., Philippopoulos, A. (2008), "Tax structure, growth and welfare", Scottish Institute for Research in Economics, SIRE Discussion Paper-2008-18
- 6. Anastassiou, T., & Dritsaki, C. (2005). Tax revenues and economic growth: An empirical investigation for Greece using causality analysis. Journal of Social Sciences, 1(2), 99-104.
- 7. Afonso, A. and Sousa, R., (2012). "The macroeconomic effects of fiscal policy." Applied Economics, 44, issue 34, p. 4439-4454 <u>https://doi.org/10.1080/00036846.2011.591732</u>
- 8. Angelopoulos, K., Malley, J., & Philippopoulos, A. (2012). "Tax structure, growth, and welfare in the UK." Oxford Economic Papers, 64(2), 237–258. <u>http://www.jstor.org/stable/41421496</u>
- Gregory, Allan W., McNeil, James, Smith, Gregor W. (2021). "US tax and spending shocks 1950-2019: SVAR over identification with external instruments." Queen's Economics Department Working Paper, No. 1461, Queen's University, Department of Economics, Kingston (Ontario) <u>http://hdl.handle.net/10419/247203</u>
- 10. Alinaghi, N. & Reed, W.R., (2021), "Taxes and Economic Growth in OECD Countries: A Metaanalysis," Public Finance Review 49(10), pp. 3-40.
- Akgun, O., & Cournède, B., & Fournier, J., (2017). "The effects of the tax mix on inequality and growth." OECD Economics Department Working Papers 1447, OECD Publishing. DOI: 10.1787/c57eaa14-en
- Arnold, J. (2008), "Do Tax Structures Affect Aggregate Economic Growth? Empirical Evidence from a Panel of OECD Countries." OECD Economics Department Working Papers, No. 643, OECD Publishing, Paris. <u>http://dx.doi.org/10.1787/236001777843</u>
- 13. Arnold, J., Brys, B., Heady, C., Johansson, A., Schwellnus, C., Vartia, L. (2011), "Tax Policy for Economic Recovery and Growth", The Economic Journal, 121 (February), F59–F80
- 14. Bania, N., Gray, J. & Stone, J. (2007), "Growth, Taxes and Government Expenditures: Growth Hills for U.S. States." National Tax Journal, 60, pp.193-204.
- 15. Barro, R, J. (1990), "Government Spending in a Simple Model of Endogenous Growth." Journal of Political Economy, 98(5), pp.103-125. <u>https://doi.org/10.1086/261726</u>
- 16. Barro, R.J. (1991) Economic Growth in a Cross Section of Countries. Quarterly Journal of Economics, 106, pp. 407-443
- 17. Barro, R. J., & Xavier Sala-I-Martin. (1992). "Public Finance in Models of Economic Growth." The Review of Economic Studies, 59(4), 645–661. <u>https://doi.org/10.2307/2297991</u>
- 18. Barro, R. & Redlick, C. (2011), "Macroeconomic Effects of Government Purchases and Taxes." Quarterly Journal of Economics, 126, pp. 51-102.
- Blanchard, O. & Perotti, R., (2002). "An Empirical Characterization of the Dynamic Effects of Changes in Government Spending and Taxes on Output." Quarterly Journal of Economics, 117, pp.1329-1368.

- Blöchliger, H. (2015), "Reforming the Tax on Immovable Property: Taking Care of the Unloved", OECD Economics Department Working Papers, No. 1205, OECD Publishing, Paris, <u>https://doi.org/10.1787/5js30tw0n7kg-en</u>.
- Bronchi, C. (2001), "Options for Reforming the Tax System in Greece.", OECD Economics Department Working Papers, No. 291, OECD Publishing, Paris, <u>https://doi.org/10.1787/668734032323</u>.
- 22. Carey, D. and Rabesona, J. (2002). "Tax ratios on labor and capital income and on consumption.", OECD Economic Studies No. 35
- 23. Carey, D. and Tchilinguirian, H. (2000). "Average effective tax rates on capital, labor and consumption.", OECD Economic Department Working Papers No. 258.
- 24. Cassou, S., Lansing, K. (2003), "Growth Effects of Shifting from a Graduated-rate Tax System to a Flat Tax" February 2004 Economic Inquiry 42(2):194-213
- 25. Cassou, Steven P. & Lansing, Kevin J., (1998). "Optimal fiscal policy, public capital, and the productivity slowdown," Journal of Economic Dynamics and Control, Elsevier, vol. 22(6), pages 911-935, June.
- 26. Cloyne, J., (2013). "Discretionary Tax Changes and the Macroeconomy: New Narrative Evidence from the United Kingdom." American Economic Review, 103, pp.1507-1528.
- 27. Cloyne, J., Dimsdale, N., and Postel-Vinay, N., (2018). "Taxes and Growth: New Narrative Evidence from Interwar Britain." NBER Working Paper No. 24659.
- 28. Daveri, F. & Tabellini, G. (2000), "Unemployment, Growth and Taxation in Industrial Countries." Economic policy, 15(30), pp.47-104.
- 29. Devereux, Michael B & Love, David R F, (1995). "The Dynamic Effects of Government Spending Policies in a Two-Sector Endogenous Growth Model," Journal of Money, Credit and Banking, Blackwell Publishing, vol. 27(1), pages 232-256, February.
- 30. Era Dabla-Norris and Frederico Lima Volume 2018: Issue 220 Publisher: International Monetary Fund ISBN: 9781484377451 ISSN: 1018-5941 Pages: 47 DOI: <u>https://doi.org/10.5089/9781484377451.001</u>
- 31. Dellas, H., Malliaropoulos, D., Papageorgiou D. and Vourvachaki, E. (2017). "Fiscal policy with an informal sector.", Bank of Greece Working Paper Series No. 235.
- 32. DeVries, Pete, Jaime Guajardo, Daniel Leigh, and Andrea Pescatori, (2011). "A New Actionbased Dataset of Fiscal Consolidation." IMF Working Paper.
- 33. Easterly, W., and Rebelo, S., (1993), "Fiscal Policy and Economic growth", Journal of Monetary Economics, 32, 417-458.
 <u>https://www.nber.org/system/files/working_papers/w4499/w4499.pdf</u>
- 34. Engen, E. & Skinner, J. (1992). "Fiscal Policy and Economic Growth." Cambridge: National
- Bureau of Economic Research Working Paper 4223. https://www.nber.org/system/files/working_papers/w4223/w4223.pdf
- 35. Engen, E. & Skinner, J. (1996), "Taxation and Economic Growth.", National Tax Journal, 49(4), pp.617-642.
- 36. Ferede, E. & Dahlby, B. (2012), "The Impact of Tax Cuts on Economic Growth: Evidence from the Canadian Provinces." National Tax Journal, 65(3), pp.563-594
- 37. Favero, Carlo, and Francesco Giavazzi. (2009). "How Large are the Effects of Tax Changes?" Cambridge: National Bureau of Economic Research Working Paper 15303.
- Favero, Carlo A. and Giavazzi, Francesco, "Reconciling VAR-Based and Narrative Measures of the Tax-Multiplier" (March 2010). CEPR Discussion Paper No. DP7769, Available at SSRN: <u>https://ssrn.com/abstract=1583267</u>

- Favero, Carlo, and Francesco Giavazzi (2012). "Measuring Tax Multipliers: The Narrative Method in Fiscal VARs ." American Economic Journal: Economic Policy, 4 (2): 69-94. DOI: 10.1257/pol.4.2.69
- 40. Gale, W., Krupkin, A. & Rueben, K. (2015), "The Relationship between Taxes and Growth: New Evidence". National Tax Journal, 68(4), pp.919-942.
- Gale, William G. & Potter, Samara R., (2002). "An Economic Evaluation of the Economic Growth and Tax Relief Reconciliation Act of 2001.", National Tax Journal, National Tax Association; National Tax Journal, vol. 55(1), pages 133-186, March.
- 42. Gale, William G. and Samwick, Andrew A.,(2014), "Effects of Income Tax Changes on Economic Growth.", Available at SSRN: <u>https://ssrn.com/abstract=2494468</u> or <u>http://dx.doi.org/10.2139/ssrn.2494468</u>
- 43. Galindo, A. and Pombo, C. (2011), Journal of Accounting and Taxation Vol. 5(7), pp. 158-161, Available online at <u>http://www.academicjournals.org/JAT</u>
- 44. Gemmell, N., Kneller, R. & Sanz, I. (2011), "The Timing and Persistence of Fiscal Policy Impacts on Growth: Evidence from OECD Countries.", Economic Journal, 121, pp.33-58
- Gemmell, N., Kneller, R. and Sanz, I. (2014), "The growth effects of tax rates in the OECD.", Canadian Journal of Economics/Revue Canadienne d'économique, 47: 1217-1255. <u>https://doi.org/10.1111/caje.12105</u>
- Guo, J., Lansing, K., J. (1997), "Tax Structure and Welfare in a Model of Optimal Fiscal Policy", Economic Review 1997, Q1
- 47. Guo, J. & Lansing, K., (1998). "Indeterminacy and Stabilization Policy," Journal of Economic Theory, Elsevier, vol. 82(2), pages 481-490, October.
- 48. Gravelle, Jane G. (2014). "Dynamic Scoring for Tax Legislation: A Review of Models." Washington, D.C: Congressional Research Service. <u>https://sgp.fas.org/crs/misc/R42111.pdf</u>
- 49. Guajardo, J., Leigh, D., & Pescatori, A. (2014). "EXPANSIONARY AUSTERITY? INTERNATIONAL EVIDENCE.", Journal of the European Economic Association, 12(4), 949–968. https://www.jstor.org/stable/90023402
- 50. Gunter et al., (2019), "Non-linear Effects of Tax Changes on Output: The Role of the Initial Level of Taxation," NBER Working Paper 26570. DOI 10.3386/w26570 <u>https://www.nber.org/system/files/working_papers/w26570/w26570.pdf</u>
- 51. Gunter et al., (2017), "Non-Linear Distortion-Based Effects of Tax Changes on Output: A Worldwide Narrative Approach.", DISCUSSION PAPER № IDB-DP-540, <u>http://dx.doi.org/10.18235/0000827</u>
- 52. Hayo, Bernd; Uhl, Matthias (2011), "The effects of legislated tax changes in Germany.", MAGKS Joint Discussion Paper Series in Economics, No. 42-2011, Philipps University Marburg, Faculty of Business Administration and Economics, Marburg <u>http://hdl.handle.net/10419/56545</u>
- Helms, L. J. (1985), "The Effect of State and Local Taxes on Economic Growth: A Time Series Cross-Section Approach.", Review of Economics and Statistics, 67(4), pp. 574–582 <u>https://doi.org/10.2307/1924801</u>
- 54. Hebous, Shafik and Tom Zimmermann, (2018). "Revisiting the Narrative Approach of Estimating Tax Multipliers." Scandinavian Journal of Economics, 120, pp.428-439.
- 55. Huang, C., & Frentz, N. (2014). What Really Is the Evidence on Taxes and Growth? A Reply to the Tax Foundation. <u>https://www.cbpp.org/sites/default/files/atoms/files/2-18-14tax.pdf</u>
- Hungerford, T. (2012), "Taxes and the Economy: An Economic Analysis of the Top Tax Rates" Since 1945, <u>https://sgp.fas.org/crs/misc/R42729.pdf</u>
- Hussain, S. M., & Malik, S., (2016). "Asymmetric Effects of Exogenous Tax Changes" Journal of Economic Dynamics and Control, Elsevier, vol. 69(C), pages 268-300. DOI: 10.1016/j.jedc.2016.05.022

- Jelena, A., Branimir, K., Vera, M., Nada, M., & Miloš, P. (2018). "Econometric Modelling of Tax Impact on Economic Growth: Panel Evidence from OECD Countries." M DOI: 10.24818/18423264/52.4.18.14
- Johansson, A., Heady, C., Arnold, J., Brys, B. & Vartia, L. (2008), "Tax and Economic Growth." OECD Economic Department, Working Paper No.620. <u>https://www.oecd.org/tax/tax-policy/41000592.pdf</u>
- 60. Jones, Larry E., Rodolfo E. Manuelli, and Peter E. Rossi. (1993). "Optimal Taxation in Models of Endogenous Growth." Journal of Political Economy 101 (3): pp. 485–517.
- 61. Karras, G. (2019). "Macroeconomic Effects of Tax Changes: Evidence from a Sample of OECD Countries." SPOUDAI Journal of Economics and Business, SPOUDAI Journal of Economics and Business, University of Piraeus, vol. 69(3), pages 111-138, July-Sept.
- 62. Kato, A., Wataru M., Nguyen, T. and Sergeyev, D. (2018). "The Effects of Tax Changes at the Zero Lower Bound: Evidence from Japan." Working Paper.
- 63. Kielyte, J. (2008). "Estimating Panel Data Models in the Presence of Endogeneity and Selection," Journal of Economics and Econometrics, 51(2), 1-19.
- 64. King, Robert G & Rebelo, Sergio, (1990). "Public Policy and Economic Growth: Developing Neoclassical Implications," Journal of Politica
- Kneller, R., Bleaney, M.F. & Gemmell, N. (1999), "Fiscal Policy and Growth: Evidence from OECD Countries.", Journal of Public Economics, 74(2), pp.171-190. <u>http://dx.doi.org/10.1016/S0047-2727(99)00022-5</u>
- 66. Koester R.B. and Kormendi R.C. (1989) "Taxation, Aggregate Activity and Economic Growth: Cross-Country Evidence on Some Supply Side Hypotheses." Economic Inquiry, 27, 367-387. <u>https://doi.org/10.1111/j.1465-7295.1989.tb02011.x</u>
- 67. Lehmussaari, O. (1990). "Deregulation and Consumption: Saving Dynamics in the Nordic Countries," IMF Staff Papers, Palgrave Macmillan, vol. 37(1), pages 71-93, March.
- 68. Lee, Y. & Gordon, R. (2005), "Tax Structure and Economic Growth." Journal of Public Economics, 89(5), pp.1027-1043. <u>https://doi.org/10.1016/j.jpubeco.2004.07.002</u>.
- 69. Leeper, E., (1997). "Narrative and VAR Approaches to monetary policy: common identification problems." Journal of Monetary Economics, 40, pp. 641-657.
- 70. Levine, R., and Renelt, D., 1992, "A sensitivity analysis of cross-country growth models.", American Economic Review, 82(4), 942-963.
- 71. Li, J.F. & Lin, Z.X. (2015), "The Impact of Sales Tax on Economic Growth in the United States: An ARDL Bounds Testing Approach." Applied Economics Letters, 22(15), 1-5,
- 72. Li, W., Sarte, P. (2004), "Progressive Taxation and Long-Run Growth", The American Economic Review, Vol. 94, No. 5 (Dec., 2004), pp. 1705-1716
- 73. Loate, T., R. Houssa and N. Viegi (2021). "The Macroeconomic Effect Of Fiscal Policy In South Africa: A Narrative Analysis.", WIDER Working Paper 2021/156. Helsinki: UNU-WIDER. https://doi.org/10.35188/UNU-WIDER/2021/096-2
- 74. Marcellino, M., (2006). "Some stylized facts on non-systematic fiscal policy in the Euro area," Journal of Macroeconomics, Elsevier, vol. 28(3), pages 461-479, September.
- 75. Marsden, K. (1983) "Links between Taxes and Economic Growth: Some Empirical Evidence." Word Bank Staff Working Papers, No. 605, 21-25.
- 76. Martinez-Mongay, C. (2000). "ECFIN's effective tax rates. Properties and comparisons with other tax indicators." Economic Paper No. 146, European Commission, Directorate for Economic and Financial Affairs, <u>https://ec.europa.eu/economy_finance/publications/pages/publication11064_en.pdf</u>

- Mendoza, E.G. & Razin, Assaf & Tesar, Linda L., (1994). "Effective tax rates in macroeconomics: Cross-country estimates of tax rates on factor incomes and consumption," Journal of Monetary Economics, Elsevier, vol. 34(3), pages 297-323.
- Mendoza, E.G., Milesi-Ferretti, G.M. & Asea, P. (1997) "On the Ineffectiveness of Tax Policy in Altering Long-Run Growth: Harberger's Superneultrality Conjecture." Journal of Public Economics, 66(1), pp. 99-126.
- 79. Mertens, K. & Ravn, M. (2013), "The Dynamic Effects of Personal and Corporate Income Tax Changes in the United States.", American Economic Review, 103(4): pp.1212-1247.
- 80. Mertens, K. and Ravn, M. (2014). "A reconciliation of SVAR and narrative estimates of tax multipliers." Journal of Monetary Economics, 68, S1-S19
- 81. Mertens, K. & Olea, J. (2018), "Marginal Tax Rates and Income: New Time Series Evidence," Quarterly Journal of Economics 133(4), pp.1803-84.
- McBride, W. (2012). "What Is the Evidence on Taxes and Growth", Tax Foundation Special Report No. 207, 18.12.2012. <u>https://files.taxfoundation.org/legacy/docs/sr207.pdf</u>
- 83. McDaniel, C. (2007), "Average tax rates on consumption, investment, labor and capital in the OECD 1950-2003", Working Paper.
- 84. Mountford, A. and H. Uhlig (2009). "What are the effects of fiscal policy shocks? Journal of Applied Econometrics 24(6), pp.960-992.
- 85. Myles, G. (2000), Taxation and Economic Growth. Fiscal Studies, 21(1), pp.141-168
- 86. Myles, G. (2009), "Economic Growth and the Role of Taxation-Theory", OECD Economics Department Working Papers, No. 713, OECD Publishing, Paris.
- 87. Musgrave, R., & Musgrave, P., (1989). Public finance in theory and practice (5th ed.). New York: McGraw-Hill Book Co.
- 88. Nguyen et al., (2020), "The Macroeconomic Effects of Income and Consumption Tax Changes," American Economic Journal: Economic Policy 13(2), pp.439-66.
- 89. Nguyen et al., (2016), "Aggregate Effects of Income and Consumption Tax Changes" http://www.socialsciences.manchester.ac.uk/cgbcr/discussionpapers/index.html
- 90. Papageorgiou, D., Efthimiadis, T. and Konstantakopoulou, I. (2012). "Effective tax rates in Greece", Centre for Planning and Economic Research Discussion Papers no. 124
- Padovano, F., Galli, E. (2001), "Tax Rates and Economic Growth in the OECD Countries (1950-1990)", Economic Inquiry 39, 44-57
- 92. Perotti, R., (2002). "Estimating the Effects of Fiscal Policy in OECD Countries." ECB Working Paper No. 168.
- 93. Perotti, R., (2012). "The Effects of Tax Shocks on Output: Not so Large, But not Small Either." American Economic Journal: Economic Policy, 4, 214-237.
- Pereira, M. C. and Wemans, L. (2015): "Output Effects of a Measure of Tax Shocks Based on Changes in Legislation for Portugal," Hacienda Publica Espanola / Review of Public Economics, 215, 27-62.
- 95. Pecorino, P. (1994), "The Growth Rate Effects of Tax Reform", Oxford Economic Papers, New Series, Vol. 46, No. 3 (Jul., 1994), pp. 492-501
- 96. Plosser, C., (1992) "The search for growth," Proceedings Economic Policy Symposium Jackson Hole, Federal Reserve Bank of Kansas City, pages 57-86.
- 97. Pjesky, R. J. (2006), "What Do We Know about Taxes and State Economic Development? A Replication and Extension of Five Key Studies.", The Journal of Economics, 32(1), pp.25-40
- Ramey, V. & Shapiro, M. (1998). "Costly capital reallocation and the effects of government spending," Carnegie-Rochester Conference Series on Public Policy, Elsevier, vol. 48(1), pages 145-194, June. <u>https://econweb.ucsd.edu/~vramey/research/Ramey_Shapiro_Govt.pdf</u>
- 99. Ramey, V. (2011). "Can Government Purchases Stimulate the Economy?" Journal of Economic Literature, 49 (3): 673-85. DOI: 10.1257/jel.49.3.673

- 100. Ramsey, F.P. (1927) "A Contribution to the Theory of Taxation." Economic Journal, 37, 47-61.
- 101.Reed, R. (2008), "The Robust Relationship between Taxes and U.S. State Income Growth." National Tax Journal, 61, pp.57-80. <u>https://doi.org/10.1111/j.1465-7295.2008.00127.x</u>
- 102.Romer, P.M. (1986), "Increasing Returns and Long-Run Growth. Journal of Political Economy", 94, pp.1002-1037
- 103.Romer, C. and Romer, D., (1989), "Does Monetary Policy Matter? A New Test in the Spirit of Friedman and Schwartz", p. 121-184 in , NBER Macroeconomics Annual 1989, Volume 4, National Bureau of Economic Research, Inc, https://EconPapers.repec.org/RePEc:nbr:nberch:10964.
- 104.Romer, C., and Romer, D. (2004). "A New Measure of Monetary Shocks: Derivation and Implications." American Economic Review, 94 (4): 1055-1084. DOI: 10.1257/0002828042002651
- 105.Romer, C. & Romer, D. (2010), "The Macroeconomic Effects of Tax Changes: Estimated Based on a New Measure of Fiscal Shocks." American Economic Review, 100(3), pp.763-801. DOI: 10.1257/aer.100.3.763
- 106.Romer, C. and Romer, D. (2014). "The Incentive Effects of Marginal Tax Rates: Evidence from the Interwar Era.", American Economic Journal: Economic Policy, 6, pp. 242-281. DOI: 10.1257/pol.6.3.242
- 107.Slemrod, J. et al. (1995). "What Do Cross-Country Studies Teach About Involvement, Prosperity, and Economic Growth?", Brookings Papers on Economic Activity 1995 (2): 373-415. <u>https://doi.org/10.2307/2534615</u>
- 108.Stokey, N. L., & Rebelo, S. (1995). "Growth Effects of Flat-Rate Taxes.", Journal of Political Economy, 103(3), 519–550. <u>http://www.jstor.org/stable/2138697</u>
- 109. Solow, R. (1956). "A Contribution to the Theory of Economic Growth", The Quarterly Journal of Economics, Oxford University Press, vol. 70(1), pages 65-94.
- 110.Trella, I., and J. Whalley, (1991). "Outward orientation, and growth performance in the Republic of Korea", in Tax Policy in Developing Countries, ed., J. Khalizadeh Shirazi and A. Shah, Washington DC.
- 111.Trella, I., and J. Whalley, (1992). "The role of tax policy in Korea's economic growth", The Political Economy of Tax Reform, ed., Takatoshi Ito and Anne O. Krueger (The University of Chicago Press).
- 112.Tosun, M.S. & Abizadeh, S. (2005), "Economic Growth and Tax Components: An analysis of Tax changes in OECD.", Applied Economics, 37, pp.2251-2263. http://dx.doi.org/10.1080/00036840500293813
- 113.Widmalm, F., (2001), "Tax structure and growth: are some taxes better than others?", Public Choice, 107, pp.199–219. <u>https://doi.org/10.1023/A:1010340017288</u>
- 114.Wielen, W., (2020), "The macroeconomic effects of tax changes: Evidence using real-time data for the European Union.", Economic Modelling, Volume 90, pp. 302-321, ISSN 0264-9993, https://doi.org/10.1016/j.econmod.2020.03.007.
- 115.Zee, Howell, (1996), Empirics of crosscountry tax revenue comparisons, World Development, 24, issue 10, p. 1659-1671, https://EconPapers.repec.org/RePEc:eee:wdevel:v:24:y:1996:i:10:p:1659-1671.
- 116.Zidar, O. (2019), "Tax Cuts for whom? Heterogenous Effects of Income Tax Changes on Growth and Employment.", Journal of Political Economy 127(3), pp.1437-72. https://doi.org/10.1086/701424

Estimation Output

Variable	Constant t- statistic	Augmented Dickey-Fuller 5% critical value	p-value	Constant & Linear Trend t-statistic	Augmented Dickey-Fuller 5% critical value	p-value
GDP	-3,14	-2,93	0,03	-3,71	-3,52	0,03
D(GDP)	-7,97	-2,93	0,00	-7,83	-3,52	0,00
GGCE	-1,68	-2,93	0,44	-2,14	-3,52	0,51
D(GGCE)	-8,07	-2,93	0,00	-8,09	-3,52	0,00
GFCF	-0,52	-2,93	0,88	-2,07	-3,52	0,55
D(GFCF)	-5,26	-2,93	0,00	-5,29	-3,52	0,00
PIT	-0,85	-2,93	0,79	-3,00	-3,52	0,14
D(PIT)	-7,31	-2,93	0,00	-7,22	-3,52	0,00
TOGS	-0,67	-2,93	0,84	-1,89	-3,52	0,65
D(TOGS)	-5,98	-2,93	0,00	-5,97	-3,52	0,00
РТ	-0,55	-2,93	0,83	-2,02	-3,52	0,57
D(PT)	-6,10	-2,93	0,00	-6,29	-3,52	0,00
TAXRATE	-0,31	-2,93	0,91	-2,58	-3,52	0,29
D(TAXRATE)	-6,87	-2,93	0,00	-6,80	-3,52	0,00
HSCONS	-1,72	-2,93	0,42	-2,21	-3,52	0,47
D(HSCONS)	-7,16	-2,93	0,00	-7,14	-3,52	0,00
DEBT	0,39	-2,93	0,98	-2,04	-3,52	0,56
D(DEBT)	-6,05	-2,93	0,00	-6,04	-3,52	0,00

Table: Augmented Dickey Fuller Test Authors estimations based on EViews

Total Tax Revenue and GDP growth

Model Estimation

Vector Autoregression Estimates

Sample (adjusted): 1976 2018 Included observations: 43 after adjustments Standard errors in () & t-statistics in []

	GDP(-1)	D(TAXRATE)	
GDP(-2)	0.611080 (0.10881) [5.61593]	-0.061327 (0.04787) [-1.28102]	
D(TAXRATE(-1))	-0.867541 (0.35455) [-2.44686]	-0.096943 (0.15599) [-0.62146]	
С	0.011105 (0.00463) [2.39830]	0.006327 (0.00204) [3.10558]	
R-squared Adj. R-squared Sum sq. resids S.E. equation F-statistic Log likelihood Akaike AlC Schwarz SC Mean dependent S.D. dependent	0.511270 0.486833 0.026053 0.025521 20.92235 98.27532 -4.431410 -4.308536 0.015842 0.035626	0.044214 -0.003575 0.005043 0.011228 0.925189 133.5807 -6.073523 -5.950649 0.004951 0.011208	
Determinant resid covariance (dof adj.) Determinant resid covariance Log likelihood Akaike information criterion Schwarz criterion Number of coefficients		8.19E-08 7.08E-08 231.9215 -10.50798 -10.26223 6	

Cointegration Analysis

Sample (adjusted): 1976 2018 Included observations: 43 after adjustments Trend assumption: Linear deterministic trend Series: GDP TAXRATE Lags interval (in first differences): 1 to 1

Unrestricted Cointegration Rank Test (Trace)

Hypothesized No. of CE(s)	Eigenvalue	Trace Statistic	0.05 Critical Value	Prob.**
None	0.214703	10.85495	15.49471	0.2206
At most 1	0.010690	0.462158	3.841465	0.4966

Trace test indicates no cointegration at the 0.05 level

* denotes rejection of the hypothesis at the 0.05 level **MacKinnon-Haug-Michelis (1999) p-values

Unrestricted Cointegration Rank Test (Maximum Eigenvalue)

Hypothesized No. of CE(s)	Eigenvalue	Max-Eigen Statistic	0.05 Critical Value	Prob.**
None	0.214703	10.39279	14.26460	0.1874
At most 1	0.010690	0.462158	3.841465	0.4966

Max-eigenvalue test indicates no cointegration at the 0.05 level

* denotes rejection of the hypothesis at the 0.05 level

**MacKinnon-Haug-Michelis (1999) p-values

Cointegration Analysis

=

Granger Causality Analysis

VAR Granger Causality/Block Exogeneity Wald Tests

Sample: 1974 2018 Included observations: 43

Dependent variable: GDP(-1)						
Excluded	cluded Chi-sq df Pro					
D(TAXRATE)	RATE) 5.987111 1 0.					
All	All 5.987111 1					
Dependent variable: D(TAXRATE)						
Excluded	df	Prob.				
GDP(-1)	1.641001	1	0.2002			
All	1.641001	1	0.2002			

Table 6: VAR Granger causality/block exogeneity Wald test

Diagnostics Tests of the Model

VAR Lag Order Selection Criteria Endogenous variables: GDP(-1) D(TAXRATE) Exogenous variables: C

Sample: 1974 2018 Included observations: 41

=

Lag	LogL	LR	FPE	AIC	SC	HQ
0 1 2	206.4419 226.2237 227 8512	NA 36.66882* 2 858012	1.60e-07 7.41e-08* 8.34e-08	-9.972774 -10.74262* -10.62689	-10.49185*	-9.942335 -10.65131* -10.47470
3	230.7950	4.882356	8.81e-08		-9.990243	-10.36230

* indicates lag order selected by the criterion

LR: sequential modified LR test statistic (each test at 5% level)

FPE: Final prediction error

AIC: Akaike information criterion

SC: Schwarz information criterion

HQ: Hannan-Quinn information criterion

VAR Lag Order Selection Criteria

VAR Residual Normality Tests Orthogonalization: Cholesky (Lutkepohl) Null Hypothesis: Residuals are multivariate normal

Sample: 1974 2018 Included observations: 43

Component	Skewness	Chi-sq	df	Prob.*
1 2	0.010799 -0.517467	0.000836 1.919035	1 1	0.9769 0.1660
Joint		1.919871	2	0.3829
Component	Kurtosis	Chi-sq	df	Prob.
1 2	4.454913 3.239279	3.792548 0.102581	1 1	0.0515 0.7488
Joint		3.895129	2	0.1426
Component	Jarque-Bera	df	Prob.	
1 2	3.793384 2.021616	2 2	0.1501 0.3639	
Joint	5.815000	4	0.2134	

*Approximate p-values do not account for coefficient estimation

VAR Residual Normality Tests

Roots of Characteristic Polynomial Endogenous variables: GDP(-1) D(TAXRATE) Exogenous variables: C Lag specification: 1 1

Root	Modulus
0.679594	0.679594
-0.165457	0.165457

No root lies outside the unit circle. VAR satisfies the stability condition.

Roots of characteristic polynomial

VAR Residual Portmanteau Tests for Autocorrelations Null Hypothesis: No residual autocorrelations up to lag h Date: 11/16/22 Time: 10:52 Sample: 1974 2018 Included observations: 43

Lags	Q-Stat	Prob.*	Adj Q-Stat	Prob.*	df
1	1.999175		2.046775		
2	5.853599	0.2104	6.089219	0.1926	4

*Test is valid only for lags larger than the VAR lag order. df is degrees of freedom for (approximate) chi-square distribution

Table 10: VAR Residual Portmanteau Test for Autocorrelations

VAR Residual Serial Correlation LM Tests Date: 11/16/22 Time: 10:54 Sample: 1974 2018 Included observations: 43

Null hypothesis: No serial correlation at lag h						
Lag	LRE* stat	df	Prob.	Rao F-stat	df	Prob.
1 2	6.085565 3.743691	4 4	0.1928 0.4418	1.563688 0.946879	(4, 74.0) (4, 74.0)	0.1929 0.4419

Null hypothesis:	No seria	l correlation a	t lags 1	l to l	h
------------------	----------	-----------------	----------	--------	---

Lag	LRE* stat	df	Prob.	Rao F-stat	df	Prob.
1	6.085565	4		1.563688	(4, 74.0)	0.1929
2	11.17828	8		1.447889	(8, 70.0)	0.1924

*Edgeworth expansion corrected likelihood ratio statistic.

VAR Residual Serial LM Tests

VAR Residual Heteroskedasticity Tests (Levels and Squares) Date: 11/16/22 Time: 10:54 Sample: 1974 2018 Included observations: 43

Joint test:		
Chi-sq	df	Prob.
10.54577	12	0.5682

Individual co	mponents:				
Dependent	R-squared	F(4,38)	Prob.	Chi-sq(4)	Prob.
res1*res1	0.130382	1.424342	0.2446	5.606444	0.2305
res2*res2	0.013369	0.128724	0.9711	0.574856	0.9658
res2*res1	0.101960	1.078590	0.3807	4.384269	0.3565

VAR Residual Heteroskedasticity Tests (Includes Cross Terms) Date: 11/16/22 Time: 10:55 Sample: 1974 2018 Included observations: 43

Joint test:		
Chi-sq	df	Prob.
11.77281	15	0.6961

Individual components:

Dependent	R-squared	F(5,37)	Prob.	Chi-sq(5)	Prob.
res1*res1	0.130383	1.109494	0.3721	5.606472	0.3464
res2*res2	0.028058	0.213620	0.9546	1.206476	0.9443
res2*res1	0.114990	0.961489	0.4538	4.944578	0.4227

VAR Residual Heteroskedasticity Tests

System Estimation Results

System: UNTITLED Estimation Method: Least Squares Date: 11/16/22 Time: 10:56 Sample: 1976 2018 Included observations: 43 Total system (balanced) observations 86

	Coefficient	Std. Error	t-Statistic	Prob.
C(1) C(2) C(3) C(4) C(5)	0.611080 -0.867541 0.011105 -0.061327 -0.096943	0.108812 0.354553 0.004630 0.047874 0.155992	5.615933 -2.446857 2.398298 -1.281016 -0.621465	0.0000 0.0166 0.0188 0.2039 0.5361
C(6)	0.006327	0.002037	3.105576	0.0026
Determinant residual covariance		7.08E-08		

Equation: $GDP(-1) = C(1)^*GDP(-2) + C(2)^*D(TAXRATE(-1)) + C(3)$

Observations: 43			
R-squared	0.511270	Mean dependent var	0.015842
Adjusted R-squared	0.486833	S.D. dependent var	0.035626
S.E. of regression	0.025521	Sum squared resid	0.026053
Durbin-Watson stat	1.365102		
Equation: D(TAXRATE) =	= C(4)*GDP((-2) + C(5)*D(TAXRATE(-	·1)) + C(6)
R-squared	0.044214	Mean dependent var	0.004951
Adjusted R-squared	-0.003575	S.D. dependent var	0.011208
S.E. of regression	0.011228	Sum squared resid	0.005043
Durbin-Watson stat	2.060702		

System Estimation Using Least Squares

Wald Test: System: {%system}

Test Statistic	Value	df	Probability
Chi-square	68.05778	4	0.0000

Null Hypothesis: C(1)=C(2)=C(3)=C(6)=0 Null Hypothesis Summary:

Normalized Restriction (= 0)	Value	Std. Err.
C(1)	0.611080	0.108812
C(2)	-0.867541	0.354553
C(3)	0.011105	0.004630
C(6)	0.006327	0.002037

Restrictions are linear in coefficients.

Wald Test of coefficients

System Residual Portmanteau Tests for Autocorrelations Null Hypothesis: no residual autocorrelations up to lag h Date: 11/16/22 Time: 10:57 Sample: 1976 2018 Included observations: 43

Lags	Q-Stat	Prob.	Adj Q-Stat	Prob.	df
1	1.999175	0.7359	2.046775	0.7272	4
2	5.853599	0.6636	6.089219	0.6372	8
3	9.870595	0.6273	10.40749	0.5803	12
4	10.83110	0.8198	11.46651	0.7798	16
5	16.14930	0.7073	17.48448	0.6213	20
6	18.99284	0.7524	20.78913	0.6511	24
7	20.47462	0.8466	22.55903	0.7548	28
8	22.16840	0.9028	24.63995	0.8203	32
9	24.03506	0.9364	27.00073	0.8609	36
10	24.54719	0.9739	27.66806	0.9301	40
11	27.57994	0.9750	31.74331	0.9161	44
12	33.82799	0.9394	40.40996	0.7736	48

*The test is valid only for lags larger than the System lag order. df is degrees of freedom for (approximate) chi-square distribution *df and Prob. may not be valid for models with lagged endogenous...

System Residual Portmanteau Test for Autocorrelations

System Residual Normality Tests Orthogonalization: Cholesky (Lutkepohl) Null Hypothesis: residuals are multivariate normal Date: 11/16/22 Time: 14:09 Sample: 1976 2018 Included observations: 43

Component	Skewness	Chi-sq	df	Prob.
1 2	0.010799 -0.517467	0.000836 1.919035	1 1	0.9769 0.1660
Joint		1.919871	2	0.3829
Component	Kurtosis	Chi-sq	df	Prob.
1 2	4.454913 3.239279	3.792548 0.102581	1 1	0.0515 0.7488
Joint		3.895129	2	0.1426
Component	Jarque-Bera	df	Prob.	
1 2	3.793384 2.021616	2 2	0.1501 0.3639	
Joint	5.815000	4	0.2134	

System Residual Normality Test

System Residual Cross-Correlations Ordered by variables Date: 11/16/22 Time: 14:09 Sample: 1976 2018 Included observations: 43

	GDP(-1)	D(TAXRATE)
GDP(-1)	1.000000	-0.055129
GDP(-2)	0.206455	0.037464
GDP(-3)	0.110499	-0.150620
GDP(-4)	0.165495	0.106160
GDP(-5)	0.027340	-0.077615
GDP(-6)	-0.268369	-0.056843
GDP(-7)	0.114683	-0.108151
GDP(-8)	-0.021108	0.129092
GDP(-9)	-0.103526	-0.055869
GDP(-10)	-0.052578	-0.102655
GDP(-11)	-0.033296	0.074922
GDP(-12)	-0.176351	-0.068997
GDP(-13)	-0.056633	-0.279276
D(TAXRATE)	-0.055129	1.000000
D(TAXRATE(-1))	0.006562	-0.036905
D(TAXRATE(-2))	0.122520	-0.197890
D(TAXRATE(-3))	0.218142	-0.048161
D(TAXRATE(-4))	-0.091203	-0.078316
D(TAXRATE(-5))	0.141550	0.169954
D(TAXRATE(-6))	0.134757	-0.151731
D(TAXRATE(-7))	0.073186	-0.122085
D(TAXRATE(-8))	0.144112	0.070423
D(TAXRATE(-9))	0.102714	-0.138980
D(TAXRATE(-10))	-0.071697	-0.004532
D(TAXRATE(-11))	-0.104327	-0.131487
D(TAXRATE(-12))	-0.242103	-0.013214

Asymptotic standard error (lag>0): 0.152499

System Residual Cross Correlations

Variance Decomposition Analysis

Variance Decomposition of GDP(-1): Period S.E. GDP(-1) D(TAXRATE)					
1	0.025521	100.0000	0.000000		
2	0.031720	90.59803	9.401969		
3	0.033997	89.65175	10.34825		
4	0.035019	89.15143	10.84857		
5	0.035478	88.95514	11.04486		
6	0.035689	88.86611	11.13389		
7	0.035786	88.82588	11.17412		
8	0.035830	88.80743	11.19257		
9	0.035851	88.79894	11.20106		
10	0.035860	88.79503	11.20497		
Variance Decomposition of D(TAXRATE): Period S.E. GDP(-1) D(TAXRATE)					
1	0.011228	0.303916	99.69608		
2	0.011381	2.044831	97.95517		
3	0.011434	2.570175	97.42982		
4	0.011452	2.839080	97.16092		
5	0.011461	2.959413	97.04059		
6	0.011465	3.015233	96.98477		
7	0.011467	3.040944	96.95906		
8	0.011468	3.052818	96.94718		
9	0.011468	3.058300	96.94170		
10	0.011468	3.060832	96.93917		
Cholesky One S.D. (d.f. adjusted) Cholesky ordering: GDP(-1) D(TAXRATE)					

Variance Decomposition

Decomposition of Tax Revenue, GDP and Other Macroeconomic Variables

VAR Model 2 Estimation

Vector Autoregression Estimates

Sample (adjusted): 1976 2018

Included observations: 43 after adjustments Standard errors in () & t-statistics in []

GDP(-2) 0.488137 0.018499 -0.044559 -0.015543 -0.373907 0.108008 0.137670 0.16 [0.08406] (0.023961) (0.039511) (0.104861) (0.039511) (0.104861) (0.039511) [1.11230] [1.257679] (0.1720720) [1.142515] [1.1039644] [-0.94192] [2.75679] (0.196631) 0.472 [0.57760) (0.184119) [-1.06950] [1.0796311] [-1.039544] (0.27708] [1.1222] 0.48643 [0.42262) (0.12044) (0.35776) (0.35736) (1.99566) (0.18661) (0.52776) (0.327711) (0.32773) [0.529203] (0.22714) (0.300771) [1.35 D(PT(-1)) 0.394105 0.1377131 0.202586 0.001493 -5.687030 0.377788 3.623514 -0.24 (0.99160) (0.27119) (0.35393) (0.16863) (4.49360) (0.44720) (1.18771) (0.3276) (0.19770) [1.16373] [0.47149] (0.32593) (0.15786) (1.3376) (0.074897 (0.22714) (0									1
(0.08406) (0.2396) (0.03951) (0.10486) (0.03951) (0.10486) (0.03951) D(PIT(-1)) -1.974673 0.138466 -0.229761 0.082013 -2.732749 -0.099195 0.199651 0.477 (0.57760) (0.16461) (0.21463) (0.10299) (2.72752) (0.27144) (0.72049) (0.44 (0.42262) (0.12044) (0.15719) (0.07536) (1.99566) (0.19961) (0.52716) (0.32 (0.42262) (0.12044) (0.15719) (0.07336) (1.99566) (0.19951) (0.030771) (1.35 D(PT(-1)) 0.394160 (0.27119) (0.25393) (0.16966) (4.43950) (0.44720) (1.17071) (0.711) (0.95160) (0.27119) (0.35393) (0.16966) (4.43950) (0.44720) (1.18771) (0.711) (0.41415) (0.50566) (0.00732) (0.19376) (0.09428) -0.074897 (0.25393) (0.19376) (0.09428) -0.074897 (0.25311) (0.15271) (0.35332) (-1.63511)		GDP(-1)	D(PIT)	D(TOGS)	D(PT)	D(DEBT)	D(GGCE)	D(GFCF)	D(HSCONS)
(0.08406) (0.02396) (0.03951) (0.10486) (0.03951) (0.10486) (0.03951) D(PIT(-1)) -1.974673 0.138466 -0.229771 (0.082013) -2.732749 -0.099195 0.199651 0.477 (0.57760) (0.16461) (0.21483) (0.10299) (2.72752) (0.27144) (0.72049) (0.4776) (0.42262) (0.12044) (0.15719) (0.05528 1.065282 -0.361434 0.0130771 [1.35 D(TOGS(-1)) 0.650443 0.031772 (0.335172 0.039900 -0.005528 1.052822 -0.361454 0.016222 0.444 (0.42262) (0.12044) (0.15719) (0.07336) [1.957630] 0.37778 3.623514 -0.24 (0.9160) (0.27119) (0.35393) (0.16966) (4.43960) (0.44720) (1.18771) (0.4719) (0.41013) (0.04603) 0.006259 -0.00732) (0.19376) (0.09486) (0.0738) [1.9376) (0.04748) [0.32393] [0.165780) [0.53311] [0.15257] [GDP(-2)	0 488137	0 018499	-0 044559	-0 015543	-0.373907	0 108908	0 137607	0.169112
$ \begin{bmatrix} 5.80675 \\ 0.77220 \\ 0.7760 \\ (0.57760 \\ 0.57760 \\ (0.57760 \\ 0.57760 \\ 0.57760 \\ 0.57760 \\ 0.57760 \\ 0.57760 \\ 0.541875 \\ 0.841191 \\ 0.24183 \\ 0.02991 \\ 0.2483 \\ 0.02991 \\ 0.79311 \\ 0.109521 \\ 0.07336 \\ 0.199631 \\ 0.199641 \\ 0.277708 \\ 0.199641 \\ 0.52738 \\ 0.199641 \\ 0.52738 \\ 0.19956 \\ 0.19961 \\ 0.052738 \\ 0.19956 \\ 0.19961 \\ 0.052733 \\ 0.19956 \\ 0.19961 \\ 0.052733 \\ 0.19956 \\ 0.19961 \\ 0.052733 \\ 0.19956 \\ 0.19961 \\ 0.052733 \\ 0.19956 \\ 0.19951 \\ 0.02717 \\ 0.32441 \\ 0.27189 \\ 0.02717 \\ 0.32441 \\ 0.029203 \\ 0.00732 \\ 0.00800 \\ 0.14926 \\ 0.01926 \\ 0.00800 \\ 0.44729 \\ 0.05728 \\ 0.00800 \\ 0.44729 \\ 0.00844 \\ 0.00820 \\ 0.004720 \\ 0.008426 \\ 0.01926 \\ 0.01926 \\ 0.01926 \\ 0.00922 \\ 0.00732 \\ 0.008426 \\ 0.00925 \\ 0.00732 \\ 0.008426 \\ 0.00925 \\ 0.00732 \\ 0.008426 \\ 0.00840 \\ 0.00285 \\ 0.00840 \\ 0.0084$									(0.06535)
$ \begin{array}{c} D(P\Pi(-1)) & -1.974673 \\ (0.57760) & (0.16461) \\ (-3.41875) & (0.21433) \\ (-3.41875) & (0.84119) \\ (-1.06950) & (0.79631) \\ (-1.06950) & (-1.09522) \\ (-2.72752) & (-2.7744) \\ (-2.77768) & (-2.77768) \\ (-2.77768) & (-2.77768) \\ (-2.77768) & (-2.77768) \\ (-2.77768) & (-2.77768) \\ (-2.77768) & (-2.77768) \\ (-2.72733) & (-2.72768) & (-2.77768) \\ (-2.72733) & (-2.72768) & (-2.77768) \\ (-2.72733) & (-2.72768) & (-2.77768) \\ (-2.72733) & (-2.72768) & (-2.77768) \\ (-2.72733) & (-2.72768) & (-2.77768) \\ (-2.72733) & (-2.72768) & (-2.77768) \\ (-2.72733) & (-2.72768) & (-2.77768) \\ (-2.72733) & (-2.72768) & (-2.77768) \\ (-2.72733) & (-2.72768) & (-2.77768) \\ (-2.72733) & (-2.72768) & (-2.77768) \\ (-2.72733) & (-2.72768) & (-2.77768) \\ (-2.72733) & (-2.72768) & (-2.77768) \\ (-2.72733) & (-2.72768) & (-2.777788) \\ (-2.72733) & (-2.72768) & (-2.777788) \\ (-2.72733) & (-2.72768) & (-2.777788) \\ (-2.72733) & (-2.72733) & (-2.77788) \\ (-2.72733) & (-2.72733) & (-2.77788) \\ (-2.72733) & (-2.77788) & (-2.77788) \\ (-2.72733) & (-2.77788) & (-2.77788) \\ (-2.72733) & (-2.77788) & (-2.77788) & (-2.77788) \\ (-2.72733) & (-2.77788) & (-2.77788) & (-2.77788) \\ (-2.72733) & (-2.77788) & (-2.77788) & (-2.77788) \\ (-2.72733) & (-2.77788) & (-2.77788) & (-2.77788) & (-2.77788) \\ (-2.72733) & (-2.77788$									[2.58790]
(0.57760) (0.16461) (0.21483) (0.10999) (2.27252) (0.27144) (0.72049) (0.44 D(TOGS(-1)) -0.65643 (0.035172) (0.039900) -0.005528 -0.361454 (0.016222) 0.44 (0.42262) (0.12044) (0.015719) (0.07536) (1.99566) (0.19861) (0.52716) (0.32 D(PT(-1)) (0.39172) (0.35930) (0.01493) -5.687030 0.377788 3.623514 -0.24 D(PT(-1)) (0.39160) (0.27119) (0.35930) (0.16926) (0.44720) (1.18701) (0.73266) D(DEBT(-1)) -0.19481 0.040803 0.006259 -0.04702 -0.151158 -0.004720 -0.61158 -0.004720 -0.61158 -0.04787 (0.23246) (0.04103) (0.0526) (0.19376) (0.01928) (0.05160) (0.03246) (0.0418) (0.28637) -0.041134 0.789990 -0.40134 0.799990 -0.40134 -0.22334 -0.052 (0.23246) (0.0428) (0.02234) (0.05266) (0.40498) (0.223344) <td></td> <td></td> <td>1</td> <td></td> <td>1</td> <td>11</td> <td></td> <td>1</td> <td>1</td>			1		1	11		1	1
$ \begin{bmatrix} i - 3.41875 \\ i - 0.4119 \\ i - 1.06950 \\ i - 7.96311 \\ i - 1.00192 \\ i - 0.365441 \\ i - 0.27708 \\ i - 0.365441 \\ i - 0.27708 \\ i - 0.36144 \\ i - 0.2708 \\ i - 0.22622 \\ i - 0.226241 \\ i - 0.0736 \\ i - 0.07373 \\ i - 1.81995 \\ i - 0.03077 \\ i - 1.81995 \\ i - 0.03077 \\ i - 1.81995 \\ i - 0.3007 \\ i - 0.2007 \\ i - 0.3007 \\ i - 0.2273 \\ i - 1.81995 \\ i - 0.3007 \\ i - 0.3007 \\ i - 0.2273 \\ i - 1.81995 \\ i - 0.3007 \\ i - 0.3007 \\ i - 0.2273 \\ i - 1.81995 \\ i - 0.3007 \\ i - 0.2273 \\ i - 1.81995 \\ i - 0.3007 \\ i - 0.4472 \\ i - 0.3226 \\ i - 0.3008 \\ i - 0.4472 \\ i - 0.3226 \\ i - 0.3008 \\ i - 0.4472 \\ i - 0.3023 \\ i - 0.4472 \\ i - 0.3232 \\ i - 0.4479 \\ i - 0.3232 \\ i - 0.48479 \\ i - 0.3232 \\ i - 1.46332 \\ i - 0.323 \\ i - 1.46312 \\ i - 0.323 \\ i - 1.4631 \\ i - 0.3333 \\ i - 1.4631 \\ i - 0.2986 \\ i - 0.02234 \\ i - 0.0286 \\ i - 0.02234 \\ i - 0.0286 \\ i - 0.0286 \\ i - 0.0286 \\ i - 0.00286 \\ i - 0.00286 \\ i - 0.00286 \\ i - 0.00733 \\ i - 0.6887 \\ i - 0.00733 \\ i - 0.6887 \\ i$	D(PIT(-1))	-1.974673	0.138466	-0.229761	0.082013	-2.732749	-0.099195	0.199631	0.475391
D(TOGS(-1)) -0.850443 0.035172 0.039900 -0.005528 1.052382 -0.361454 0.016222 0.44 D(TOGS(-1)) -0.394145 (0.22023) [0.22023] [0.25441] [-0.07336] [1.95566] (0.19861) (0.52716) (0.32 D(PT(-1)) 0.394105 0.137131 0.202586 0.001493 -5.87030 0.377788 3.623514 -0.24 D(DEBT(-1)) 0.051600 (0.27119) (0.35393) (0.16968) [-1.26558] [0.84479] [3.05264] [-0.32 D(DEBT(-1)) -0.199481 0.040803 0.006259 -0.004702 -0.151158 -0.06426 -0.074897 0.225 D(GGCE(-1)) -0.540935 -0.04749 0.288637 -0.040134 0.798990 -0.401316 -0.311332 -0.667 D(GGCE(-1)) -0.540935 -0.048749 0.288637 -0.040134 0.798990 -0.401316 -0.311332 -0.667 D(GGCE(-1)) -0.540935 -0.018755 (0.13277) (0.04975) (0.022856) -0.840308 -0		(0.57760)	(0.16461)	(0.21483)	(0.10299)	(2.72752)	(0.27144)	(0.72049)	(0.44900)
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		[-3.41875]	[0.84119]	[-1.06950]	[0.79631]	[-1.00192]	[-0.36544]	[0.27708]	[1.05878]
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$									
$ \begin{bmatrix} -2.01233 \\ [-2.01233 \end{bmatrix} \begin{bmatrix} 0.29203 \\ [-2.01233 \end{bmatrix} \begin{bmatrix} 0.254411 \\ [-0.07336 \end{bmatrix} \begin{bmatrix} -0.27336 \\ [-0.2733] \\ [-1.81995] \\ [-0.3977] \\ [-0.3977] \\ [-0.3977] \\ [-0.3977] \\ [-0.3977] \\ [-0.3977] \\ [-0.3956] \\ [-0.395] \\ [-0.495] \\ [-0.395] \\ [-0.495] \\ [-$	D(TOGS(-1))								0.445452
$ \begin{array}{c} D(PT(-1)) & 0.394105 & 0.137131 & 0.202586 & 0.001493 & -5.687030 & 0.377788 & 3.623514 & -0.247 & 0.25714 & 0.25714 & 0.25714 & 0.25714 & 0.25714 & 0.25714 & 0.25714 & 0.25714 & 0.257238 & 0.004702 & -0.151158 & -0.006426 & -0.074997 & 0.02514 & 0.001928 & 0.00211 & 0.0022930 & 0.047355 & 0.013524 & -0.025966 & -0.040308 & -0.146780 & -0.022334 & -0.055 & 0.031928 & 0.00168 & 0.00210 & 0.001928 & 0.004201 & 0.001928 & 0.004201 & 0.001928 & 0.001928 & 0.001928 & 0.001928 & 0.001928 & 0.001928 & 0.000626 & -0.002813 & -0.002813 & -0.002813 & -0.002813 & -0.002813 & -0.002812 & -0.002813 & 0.00128 & 0.000628 & -0.002813 & -0.002813 & -0.002814 & -0.002814 & -0.002814 & -0.002814 & -0.002814 & -0.002814 & -0.002814 & -0.002814 & -0.002814 & -0.002814 & -0.002814 & -0.002814 & -0.002814 & -0.002814 & -0.002814 & -0.002814 & -0.002884 & -0.002814 & -0.002814 & -0.002884 & -0.002814 & -0.002884 & -0.002814 & -0.002884 & -0.002814 & -0.002884 & -0.002814 & -0.002884 & -0.002884 & -0.002884 & -0.002884$									(0.32852)
(0.95160) (0.27119) (0.35393) (0.16968) (4.49360) (0.44720) (1.18701) (0.73 D(DEBT(-1)) -0.199481 0.040803 0.006259 -0.004702 -0.151158 -0.06426 -0.074897 0.028 D(DEBT(-1)) -0.199481 0.040803 0.006259 -0.00722 (0.19726) (0.05118) (0.03 I-4.861601 I-3.489341 I 0.410141 I-0.642681 I-0.780131 I-0.333231 I-1.463321 I0.88 D(GGCE(-1)) -0.540935 -0.048749 0.288637 -0.040134 0.798990 -0.0401316 -0.311332 -0.693 D(GGCE(-1)) -0.540935 -0.048749 0.288637 -0.040134 0.798990 -0.0401316 -0.311332 -0.693 D(GFCF(-1)) 0.202930 0.047355 0.013524 -0.02556 -0.840308 -0.146780 -0.022334 -0.055 D(GFCF(-1)) 0.202930 0.047355 0.013524 -0.025355 (0.36186) (0.06226) (0.16666) (0.10 I (1.517011 I 1.		[-2.01233]	[0.29203]	[0.25441]	[-0.07336]	[0.52733]	[-1.81995]	[0.03077]	[1.35592]
(0.95160) (0.27119) (0.35393) (0.16968) (4.49360) (0.44720) (1.18701) (0.73 D(DEBT(-1)) -0.199481 0.040803 0.006259 -0.004702 -0.151158 -0.06426 -0.074897 0.025 D(DEBT(-1)) -0.199481 0.040803 0.006259 (0.00732) (0.1928) (0.05118) (0.03 I-4.861601 [3.48934] [0.41014] I-0.64268] I-0.78013] I-0.33323] I-1.46332] [0.88 D(GGCE(-1)) -0.540935 -0.048749 0.288637 -0.040134 0.798990 -0.041316 -0.311332 -0.693 D(GGCE(-1)) -0.540935 -0.048749 0.288637 -0.040134 0.798990 -0.041316 -0.311332 -0.693 D(GFCF(-1)) 0.202930 0.047355 0.013524 -0.025956 -0.840308 -0.146780 -0.022334 -0.055 D(HSCONS(-1)) -0.656167 -0.020001 -0.115941 -0.01398 0.889105 -0.075731 -0.404927 -0.124 (0.20051) (0.00422) <		0 20/105	0 127121	0 202596	0.001403	5 697020	0 277700	2 622514	0.241001
[0.41415] [0.50566] [0.57238] [0.00880] [-1.26558] [0.84479] [3.05264] [-0.32 D(DEBT(-1)) -0.199481 0.040803 0.006259 -0.004702 -0.151158 -0.006426 -0.074897 0.026 D(GGCE(-1)) -0.540935 -0.048749 0.286637 -0.040134 0.798990 -0.401316 -0.332331 [-1.46332] [0.88 D(GGCE(-1)) -0.540935 -0.048749 0.286637 -0.040134 0.798990 -0.401316 -0.311332 -0.693271 D(GFCF(-1)) 0.3246615 [-0.52689] [2.39029] [-0.693271] [0.52116] [-2.63031] [-0.76876] [-2.76 D(GFCF(-1)) 0.202930 0.047355 0.013524 -0.025956 -0.840308 -0.146780 -0.022334 -0.055 D(HSCONS(-1)) 0.666167 -0.02001 -0.115941 -0.10398 0.094231 (0.25011) (0.15 C 0.022327 -0.00636 0.002117 0.000622 0.046882 0.000264 -0.002813 -0.002 <	D(F1(-1))								(0.73973)
D(DEBT(-1)) -0.199481 0.040803 0.006259 -0.004702 -0.151158 -0.006426 -0.074897 0.025 D(GGCE(-1)) -0.540935 -0.048749 0.288637 -0.04134 [-0.33223] [-1.46332] [0.88 D(GGCE(-1)) -0.540935 -0.048749 0.288637 -0.040134 0.798990 -0.401316 -0.311332 -0.693 [0.03252) (0.12075) (0.05789) [1.53111] (0.15257) (0.40498) (0.25 D(GFCF(-1)) 0.202930 0.047355 0.013524 -0.025956 -0.840308 -0.146780 -0.022334 -0.058 D(GFCF(-1)) 0.202930 0.047355 0.013524 -0.025956 -0.840308 -0.146780 -0.022334 -0.058 D(HSCONS(-1)) -0.656167 -0.020001 -0.115941 -0.010398 0.889105 -0.075731 -0.404927 -0.128 Q(0.00337) (0.00096) (0.017450 (0.03575) (0.94683) (0.09423) (0.20511) (0.15744) Vii. R-squared 0.841472 <									
(0.04103) (0.01169) (0.01526) (0.00732) (0.19376) (0.01928) (0.05118) (0.03232) D(GGCE(-1)) -0.540935 -0.048749 0.288637 -0.040134 0.798990 -0.401316 -0.33223] [-1.46332] [0.88 D(GGCE(-1)) -0.540935 -0.048749 0.288637 -0.040134 0.798990 -0.401316 -0.311332 -0.693 D(GFCF(-1)) 0.202930 0.047355 0.013524 -0.025956 -0.840308 -0.146780 -0.022334 -0.056 D(GFCF(-1)) 0.202930 0.047355 0.013524 -0.025956 -0.840308 -0.146780 -0.022334 -0.056 D(GFCF(-1)) 0.202930 0.047355 0.013524 -0.02385) (0.63168) (0.06276) (0.13877) (0.03812) (0.04975) (0.02385) (0.63168) (0.06286) (0.100 (0.100 (0.20051) (0.05714) (0.07458) (0.33575) (0.94683) (0.09423) (0.25011) (0.158 (0.00420) [-0.80370] [-1.61900] [-0.80370] [-1.6		10.41415	10.00000	10.57250	10.000001	1-1.200000	[0.04479]	[3.03204]	1-0.327 141
[-4.86160] [-3.48934] [-0.41014] [-0.64268] [-0.78013] [-0.33323] [-1.46332] [-0.88 D(GGCE(-1)) -0.540935 -0.048749 0.288637 -0.040134 0.798990 -0.401316 -0.311332 -0.697 D(GFCF(-1)) 0.202930 (0.09252) (0.12075) (0.05789) (1.53311) (0.15257) (0.40498) (0.25 D(GFCF(-1)) 0.202930 0.047355 0.013524 -0.025956 -0.840308 -0.146780 -0.022334 -0.052 D(GFCF(-1)) 0.202930 0.047355 (0.04975) (0.02385) (0.63168) (0.06286) (0.166866) (0.10 D(HSCONS(-1)) -0.656167 -0.020001 -0.115941 -0.010398 0.889105 -0.075731 -0.404927 -0.125 D(HSCONS(-1)) -0.656167 -0.020001 -0.115941 -0.010398 0.889105 -0.075731 -0.404927 -0.125 C 0.02237 -0.000636 0.00217 (0.00822) 0.046882 0.000518) (0.02013) -0.02613 -0.00 C 0.02237 -0.000636 0.00217 (0	D(DEBT(-1))	-0.199481	0.040803	0.006259	-0.004702	-0.151158	-0.006426	-0.074897	0.028306
D(GGCE(-1)) -0.540935 -0.048749 0.288637 -0.040134 0.798990 -0.401316 -0.311332 -0.6937 D(GFCF(-1)) 0.202930 0.047355 0.013524 -0.025956 -0.840308 -0.146780 -0.022334 -0.052 D(GFCF(-1)) 0.202930 0.047355 0.013524 -0.025956 -0.840308 -0.146780 -0.022334 -0.052 D(GFCF(-1)) 0.202930 0.047355 0.013524 -0.025956 -0.840308 -0.146780 -0.022334 -0.055 D(HSCONS(-1)) -0.656167 -0.020001 -0.115941 -0.010398 0.889105 -0.075731 -0.404927 -0.125 D(HSCONS(-1)) -0.656167 -0.020001 -0.115941 -0.010398 0.889105 -0.075731 -0.404927 -0.125 D(HSCONS(-1)) -0.656167 -0.020001 -0.155467 -0.290821 [0.93904] -0.803701 [-1.61900] [-0.83 C 0.022327 -0.000636 0.002117 0.000622 0.046882 0.000266 -0.002813 <t< td=""><td></td><td>(0.04103)</td><td>(0.01169)</td><td>(0.01526)</td><td>(0.00732)</td><td>(0.19376)</td><td>(0.01928)</td><td>(0.05118)</td><td>(0.03190)</td></t<>		(0.04103)	(0.01169)	(0.01526)	(0.00732)	(0.19376)	(0.01928)	(0.05118)	(0.03190)
(0.32466) (0.09252) (0.12075) (0.05789) (1.53311) (0.15257) (0.40498) (0.25 D(GFCF(-1)) 0.202930 0.047355 0.013524 -0.025956 -0.840308 -0.146780 -0.022334 -0.055 D(GFCF(-1)) 0.202930 0.047355 0.013524 -0.025956 -0.840308 -0.146780 -0.022334 -0.055 D(HSCONS(-1)) -0.656167 -0.020001 -0.115941 -0.010398 0.889105 -0.075731 -0.404927 -0.126 D(HSCONS(-1)) -0.656167 -0.020001 -0.115941 -0.010398 0.889105 -0.075731 -0.404927 -0.126 (0.20051) (0.05714) (0.07458) (0.03375) (0.94683) (0.09423) (0.25011) (0.5714) (0.00125) (0.000626 -0.002813 -0.007 C 0.022327 -0.000636 0.002117 0.000622 0.46882 0.000626 -0.002813 -0.007 Sum sq. resids 0.084172 0.305121 0.232186 0.171171 0.168705 0.3320		[-4.86160]	[3.48934]	[0.41014]	[-0.64268]	[-0.78013]	[-0.33323]	[-1.46332]	[0.88744]
(0.32466) (0.09252) (0.12075) (0.05789) (1.53311) (0.15257) (0.40498) (0.25 D(GFCF(-1)) 0.202930 0.047355 0.013524 -0.025956 -0.840308 -0.146780 -0.022334 -0.055 D(GFCF(-1)) 0.202930 0.047355 0.013524 -0.025956 -0.840308 -0.146780 -0.022334 -0.055 D(HSCONS(-1)) -0.656167 -0.020001 -0.115941 -0.010398 0.889105 -0.075731 -0.404927 -0.126 D(HSCONS(-1)) -0.656167 -0.020001 -0.115941 -0.010398 0.889105 -0.075731 -0.404927 -0.126 (0.20051) (0.05714) (0.07458) (0.03375) (0.94683) (0.09423) (0.25011) (0.5714) (0.00125) (0.000626 -0.002813 -0.007 C 0.022327 -0.000636 0.002117 0.000622 0.46882 0.000626 -0.002813 -0.007 Sum sq. resids 0.084172 0.305121 0.232186 0.171171 0.168705 0.3320									
[-1.66615] [-0.52689] [2.39029] [-0.69327] [0.52116] [-2.63031] [-0.76876] [-2.76 D(GFCF(-1)) 0.202930 0.047355 0.013524 -0.025956 -0.840308 -0.146780 -0.022334 -0.055 (0.13377) (0.03812) (0.04975) (0.02385) (0.63168) (0.06286) (0.16686) (0.10 [1.51701] [1.24219] [0.27182] [-1.08818] [-1.33027] [-2.33487] [-0.13385] [-0.53 D(HSCONS(-1)) -0.656167 -0.020001 -0.115941 -0.010398 0.889105 -0.075731 -0.404927 -0.126 (0.20051) (0.05714) (0.07458) (0.03575) (0.94683) (0.09423) (0.25011) (0.15 [-3.27254] [-0.35003] [-1.55467] [-0.29082] [0.93904] [-0.80370] [-1.61900] [-0.83 C 0.022327 -0.000636 0.002117 0.000622 0.046882 0.000626 -0.002813 -0.007 C 0.02337) (0.00036) (0.00125) (0.00600) (0.01591) (0.00420) (0.00 C <td>D(GGCE(-1))</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>-0.697141</td>	D(GGCE(-1))								-0.697141
D(GFCF(-1)) 0.202930 (0.13377) 0.047355 (0.03812) 0.013524 (0.04975) -0.025956 (0.02385) -0.840308 (0.63168) -0.146780 (0.06286) -0.022334 (0.06866) -0.055 (0.16666) D(HSCONS(-1)) -0.656167 (0.20051) -0.020001 (0.05714) -0.115941 (0.07458) -0.010398 (0.03575) 0.94683) (0.94683) -0.075731 (0.94683) -0.404927 (0.94683) -0.125 (0.20511) C 0.022327 (0.00337) -0.000636 (0.0096) 0.002117 (0.00125) 0.000622 (0.00060) 0.046882 (0.01581) 0.000626 (0.001581) -0.022813 (0.09420) -0.00 (0.001581) C 0.022327 (0.00337) -0.000636 (0.00125) 0.00060) (0.01591) (0.00158) (0.00420) -0.002 (0.000 (0.001581) -0.066930] -0.404 (0.00420) -0.002 (0.000 (0.00125) Asquared 0.841472 0.305121 0.232186 0.171171 0.168705 0.359620 0.332076 0.287 (0.002894) 0.174918 0.126 (0.002894) 0.174918 0.126 (0.002894) 0.028943 0.174918 0.126 (0.00127) 0.013149 0.002 (0.002894) 0.028943 0.174918 0.126 (0.0127) 0.013149 0.002 (0.0127) 0.074447									(0.25238)
(0.13377) (0.03812) (0.04975) (0.02385) (0.63168) (0.06286) (0.16686) (0.10 D(HSCONS(-1)) -0.656167 -0.02001 -0.115941 -0.010398 0.889105 -0.075731 -0.404927 -0.122 D(HSCONS(-1)) -0.656167 -0.020001 -0.115941 -0.010398 0.889105 -0.075731 -0.404927 -0.122 (0.20051) (0.05714) (0.07458) (0.03575) (0.94683) (0.09423) (0.25011) (0.15 F-3.272541 F-0.350031 F-1.554671 F-0.290821 [0.939041] F-0.803701 F-1.619001 F-0.83 C 0.022327 -0.000636 0.002117 0.000622 0.046882 0.000626 -0.002813 -0.007 (0.00337) (0.00096) (0.00125) (0.00060) (0.01591) (0.00158) (0.00420) (0.00 Sequared 0.841472 0.305121 0.232186 0.171171 0.168705 0.359620 0.332076 0.287 Sel. equation 0.015765 0.004493 0.002844 0.002894 0.208943 0.174918 0.126 <t< td=""><td></td><td>[-1.66615]</td><td>[-0.52689]</td><td>[2.39029]</td><td>[-0.69327]</td><td>[0.52116]</td><td>[-2.63031]</td><td>[-0.76876]</td><td>[-2.76230]</td></t<>		[-1.66615]	[-0.52689]	[2.39029]	[-0.69327]	[0.52116]	[-2.63031]	[-0.76876]	[-2.76230]
(0.13377) (0.03812) (0.04975) (0.02385) (0.63168) (0.06286) (0.16686) (0.10 D(HSCONS(-1)) -0.656167 -0.020001 -0.115941 -0.010398 0.889105 -0.075731 -0.404927 -0.122 D(HSCONS(-1)) -0.656167 -0.020001 -0.115941 -0.010398 0.889105 -0.075731 -0.404927 -0.122 (0.20051) (0.05714) (0.07458) (0.03575) (0.94683) (0.09423) (0.25011) (0.15 F-3.272541 F-0.350031 F-1.554671 F-0.290821 F.0.939041 F-0.803701 F-1.619001 F-0.83 C 0.022327 -0.000636 0.002117 0.000622 0.046882 0.000626 -0.002813 -0.007 (0.00337) (0.00096) (0.0125) (0.00060) (0.01591) (0.00158) (0.00420) (0.00 Sequared 0.841472 0.305121 0.232186 0.171171 0.168705 0.359620 0.332076 0.287 Vali R-squared 0.804172 0.141620 0.051523 -0.023848 -0.026894 0.208943 0.174918		0 202020	0.047255	0.012524	0.025056	0 940209	0 146790	0 000004	0.055170
[1.51701] [1.24219] [0.27182] [-1.08818] [-1.33027] [-2.33487] [-0.13385] [-0.53 D(HSCONS(-1)) -0.656167 -0.020001 -0.115941 -0.010398 0.889105 -0.075731 -0.404927 -0.129 (0.20051) (0.05714) (0.07458) (0.03575) (0.94683) (0.09423) (0.25011) (0.15 [-3.27254] [-0.35003] [-1.55467] [-0.29082] [0.93904] [-0.80370] [-1.61900] [-0.83 C 0.022327 -0.000636 0.002117 0.000622 0.046882 0.000266 -0.002813 -0.00 (0.00337) (0.00096) (0.0125) (0.00060) (0.01591) (0.00158) (0.00420) (0.00 [6.62703] [-0.66210] [1.68933] [1.03607] [2.94675] [0.39567] [-0.66930] [-0.40 R-squared 0.841472 0.305121 0.232186 0.171171 0.168705 0.389620 0.332076 0.287 Adi. R-squared 0.804172 0.141620 0.051523 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>(0.10399)</td>									(0.10399)
D(HSCONS(-1)) -0.656167 -0.02001 -0.115941 -0.010398 0.889105 -0.075731 -0.404927 -0.129 C 0.20051) (0.05714) (0.07458) (0.03575) (0.94683) (0.09423) (0.25011) (0.15 C 0.022327 -0.000636 0.002117 0.000622 0.046882 0.000266 -0.002813 -0.002 [6.62703] [-0.66210] [1.68933] [1.03607] [2.94675] [0.39567] [-0.66930] [-0.40 R-squared 0.841472 0.305121 0.232186 0.171171 0.168705 0.359620 0.332076 0.287 Vdi. R-squared 0.804172 0.141620 0.051523 -0.028848 -0.026894 0.208943 0.174918 0.122 Sum sq. resids 0.008451 0.000686 0.001169 0.00269 0.188441 0.01866 0.013149 0.005 S.E. equation 0.015765 0.004493 0.005864 0.022811 0.07447 0.007409 0.019666 0.01749 -statistic <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>[-0.53057]</td>									[-0.53057]
(0.20051) (0.05714) (0.07458) (0.03575) (0.94683) (0.09423) (0.25011) (0.15 F-3.272541 F-0.350031 F-1.554671 F-0.290821 F.0.399041 F-0.803701 F-1.619001 F-0.83 C 0.022327 -0.000636 0.002117 0.000622 0.046882 0.000626 -0.002813 -0.00 (0.00337) (0.00096) (0.00125) (0.00060) (0.01591) (0.00158) (0.00420) (0.00 F-6.627031 F-0.662101 F1.689331 F1.036071 F2.946751 F0.395671 F-0.669301 F-0.40 R-squared 0.841472 0.305121 0.232186 0.171171 0.168705 0.359620 0.332076 0.287 Adi, R-squared 0.804172 0.141620 0.051523 -0.023848 -0.026894 0.208943 0.174918 0.120 Sen equation 0.015765 0.004493 0.005864 0.002211 0.074447 0.007490 0.019666 0.012 -statistic 22.55922 1.866171 1.285191 0.877714 0.862504 2.386688 2.113003 1.716		11.51701	11.24213	10.27 1021	1-1.000101	1-1.550271	[-2.33407]	1-0.100001	1-0.00071
[-3.27254] [-0.35003] [-1.55467] [-0.29082] [0.93904] [-0.80370] [-1.61900] [-0.83 C 0.022327 -0.000636 0.002117 0.000622 0.046882 0.000626 -0.002813 -0.007 (0.00337) [-0.66210] [1.68933] [1.03607] [2.94675] [0.39567] [-0.66930] [-0.40 R-squared 0.841472 0.305121 0.232186 0.171171 0.168705 0.359620 0.332076 0.287 Adi. R-squared 0.804172 0.141620 0.051523 -0.028848 -0.026894 0.208943 0.174918 0.120 St.e equation 0.015765 0.004493 0.005864 0.002811 0.074447 0.007409 0.019666 0.012 Log likelihood 122.4818 176.4605 165.0101 196.6241 55.73433 154.9528 112.9767 133.5 Vean dependent 0.015842 0.001107 0.001640 0.00298 0.39016 0.001147 0.003363 0.002 Schwarz SC <td>D(HSCONS(-1))</td> <td>-0.656167</td> <td>-0.020001</td> <td>-0.115941</td> <td>-0.010398</td> <td>0.889105</td> <td>-0.075731</td> <td>-0.404927</td> <td>-0.129937</td>	D(HSCONS(-1))	-0.656167	-0.020001	-0.115941	-0.010398	0.889105	-0.075731	-0.404927	-0.129937
C 0.022327 (0.00337) [6.62703] -0.000636 (0.00096) 0.002117 (0.00125) 0.000622 (0.00060) 0.046882 (0.01591) 0.000626 (0.01591) -0.002813 (0.00420) -0.007 (0.00420) R-squared 0.841472 0.305121 0.232186 0.171171 0.168705 0.359620 0.332076 0.287 Adi. R-squared 0.804172 0.141620 0.051523 -0.028848 -0.026894 0.208943 0.174918 0.128 Sum sq. resids 0.008451 0.00686 0.001169 0.000269 0.188441 0.001866 0.013149 0.005 S.E. equation 0.015765 0.004493 0.005864 0.002811 0.074447 0.007409 0.019666 0.012 -statistic 22.55922 1.866171 1.285191 0.877714 0.862504 2.386688 2.113003 1.718 cog likelihood 122.4818 176.4005 185.0101 196.6241 55.73433 154.9528 112.9767 133.3 Akaike AlC -5.278233 -7.788859 -7.256286 -8.726703 -2.173690 <		(0.20051)	(0.05714)	(0.07458)	(0.03575)	(0.94683)	(0.09423)	(0.25011)	(0.15586)
(0.00337) (0.00096) (0.00125) (0.00060) (0.01591) (0.00158) (0.00420) (0.00 [6.62703] [-0.66210] [1.68933] [1.03607] [2.94675] [0.39567] [-0.66930] [-0.40 R-squared 0.841472 0.305121 0.232186 0.171171 0.168705 0.359620 0.332076 0.287 Adi. R-squared 0.804172 0.141620 0.051523 -0.023848 -0.026894 0.208943 0.174918 0.120 Sum sq. resids 0.008451 0.0004493 0.00269 0.188441 0.001866 0.0012 S.E. equation 0.015765 0.004493 0.002811 0.074447 0.007409 0.019666 0.012 -statistic 22.55922 1.866171 1.285191 0.877714 0.862504 2.386688 2.113003 1.716 Log likelihood 122.4818 176.4605 165.0101 196.6241 55.73433 154.9528 112.9767 133.3 Akaike AlC -5.278223 -7.788859 -7.256286 <t< td=""><td></td><td>[-3.27254]</td><td>[-0.35003]</td><td>[-1.55467]</td><td>[-0.29082]</td><td>[0.93904]</td><td>[-0.80370]</td><td>[-1.61900]</td><td>[-0.83365]</td></t<>		[-3.27254]	[-0.35003]	[-1.55467]	[-0.29082]	[0.93904]	[-0.80370]	[-1.61900]	[-0.83365]
(0.00337) (0.00096) (0.00125) (0.00060) (0.01591) (0.00158) (0.00420) (0.00 [6.62703] [-0.66210] [1.68933] [1.03607] [2.94675] [0.39567] [-0.66930] [-0.40 R-squared 0.841472 0.305121 0.232186 0.171171 0.168705 0.359620 0.332076 0.287 Adi. R-squared 0.804172 0.141620 0.051523 -0.023848 -0.026894 0.208943 0.174918 0.120 Sum sq. resids 0.008451 0.0004493 0.00269 0.188441 0.001866 0.0012 S.E. equation 0.015765 0.004493 0.002811 0.074447 0.007409 0.019666 0.012 -statistic 22.55922 1.866171 1.285191 0.877714 0.862504 2.386688 2.113003 1.716 Log likelihood 122.4818 176.4605 165.0101 196.6241 55.73433 154.9528 112.9767 133.3 Akaike AlC -5.278223 -7.788859 -7.256286 <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>									
[6.62703] [-0.66210] [1.68933] [1.03607] [2.94675] [0.39567] [-0.66930] [-0.40 R-squared 0.841472 0.305121 0.232186 0.171171 0.168705 0.359620 0.332076 0.287 Adi. R-squared 0.804172 0.141620 0.051523 -0.023848 -0.026894 0.208943 0.174918 0.120 Sum sq. resids 0.008451 0.000686 0.001169 0.002269 0.188441 0.001866 0.013149 0.005 S.E. equation 0.015765 0.004493 0.005864 0.002211 0.074447 0.007409 0.019666 0.011 .og likelihood 122.4818 176.4605 165.0101 196.62241 55.73433 154.9528 112.9767 133.3 Akaike AIC -5.278223 -7.788859 -7.256286 -8.726703 -2.173690 -6.7489501 -4.836127 -5.78 Schwarz SC -4.909600 -7.420236 -6.87663 -8.358079 -1.805066 -6.419878 -4.467504 -5.413	C								-0.001048
R-squared 0.841472 0.305121 0.232186 0.171171 0.168705 0.359620 0.332076 0.287 Adi. R-squared 0.804172 0.141620 0.051523 -0.023848 -0.026894 0.208943 0.174918 0.127 Sum sq. resids 0.008451 0.000866 0.001169 0.000269 0.188441 0.001866 0.0113149 0.005 S.E. equation 0.015765 0.004493 0.005864 0.002811 0.074447 0.007409 0.019666 0.012 F-statistic 22.55922 1.866171 1.285191 0.877714 0.862504 2.386688 2.113003 1.716 Log likelihood 122.4818 176.4605 165.0101 196.6241 55.73433 154.9528 112.9767 133.3 Akaike AlC -5.278233 -7.788859 -7.256286 -8.726703 -2.173690 -6.788501 -4.836127 -5.787 Schwarz SC -4.909600 -7.420236 -6.887663 -8.358079 -1.805066 -6.419878 -4.467504 -5.417									(0.00262)
Adi. R-squared 0.804172 0.141620 0.051523 -0.023848 -0.026894 0.208943 0.174918 0.120 Sum sq. resids 0.008451 0.000866 0.001169 0.000269 0.188441 0.001866 0.0012 S.E. equation 0.015765 0.004493 0.005864 0.002811 0.074447 0.007409 0.019666 0.012 -statistic 22.55922 1.866171 1.285191 0.877714 0.862504 2.386688 2.113003 1.716 Log likelihood 122.4818 176.4605 165.0101 196.6241 55.73433 154.9528 112.9767 133.3 Akaike AIC -5.278223 -7.788859 -7.256286 -8.726703 -2.173690 -6.788501 -4.836127 -5.783 Schwarz SC -4.909600 -7.420236 -6.887663 -8.358079 -1.805066 -6.419878 -4.467504 -5.413 Vean dependent 0.015842 0.001107 0.001640 0.002278 0.039016 0.001147 -0.003363 0.002		[0.02703]	[-0.06210]	1.08933	11.036071	2.94675	10.395671	[-0.66930]	[-0.40025]
Adi. R-squared 0.804172 0.141620 0.051523 -0.023848 -0.026894 0.208943 0.174918 0.120 Sum sq. resids 0.008451 0.000866 0.001169 0.00269 0.188441 0.001866 0.013149 0.002 S.E. equation 0.015765 0.004493 0.005864 0.002811 0.074447 0.007409 0.019666 0.012 -statistic 22.55922 1.866171 1.285191 0.877714 0.862504 2.386688 2.113003 1.716 .og likelihood 122.4818 176.4605 165.0101 196.6241 55.73433 154.9528 112.9767 133.3 Kaike AIC -5.278223 -7.788859 -7.256286 -8.726703 -2.173690 -6.788501 -4.836127 -5.783 Schwarz SC -4.909600 -7.420236 -6.887663 -8.358079 -1.805066 -6.419878 -4.467504 -5.413 Alean dependent 0.015842 0.001107 0.001640 0.002278 0.039016 0.001147 -0.003363 0.002 S.D. dependent 0.035626 0.004849 0.006021 0.00	R-squared	0 841472	0 305121	0 232186	0 171171	0 168705	0 359620	0 332076	0.287946
Sum sq. resids 0.008451 0.000686 0.001169 0.000269 0.188441 0.001866 0.013149 0.005 S.E. equation 0.015765 0.004493 0.005864 0.002811 0.074447 0.007409 0.019666 0.012 F-statistic 22.55922 1.866171 1.285191 0.877714 0.862504 2.386688 2.113003 1.718 Log likelihood 122.4818 176.4605 165.0101 196.6241 55.73433 154.9528 112.9767 133.3 Akaike AIC -5.278223 -7.788859 -7.256286 -8.726703 -2.173690 -6.788501 -4.836127 -5.78 Schwarz SC -4.909600 -7.420236 -6.887663 -8.358079 -1.805066 -6.419878 -4.467504 -5.413 Vean dependent 0.015842 0.001107 0.006021 0.002778 0.073466 0.008330 0.021650 0.013 S.D. dependent 0.035626 0.004849 0.006021 0.002778 0.073466 0.008330 0.021650 0.013									0.120404
S.E. equation 0.015765 0.004493 0.005864 0.002811 0.074447 0.007409 0.019666 0.012 statistic 22.55922 1.866171 1.285191 0.877714 0.862504 2.386688 2.113003 1.716 .og likelihood 122.4818 176.4605 165.0101 196.6241 55.73433 154.9528 112.9767 133.3 kaike AIC -5.278223 -7.788859 -7.256286 -8.726703 -2.173690 -6.788501 -4.836127 -5.78' Schwarz SC -4.909600 -7.420236 -6.887663 -8.358079 -1.805066 -6.419878 -4.467504 -5.413' Vean dependent 0.015842 0.001107 0.001640 0.000298 0.039016 0.001147 -0.003363 0.002' S.D. dependent 0.035626 0.004849 0.006021 0.002778 0.073466 0.008330 0.021650 0.013' Oteetrminant resid covariance 8.81E-34 8.81E-34 - - - - - - -									0.005107
F-statistic 22.55922 1.866171 1.285191 0.877714 0.862504 2.386688 2.113003 1.716 .og likelihood 122.4818 176.4605 165.0101 196.6241 55.73433 154.9528 112.9767 133.3 Vkaike AIC -5.278223 -7.788859 -7.256286 -8.726703 -2.173690 -6.788501 -4.836127 -5.781 Schwarz SC -4.909600 -7.420236 -6.887663 -8.358079 -1.805066 -6.419878 -4.467504 -5.411 Vean dependent 0.015842 0.001107 0.001640 0.000298 0.039016 0.001147 -0.003363 0.002 S.D. dependent 0.035626 0.004849 0.006021 0.002778 0.073466 0.008330 0.021650 0.013 Determinant resid covariance (dof adj.) 5.76E-33 5.81E-34 5.81E-34 5.81E-34									0.012255
Log likelihood 122.4818 176.4605 165.0101 196.6241 55.73433 154.9528 112.9767 133.3 Vacaike AIC -5.278223 -7.788859 -7.256286 -8.726703 -2.173690 -6.788501 -4.836127 -5.78 Schwarz SC -4.909600 -7.420236 -6.887663 -8.358079 -1.805066 -6.419878 -4.467504 -5.47 Vean dependent 0.015842 0.001107 0.001640 0.000298 0.039016 0.001147 -0.003363 0.002 S.D. dependent 0.035626 0.004849 0.006021 0.002778 0.073466 0.008330 0.021650 0.013 Determinant resid covariance (dof adj.) 5.76E-33 -5.418 -5.418 -5.418									1.718651
Akaike AIC -5.278223 -7.788859 -7.256286 -8.726703 -2.173690 -6.788501 -4.836127 -5.78 Schwarz SC -4.909600 -7.420236 -6.887663 -8.358079 -1.805066 -6.419878 -4.467504 -5.413 Vean dependent 0.015842 0.001107 0.001640 0.000298 0.039016 0.001147 -0.003363 0.002 S.D. dependent 0.035626 0.004849 0.006021 0.002778 0.073466 0.008330 0.021650 0.013 Determinant resid covariance 8.81E-34 8.81E-34 -5.76E-33 -5.76E-33 -5.76E-33 -5.76E-33 -5.76E-34 -5									133.3117
Schwarz SC -4.909600 -7.420236 -6.887663 -8.358079 -1.805066 -6.419878 -4.467504 -5.413 Vlean dependent 0.015842 0.001107 0.001640 0.000298 0.039016 0.001147 -0.003363 0.002 S.D. dependent 0.035626 0.004849 0.006021 0.002778 0.073466 0.008330 0.021650 0.013 Determinant resid covariance (dof adj.) 5.76E-33 8.81E-34 8.81E-34 5.76E-33 5.76E-33 5.76E-33 5.76E-33 5.76E-34 5.76E									-5.781940
Mean dependent 0.015842 0.001107 0.001640 0.000298 0.039016 0.001147 -0.003363 0.002 S.D. dependent 0.035626 0.004849 0.006021 0.002778 0.073466 0.008330 0.021650 0.013 Determinant resid covariance (dof adj.) 5.76E-33 8.81E-34 8.81E-34 5.76E-33 5.76E-33 5.76E-33 5.76E-33 5.76E-33 5.76E-33 5.76E-34 5.76E-									-5.413317
S.D. dependent 0.035626 0.004849 0.006021 0.002778 0.073466 0.008330 0.021650 0.013 Determinant resid covariance (dof adj.) 5.76E-33 8.81E-34 5.76E-33 5.76E-33 5.76E-34 5.7									0.002565
Determinant resid covariance 8.81E-34									0.013067
Determinant resid covariance 8.81E-34									1
	Log likelihood								
	Akaike information criterion								
Schwarz criterion -47.11156									
Number of coefficients 72	Number of coefficients		12						

Diagnostics tests of VAR Model 2

VAR Lag Order Selection Criteria Endogenous variables: GDP(-1) D(PIT) D(TOGS) D(PT) D(DEBT) D(GGCE) D(... Exogenous variables: C

Sample: 1974 2018
Included observations: 41

Lag	LogL	LR	FPE	AIC	SC	HQ
0	1007.757	NA	9.13e-32	-48.76865	-48.43430*	-48.64690
1	1102.650	148.1246*	2.14e-32*	-50.27560*	-47.26640	-49.17981*
2	1147.975	53.06321	7.69e-32	-49.36461		-47.29480
3	1214.405	51.84781	2.17e-31	-49.48315		-46.43930

* indicates lag order selected by the criterion

LR: sequential modified LR test statistic (each test at 5% level)

FPE: Final prediction error

AIC: Akaike information criterion

SC: Schwarz information criterion

HQ: Hannan-Quinn information criterion

Model 2 VAR Lag Order Selection Criteria

Roots of Characteristic Polynomial Endogenous variables: GDP(-1) D(PIT) D(TOGS) D(PT) D(DEBT) D(GGCE) D(GFCF) D(HSCONS) Exogenous variables: C Lag specification: 1 1

Root	Modulus
0.454735 - 0.215536i	0.503230
0.454735 + 0.215536i	0.503230
0.037054 - 0.471281i	0.472735
0.037054 + 0.471281i	0.472735
-0.349551 - 0.186401i	0.396145
-0.349551 + 0.186401i	0.396145
0.160568 0.157300i	0.396145
-0.160568 - 0.157399i	0.224848
-0.160568 + 0.157399i	0.224848

No root lies outside the unit circle.

VAR satisfies the stability condition.

VAR Model 2 Roots of characteristic polynomial

Granger Causality Test

VAR Granger Causality/Block Exogeneity Wald Tests

Sample: 1974 2018 Included observations:	43		
Dependent variable: Gl			
Excluded	Chi-sq	df	Prob.
		1	
D(PIT) D(TOGS) D(PT)	11.68788 4.049467	1	0.0006 0.0442
D(DEBT)	0.171521 23.63516	1 1	0.6788 0.0000
D(GGCE) D(GFCF)	2.776054 2.301323	1 1	0.0957 0.1293
D(HSCONS)	10.70950	1	0.0011
All	86.50907	7	0.0000
Dependent variable: D(PIT)		
Excluded	Chi-sq	df	Prob.
GDP(-1)	0.596290	1	0.4400
D(TOGS) D(PT)	0.085281 0.255692	1 1	0.7703 0.6131
D(DEBT)	12.17550 0.277609	1	0.0005
D(GGCE) D(GFCF)	1.543028	1 1	0.5983 0.2142
D(HSCONS)	0.122524	1	0.7263
All	14.23557	7	0.0471
Dependent variable: D(
Excluded	Chi-sq	df	Prob.
GDP(-1) D(PIT)	2.031053 1.143828	1 1	0.1541 0.2848
D(PT) D(DEBT)	0.327623	1	0.5671
D(GGCE)	0.168219 5.713498	1 1	0.6817 0.0168
D(GFCF) D(HSCONS)	0.073884 2.416992	1 1	0.7858 0.1200
All	10.11991	7	0.1819
Dependent variable: D	Chi-sq	df	Prob.
GDP(-1)	1.075249	1	0.2998
D(PIT)	0.634108	1	0.4259
D(TOGS) D(DEBT)	0.005382 0.413044	1 1	0.9415 0.5204
D(GGCE) D(GFCF)	0.480630	1 1	0.4881 0.2765
D(HSCONS)	0.084579	1	0.7712
All	6.903667	7	0.4390
Dependent variable: D((DEBT)		
Excluded	Chi-sq	df	Prob.
GDP(-1)	0.887217	1	0.3462 0.3164
D(PIT) D(TOGS)	1.003836 0.278082	1 1	0.3164 0.5980
D(PT)	1.601701 0.271605	1	0.2057
D(GGCE) D(GFCF)	1.769619	1 1	0.6023 0.1834 0.3477
D(HSCONS)	0.881791	1	
All	6.713464	7	0.4593
Dependent variable: D((GGCE)		
Excluded	Chi-sq	df	Prob.
GDP(-1) D(PIT)	7.599886 0.133545	1 1	0.0058 0.7148
D(TOGS) D(PT)	3.312222	1	0.0688
D(DEBT)	0.713664 0.111042	1 1	0.3982 0.7390
D(GFCF) D(HSCONS)	5.451624 0.645936	1 1	0.0196 0.4216
All	16.12291	7	0.0240
Dependent variable: D(GFCF)		
Excluded	Chi-sq	df	Prob.
GDP(-1)	1.722132	1	0.1894
D(PIT)	0.076772	1	0.7817
D(TOGS) D(PT)	0.000947 9.318634	1 1	0.9755 0.0023
D(DEBT) D(GGCE)	2.141317 0.590997	1 1	0.1434 0.4420
D(HSCONS)	2.621170	1	0.1054
All	15.00013	7	0.0360
Dependent variable: D(HSCONS)		
Excluded	Chi-sq	df	Prob.
GDP(-1)	6.697201	1	0.0097
D(PIT) D(TOGS)	1.121009 1.838529	1 1	0.2897 0.1751
D(PT)	0.107017	1	0.7436
D(DEBT) D(GGCE)	0.787541 7.630283	1 1	0.3748 0.0057
D(GFCF)	0.281507	1	0.5957
Ali	13.16165	7	0.0683

Model 2 Granger Causality Test

VAR Residual Portmanteau Tests for Autocorrelations Null Hypothesis: No residual autocorrelations up to lag h Date: 11/17/22 Time: 09:33 Sample: 1974 2018 Included observations: 43

Lags	Q-Stat	Prob.*	Adj Q-Stat	Prob.*	df
1	14.77027		15.12194		
2	59.27929	0.6438	61.80213	0.5546	64

*Test is valid only for lags larger than the VAR lag order. df is degrees of freedom for (approximate) chi-square distribution

Table 23: Model 2 VAR Residual Portmanteau Test for Autocorrelations

VAR Residual Serial Correlation LM Tests Date: 11/17/22 Time: 09:33 Sample: 1974 2018 Included observations: 43

Null hypothesis: No serial correlation at lag h Lag LRE* stat df Prob. Rao F-stat df Prob. 0.887188 58.56765 64 0.6682 0.6976 1 (64, 116.1) 2 41.95364 64 0.9850 0.598694 (64, 116.1) 0.9873

Null hypothesis: No serial correlation at lags 1 to h

Lag	LRE* stat	df	Prob.	Rao F-stat	df	Prob.
1 2	58.56765 96.69801				(64, 116.1) (128, 92.0)	

*Edgeworth expansion corrected likelihood ratio statistic.

Model 2 VAR Residual Serial Correlation LM tests

VAR Residual Normality Tests Orthogonalization: Cholesky (Lutkepohl) Null Hypothesis: Residuals are multivariate normal Date: 11/17/22 Time: 09:34 Sample: 1974 2018 Included observations: 43

Component	Skewness	Chi-sq	df	Prob.*
1 2	0.507747 0.230919	1.847616 0.382151	1	0.1741
3 4	-0.062387 -0.025506	0.027894 0.004662	1 1	0.8674 0.9456
5	0.370617	0.984392	1	0.3211
6	0.363993	0.949517	1	0.3298
7 8	-0.080557 -0.334222	0.046508	1 1	0.8293
8	-0.334222	0.800549		0.3709
Joint		5.043288	8	0.7529
Component	Kurtosis	Chi-sq	df	Prob.
1	6.662156	24.02873	1	0.0000
2	3.056889	0.005799	1	0.9393
3	2.394321	0.657268	1	0.4175
4	3.790838	1.120552	1	0.2898
5	3.478655	0.410489	1	0.5217
6 7	5.228608 2.937375	8.898659 0.007027	1 1	0.0029 0.9332
8	2.937373	0.494145	1	0.9332
Joint		35.62267	8	0.0000
Component	Jarque-Bera	df	Prob.	
1	25.87635	2	0.0000	
2	0.387949	2	0.8237	
3	0.685162	2	0.7099	
4	1.125215	2	0.5697	
5	1.394881	2	0.4979	
6 7	9.848175 0.053535	∠ 2	0.0073 0.9736	
8	1.294693	2 2 2 2 2 2	0.5234	
Joint	40.66596	16	0.0006	

*Approximate p-values do not account for coefficient estimation

Model 2 VAR Normality tests

VAR Residual Heteroskedasticity Tests (Levels and Squares) Date: 11/17/22 Time: 09:34 Sample: 1974 2018 Included observations: 43

Joint test:

Chi-sq	df	Prob.
592.6085	576	0.3070

Individual components:

Dependent	R-squared	F(16,26)	Prob.	Chi-sq(16)	Prob.
res1*res1	0.339308	0.834542	0.6401	14.59024	0.5548
res2*res2	0.662047	3.183358	0.0043	28.46801	0.0278
res3*res3	0.450899	1.334383	0.2494	19.38866	0.2490
res4*res4	0.405664	1.109145	0.3957	17.44356	0.3575
res5*res5	0.600016	2.437663	0.0210	25.80069	0.0569
res6*res6	0.597495	2.412217	0.0222	25.69228	0.0585
res7*res7	0.539839	1.906369	0.0696	23.21306	0.1082
res8*res8	0.315320	0.748372	0.7234	13.55877	0.6315
res2*res1	0.263499	0.581378	0.8698	11.33045	0.7886
res3*res1	0.389246	1.035647	0.4550	16.73759	0.4028
res3*res2	0.345183	0.856609	0.6187	14.84287	0.5362
res4*res1	0.371131	0.959002	0.5223	15.95862	0.4559
res4*res2	0.414253	1.149236	0.3657	17.81288	0.3350
res4*res3	0.272534	0.608780	0.8484	11.71894	0.7631
res5*res1	0.503103	1.645296	0.1257	21.63343	0.1554
res5*res2	0.583632	2.277802	0.0300	25.09620	0.0681
res5*res3	0.583751	2.278910	0.0299	25.10128	0.0681
res5*res4	0.522536	1.778395	0.0930	22.46903	0.1287
res6*res1	0.681316	3.474097	0.0024	29.29659	0.0220
res6*res2	0.304795	0.712440	0.7574	13.10618	0.6650
res6*res3	0.374692	0.973719	0.5090	16.11175	0.4452
res6*res4	0.326198	0.786687	0.6865	14.02651	0.5967
res6*res5	0.499347	1.620760	0.1328	21.47191	0.1611
res7*res1	0.295911	0.682947	0.7846	12.72418	0.6928
res7*res2	0.293506	0.675089	0.7917	12.62074	0.7003
res7*res3	0.525966	1.803025	0.0880	22.61655	0.1244
res7*res4	0.304860	0.712658	0.7572	13.10898	0.6648
res7*res5	0.476125	1.476888	0.1830	20.47339	0.1997
res7*res6	0.506266	1.666245	0.1199	21.76944	0.1508
res8*res1	0.285290	0.648650	0.8150	12.26747	0.7254
res8*res2	0.425652	1.204293	0.3273	18.30302	0.3065
res8*res3	0.358771	0.909195	0.5685	15.42714	0.4936
res8*res4	0.366772	0.941216	0.5386	15.77119	0.4690
res8*res5	0.406319	1.112162	0.3934	17.47174	0.3557
res8*res6	0.388943	1.034326	0.4561	16.72454	0.4036
res8*res7	0.421981	1.186327	0.3395	18.14519	0.3155

Model 2	VAR Residual	Heteroscedasticity test	s
---------	--------------	-------------------------	---

System: UNTITLED Estimation Method: Least Squares

Sample: 1976 2018 Included observations: 43 Total system (balanced) observations 344

	Coefficient	Std. Error	t-Statistic	Prob.
C(1)	0.488137	0.084064	5.806750	0.0000
C(2)	-1.974673	0.577600	-3.418754	0.0007
C(3)	-0.850443	0.422616	-2.012329	0.0452
C(4)	0.394105	0.951599	0.414150	0.6791
C(5)	-0.199481	0.041032	-4.861601	0.0000
C(6) C(7)	-0.540935 0.202930	0.324662 0.133770	-1.666149 1.517011	0.0968
C(8)	-0.656167	0.133770	-3.272538	0.0012
C(9)	0.022327	0.003369	6.627028	0.0000
C(10)	0.018499	0.023957	0.772198	0.4407
C(11)	0.138466	0.164608	0.841191	0.4010
C(12)	0.035172	0.120439	0.292029	0.7705
C(13)	0.137131	0.271192	0.505660	0.6135
C(14)	0.040803	0.011694	3.489341	0.0006
C(15)	-0.048749	0.092524	-0.526886	0.5987
C(16)	0.047355	0.038122	1.242187	0.2152
C(17)	-0.020001	0.057142	-0.350034	0.7266
C(18)	-0.000636	0.000960	-0.662100	0.5085
C(19) C(20)	-0.044559 -0.229761	0.031266 0.214831	-1.425150 -1.069499	0.1553
C(20) C(21)	0.039990	0.214031	0.254412	0.2856
C(22)	0.202586	0.353935	0.572384	0.5675
C(22)	0.006259	0.015261	0.410145	0.6820
C(24)	0.288637	0.120754	2.390292	0.0175
C(25)	0.013524	0.049754	0.271816	0.7860
C(26)	-0.115941	0.074576	-1.554668	0.1212
C(27)	0.002117	0.001253	1.689334	0.0923
C(28)	-0.015543	0.014989	-1.036942	0.3007
C(29)	0.082013	0.102991	0.796309	0.426
C(30)	-0.005528	0.075356	-0.073361	0.9416
C(31)	0.001493	0.169678	0.008800	0.9930
C(32)	-0.004702	0.007316	-0.642685	0.5210
C(33)	-0.040134	0.057890 0.023852	-0.693275 -1.088179	0.4887
C(34) C(35)	-0.025956 -0.010398	0.023652	-0.290824	0.2775 0.7714
C(36)	0.000622	0.000601	1.036069	0.301
C(37)	-0.373907	0.396962	-0.941922	0.3471
C(38)	-2.732749	2.727522	-1.001916	0.3173
C(39)	1.052382	1.995662	0.527335	0.5984
C(40)	-5.687030	4.493604	-1.265583	0.2067
C(41)	-0.151158	0.193760	-0.780133	0.4360
C(42)	0.798990	1.533106	0.521158	0.6027
C(43)	-0.840308	0.631682	-1.330270	0.1845
C(44)	0.889105	0.946826	0.939037	0.348
C(45)	0.046882	0.015910	2.946749	0.003
C(46)	0.108908	0.039505	2.756789	0.0062
C(47) C(48)	-0.099195 -0.361454	0.271441 0.198606	-0.365438 -1.819951	0.715
C(40)	0.377788	0.447199	0.844786	0.3990
C(50)	-0.006426	0.019283	-0.333230	0.7392
C(51)	-0.401316	0.152573	-2.630314	0.0090
C(52)	-0.146780	0.062864	-2.334871	0.0203
C(53)	-0.075731	0.094227	-0.803702	0.4223
C(54)	0.000626	0.001583	0.395672	0.6927
C(55)	0.137607	0.104860	1.312300	0.190
C(56)	0.199631	0.720489	0.277078	0.7819
C(57)	0.016222	0.527164	0.030772	0.975
C(58)	3.623514	1.187008	3.052644	0.0025
C(59)	-0.074897	0.051183	-1.463324	0.144
C(60)	-0.311332 -0.022334	0.404978 0.166862	-0.768763 -0.133848	0.4427
C(61) C(62)	-0.404927	0.250109	-1.619003	0.0930
C(62)	-0.002813	0.200109	-0.669304	0.5039
C(64)	0.169112	0.065347	2.587895	0.0102
C(65)	0.475391	0.449000	1.058777	0.2906
C(66)	0.445452	0.328523	1.355924	0.1762
C(67)	-0.241991	0.739730	-0.327135	0.7438
C(68)	0.028306	0.031896	0.887435	0.3756
C(69)	-0.697141	0.252377	-2.762297	0.0061
C(70)	-0.055172	0.103986	-0.530572	0.5961
O(74)	-0.129937	0.155865	-0.833652	0.4052
C(71)				
C(71) C(72)	-0.001048	0.002619	-0.400248	0.6893

 $\begin{array}{l} \mbox{Equation: GDP(-1) = C(1)^{*}GDP(-2) + C(2)^{*}D(PIT(-1)) + C(3)^{*}D(TOGS(-1)) + C(4)^{*}D(PT(-1)) + C(5)^{*}D(DEBT(-1)) + C(6)^{*}D(GGCE(-1)) + C(7)^{*}D(GFCF(-1)) + C(8)^{*}D(HSCONS(-1)) + C(9) \end{array}$

C(7)*D(GFCF(-1))	+ C(8)*D(HS	CONS(-1)) + C(9)	
Observations: 43	0.044470	Mana dan andaratara	0.045040
R-squared Adjusted R-squared	0.841472 0.804172	Mean dependent var S.D. dependent var	0.015842 0.035626
S.E. of regression	0.004172	Sum squared resid	0.035626
Durbin-Watson stat	1.674293	Sum squared resid	0.000431
Duibin-Walson stat	1.074235		
Equation: D(PIT) = C(10))*GDP(-2) +	C(11)*D(PIT(-1)) + C(12)
)) + C(14)*D(DEBT(-1)) -	
*D(GGCE(-1)) + C	(16)*D(GFCF	-(-1)) + C(17)*D(HSCON	S(-1)) +
C(18)			
Observations: 43			
R-squared	0.305121	Mean dependent var	0.001107
Adjusted R-squared	0.141620	S.D. dependent var	0.004849
S.E. of regression	0.004493	Sum squared resid	0.000686
Durbin-Watson stat	1.969193		
Equation: $D(TOGS) = C$	(19)*GDP(-2) + C(20)*D(PIT(-1)) + C	(21)
)) + C(23)*D(DEBT(-1)) -	
		-(-1)) + C(26)*D(HSCON	
C(27)	((.,, =(==, =(===	-(.,,
Observations: 43			
R-squared	0.232186	Mean dependent var	0.001640
Adjusted R-squared	0.051523	S.D. dependent var	0.006021
S.E. of regression	0.005864	Sum squared resid	0.001169
Durbin-Watson stat	2.096284		
Equation: $D(PI) = C(28)$	GUP(-2) + C(20)*	C(29)*D(PIT(-1)) + C(30) D(DEBT(-1)) + C(33)*D(
		D(DEBT(-1)) + C(33) D(D(HSCONS(-1)) + C(36)	GGCE(-1))
+ C(34) [*] D(GFCF(- Observations: 43	1)) + C(35)"L	J(HSCONS(-1)) + C(30)	
R-squared	0.171171	Mean dependent var	0.000298
Adjusted R-squared	-0.023848	S.D. dependent var	0.002778
S.E. of regression	0.002811	Sum squared resid	0.000269
Durbin-Watson stat	2.085470	·	
) + C(38)*D(PIT(-1)) + C(
	(40)*D(PT(-1)) + C(41)*D(DEBT(-1)) -	+ C(42)
	(43)*D(GFCF	(-1)) + C(44)*D(HSCON	S(-1)) +
C(45)	(43)*D(GFCF	-(-1)) + C(44)*D(HSCON	S(-1)) +
C(45) Observations: 43			
C(45) Observations: 43 R-squared	0.168705	Mean dependent var	0.039016
C(45) Observations: 43 R-squared Adjusted R-squared	0.168705 -0.026894	Mean dependent var S.D. dependent var	0.039016 0.073466
C(45) Observations: 43 R-squared Adjusted R-squared S.E. of regression	0.168705 -0.026894 0.074447	Mean dependent var	0.039016
C(45) Observations: 43 R-squared Adjusted R-squared	0.168705 -0.026894	Mean dependent var S.D. dependent var	0.039016 0.073466
C(45) Observations: 43 R-squared Adjusted R-squared S.E. of regression Durbin-Watson stat	0.168705 -0.026894 0.074447 1.934929	Mean dependent var S.D. dependent var Sum squared resid	0.039016 0.073466 0.188441
C(45) <u>Observations: 43</u> R-squared Adjusted R-squared S.E. of regression Durbin-Watson stat Equation: D(GGCE) = C	0.168705 -0.026894 0.074447 1.934929 2(46)*GDP(-2	Mean dependent var S.D. dependent var Sum squared resid 2) + C(47)*D(PIT(-1)) + C	0.039016 0.073466 0.188441 (48)
C(45) Observations: 43 R-squared Adjusted R-squared S.E. of regression Durbin-Watson stat Equation: D(GGCE) = C *D(TOGS(-1)) + C	0.168705 -0.026894 0.074447 1.934929 2(46)*GDP(-2 (49)*D(PT(-1	Mean dependent var S.D. dependent var Sum squared resid 2) + C(47)*D(PIT(-1)) + C)) + C(50)*D(DEBT(-1)) -	0.039016 0.073466 0.188441 (48) + C(51)
C(45) Observations: 43 R-squared Adjusted R-squared S.E. of regression Durbin-Watson stat Equation: D(GGCE) = C *D(TOGS(-1)) + C	0.168705 -0.026894 0.074447 1.934929 2(46)*GDP(-2 (49)*D(PT(-1	Mean dependent var S.D. dependent var Sum squared resid 2) + C(47)*D(PIT(-1)) + C	0.039016 0.073466 0.188441 (48) + C(51)
C(45) <u>Observations: 43</u> R-squared Adjusted R-squared S.E. of regression Durbin-Watson stat Equation: D(GGCE) = C *D(TOGS(-1)) + C *D(GGCE(-1)) + C	0.168705 -0.026894 0.074447 1.934929 2(46)*GDP(-2 (49)*D(PT(-1	Mean dependent var S.D. dependent var Sum squared resid 2) + C(47)*D(PIT(-1)) + C)) + C(50)*D(DEBT(-1)) -	0.039016 0.073466 0.188441 (48) + C(51)
C(45) <u>Observations: 43</u> R-squared Adjusted R-squared S.E. of regression Durbin-Watson stat Equation: D(GGCE) = C *D(TOGS(-1)) + C *D(GGCE(-1)) + C C(54)	0.168705 -0.026894 0.074447 1.934929 2(46)*GDP(-2 (49)*D(PT(-1 (52)*D(GFCF) 0.359620	Mean dependent var S.D. dependent var Sum squared resid 2) + C(47)*D(PIT(-1)) + C)) + C(50)*D(DEBT(-1)) -	0.039016 0.073466 0.188441 (48) + C(51)
C(45) Observations: 43 R-squared Adjusted R-squared S.E. of regression Durbin-Watson stat Equation: D(GGCE) = C *D(TOGS(-1)) + C *D(GGCE(-1)) + C C(54) Observations: 43 R-squared Adjusted R-squared	0.168705 -0.026894 0.074447 1.934929 2(46)*GDP(-2 (49)*D(PT(-1 (52)*D(GFCF 0.359620 0.208943	Mean dependent var S.D. dependent var Sum squared resid 2) + $C(47)^*D(PIT(-1)) + C$ 3) + $C(50)^*D(DEBT(-1)) + C(53)^*D(HSCON)$ Mean dependent var S.D. dependent var	0.039016 0.073466 0.188441 (48) + C(51) S(-1)) + 0.001147 0.008330
C(45) <u>Observations: 43</u> R-squared Adjusted R-squared S.E. of regression Durbin-Watson stat Equation: D(GGCE) = C *D(TOGS(-1)) + C C(54) <u>Observations: 43</u> R-squared Adjusted R-squared S.E. of regression	0.168705 -0.026894 -0.074447 1.934929 2(46)*GDP(-2 (49)*D(PT(-1 (52)*D(GFCF 0.359620 0.208943 0.007409	Mean dependent var S.D. dependent var Sum squared resid 2) + C(47)*D(PIT(-1)) + C)) + C(50)*D(DEBT(-1)) - C(-1)) + C(53)*D(HSCON Mean dependent var	0.039016 0.073466 0.188441 (48) + C(51) S(-1)) + 0.001147
C(45) Observations: 43 R-squared Adjusted R-squared S.E. of regression Durbin-Watson stat Equation: D(GGCE) = C *D(TOGS(-1)) + C *D(GGCE(-1)) + C C(54) Observations: 43 R-squared Adjusted R-squared	0.168705 -0.026894 0.074447 1.934929 2(46)*GDP(-2 (49)*D(PT(-1 (52)*D(GFCF 0.359620 0.208943	Mean dependent var S.D. dependent var Sum squared resid 2) + $C(47)^*D(PIT(-1)) + C$ 3) + $C(50)^*D(DEBT(-1)) + C(53)^*D(HSCON)$ Mean dependent var S.D. dependent var	0.039016 0.073466 0.188441 (48) + C(51) S(-1)) + 0.001147 0.008330
C(45) Observations: 43 R-squared Adjusted R-squared S.E. of regression Durbin-Watson stat Equation: $D(GGCE) = C$ * $D(TOGS(-1)) + C$ C(54) Observations: 43 R-squared Adjusted R-squared S.E. of regression Durbin-Watson stat	0.168705 -0.026894 0.074447 1.934929 C(46)*D(PT(-1 (52)*D(GFCF) 0.359620 0.208943 0.007409 1.906459	Mean dependent var S.D. dependent var Sum squared resid 2) + C(47)*D(PIT(-1)) + C)) + C(50)*D(DEBT(-1)) - (-1)) + C(53)*D(HSCON Mean dependent var S.D. dependent var Sum squared resid	0.039016 0.073466 0.188441 (48) + C(51) S(-1)) + 0.001147 0.008330 0.001866
C(45) Observations: 43 R-squared Adjusted R-squared S.E. of regression Durbin-Watson stat Equation: D(GGCE) = C *D(TOGS(-1)) + C *D(GGCE(-1)) + C C(54) Observations: 43 R-squared Adjusted R-squared S.E. of regression Durbin-Watson stat Equation: D(GFCF) = C	0.168705 -0.026894 0.074447 1.934929 2(46)*GDP(-2 (49)*D(PT(-1 (52)*D(GFCF 0.359620 0.208943 0.007409 1.906459 (55)*GDP(-2	Mean dependent var S.D. dependent var Sum squared resid 2) + C(47)*D(PIT(-1)) + C 3) + C(50)*D(DEBT(-1)) + 5(-1)) + C(53)*D(HSCON Mean dependent var S.D. dependent var Sum squared resid 3) + C(56)*D(PIT(-1)) + C(0.039016 0.073466 0.188441 + C(51) S(-1)) + 0.001147 0.008330 0.001866
C(45) Observations: 43 R-squared Adjusted R-squared S.E. of regression Durbin-Watson stat Equation: D(GGCE) = C *D(TOGS(-1)) + C C(54) Observations: 43 R-squared Adjusted R-squared S.E. of regression Durbin-Watson stat Equation: D(GFCF) = C *D(TOGS(-1)) + C	0.168705 -0.026894 0.074447 1.934929 2(46)*GDP(-2 (49)*D(PT(-1 (52)*D(GFCF 0.359620 0.208943 0.007409 1.906459 (55)*GDP(-2 (58)*D(PT(-1	Mean dependent var S.D. dependent var Sum squared resid (2) + C(47)*D(PIT(-1)) + C (3) + C(50)*D(DEBT(-1)) + C(50)*D(HSCON) Mean dependent var S.D. dependent var Sum squared resid (3) + C(56)*D(PIT(-1)) + C(50)*D(DEBT(-1)) + C(50)*D(DEBT(-1)))	0.039016 0.073466 0.188441 (48) + C(51) S(-1)) + 0.001147 0.008330 0.001866 (57) + C(60)
C(45) <u>Observations: 43</u> R-squared Adjusted R-squared S.E. of regression Durbin-Watson stat Equation: D(GGCE) = C *D(TOGS(-1)) + C C(54) <u>Observations: 43</u> R-squared S.E. of regression Durbin-Watson stat Equation: D(GFCF) = C *D(TOGS(-1)) + C *D(GGCE(-1)) + C	0.168705 -0.026894 0.074447 1.934929 2(46)*GDP(-2 (49)*D(PT(-1 (52)*D(GFCF 0.359620 0.208943 0.007409 1.906459 (55)*GDP(-2 (58)*D(PT(-1	Mean dependent var S.D. dependent var Sum squared resid 2) + C(47)*D(PIT(-1)) + C 3) + C(50)*D(DEBT(-1)) + 5(-1)) + C(53)*D(HSCON Mean dependent var S.D. dependent var Sum squared resid 3) + C(56)*D(PIT(-1)) + C(0.039016 0.073466 0.188441 (48) + C(51) S(-1)) + 0.001147 0.008330 0.001866 (57) + C(60)
C(45) Observations: 43 R-squared Adjusted R-squared S.E. of regression Durbin-Watson stat Equation: D(GGCE) = C *D(TOGS(-1)) + C C(54) Observations: 43 R-squared Adjusted R-squared S.E. of regression Durbin-Watson stat Equation: D(GFCF) = C *D(TOGS(-1)) + C *D(GGCE(-1)) + C C(63)	0.168705 -0.026894 0.074447 1.934929 2(46)*GDP(-2 (49)*D(PT(-1 (52)*D(GFCF 0.359620 0.208943 0.007409 1.906459 (55)*GDP(-2 (58)*D(PT(-1	Mean dependent var S.D. dependent var Sum squared resid (2) + C(47)*D(PIT(-1)) + C (3) + C(50)*D(DEBT(-1)) + C(50)*D(HSCON) Mean dependent var S.D. dependent var Sum squared resid (3) + C(56)*D(PIT(-1)) + C(50)*D(DEBT(-1)) + C(50)*D(DEBT(-1)))	0.039016 0.073466 0.188441 (48) + C(51) S(-1)) + 0.001147 0.008330 0.001866 (57) + C(60)
C(45) Observations: 43 R-squared Adjusted R-squared S.E. of regression Durbin-Watson stat Equation: D(GGCE) = C *D(TOGS(-1)) + C C(54) Observations: 43 R-squared Adjusted R-squared S.E. of regression Durbin-Watson stat Equation: D(GFCF) = C *D(TOGS(-1)) + C C(63) Observations: 43	0.168705 -0.026894 0.074447 1.934929 2(46)*GDP(-2 (49)*D(PT(-1 (52)*D(GFCF 0.359620 0.208943 0.007409 1.906459 (55)*GDP(-2 (58)*D(PT(-1 (61)*D(GFCF	Mean dependent var S.D. dependent var Sum squared resid 2) + C(47)*D(PIT(-1)) + C 3) + C(50)*D(DEBT(-1)) + C(-1)) + C(53)*D(HSCON Mean dependent var S.D. dependent var Sum squared resid 3) + C(56)*D(PIT(-1)) + C(3) + C(59)*D(DEBT(-1)) + C(-1)) + C(62)*D(HSCON	0.039016 0.073466 0.188441 (48) + C(51) S(-1)) + 0.001147 0.008330 0.001866 (57) + C(60) S(-1)) +
C(45) Observations: 43 R-squared Adjusted R-squared S.E. of regression Durbin-Watson stat Equation: D(GGCE) = C *D(TOGS(-1)) + C C(54) Observations: 43 R-squared Adjusted R-squared S.E. of regression Durbin-Watson stat Equation: D(GFCF) = C *D(TOGS(-1)) + C *D(GGCE(-1)) + C C(63)	0.168705 -0.026894 0.074447 1.934929 2(46)*GDP(-2 (49)*D(PT(-1 (52)*D(GFCF 0.359620 0.208943 0.007409 1.906459 (55)*GDP(-2 (58)*D(PT(-1	Mean dependent var S.D. dependent var Sum squared resid (2) + C(47)*D(PIT(-1)) + C (3) + C(50)*D(DEBT(-1)) + C(50)*D(HSCON) Mean dependent var S.D. dependent var Sum squared resid (3) + C(56)*D(PIT(-1)) + C(50)*D(DEBT(-1)) + C(50)*D(DEBT(-1)))	0.039016 0.073466 0.188441 (48) + C(51) S(-1)) + 0.001147 0.008330 0.001866 (57) + C(60)
C(45) Observations: 43 R-squared Adjusted R-squared S.E. of regression Durbin-Watson stat Equation: $D(GGCE) = C$ * $D(TOGS(-1)) + C$ * $D(GGCE(-1)) + C$ C(54) Observations: 43 R-squared Adjusted R-squared S.E. of regression Durbin-Watson stat Equation: $D(GFCF) = C$ * $D(TOGS(-1)) + C$ * $D(GGCE(-1)) + C$ C(63) Observations: 43 R-squared Adjusted R-squared	0.168705 -0.026894 0.074447 1.934929 2(46)*GDP(-2 (49)*D(PT(-1 (52)*D(GFCF 0.359620 0.208943 0.007409 1.906459 (55)*GDP(-2 (58)*D(PT(-1 (61)*D(GFCF 0.332076	Mean dependent var S.D. dependent var Sum squared resid (2) + C(47)*D(PIT(-1)) + C (3) + C(50)*D(DEBT(-1)) + C(50)*D(HSCON) Mean dependent var S.D. dependent var Sum squared resid (3) + C(56)*D(PIT(-1)) + C(62)*D(DEBT(-1)) + C(62)*D(HSCON) Mean dependent var S.D. dependent var S.D. dependent var	0.039016 0.073466 0.188441 (48) + C(51) S(-1)) + 0.001147 0.008330 0.001866 (57) + C(60) S(-1)) + -0.003363
C(45) Observations: 43 R-squared Adjusted R-squared S.E. of regression Durbin-Watson stat Equation: $D(GGCE) = C$ * $D(TOGS(-1)) + C$ * $D(GGCE(-1)) + C$ C(54) Observations: 43 R-squared Adjusted R-squared S.E. of regression Durbin-Watson stat Equation: $D(GFCF) = C$ * $D(TOGS(-1)) + C$ * $D(GGCE(-1)) + C$ C(63) Observations: 43 R-squared	0.168705 -0.026894 0.074447 1.934929 2(46)*GDP(-2 (49)*D(PT(-1 (52)*D(GFCF 0.359620 0.208943 0.007409 1.906459 (55)*GDP(-2 (58)*D(PT(-1 (61)*D(GFCF 0.332076 0.174918	Mean dependent var S.D. dependent var Sum squared resid 2) + C(47)*D(PIT(-1)) + C 3) + C(50)*D(DEBT(-1)) + C 5(-1)) + C(53)*D(HSCON Mean dependent var S.D. dependent var Sum squared resid 3) + C(56)*D(PIT(-1)) + C(3) + C(59)*D(DEBT(-1)) + C(-1)) + C(62)*D(HSCON Mean dependent var	0.039016 0.073466 0.188441 (48) + C(51) S(-1)) + 0.001147 0.008330 0.001866 (57) + C(60) S(-1)) + -0.003363 0.021650
C(45) <u>Observations: 43</u> R-squared Adjusted R-squared S.E. of regression Durbin-Watson stat Equation: D(GGCE) = C *D(TOGS(-1)) + C *D(GGCE(-1)) + C C(54) <u>Observations: 43</u> R-squared S.E. of regression Durbin-Watson stat Equation: D(GFCF) = C *D(TOGS(-1)) + C C(63) <u>Observations: 43</u> R-squared Adjusted R-squared S.E. of regression	0.168705 -0.026894 0.074447 1.934929 2(46)*GDP(-2 (49)*D(PT(-1 (52)*D(GFCF 0.359620 0.208943 0.007409 1.906459 (55)*GDP(-2 (58)*D(PT(-1 (61)*D(GFCF 0.332076 0.174918 0.019666	Mean dependent var S.D. dependent var Sum squared resid (2) + C(47)*D(PIT(-1)) + C (3) + C(50)*D(DEBT(-1)) + C(50)*D(HSCON) Mean dependent var S.D. dependent var Sum squared resid (3) + C(56)*D(PIT(-1)) + C(62)*D(DEBT(-1)) + C(62)*D(HSCON) Mean dependent var S.D. dependent var S.D. dependent var	0.039016 0.073466 0.188441 (48) + C(51) S(-1)) + 0.001147 0.008330 0.001866 (57) + C(60) S(-1)) + -0.003363 0.021650
C(45) Observations: 43 R-squared Adjusted R-squared S.E. of regression Durbin-Watson stat Equation: $D(GGCE) = C$ * $D(TOGS(-1)) + C$ * $D(GGCE(-1)) + C$ C(54) Observations: 43 R-squared Adjusted R-squared S.E. of regression Durbin-Watson stat Equation: $D(GFCF) = C$ * $D(TOGS(-1)) + C$ * $D(GGCE(-1)) + C$ C(63) Observations: 43 R-squared Adjusted R-squared S.E. of regression Durbin-Watson stat Equation: D(HSCONS)	0.168705 -0.026894 0.074447 1.934929 2(46)*GDP(-2 (49)*D(PT(-1 (52)*D(GFCF 0.359620 0.208943 0.007409 1.906459 (55)*GDP(-2 (58)*D(PT(-1 (61)*D(GFCF 0.332076 0.174918 0.019666 2.005402 = C(64)*GDF	Mean dependent var S.D. dependent var Sum squared resid P) + C(47)*D(PIT(-1)) + C D) + C(50)*D(DEBT(-1)) + C(-1)) + C(53)*D(HSCON Mean dependent var S.D. dependent var Sum squared resid D) + C(56)*D(PIT(-1)) + C(D) + C(62)*D(DEBT(-1)) + C(-1)) + C(62)*D(HSCON Mean dependent var S.D. dependent var	0.039016 0.073466 0.188441 (48) + C(51) S(-1)) + 0.001147 0.008330 0.001866 (57) + C(60) S(-1)) + -0.003363 0.021650 0.013149 + C(66)
C(45) Observations: 43 R-squared Adjusted R-squared S.E. of regression Durbin-Watson stat Equation: D(GGCE) = C *D(TOGS(-1)) + C C(54) Observations: 43 R-squared Adjusted R-squared S.E. of regression Durbin-Watson stat Equation: D(GFCF) = C *D(TOGS(-1)) + C C(63) Observations: 43 R-squared Adjusted R-squared S.E. of regression Durbin-Watson stat Equation: D(GFCF) = C *D(TOGS(-1)) + C C(63) Observations: 43 R-squared Adjusted R-squared S.E. of regression Durbin-Watson stat Equation: D(HSCONS) *D(TOGS(-1)) + C	0.168705 -0.026894 0.074447 1.934929 2(46)*GDP(-2 (46)*GDP(-2 (49)*D(PT(-1 (52)*D(GFCF 0.359620 0.208943 0.007409 1.906459 (55)*GDP(-2 (58)*D(PT(-1 (61)*D(GFCF 0.332076 0.174918 0.019666 2.005402 = C(64)*GDF (67)*D(PT(-1	Mean dependent var S.D. dependent var Sum squared resid (2) + C(47)*D(PIT(-1)) + C (3) + C(50)*D(DEBT(-1)) - C (-1)) + C(53)*D(HSCON Mean dependent var Sum squared resid (2) + C(56)*D(PIT(-1)) + C(-1)) + C(62)*D(HSCON) Mean dependent var S.D. dependen	0.039016 0.073466 0.188441 (48) + C(51) S(-1)) + 0.001147 0.008330 0.001866 (57) + C(60) S(-1)) + -0.003363 0.021650 0.013149 + C(66) + C(66)
C(45) <u>Observations: 43</u> R-squared Adjusted R-squared S.E. of regression Durbin-Watson stat Equation: D(GGCE) = C *D(TOGS(-1)) + C *D(GGCE(-1)) + C C(54) <u>Observations: 43</u> R-squared S.E. of regression Durbin-Watson stat Equation: D(GFCF) = C *D(TOGS(-1)) + C C(63) <u>Observations: 43</u> R-squared Adjusted R-squared S.E. of regression Durbin-Watson stat Equation: D(HSCONS) *D(TOGS(-1)) + C *D(GGCE(-1)) + C	0.168705 -0.026894 0.074447 1.934929 2(46)*GDP(-2 (46)*GDP(-2 (49)*D(PT(-1 (52)*D(GFCF 0.359620 0.208943 0.007409 1.906459 (55)*GDP(-2 (58)*D(PT(-1 (61)*D(GFCF 0.332076 0.174918 0.019666 2.005402 = C(64)*GDF (67)*D(PT(-1	Mean dependent var S.D. dependent var Sum squared resid P) + C(47)*D(PIT(-1)) + C D) + C(50)*D(DEBT(-1)) + C(-1)) + C(53)*D(HSCON Mean dependent var S.D. dependent var Sum squared resid D) + C(56)*D(PIT(-1)) + C(D) + C(62)*D(DEBT(-1)) + C(-1)) + C(62)*D(HSCON Mean dependent var S.D. dependent var	0.039016 0.073466 0.188441 (48) + C(51) S(-1)) + 0.001147 0.008330 0.001866 (57) + C(60) S(-1)) + -0.003363 0.021650 0.013149 + C(66) + C(66)
C(45) Observations: 43 R-squared Adjusted R-squared S.E. of regression Durbin-Watson stat Equation: D(GGCE) = C *D(TOGS(-1)) + C C(54) Observations: 43 R-squared Adjusted R-squared S.E. of regression Durbin-Watson stat Equation: D(GFCF) = C *D(TOGS(-1)) + C C(63) Observations: 43 R-squared Adjusted R-squared S.E. of regression Durbin-Watson stat Equation: D(HSCONS) *D(TOGS(-1)) + C *D(GGCE(-1)) + C (TOGS(-1)) + C *D(GGCE(-1)) + C (TOGS(-1)) + C	0.168705 -0.026894 0.074447 1.934929 2(46)*GDP(-2 (46)*GDP(-2 (49)*D(PT(-1 (52)*D(GFCF 0.359620 0.208943 0.007409 1.906459 (55)*GDP(-2 (58)*D(PT(-1 (61)*D(GFCF 0.332076 0.174918 0.019666 2.005402 = C(64)*GDF (67)*D(PT(-1	Mean dependent var S.D. dependent var Sum squared resid (2) + C(47)*D(PIT(-1)) + C (3) + C(50)*D(DEBT(-1)) - C (-1)) + C(53)*D(HSCON Mean dependent var Sum squared resid (2) + C(56)*D(PIT(-1)) + C(-1)) + C(62)*D(HSCON) Mean dependent var S.D. dependen	0.039016 0.073466 0.188441 (48) + C(51) S(-1)) + 0.001147 0.008330 0.001866 (57) + C(60) S(-1)) + -0.003363 0.021650 0.013149 + C(66) + C(66)
C(45) Observations: 43 R-squared Adjusted R-squared S.E. of regression Durbin-Watson stat Equation: D(GGCE) = C *D(TOGS(-1)) + C *D(GGCE(-1)) + C C(54) Observations: 43 R-squared Adjusted R-squared S.E. of regression Durbin-Watson stat Equation: D(GFCF) = C *D(TOGS(-1)) + C *D(GGCE(-1)) + C C(63) Observations: 43 R-squared Adjusted R-squared S.E. of regression Durbin-Watson stat Equation: D(HSCONS) *D(TOGS(-1)) + C *D(GGCE(-1)) + C (C(72) Observations: 43	0.168705 -0.026894 0.074447 1.934929 2(46)*GDP(-2 (49)*D(PT(-1 (52)*D(GFCF 0.359620 0.208943 0.007409 1.906459 (55)*GDP(-2 (58)*D(PT(-1 (61)*D(GFCF 0.332076 0.174918 0.019666 2.005402 = C(64)*GDF (67)*D(PT(-1 (70)*D(GFCF	Mean dependent var S.D. dependent var Sum squared resid 2) + C(47)*D(PIT(-1)) + C 3) + C(50)*D(DEBT(-1)) + C(50)*D(HSCON Mean dependent var S.D. dependent var Sum squared resid) + C(56)*D(PIT(-1)) + C(6))*D(DEBT(-1)) + C(62)*D(HSCON Mean dependent var S.D. dependent var S.D	0.039016 0.073466 0.188441 (48) + C(51) S(-1)) + 0.001147 0.008330 0.001866 (57) + C(60) S(-1)) + -0.003363 0.021650 0.013149 + C(66) + C(69) S(-1)) +
C(45) Observations: 43 R-squared Adjusted R-squared S.E. of regression Durbin-Watson stat Equation: D(GGCE) = C *D(TOGS(-1)) + C *D(GGCE(-1)) + C C(54) Observations: 43 R-squared Adjusted R-squared S.E. of regression Durbin-Watson stat Equation: D(GFCF) = C *D(TOGS(-1)) + C *D(GGCE(-1)) + C C(63) Observations: 43 R-squared Adjusted R-squared S.E. of regression Durbin-Watson stat Equation: D(HSCONS) *D(TOGS(-1)) + C *D(GGCE(-1)) + C C(72) Observations: 43 R-squared	0.168705 -0.026894 0.074447 1.934929 2(46)*GDP(-2 (49)*D(PT(-1 (52)*D(GFCF 0.359620 0.208943 0.007409 1.906459 (55)*GDP(-2 (58)*D(PT(-1 (61)*D(GFCF 0.174918 0.019666 2.005402 = C(64)*GDF (67)*D(PT(-1 (70)*D(GFCF 0.287946	Mean dependent var S.D. dependent var Sum squared resid (2) + C(47)*D(PIT(-1)) + C (3) + C(50)*D(DEBT(-1)) + C(50)*D(HSCON) Mean dependent var S.D. dependent var Sum squared resid (3) + C(56)*D(PIT(-1)) + C(62)*D(HSCON) Mean dependent var S.D. dependent var Sum squared resid P(-2) + C(65)*D(PIT(-1)) + C(71)*D(HSCON) Mean dependent var	0.039016 0.073466 0.188441 (48) + C(51) S(-1)) + 0.001147 0.008330 0.001866 (57) + C(60) S(-1)) + -0.003363 0.021650 0.013149 + C(66) + C(69) S(-1)) +
C(45) Observations: 43 R-squared Adjusted R-squared S.E. of regression Durbin-Watson stat Equation: D(GGCE) = C *D(TOGS(-1)) + C (54) Observations: 43 R-squared Adjusted R-squared S.E. of regression Durbin-Watson stat Equation: D(GFCF) = C *D(TOGS(-1)) + C (63) Observations: 43 R-squared Adjusted R-squared S.E. of regression Durbin-Watson stat Equation: D(HSCONS) *D(TOGS(-1)) + C (72) Observations: 43 R-squared Adjusted R-squared Adjusted R-squared Adjusted R-squared	0.168705 -0.026894 0.074447 1.934929 2(46)*GDP(-2 (49)*D(PT(-1 (52)*D(GFCF 0.359620 0.208943 0.007409 1.906459 (55)*GDP(-2 (58)*D(PT(-1 (61)*D(GFCF 0.332076 0.174918 0.019666 2.005402 = C(64)*GDF (67)*D(PT(-1 (70)*D(GFCF 0.287946 0.120404	Mean dependent var S.D. dependent var Sum squared resid (2) + C(47)*D(PIT(-1)) + C (3) + C(50)*D(DEBT(-1)) - C (-1)) + C(53)*D(HSCON Mean dependent var Sum squared resid (2) + C(56)*D(PIT(-1)) + C(-1)) + C(59)*D(DEBT(-1)) + C(59)*D(DEBT(-1)) - C (-1)) + C(62)*D(HSCON Mean dependent var Sum squared resid (2) + C(65)*D(PIT(-1)) + C(-1)) + C(68)*D(DEBT(-1)) - C (-1)) + C(71)*D(HSCON Mean dependent var S.D. dependent var S.D. dependent var S.D. dependent var S.D. dependent var S.D. dependent var S.D. dependent var	0.039016 0.073466 0.188441 (48) + C(51) S(-1)) + 0.001147 0.008330 0.001866 (57) + C(60) S(-1)) + -0.003363 0.021650 0.013149 + C(66) + C(69) S(-1)) +
C(45) Observations: 43 R-squared Adjusted R-squared S.E. of regression Durbin-Watson stat Equation: D(GGCE) = C *D(TOGS(-1)) + C *D(GGCE(-1)) + C C(54) Observations: 43 R-squared Adjusted R-squared S.E. of regression Durbin-Watson stat Equation: D(GFCF) = C *D(TOGS(-1)) + C *D(GGCE(-1)) + C C(63) Observations: 43 R-squared Adjusted R-squared S.E. of regression Durbin-Watson stat Equation: D(HSCONS) *D(TOGS(-1)) + C *D(GGCE(-1)) + C C(72) Observations: 43 R-squared	0.168705 -0.026894 0.074447 1.934929 2(46)*GDP(-2 (49)*D(PT(-1 (52)*D(GFCF 0.359620 0.208943 0.007409 1.906459 (55)*GDP(-2 (58)*D(PT(-1 (61)*D(GFCF 0.174918 0.019666 2.005402 = C(64)*GDF (67)*D(PT(-1 (70)*D(GFCF 0.287946	Mean dependent var S.D. dependent var Sum squared resid (2) + C(47)*D(PIT(-1)) + C (3) + C(50)*D(DEBT(-1)) + C(50)*D(HSCON) Mean dependent var S.D. dependent var Sum squared resid (3) + C(56)*D(PIT(-1)) + C(62)*D(HSCON) Mean dependent var S.D. dependent var Sum squared resid P(-2) + C(65)*D(PIT(-1)) + C(71)*D(HSCON) Mean dependent var	0.039016 0.073466 0.188441 (48) + C(51) S(-1)) + 0.001147 0.008330 0.001866 (57) + C(60) S(-1)) + -0.003363 0.021650 0.013149 + C(66) + C(69) S(-1)) +

Model 2 VAR System Equation

System Residual Portmanteau Tests for Autocorrelations Null Hypothesis: no residual autocorrelations up to lag h Date: 11/17/22 Time: 10:06 Sample: 1976 2018 Included observations: 43

Lags	Q-Stat	Prob.	Adj Q-Stat	Prob.	df
1	14,77027	1.0000	15,12194	1.0000	64
2	59.27929	1.0000	61.80213	1.0000	128
3	126.6685	0.9999	134.2455	0.9995	192
4	176.4734	1.0000	189.1586	0.9994	256
5	230.6241	1.0000	250.4344	0.9984	320
6	288.8474	0.9999	318.0994	0.9939	384
7	348.6964	0.9998	389.5857	0.9784	448
8	385.5980	1.0000	434.9219	0.9941	512
9	440.6855	1.0000	504.5913	0.9853	576
10	483.4327	1.0000	560.2922	0.9895	640
11	527.5948	1.0000	619.6351	0.9900	704
12	576.4012	1.0000	687.3344	0.9829	768

*The test is valid only for lags larger than the System lag order.

df is degrees of freedom for (approximate) chi-square distribution *df and Prob. may not be valid for models with lagged endogenous...

Wald Test: System: {%system}

Test Statistic	Value	df	Probability
Chi-square	228.4113	15	0.0000

Null Hypothesis: C(1)=C(2)=C(3)=C(5)=C(8)=C(9)=C(14) =C(24)=C(45)=C(46)=C(51)=C(52)=C(58)=C(64)=C (69)=0

Null Hypothesis Summary:

Normalized Restriction (= 0)	Value	Std. Err.
C(1)	0.488137	0.084064
C(2)	-1.974673	0.577600
C(3)	-0.850443	0.422616
C(5)	-0.199481	0.041032
C(8)	-0.656167	0.200507
C(9)	0.022327	0.003369
C(14)	0.040803	0.011694
C(24)	0.288637	0.120754
C(45)	0.046882	0.015910
C(46)	0.108908	0.039505
C(51)	-0.401316	0.152573
C(52)	-0.146780	0.062864
C(58)	3.623514	1.187008
C(64)	0.169112	0.065347
C(69)	-0.697141	0.252377

Restrictions are linear in coefficients.

Model 2 Wald Test

System Residual Normality Tests Orthogonalization: Cholesky (Lutkepohl) Null Hypothesis: residuals are multivariate normal Date: 11/17/22 Time: 10:06 Sample: 1976 2018 Included observations: 43

Component	Skewness	Chi-sq	df	Prob.
1	0.507747	1.847616	1	0.1741
2	0.230919	0.382151	1	0.5365
3	-0.062387	0.027894	1	0.8674
4	-0.025506	0.004662	1	0.9456
5	0.370617	0.984392	1	0.3211
6	0.363993	0.949517	1	0.3298
7	-0.080557	0.046508	1	0.8293
8	-0.334222	0.800549	1	0.3709
Joint		5.043288	8	0.7529
Component	Kurtosis	Chi-sq	df	Prob.
1	6.662156	24.02873	1	0.0000
2	3.056889	0.005799	1	0.9393
3	2.394321	0.657268	1	0.4175
4	3.790838	1.120552	1	0.2898
5	3.478655	0.410489	1	0.5217
6	5.228608	8.898659	1	0.0029
7	2.937375	0.007027	1	0.9332
8	2.474832	0.494145	1	0.4821
Joint		35.62267	8	0.0000
	i			
Component	Jarque-Bera	df	Prob.	
1	25.87635	2	0.0000	
2	0.387949	2	0.8237	
3	0.685162	2	0.7099	
4	1.125215	2	0.5697	
5	1.394881	2	0.4979	
6	9.848175	2	0.0073	
7	0.053535	2	0.9736	
8	1.294693	2	0.5234	
Joint	40.66596	16	0.0006	

Model 2 System Residual Normality test

Cointegration Analysis and VECM

Sample (adjusted): 1976 2018 Included observations: 43 after adjustments Trend assumption: Linear deterministic trend Series: GDP PIT TOGS PT DEBT GGCE GFCF HSCONS Lags interval (in first differences): 1 to 1

Unrestricted Cointegration Rank Test (Trace)

Hypothesized No. of CE(s)	Eigenvalue	Trace Statistic	0.05 Critical Value	Prob.**
None *	0.753335	204.3577	159.5297	0.0000
At most 1 *	0.692830	144.1696	125.6154	0.0023
At most 2	0.512566	93.41436	95.75366	0.0717
At most 3	0.393399	62.51456	69.81889	0.1664
At most 4	0.378380	41.01954	47.85613	0.1881
At most 5	0.254775	20.57618	29.79707	0.3846
At most 6	0.125264	7.931235	15.49471	0.4728
At most 7	0.049354	2.176389	3.841465	0.1401

Trace test indicates 2 cointegrating eqn(s) at the 0.05 level * denotes rejection of the hypothesis at the 0.05 level **MacKinnon-Haug-Michelis (1999) p-values

Unrestricted Cointegration Rank Test (Maximum Eigenvalue)

Hypothesized No. of CE(s)	Eigenvalue	Max-Eigen Statistic	0.05 Critical Value	Prob.**
None * At most 1 * At most 2 At most 2 At most 3 At most 4 At most 5 At most 6 At most 7	0.753335 0.692830 0.512566 0.393399 0.378380 0.254775 0.125264 0.049354	60.18814 50.75521 30.89981 21.49501 20.44336 12.64494 5.754846 2.176389	52.36261 46.23142 40.07757 33.87687 27.58434 21.13162 14.26460 3.841465	0.0066 0.0154 0.3668 0.6466 0.3113 0.4854 0.6449 0.1401

Max-eigenvalue test indicates 2 cointegrating eqn(s) at the 0.05 level * denotes rejection of the hypothesis at the 0.05 level **MacKinnon-Haug-Michelis (1999) p-values

Table 30: Model 2 Johansen Test

Vector Error Correction Estimation

Vector Error Correction Estimates

Sample (adjusted): 1977 2018
Included observations: 42 after adjustments
Standard errors in () & t-statistics in []

Cointegrating Eq:	CointEq1	CointEq2						
GDP(-2)	1.000000	0.000000						
PIT(-1)	0.000000	1.000000						
TOGS(-1)	-1.806632 (0.42475) [-4.25338]	-3.138572 (0.39191) [-8.00833]						
PT(-1)	-1.249762 (0.63135) [-1.97951]	-3.347464 (0.58254) [-5.74635]						
DEBT(-1)	0.112335 (0.03083) [3.64389]	0.101054 (0.02844) [3.55261]						
GGCE(-1)	-0.634352 (0.22190) [-2.85869]	-0.642007 (0.20475) [-3.13561]						
GFCF(-1)	-0.302284 (0.10434) [-2.89699]	-0.562600 (0.09628) [-5.84355]						
HSCONS(-1)	-0.533734 (0.18408) [-2.89942]	-0.017388 (0.16985) [-0.10237]						
С	0.643938	0.544724						
Error Correction:	D(GDP(-1))	D(PIT)	D(TOGS)	D(PT)	D(DEBT)	D(GGCE)	D(GFCF)	D(HSCONS
CointEq1	-0.441202	0.061223	0.027662	0.020926	-0.783519	0.121280	0.200508	0.164815
	(0.08201)	(0.02962)	(0.03556)	(0.01419)	(0.50746)	(0.05284)	(0.13911)	(0.08602)
	[-5.38016]	[2.06679]	[0.77785]	[1.47464]	[-1.54399]	[2.29502]	[1.44140]	[1.91604]
CointEq2	0.009323	0.040190	0.183377	0.111731	-0.111973	-0.041857	-0.055775	-0.005081
	(0.11245)	(0.04062)	(0.04876)	(0.01946)	(0.69586)	(0.07246)	(0.19075)	(0.11795)
	[0.08291]	[0.98944]	[3.76049]	[5.74207]	[-0.16091]	[-0.57763]	[-0.29240]	[-0.04308]
D(GDP(-2))	-0.048180	-0.001389	-0.046739	-0.004915	-0.073598	-0.025968	-0.065510	0.030580
	(0.08129)	(0.02937)	(0.03525)	(0.01407)	(0.50306)	(0.05239)	(0.13790)	(0.08527)
	[-0.59267]	[-0.04730]	[-1.32580]	[-0.34941]	[-0.14630]	[-0.49571]	[-0.47506]	[0.35862]
D(PIT(-1))	-1.127643	0.235925	-0.332977	0.082975	-4.455502	-0.116712	0.229385	0.383289
	(0.47723)	(0.17239)	(0.20695)	(0.08258)	(2.95317)	(0.30753)	(0.80952)	(0.50058)
	[-2.36291]	[1.36859]	[-1.60896]	[1.00479]	[-1.50872]	[-0.37952]	[0.28336]	[0.76568]
D(TOGS(-1))	-1.370488	0.134479	0.408490	0.197780	0.638131	-0.340913	0.084208	0.578604
	(0.39165)	(0.14147)	(0.16984)	(0.06777)	(2.42357)	(0.25238)	(0.66435)	(0.41081)
	[-3.49930]	[0.95058]	[2.40517]	[2.91838]	[0.26330]	[-1.35080]	[0.12675]	[1.40843]
D(PT(-1))	0.700912	0.018594	0.046156	-0.192149	-4.297480	0.366538	3.699659	-0.452267
	(0.76246)	(0.27542)	(0.33064)	(0.13194)	(4.71822)	(0.49133)	(1.29336)	(0.79977)
	[0.91928]	[0.06751]	[0.13960]	[-1.45638]	[-0.91083]	[0.74601]	[2.86050]	[-0.56549]
D(DEBT(-1))	-0.121517	0.044129	-0.006395	-0.009034	-0.237818	-0.009333	-0.075163	0.014642
	(0.03379)	(0.01221)	(0.01465)	(0.00585)	(0.20910)	(0.02177)	(0.05732)	(0.03544)
	[-3.59625]	[3.61543]	[-0.43642]	[-1.54507]	[-1.13735]	[-0.42863]	[-1.31133]	[0.41309]
D(GGCE(-1))	-0.756185	-0.083788	0.252268	-0.063388	1.182242	-0.379221	-0.319636	-0.657699
	(0.24303)	(0.08779)	(0.10539)	(0.04205)	(1.50392)	(0.15661)	(0.41225)	(0.25492)
	[-3.11148]	[-0.95444]	[2.39363]	[-1.50729]	[0.78611]	[-2.42143]	[-0.77534]	[-2.57997]
D(GFCF(-1))	0.143911	0.071831	0.116879	0.037135	-0.953972	-0.143165	-0.019420	-0.036360
	(0.12404)	(0.04481)	(0.05379)	(0.02146)	(0.76761)	(0.07993)	(0.21042)	(0.13012)
	[1.16015]	[1.60310]	[2.17279]	[1.73006]	[-1.24278]	[-1.79103]	[-0.09229]	[-0.27944]
D(HSCONS(-1))	-1.027051	0.019145	-0.039424	0.047927	0.546771	-0.037136	-0.361503	-0.007994
	(0.16454)	(0.05944)	(0.07135)	(0.02847)	(1.01821)	(0.10603)	(0.27911)	(0.17259)
	[-6.24194]	[0.32211]	[-0.55252]	[1.68330]	[0.53700]	[-0.35024]	[-1.29520]	[-0.04632]
С	0.010960	-0.000773	0.001796	0.000361	0.048403	0.002324	-0.000925	0.001935
	(0.00235)	(0.00085)	(0.00102)	(0.00041)	(0.01457)	(0.00152)	(0.00399)	(0.00247)
	[4.65557]	[-0.90937]	[1.75904]	[0.88711]	[3.32245]	[1.53179]	[-0.23150]	[0.78348]
-squared	0.839539	0.415345	0.452133	0.590742	0.245288	0.365946	0.350294	0.292219
dj. R-squared	0.787777	0.226747	0.275402	0.458723	0.001832	0.161412	0.140711	0.063903
tium sq. resids	0.004426	0.000577	0.000832	0.000133	0.169473	0.001838	0.012735	0.004869
E. equation	0.011948	0.004316	0.005181	0.002068	0.073938	0.007700	0.020268	0.012533
-statistic	16.21931	2.202273	2.558311	4.474685	1.007526	1.789173	1.671387	1.279887
og likelihood	132.7229	175.4898	167.8142	206.4004	56.17195	151.1788	110.5278	130.7160
kaike AIC	-5.796327	-7.832849	-7.467345	-9.304782	-2.151045	-6.675179	-4.739421	-5.700764
ichwarz SC	-5.341223	-7.377745	-7.012241	-8.849678	-1.695941	-6.220075	-4.284317	-5.245660
lean dependent	-0.001136	0.001105	0.001683	0.000283	0.040102	0.001240	-0.003581	0.002967
.D. dependent	0.025936	0.004908	0.006087	0.002810	0.074006	0.008408	0.021865	0.012954
Determinant resid covar Determinant resid covar og likelihood kaike information criter Schwarz criterion Jumber of coefficients	riance	8.78E-34 7.73E-35 1172.687 -50.88986 -46.58706 104						

Variance Decomposition Analysis

2 0.028820 4.42348 0.478115 1.32554 3.16006 17.3288 2.28885 4.42348 5.11120 19.46174 10.261755 10.26175 10.26175	Variance D Period	ecomposition S.E.	of GDP(-1): GDP(-1)	PIT	TOGS	PT	DEBT	GGCE	GFCF	HSCONS
3 0.053/83 44.2277 1.97727 1.99180 2.113120 19.68773 1.98222 6.87746 5.98877 4 0.025883 440261 3.410221 1.243700 1.243700 1.243700 1.243700<										0.000000
4 0.03888 40.0211 3.46002 1.84389 3.84007 6.57833 4.98688 7 0.04238 44.8510 6.1714 1.94837 1.84889 3.84007 6.57833 4.98688 0 0.04238 44.8510 6.17243 1.81839 1.81839 1.81839 1.81849 4.81814 4.18210 6.17784 4.98688 0 0.04238 4.83798 6.24244 4.41023 6.17784 1.98690 1.98590 1.91144 4.18220 6.17784 4.98688 0 0.042385 4.83798 5.45881 2.84870 2.85871 4.98688 4.98798 3.8177 6.57833 4.98788 1 0.04545 2.14784 7.78688 0.80000 0.000000 0.000000										
6 0.041605 40.9992 4.98922 1.22017 1.22017 0.223894 4.33525 9 0.04356 44.9576 5.23897 1.22047 1.52412 1.53414 1.53569 4.27773 6.238864 4.35525 9 0.04356 44.95766 5.7774 1.23416 1.537800 1.577780 2.577800 2.587770										4.996568
7 0.042206 40.16580 47.3311 12.2877 1.66134 15.3340 51.31210 6.107544 4.33188 0 0.043800 49.57106 5.77014 12.49558 15.70101 4.51889 6.880681 4.5708 1 0.043800 49.577066 5.77014 12.49558 15.70101 4.51889 6.880681 4.5708 1 0.004516 2.004434 67.7854 0.00000	5	0.040491	49.52110	3.803220	12.44037	1.811639	17.06393	4.228541	6.531763	4.599432
§ 0.042977 44.0831 5.18880 1.58880 1.58880 16.11844 4.41023 6.044298 4.40343 0 0.043005 4.04978 5.27084 1.27040 1.57010 4.57880 5.88081 4.89789 10 0.043005 4.04978 5.7014 1.24365 1.57010 4.57885 5.8000 4.49783 11 0.04415 5.810 0.04005 0.00000 0.00000 0.00000 0.00000 0.00000 0.000000 0.000000 0.00000 0.00000 0.00000 0.000000 <th< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></th<>										
10 0.044380 49.57890 5.77864 12.4358 1.57280 15.7011 4.516885 5.88084 4.87898 minor Docomologino PFT: minor 0.004316 2.10543 97.8665 0.000000 0.00000 0.00000		0.042877	49.26311		12.88865					4.493439
Instruct Decomposition of PT: bit 0.00047 PT TOGS PT DEBT GCCE GFCF HSCOND 1 0.00047 1.167153 74.8402 0.00000 <t< td=""><td>-</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>4.547943</td></t<>	-									4.547943
1 0.004316 2.10342 97.8856 0.000000 0.00000 0.00000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.0000000 0.0000000 0.0000000			of PIT:							
2 0.008879 1.16712 7.4.58020 0.05848 7.0.9180 0.05548 7.0.9180 0.05548 7.0.9180 0.05548 7.0.9180 0.05548 7.0.9180 0.05548 7.0.9180 0.05548 7.0.9180 0.05548 7.0.9180 0.05548 0.0.25511 0.0.25717 0.0.25717 0.0.25717 0.0.25717 0.0.25717 0.0.25717 0.0.25717 0.0.25717 0.0.25717 0.0.27787 0.0.27787 0.0.0000 0.000000 0.000000 0.000000	Period	S.E.	GDP(-1)							HSCONS
3 0.007891 0.832580 3.10112 20.17897 3.481177 0.441119 0.332584 4 0.00884 0.077333 7.10223 0.042588 3.00771 1.1223 3.245173 0.011727 0.44251 7.001838 0.243787 3.16844 2.567088 0.287871 0.023371 9 0.012244 0.328444 66.5730 0.775678 3.168147 2.241624 2.50328 0.223371 0.23377 0.23377 0.23377 0.23377 0.23377 0.23377 0.23377 0.23377 0.23377 0.23377 0.23377 0.23377 0.23377 0.233871 0.234811 0.244583 0.243528 0.23377 0.233871 0.23377 0.233871 0.23377 0.233871 0.23377 0.233871 0.23										
5 0.00884 0.46828 0.48388 3.16838 2.16338 0.26819 0.028111 0.028111 0.02811 0.	3	0.007891	0.853545	71.02819	0.432660	3.210116	20.17967	3.481177	0.441116	0.373527
6 0.010727 0.468251 7.00888 0.745088 22.31589 22.31789 0.288319 0.285317 8 0.012241 0.356446 66.97369 0.772697 3.156446 2.343281 2.570085 0.285317 0.235781 0.235781 0.235781 0.235781 0.235781 0.235781 0.235781 0.235811 Interne Decomposition of TOGS: PT DEBT CGCE GFCF HSCONS 1 0.00713 2.27974 2.685364 0.0000000 0.0000000 </td <td></td>										
7 0.011513 0.040543 68.9566 0.7727 3.156045 22.8312 2.577260 0.287671 0.258721 9 0.012440 0.320416 68.95360 0.74822 3.16844 2.24.6231 2.44245 0.248023 0.25871 9 0.012440 0.320416 68.95360 0.74822 3.16944 2.24.6231 2.44245 0.248023 0.25871 9 0.000511 1.047780 0.114638 98.85044 2.000000 0.										
9 0.012841 0.320816 69.45938 0.748422 3.08882 2.34211 2.44285 0.248852 0.238815 stinuce Decomposition of TOGS: PT DEBT GGCE GFCF HSCONE 1 0.007611 1.034780 0.114853 98.8504 0.000000 0.000000 0.000000 0.	7	0.011513	0.405453	69.69564	0.791727	3.156045	22.82332	2.577260	0.287871	0.262679
10 0.013603 0.294/78 69.33430 0.772967 3.101846 2.362844 2.333866 0.237783 0.238181 10 0.000511 1.037780 0.114635 98.85044 0.0000000 0.0000000 <td></td>										
stat S.E. GPCF PT DEBT GCCE GFCF HSCOND 1 0.005713 2.297074 0.144803 98.89449 2.39145 1.291704 0.10922 0.00000 0.0000000 0.000000 0.0000000										0.239819
2 0.007213 2.278074 2.685238 88.97489 2.381945 15.27722 1.275705 0.10825 0.074701 4 0.003910 15.56377 2.787435 55.98134 3.980377 4.265807 7.337238 0.19178 6 0.013575 15.55070 2.787435 55.98134 3.980377 4.265807 7.337238 0.19178 7 0.014633 2.91009 2.583161 55.79063 3.44877 4.68186 5.261902 6.77788 0.813926 0 0.017383 2.20743 2.680374 5.349417 5.150255 5.53421 7.44733 0.813926 0 0.017393 2.20743 2.680374 5.34941 0.5553421 7.44733 0.813926 1 0.020268 0.279733 5.80454 5.517248 8.39847 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000	Variance D Period			PIT	TOGS	PT	DEBT	GGCE	GFCF	HSCONS
3 0.008431 0.014517 3.014517 3.014517 3.014517 3.22477 3.579188 1.049686 5 0.011656 19.50042 2.01344 5.570404 4.870347 4.263007 7.3579188 1.049686 0 0.014516 21.11665 2.241136 5.70404 4.870347 4.450235 7.078966 0.639107 8 0.016515 21.11665 2.668374 5.30121 3.44117 5.160236 5.570219 7.518942 0.83901 9 0.017333 2.2.07313 5.80456 5.517246 8.33847 0.000000 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>0.000000</td>										0.000000
4 0.009910 15.56377 2.787435 59.69386 5.581934 3.98077 4.258007 7.37238 0.714728 6 0.011456 19.58205 2.541129 56.19844 4.138548 4.45529 5.13813 6.971788 0.55598 10 0.015868 2.250376 5.230112 3.944117 5.156205 5.563421 7.447734 0.01308 10 0.015868 2.250712 5.230112 3.944117 5.156205 5.5762197 7.518942 0.83094 staince Decomposition of PT: ptr TOGS PT DEBT GGCE GFCF HSCOND 0.000000 <td></td>										
6 0.01349 19.59206 2.54123 56.19844 4.139548 4.46522 5.138137 6.971758 0.95538 0 0.01755 2.11465 2.66374 7.539401 3.30252 2.48876 5.24722 7.07896 0.83910 10 0.01735 2.230731 2.26731 51.60384 3.36812 5.42722 7.07896 0.83910 10 0.016868 2.23033 2.66731 51.60384 3.36812 5.70210 0.00000 0.000000	4	0.009910	15.56377	2.787435	59.69386	5.581934	3.980378	4.263600	7.337239	0.791780
7 0.014963 20.10000 2.883616 55.79063 3.944877 4.68186 5.261692 6.757696 0.91014 9 0.017393 22.00743 2.68074 52.30112 3.944117 6.160250 5.30421 7.44733 0.81392 10 0.01668 22.56032 2.687514 5.10048 3.644177 5.630421 7.44733 0.81392 10 0.002068 2.675131 5.10048 3.644171 5.107264 7.44733 0.000000 0.					55.70440					0.849606
8 0.016215 21.11665 2.663097 53.84-01 3.902552 4.988376 5.427225 7.076986 0.839100 10 0.016568 2.2.6003 2.675131 51.60038 5.76219 7.348743 0.839007 atticne Decomconstion of TF: 0.000006 0.000000 0.0										0.955399
10 0.018568 22.80033 2.675131 5160384 3.854125 5.180385 5.762199 7.518942 0.839041 rinkind S.E. GDP(-1) PT TOGS PT DEBT GGCE GFCF HSCONK 1 0.0000081 0.239733 5.804546 5.517246 83.3847 0.0000000 0.000000 0.0000	8	0.016215	21.11665	2.663097	53.98401	3.902552	4.988376	5.427225	7.078996	0.839100
aried S.E. GDP(-1) PT TOGS PT DEBT GGCE GFCF HSCONE 1 0.002068 0.279733 5.804546 5.517246 88.3949 0.000000 0.000000 0.000000 0.000000 1.004001 2 0.00253 18.638379 9.852451 19.48037 43.01464 6.457915 8.83116 6.2453011 1.30833 3 0.004015 4.683379 9.8324439 11.94838 4.070517 6.473133 6.43856 5.55856 6.0006553 18.50169 6.997273 3.176862 2.157464 4.070517 11.225807 7.546317 8 0.007565 2.4.05696 6.417466 6.117466 6.116632 2.31748 3.071016 12.26471 8.49739 9 0.005696 2.4.0896 6.1077466 1.026377 2.87021 1.26471 8.49735 1 0.007300 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000										0.813082 0.836041
1 0.002068 0.27973 5.804546 6.517246 88.39847 0.00000 0.000000 0.000000 0.000000 2 0.00231 0.783847 10.77124 13.28615 60.55306 0.055452 9.555515 8.337905 13.98935 4 0.004934 10.86823 8.87249 17.78941 31.61538 22.79484 9.10776 6.902255 2.624897 5 0.00571 15.52006 6.30122 7.176877 2.758881 12.3112885 10.136884 6.90322 10.84863 6.90325 9 0.006569 2.440098 6.017146 6.110663 2.531771 2.73583 3.1171906 12.65471 8.497391 10 0.009171 2.561862 7.534429 7.399991 13.9143 54.19812 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.009000 0.009000 0.009000 0.009000 0.009000 0.009000 0.009000 0.009000	Variance D Period			PIT	TOGS	PT	DEBT	GGCE	GFCF	HSCONS
2 0.002931 0.763847 10.77124 13.28615 60.56306 0.055452 9.353515 3.5337061 5.648301 1.30893 4 0.004934 10.68623 8.57249 17.78991 35.60223 7.870767 6.602059 9.44672 2.52860 5 0.005771 15.22807 8.37449 13.6338 2.79984 9.01706 5.473381 10.43855 5.25860 6 0.00559 2.40508 6.897272 6.377067 2.40582 11.57486 3.3171806 12.249714 6.467275 9 0.003569 2.40698 6.817274 5.336432 2.50703 13.04577 2.870215 8.29247 10 0.00857 2.51682 7.639423 7.30991 13.91434 54.19612 0.00000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.0000000 0.000000 0.000000										
4 0.004934 10.86823 8.872249 17.7891 35.60223 7.870767 6.902059 9.464707 2.62880 6 0.006553 18.50169 7.56042 10.25237 31.15685 10.36869 4.659328 10.63856 5.258605 7 0.00725 2.207149 6.390122 7.106777 27.66883 17.10577 27.66883 17.10677 12.73563 3.171166 12.65471 8.49739 9 0.00669 2.44908 6.017146 5.384432 2.50703 13.04577 2.870215 12.91515 8.982447 ariance Decomposition of DEBT: not 5.E GDP1-1) PT TOGS PT DEBT GGCE GFCF HSCON2 3 0.142170 2.926246 10.57246 16.27246 16.27244 13.91434 54.19612 1.097838 10.689172 2.26867 5 0.196561 2.7128340 2.157843 3.00577 2.24843 2.479781 3.45976 2.09877 2.249172 2.68411 2.4797	2	0.002931	0.763847	10.77124	13.26815	60.56306	0.055452	9.535515	3.537905	1.504830
5 0.006771 15.52809 8.244439 13.16336 32.79644 9.017076 5.473138 10.45533 8.659065 7 0.007251 2.087599 6.897073 8.377606 23.46532 11.57486 4.070517 11.22257 7.574611 6.120527 7.574611 6.101255 7.574611 8.01255 7.574611 8.01255 9.0005569 24.46908 6.017146 6.110663 26.33177 12.73563 3.171806 12.69171 8.91744 8.47311 8.174986 3.47007 2.15011 8.98247 aniance Decomposition of DEBT: PIT TOGS PT DEBT GGCE GFCF HSCOND 0.000000 0.000001 0.000000 0.000000 </td <td></td>										
7 0.007251 20.87599 6.897273 8.377806 29.46922 11.57498 4.070517 11.22250 7.574611 9 0.008569 24.48098 6.017146 6.110663 25.33777 12.37363 3.171806 12.65471 8.497249 ariance Decomposition of DEBT: eride S.E. GDP(-1) PT TOGS PT DEBT GGCE GFCF HSCOND 2 0.108494 24.75021 10.07784 13.94434 54.19612 0.000000 0										5.258509
8 0.007925 22.90140 6.390122 7.106777 27.65800 12.31218 3.571016 12.65418 6.001256 10 0.009171 25.61862 5.724343 5.336432 25.50703 13.04577 2.870215 12.91515 8.982447 ariance Decomposition of DEBT: eriod S.E GDP(-1) PIT TOGS PT DEBT GGCE GFCF HSCONS 2 0.108949 24.71502 11.07783 12.36786 8.178686 39.47007 2.150810 1.999515 0.899242 3 0.142170 29.22441 10.57246 16.62651 6.21262 2.37199 3.33100 1.775666 1.989516 2.289406 6 0.214416 28.27400 10.77600 20.78054 4.208005 2.75444 3.967732 2.244827 2.47311 1 0.278446 28.69011 10.44257 2.167492 2.376447 2.47343 4.195141 2.474871 2.37447 2.089783 2.444872 2.55794 4.313500 <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>6.850655</td></t<>										6.850655
9 0 0.006969 24.48098 6.017146 6.110563 26.33177 12.73683 3.171806 12.91515 8.982447 arriance Decomposition of DEBT: eriod S.E. GDP(-1) PIT TOGS PT DEBT GGCE GFCF HSCONE 1 0.073308 16.85912 7.639429 7.309991 13.91434 54.19612 0.0000000 0.000000 0.000000										
ariance Decomposition of DEBT: eriod PIT TOGS PT DEBT GGCE GFCF HSCONS 1 0.073938 18.85912 7.639429 7.390991 13.91434 54.19612 0.000000 0.000000 0.000000 0.000000 2 0.108949 24.7159 10.57246 16.62651 6.211262 27.3199 3.333100 1.795756 1.844262 4 0.171531 27.41619 10.47241 19.31424 2.97324 3.050383 1.966910 2.247351 6 0.218416 28.27400 10.776000 10.776000 2.76054 4.067532 2.248973 2.394066 0.218416 28.27400 10.776004 4.07592 2.163741 2.62811 2.427311 2.663714 9 0.274182 28.73906 10.87927 21.51482 3.754173 2.55676 4.263543 2.449185 2.668371 10 0.007025 5.009767 0.212898 1.676674 5.465524 87.59823 0.000000 0.000000 0.000000 <td></td> <td></td> <td></td> <td>6.017146</td> <td></td> <td></td> <td>12.73563</td> <td></td> <td></td> <td>8.497391</td>				6.017146			12.73563			8.497391
eriod S.E. GDP(-1) PIT TOGS PT DEBT GGCE GFCF HSCONS 1 0.073938 16.85912 7.639429 7.339491 13.91434 54.19612 0.000000 0.000000 0.000000 2 0.10849 24.71502 11.077848 12.83768 8.178668 8.178968 3.333100 1.757956 1.844264 4 0.171531 27.44700 10.77600 2.078244 3.308730 2.294827 2.394066 6 0.218416 28.247040 10.77600 2.078247 2.564342 2.473711 7 0.238384 28.54735 10.81488 21.13149 3.955970 2.555768 4.318360 2.449155 2.668521 10 0.290264 28.81448 10.91497 2.01709 3.505993 2.525768 4.318360 2.449155 2.668521 10 0.02700 0.037025 5.000767 0.212898 1.475654 4.013424 1.30333 10.012760 0.017770 0.0737				5.724343	5.336432	25.50703	13.04577	2.870215	12.91515	8.982447
2 0.108949 24.71502 11.07783 11.236766 8.178966 39.47007 2.15010 1.199515 0.839622 3 0.142170 25.92446 10.577966 1.844266 52.73199 3.333100 1.757966 1.844266 4 0.171531 27.46159 10.44244 19.31342 5.254200 29.78324 3.503861 1.66910 2.894676 6 0.218416 28.27190 10.77600 20.78054 4.208505 27.25448 3.967332 2.264827 2.47331 1 0.23934 26.56779 20.40277 21.82662 3.615846 2.5.5796 4.235431 2.449165 2.66821 10 0.290264 28.81448 10.91497 22.01709 3.505093 25.25678 4.318360 2.449151 2.693714 2 0.00924 0.408295 4.695365 5.555671 1.236534 4.179566 7.877845 4.013452 1.13023 3 0.011744 0.62523 3.699767 0.212689 1.676674 5	Variance D Period			PIT	TOGS	PT	DEBT	GGCE	GFCF	HSCONS
3 0.142170 28.92246 10.57246 16.62651 6.211262 32.73199 3.3300 1.757956 1.84425 5 0.196561 27.82803 10.65759 20.40248 4.612480 28.26119 3.74376 2.09877 2.264827 2.37406 6 0.218416 28.27400 10.7600 20.78044 28.57331 4.107151 2.74442 2.54427 7 0.238384 28.54735 10.81488 2.113189 3.935870 26.52331 4.105141 2.424105 2.68311 8 0.259947 28.66011 10.84227 21.514282 3.76113 2.555796 4.263543 2.449165 2.668271 1 0.274182 28.51448 10.91497 22.01709 3.050593 2.52678 4.318360 2.479511 2.68311 araince Decomposition of GGCE: reird S.E. GPI-1 PIT TOGS PT DEBT GGCE GFCF HSCONS 1 0.007700 0.037025 5.09767 0.212689 1.676674 5.465524 87.59832 0.000000 0.000000 2.000902										0.000000
4 0.171531 27.46159 10.47424 19.31342 5.254200 29.78324 3.50036 1.969767 2.394066 6 0.218416 28.27400 10.77600 20.78054 4.208505 27.25448 3.967332 2.264827 2.473311 7 0.23834 26.54735 10.81488 21.51489 3.95870 26.53331 4.107915 2.274472 2.47311 9 0.274182 28.7390 10.87277 21.82662 3.615846 25.55766 4.263343 2.449185 2.68371 ariance Decomposition of GGCE: eriod S.E. GDP(-1) PIT TOGS PT DEBT GGCE GFCF HSCONS 1 0.007700 0.037025 5.009767 0.212689 1.676674 5.465524 87.59832 0.000000 0.000000 2 0.009824 0.402826 4.09563 5.5556172 2.47297 7.76945 4.01442 1.30233 3 0.011744 0.622313 4.001767 6.772707 3.073732 3.303144 7.78454 4.014444 1.276151 4 0										
6 0.218416 28.27400 10.77600 20.78054 4.208505 27.25448 3.067932 2.24827 2.47371 9 0.273182 28.6735 0.81488 21.13189 3.93570 26.52331 4.107915 2.374447 2.46331 9 0.274182 28.7906 10.87927 21.87662 3.615846 25.55796 4.318360 2.479511 2.46381 aniance Decomposition of GGCE: errord S.E. GDP(-1) PIT TOGS PT DEBT GGCE GFCF HSCONS 1 0.007700 0.37025 5.009767 0.212689 1.676674 5.465524 87.79832 0.000000 0.000000 2 0.00824 0.408254 4.698336 5.556712 2.472847 7.760982 2.71244 1.130233 3 0.011744 0.622313 4.001767 6.772707 3.07372 3.030184 77.83584 3.435844 1.22761 2.671472 4 0.013296 1.515343 3.774845 6.897421	4	0.171531	27.46159	10.47424	19.31342	5.254200	29.76324	3.500836	1.966910	2.265561
7 0.238384 28.64735 10.61488 21.13189 3.935870 26.52311 4.107915 2.374447 2.563417 9 0.274182 28.73906 10.87927 21.82662 3.615846 25.55796 4.263543 2.449185 2.66811 9 0.290264 28.81448 10.91497 22.01709 3.505093 25.25678 4.318360 2.479511 2.693114 ariance Decomposition of GGCE: eridd S.E. GDP(-1) PT TOGS PT DEBT GGCE GFCF HSCONS 2 0.008824 0.408295 4.695386 5.555612 1.238539 4.179586 78.7845 4.013452 1.13023 3 0.017740 0.037025 5.009767 0.212689 1.676674 5.465524 87.59832 0.00000 0.00000 2 0.008824 0.408293 3.699116 2.226629 2.67172 2.47296 7.6982 2.71244 2.15444 5 0.016185 5.60230 3.699116 0.226721										
8 0.256947 28.66911 10.84257 21.51482 3.754113 25.57403 4.195141 2.422105 2.668521 10 0.290264 28.81448 10.91497 22.01709 3.505093 25.25678 4.318360 2.449185 2.668521 ariance Decomposition of GGCE: priod S.E. GDP(-1) PIT TOGS PT DEBT GGCE GFCF HSCONS 1 0.007700 0.037025 5.009767 0.212689 1.676674 5.465524 87.59832 0.000000 0.000000 3 0.011744 0.622313 4.001767 6.772707 3.07372 3.030144 77.8584 3.435844 1.22761 6 0.016185 5.608230 3.699116 8.25629 2.517470 2.240411 71.76373 3.030144 77.8584 3.435844 1.22761 2.67172 2.472845 7.760982 2.171244 2.154445 3.435844 1.22761 2.574747 2.240417 7.48373 1.640971 5.02916 3.01414 3.697749 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>2.564343</td>										2.564343
10 0.290264 28.81448 10.91497 22.01709 3.505093 25.25678 4.318360 2.479511 2.693714 ariance Decomposition of GGCE: gDP(-1) PIT TOGS PT DEBT GGCE GFCF HSCONS 1 0.007700 0.37025 5.009767 0.212689 1.676674 5.465524 87.7845 4.013452 1.030233 2 0.008824 0.408295 4.669336 5.555612 1.238594 1.795867 7.87984 4.013452 1.130233 3 0.011744 0.622313 4.001767 6.772707 3.07372 3.030184 77.8982 0.018000 0.00000 5 0.014734 3.612593 3.724883 6.897421 2.658101 2.416681 7.568419 2.16278 1.40031 5.02918 6.00184148 2.498110 2.160271 62.1716377 1.941549 4.00335 9 0.020344 9.0232470 3.699551 1.3.04148 2.498110 2.160271 62.16105 1.04129 6.069144	8	0.256947	28.66911	10.84257	21.51482	3.754113	25.97403	4.195141	2.422105	2.628111
eriod S.E. GDP(-1) PIT TOGS PT DEBT GGCE GFCF HSCONS 1 0.007700 0.037025 5.009767 0.212689 1.676674 5.465524 87.59832 0.000000 0.000000 2 0.009824 0.408295 4.695836 5.555612 1.236539 4.179586 78.77845 4.013452 1.130233 3 0.011744 0.622313 4.0014767 6.772707 3.073732 3.00144 77.85584 4.03452 1.130233 5 0.014734 3.6125933 3.724883 6.897421 2.635010 2.416681 75.66419 2.273225 2.772997 6 0.016165 5.602330 3.699116 8.225629 2.142483 64.20578 1.425292 5.67393 9 0.020394 9.029270 3.699551 13.0418 2.491210 2.180271 62.16105 1.304129 6.086140 10 0.021562 9.909347 3.737636 13.50418 2.431209 2.180271 6										2.668521 2.693714
1 0.007700 0.037025 5.009767 0.212689 1.676674 5.465524 87.59832 0.000000 0.000000 2 0.008824 0.408295 4.695836 5.555612 1.238539 4.179586 78.77845 4.013452 1.130233 3 0.011744 0.622313 4.001767 6.772707 3.073732 3.030184 77.85584 3.435844 1.227616 4 0.013295 1.515343 3.744925 7.075201 2.675172 2.472926 77.60962 2.2712164 4.003366 6 0.016185 5.608230 3.699116 8.25629 2.517407 2.240941 71.76373 1.84529 5.674392 9 0.020364 9.029270 3.699551 13.04148 2.431209 2.197353 60.51588 1.233913 6.470472 ariance Decomposition of GFCF: ariance Decomposition of GFCF: SE. GDP(-1) PIT TOGS PT DEBT GGCE GFCF HSCON55 8.087452 3.9.3043 1.406496 4.926470	variance D Period			PIT	TOGS	PT	DEBT	GGCE	GFCF	HSCONS
2 0.008824 0.408295 4.695836 5.55612 1.238539 4.179586 78.77845 4.013452 1.13023 3 0.011744 0.622313 4.001767 6.77207 3.07323 3.00184 77.83584 4.033452 1.130233 5 0.014734 3.612593 3.724883 6.897421 2.638010 2.416681 75.66419 2.273225 2.772991 6 0.016185 5.608230 3.699116 8.226629 2.517407 2.240941 71.76337 1.841549 4.003356 8 0.019141 8.069556 3.657649 12.26429 2.142448 64.20578 1.442529 5.674392 9 0.020394 9.029270 3.699551 13.04148 2.49102 2.190753 60.51588 1.233913 6.470472 ariance Decomposition of GFCF: eriod S.E. GDP(-1) PIT TOGS PT DEBT GGCE GFCF HSCONS 1 0.020268 38.91142 3.890875 0.757161 0.167601 </td <td></td>										
3 0.011744 0.622313 4.001767 6.772707 3.07372 3.030184 77.83584 3.435844 1.227611 4 0.013289 1.515343 3.744825 7.07501 2.675712 2.472286 77.60982 2.712164 2.154451 5 0.014734 3.612593 3.724883 6.897421 2.638010 2.416681 75.66419 2.273225 2.772997 6 0.016185 5.608230 3.659116 8.225629 2.517407 2.240941 71.76377 1.941549 4.003356 9 0.020349 0.029270 3.699551 1.3.04148 2.498110 2.180271 62.16105 1.304129 6.40614 10 0.020384 0.29270 3.699551 1.3.04148 2.498110 2.180271 62.16105 1.304129 6.40747 ataince Decomposition of GFCF: erd Settemp 0.052876 9.377616 0.167601 0.045836 6.352746 49.87436 0.000000 2 0.032875 3.9.3943 1.496496										1.130230
5 0.014734 3.612593 3.72483 6.697421 2.238010 2.416881 75.66419 2.27225 2.772907 6 0.016185 5.608230 3.699116 8.225629 2.517407 2.240941 71.76377 1.941549 4.003356 7 0.017716 7.046473 3.615760 10.55872 2.583069 2.152448 67.36338 1.640971 5.674392 9 0.020394 9.029270 3.699551 1.3.04148 2.448110 2.180271 62.16105 1.304129 6.406144 10 0.021562 9.909347 3.737636 1.3.0418 2.448110 2.180271 62.16105 1.304129 6.406144 10 0.021562 9.909347 3.737636 1.3.0418 2.49110 2.160271 6.470474 11 0.022688 38.91142 3.890875 0.757161 0.167601 0.045836 6.352746 49.87436 0.00000 2 0.032875 3.9.30943 1.496496 4.926470 2.033562 2.600755	3			4.001767	6.772707		3.030184	77.83584	3.435844	1.227618
6 0.016165 5.608230 3.699116 8.225629 2.517407 2.240941 71.76377 1.941549 4.003367 8 0.019141 8.069556 3.637649 1.228021 2.564429 2.14248 64.20578 1.425292 5.674393 9 0.020394 9.099347 3.737636 13.04148 2.498110 2.180271 62.16105 1.304129 6.08614(10 0.021562 9.999347 3.737636 13.50418 2.431209 2.197353 60.51588 1.233913 6.47047 ariance Decomposition of GFCF: errord S.E. GDP(-1) PIT TOGS PT DEBT GGCE GFCF HSCONS 1 0.020268 3.89142 3.890875 0.757161 0.167601 0.04536 6.362746 49.87436 0.000000 2 0.032875 39.39043 1.49496 4.926740 2.05356 2.600758 8.087452 9.38711 2.166393 3.1639444 2.03001 10.77308 3.263544 49.938711										
7 0.017716 7.046473 3.615760 10.55872 2.593069 2.152448 67.36338 1.640971 5.02918 9 0.020394 9.029270 3.699551 13.04148 2.498110 2.180271 62.16105 1.304129 5.674392 9 0.020394 9.099347 3.737638 13.50418 2.431209 2.197353 60.51588 1.233913 6.470474 ariance Decomposition of GFCF: eriod S.E. GDP(-1) PIT TOGS PT DEBT GGCE GFCF HSCONS 1 0.020288 38.91142 3.890875 0.757161 0.167601 0.045836 6.352746 49.87436 0.000000 2 0.032875 39.30943 1.496496 4.926470 2.035356 2.600755 8.087452 39.30711 2.156931 3 0.044190 39.69456 0.852821 9.347892 1.305293 2.461585 9.682344 4.10915 2.546315 4 0.053710 37.31191 0.527828 1.6637	6	0.016185	5.608230	3.699116	8.225629	2.517407	2.240941	71.76377	1.941549	4.003356
9 0.020384 9.028270 3.699571 13.04148 2.498110 2.180271 62.16105 1.34129 6.068142 10 0.021562 9.909347 3.737636 13.50418 2.431209 2.197353 60.51588 1.233913 6.470472 ariance Decomposition of GFCF: eriod S.E. GDP(-1) PIT TOGS PT DEBT GGCE GFCF HSCONS 1 0.020268 38.91142 3.890875 0.757161 0.167601 0.045836 6.352746 49.87436 0.00000 2 0.032875 39.3043 1.496496 4.926470 2.035365 2.600755 8.087452 39.38711 2.156931 3 0.044190 39.69450 0.852211 3.47862 3.05232 2.461585 9.82344 4.10915 3.263544 5 0.067577 36.98530 0.485428 16.78064 1.15978 1.890010 1.07307 28.42747 3.19810 7 0.07362 37.01689 0.442016 16.5176	7	0.017716	7.046473	3.615760	10.55872	2.593069	2.152448	67.36338		5.029180
10 0.021562 9.999347 3.737636 13.50418 2.431209 2.197353 60.51588 1.233913 6.470474 ariance Decomposition of GFCF: gDP(-1) PIT TOGS PT DEBT GGCE GFCF HSCONS 1 0.020268 38.91142 3.890875 0.757161 0.167601 0.045836 6.352746 49.87436 0.00000 2 0.032875 39.30943 1.496496 4.926470 2.03536 2.600755 8.087452 39.38711 2.156931 3 0.044190 39.69456 0.852821 9.347892 1.305293 2.461585 9.682344 34.10915 2.546315 4 0.053710 37.3119 0.627274 14.4739 1.174302 2.003011 10.47308 0.18021 3.283544 5 0.067577 36.98530 0.485428 16.78064 1.159978 1.890010 11.07307 28.42747 3.198109 7 0.073362 37.01689 0.442016 16.53176 1.221123 1	9	0.020394	9.029270	3.699551	13.04148	2.498110	2.180271	62.16105	1.304129	6.086140
eriod S.E. GDP(-1) PIT TOGS PT DEBT GGCE GFCF HSCONS 1 0.020268 38.91142 3.890875 0.757161 0.167601 0.045836 6.362746 49.87436 0.000001 2 0.032875 39.0943 1.496496 4.926740 2.05356 2.600755 8.087452 39.38711 2.156931 3 0.044190 39.69456 0.852821 9.347692 1.305293 2.461585 9.682384 34.10915 2.246315 5 0.067577 36.98530 0.485428 16.78064 1.159978 1.80010 11.77307 28.42747 3.19810 6 0.067577 36.98530 0.485428 16.78064 1.227275 1.738747 11.77307 28.44944 3.140016 7 0.073742 3.71689 0.440216 16.5176 1.22123 1.820183 11.37837 28.44945 3.14944 9 0.083765 3.637418 17.12910 1.210597 1.644033 11.79868				3.737636	13.50418	2.431209	2.197353	60.51588	1.233913	6.470474
2 0.032875 39.30943 1.496496 4.926470 2.035366 2.600755 8.087452 39.38711 2.166315 3 0.044190 39.66456 0.852821 9.347802 1.305233 2.461585 9.682384 3.10915 2.546315 4 0.053710 37.83119 0.527724 14.44779 1.174302 2.003001 10.47308 30.18021 3.263540 5 0.061252 37.10961 0.5277828 16.63370 1.061731 1.943449 10.77651 28.42747 3.198102 6 0.067577 3.69530 0.442016 16.53176 1.221123 1.820183 11.37837 28.42494 3.164744 9 0.083795 36.73215 0.378418 17.19210 1.210366 1.681452 11.60691 27.92191 3.186691 10 0.088432 36.60882 0.360768 17.47394 1.210597 1.644033 11.79868 27.72917 3.173986 ariance Decomposition of HSCONS: 2 on18530 2.071922 <td< td=""><td>/ariance D Period</td><td></td><td></td><td>PIT</td><td>TOGS</td><td>PT</td><td>DEBT</td><td>GGCE</td><td>GFCF</td><td>HSCONS</td></td<>	/ariance D Period			PIT	TOGS	PT	DEBT	GGCE	GFCF	HSCONS
3 0.044190 39.69456 0.852821 9.347892 1.305293 2.461585 9.682384 34.10915 2.546315 4 0.053710 37.8119 0.622724 14.44739 1.174302 2.003001 10.47308 30.18201 3.28384 5 0.061252 37.10961 0.527828 16.63370 1.061731 1.943449 10.77651 28.65505 3.292120 6 0.067577 36.98530 0.485428 16.78064 1.59978 1.890010 11.77037 28.44964 3.140016 7 0.073674 36.91598 0.404527 16.73088 1.227275 1.738747 11.57260 28.24495 3.16674 9 0.083795 36.73215 0.374818 17.1210 1.210597 1.644033 11.79668 27.72917 3.186691 10 0.088432 36.60882 0.360768 17.47394 1.210597 1.644033 11.79668 27.72917 3.179868 2 0.018530 2.071922 0.426474 14.17648										0.000000
4 0.053710 37.83119 0.627274 14.44739 1.174302 2.003001 10.47308 30.18021 3.285344 5 0.067527 36.98530 0.485428 16.78064 1.15978 1.890010 11.07307 28.452747 3.19810 6 0.067577 36.98530 0.485428 16.78064 1.15978 1.890010 11.07307 28.44964 3.180016 7 0.073627 37.01689 0.442016 16.53176 1.221123 1.820183 11.37837 28.44964 3.140016 8 0.078774 36.91588 0.404827 16.73088 1.227275 1.738747 11.57260 28.44945 3.166744 9 0.088452 3.608082 0.360768 17.47394 1.210567 1.684403 11.79868 27.72191 3.166691 10 0.012533 3.166141 0.286795 9.322662 12.15944 2.679829 0.00199 4.495566 67.89837 2 0.012530 2.071922 0.425474 14.16748 <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>39.38711</td><td></td></t<>									39.38711	
6 0.067577 36.88530 0.485428 16.78064 1.15978 1.890010 11.37837 28.42747 3.19810 7 0.073627 37.01689 0.442016 16.53176 1.221123 1.820183 11.37837 28.49964 3.140016 8 0.078774 36.91588 0.404827 16.73086 1.227275 1.738747 11.57260 28.44964 3.16474 9 0.083795 36.73215 0.360768 17.47394 1.210567 1.681452 11.50691 27.92191 3.186691 10 0.08842 36.60882 0.300768 17.47394 1.210597 1.644033 11.79806 2.772917 3.173982 ariance Decomposition of HSCONS: string GGCE GFCF HSCONS 1 0.012533 3.166141 0.286795 9.322662 12.15944 2.679829 0.00199 4.495566 67.88937 2 0.016530 2.071922 0.424747 1.61706 9.129192 2.768917 3.367667 7.52376 5.54486 </td <td>4</td> <td>0.053710</td> <td>37.83119</td> <td>0.627274</td> <td>14.44739</td> <td>1.174302</td> <td>2.003001</td> <td>10.47308</td> <td>30.18021</td> <td>3.263540</td>	4	0.053710	37.83119	0.627274	14.44739	1.174302	2.003001	10.47308	30.18021	3.263540
7 0.073362 37.01689 0.442016 16.53176 1.221123 1.820183 11.37837 28.44964 3.140014 8 0.073774 36.91598 0.404227 16.73088 1.227175 1.738747 11.57260 28.244964 3.140014 9 0.088795 36.73215 0.378418 17.19210 1.210366 1.681452 11.89681 27.72917 3.173888 arlance Decomposition of HSCONS: 1 0.012533 3.166141 0.286795 9.322662 12.15944 2.679829 0.000199 4.495566 67.88937 2 0.018530 2.071922 0.425474 14.17648 10.92919 2.768891 7.362376 5.820995 55.44466 3 0.021612 1.525658 1.783044 16.62760 9.463410 3.387667 7.321521 4.543595 55.16488 4 0.028147 1.290992 1.01817 16.51470 <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>3.292120</td></td<>										3.292120
8 0.078774 36.91598 0.404827 16.73088 1.227275 1.738747 11.57260 28.24495 3.186491 10 0.088452 36.60882 0.360768 17.47304 1.210597 1.644033 11.79868 27.72917 3.186991 10 0.088432 36.60882 0.360768 17.47394 1.210597 1.644033 11.79868 27.72917 3.173986 ariance Decomposition of HSCONS: PT DEBT GGCE GFCF HSCONS 1 0.012533 3.166141 0.286795 9.322662 12.15944 2.679829 0.000199 4.495566 67.88933 2 0.018530 2.071922 0.425474 14.17648 10.92919 2.768891 7.362376 5.820995 56.44468 3 0.0216530 2.071922 0.425474 14.17648 10.929192 2.768941 7.316391 4.39567 5.52156 55.60816 4 0.023847 1.290992 2.161470 9.912962 2.95844 7.316391 <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>3.196105</td></t<>										3.196105
10 0.088432 36.60882 0.360768 17.47394 1.210597 1.644033 11.79668 27.72917 3.173986 ariance Decomposition of HSCONS: stridd S.E. GDP(-1) PIT TOGS PT DEBT GGCE GFCF HSCONS 1 0.012533 3.166141 0.286795 9.322662 12.15944 2.679829 0.000199 4.495566 67.88937 2 0.018530 2.071922 0.425474 14.17648 10.92919 2.768917 7.362376 5.820995 55.644468 3 0.021612 1.525658 1.783044 16.62760 9.463410 3.387667 7.52152 4.543595 55.69816 4 0.028474 1.20992 2.101817 16.51709 9.912936 2.955444 7.3163914 4.392672 55.50816 5 0.028147 1.0274884 2.081955 16.47174 9.613953 2.666089 7.604445 4.282029 52.3356 6 0.028192 0.925812 2.10120 16.30529	8	0.078774	36.91598	0.404827	16.73088	1.227275	1.738747	11.57260	28.24495	3.164745
eriod S.E. GDP(-1) PIT TOGS PT DEBT GGCE GFCF HSCONS 1 0.012533 3.166141 0.286795 9.322662 12.15944 2.679829 0.000199 4.495566 67.88937 2 0.012533 3.166141 0.286795 9.322662 12.15944 2.679829 0.000199 4.495566 67.88937 3 0.021612 1.525668 1.78044 16.62760 9.463410 3.38767 7.522152 4.543595 55.14468 4 0.023847 1.290992 2.108187 16.51470 9.912936 2.955944 7.316391 4.392672 55.51468 5 0.026153 1.074886 2.081955 16.47714 9.61953 2.666089 7.606445 4.228029 56.23350 6 0.022192 0.925812 1.501201 16.33052 9.729358 2.660038 8.053374 4.050254 56.10022 7 0.030015 0.817049 2.247444 16.21937 9.686910 2.5										3.186691 3.173988
1 0.012533 3.166141 0.286795 9.322662 12.15944 2.679829 0.000199 4.495566 67.88931 2 0.018530 2.071922 0.425474 14.17648 10.92919 2.768891 7.362376 5.820995 56.44466 3 0.021612 1.525658 1.783044 16.62760 9.463410 3.387667 7.322152 4.543595 55.1648 4 0.023847 1.20992 2.108187 16.51470 9.91236 2.955444 7.316391 4.392672 55.50816 5 0.028143 1.074886 2.081955 16.47714 9.613953 2.666089 7.608445 4.228029 56.3305 6 0.028192 0.258142 1.50120 16.3052 9.72368 2.660343 8.053374 4.050254 56.10022 7 0.030015 0.817049 2.247444 16.21937 9.686910 2.549123 8.241789 3.919291 56.31002 8 0.031777 0.729257 2.271171 16.17179 9.7				ріт	TOGS	DT	DEBT	GGCE	GECE	HSCONG
2 0.018530 2.071922 0.425474 14.17648 10.92919 2.768891 7.362376 5.820955 56.44486 3 0.021612 1.525668 1.783044 16.62760 9.463410 3.387667 7.522152 4.543595 55.14688 4 0.023847 1.290992 2.108187 16.51470 9.912936 2.555944 7.316391 4.392672 55.50816 5 0.0228151 1.074886 2.081955 16.47714 9.631953 2.666089 7.608445 4.228029 56.31002 6 0.0221812 0.258142 2.150120 16.3052 9.729358 2.6660343 8.053374 4.050254 56.10022 7 0.030015 0.817049 2.247444 16.21937 9.666910 2.549123 8.241789 3.919291 56.31002 8 0.031777 0.729257 2.211171 16.11710 9.723681 2.447188 8.372224 3.813533 56.47091 9 0.033465 0.657564 2.293690 16.16105										
3 0.021612 1.525658 1.783044 16.62760 9.463410 3.387667 7.522152 4.543595 55.14688 4 0.02847 1.290992 2.108167 16.5170 9.91296 2.955444 7.316391 4.392672 55.50818 5 0.028153 1.074886 2.081955 16.47174 9.613953 2.666089 7.606445 4.228029 55.23816 6 0.028192 0.925812 2.150120 16.33052 9.729358 2.660343 8.053374 4.050254 56.31902 7 0.030015 0.817049 2.247444 16.21937 9.666810 2.549123 8.241789 3.919291 56.31902 8 0.031777 0.729257 2.271171 16.17170 9.729361 2.447518 3.912241 3.81353 56.47092 9 0.033465 0.657564 2.230890 16.11505 9.74708 2.309495 8.531691 3.712738 56.52757 10 0.035044 0.599659 2.324268 16.11520					9.322002					56.44468
5 0.026153 1.074886 2.061955 16.47714 9.631953 2.666089 7.606445 4.228029 56.2335 6 0.028192 0.925812 2.150120 16.30562 9.72358 2.660134 8.053374 4.050254 56.10022 7 0.030015 0.817049 2.247444 16.21937 9.666910 2.549123 8.241789 3.912241 56.31002 8 0.031777 0.729257 2.271171 16.17170 9.723681 2.447518 8.372224 3.813533 56.47091 9 0.033465 0.657564 2.293690 16.16105 9.734708 2.30995 8.531691 3.712738 56.52757 10 0.035044 0.599559 2.324268 16.11520 9.746033 2.334426 8.663040 3.636202 56.5117	3	0.021612	1.525658	1.783044	16.62760	9.463410	3.387667	7.522152	4.543595	55.14688
6 0.028192 0.925812 2.150120 16.33052 9.729358 2.660343 8.053374 4.050254 56.1002 7 0.030015 0.817049 2.247444 16.21937 9.686910 2.549123 8.241789 3.919291 56.31902 8 0.031777 0.729257 2.2711171 16.17170 9.723681 2.447518 8.372224 3.813533 56.47091 9 0.033645 0.657564 2.293690 16.16105 9.734708 2.380995 8.531691 3.712738 56.52757 10 0.035044 0.599659 2.324268 16.11520 9.746033 2.334426 8.663040 3.636202 56.58177										
7 0.030015 0.817049 2.247444 16.21937 9.666910 2.549123 8.241789 3.919291 56.31902 8 0.031777 0.729257 2.21171 16.17170 9.726861 2.447518 8.372224 3.813533 56.47091 9 0.033465 0.657564 2.293690 16.16105 9.734708 2.380995 8.531691 3.712738 56.52757 10 0.035044 0.599659 2.324268 16.11520 9.746033 2.334426 8.663040 3.636202 56.58117	6	0.028192	0.925812	2.150120	16.33052	9.729358	2.660343	8.053374	4.050254	56.10022
9 0.033465 0.657564 2.293690 16.16105 9.734708 2.380995 8.531691 3.712738 56.52757 10 0.035044 0.599659 2.324268 16.11520 9.746033 2.334426 8.663040 3.636202 56.58117	7	0.030015	0.817049	2.247444	16.21937	9.686910	2.549123	8.241789	3.919291	56.31902
10 0.035044 0.599659 2.324268 16.11520 9.746033 2.334426 8.663040 3.636202 56.58117										56.52757
										56.58117
nolesky One S.D. (d.f. adjusted) nolesky ordering: GDP(-1) PIT TOGS PT DEBT GGCE GFCF HSCONS						SCONS				

Table 32: Variance Decomposition

Taxation, Government Spending, Debt and Growth

VAR Model 3 Estimation

Vector Autoregression Estimates

Sample (adjusted): 1976 2018 Included observations: 43 after adjustments Standard errors in () & t-statistics in []

	GDP(-1)	D(GGCE)	D(DEBT)	D(TAXRATE)
GDP(-2)	0.577066	0.077252	-0.372270	-0.068625
	(0.09197)	(0.03628)	(0.35009)	(0.05203)
	[6.27464]	[2.12924]	[-1.06335]	[-1.31901]
D(GGCE(-1))	-0.877789	-0.325420	1.046822	0.233637
	(0.39456)	(0.15565)	(1.50196)	(0.22321)
	[-2.22473]	[-2.09067]	[0.69697]	[1.04671]
D(DEBT(-1))	-0.196974	0.000434	0.026379	0.018601
	(0.04270)	(0.01684)	(0.16253)	(0.02415)
	[-4.61350]	[0.02577]	[0.16231]	[0.77010]
D(TAXRATE(-1))	-0.772671	-0.108339	-0.488362	-0.120719
	(0.27909)	(0.11010)	(1.06239)	(0.15789)
	[-2.76856]	[-0.98401]	[-0.45968]	[-0.76460]
с	0.019481	0.000950	0.044548	0.005566
	(0.00406)	(0.00160)	(0.01546)	(0.00230)
	[4.79690]	[0.59289]	[2.88156]	[2.42271]
R-squared	0.717850	0.196821	0.038523	0.087705
Adj. R-squared	0.688149	0.112276	-0.062685	-0.008326
Sum sq. resids	0.015041	0.002341	0.217951	0.004814
S.E. equation	0.019895	0.007849	0.075733	0.011255
F-statistic	24.16998	2.328001	0.380633	0.913300
Log likelihood	110.0868	150.0827	52.60639	134.5820
Akaike AlC	-4.887757	-6.748032	-2.214251	-6.027071
Schwarz SC	-4.682967	-6.543241	-2.009460	-5.822280
Mean dependent	0.015842	0.001147	0.039016	0.004951
S.D. dependent	0.035626	0.008330	0.073466	0.011208
Determinant resid covaria Determinant resid covaria Log likelihood Akaike information criterio Schwarz criterion Number of coefficients	1.51E-14 9.21E-15 450.7921 -20.03684 -19.21768 20			

Diagnostics Tests of VAR Model 3

Roots of Characteristic Polynomial Endogenous variables: GDP(-1) D(GGCE) D(DEBT) D(TAXRATE) Exogenous variables: C Lag specification: 1 1

Root	Modulus
0.634909	0.634909
-0.311810	0.311810
-0.082897 - 0.073161i	0.110564
-0.082897 + 0.073161i	0.110564

No root lies outside the unit circle. VAR satisfies the stability condition.

Model 3 VAR Roots of characteristic polynomial

VAR Lag Order Selection Criteria Endogenous variables: GDP(-1) D(GGCE) D(DEBT) D(TAXRATE) Exogenous variables: C

Sample: 1974 2018 Included observations: 41

Lag	LogL	LR	FPE	AIC	SC	HQ
0	397.2061	NA	5.50e-14	-19.18078	-19.01361	-19.11991
1	432.9653	62.79675*	2.11e-14*	-20.14465*	-19.30876*	-19.84027*
2	440.1526	11.21924	3.32e-14	-19.71476	-18.21016	-19.16687
3	450.9554	14.75492	4.54e-14	-19.46124	-17.28793	-18.66984

* indicates lag order selected by the criterion

LR: sequential modified LR test statistic (each test at 5% level)

FPE: Final prediction error

AIC: Akaike information criterion

SC: Schwarz information criterion

HQ: Hannan-Quinn information criterion

Model 3 VAR Lag Order Criteria

VAR Residual Portmanteau Tests for Autocorrelations Null Hypothesis: No residual autocorrelations up to lag h

Sample: 1974 2018 Included observations: 43

Lags	Q-Stat	Prob.*	Adj Q-Stat	Prob.*	df
1	2.856603		2.924617	0.6899	
2	12.23855	0.7274	12.76422		16

*Test is valid only for lags larger than the VAR lag order. df is degrees of freedom for (approximate) chi-square distribution VAR Residual Serial Correlation LM Tests

•	Sample: 1974 2018 Included observations: 43								
Null hypothesis: No serial correlation at lag h									
Lag	LRE* stat	df	Prob.	Rao F-stat	df	Prob.			
1 2	18.40565 9.106932	16 16	0.3007 0.9089	1.174084 0.554561	(16, 95.3) (16, 95.3)	0.3028 0.9095			

Null hypothesis: No serial correlation at lags 1 to h

Lag	LRE* stat	df	Prob.	Rao F-stat	df	Prob.
1 2	18.40565 27.18634				(16, 95.3) (32, 101.2)	

*Edgeworth expansion corrected likelihood ratio statistic.

Model 3 VAR Autocorrelation test

VAR Residual Normality Tests Orthogonalization: Cholesky (Lutkepohl) Null Hypothesis: Residuals are multivariate normal

Sample: 1974 2018 Included observations: 43

Component	Skewness	Chi-sq	df	Prob.*
1 2 3 4	0.487822 0.197669 0.317266 -0.370090	1.705452 0.280025 0.721379 0.981592	1 1 1 1	0.1916 0.5967 0.3957 0.3218
Joint		3.688447	4	0.4498
Component	Kurtosis	Chi-sq	df	Prob.
1 2 3 4	3.867958 5.601857 6.656152 2.715599	1.349755 12.12898 23.95001 0.144917	1 1 1 1	0.2453 0.0005 0.0000 0.7034
Joint		37.57365	4	0.0000
Component	Jarque-Bera	df	Prob.	
1 2 3 4	3.055207 12.40900 24.67139 1.126508	2 2 2 2	0.2171 0.0020 0.0000 0.5694	
Joint	41.26210	8	0.0000	

*Approximate p-values do not account for coefficient estimation

Model 3 VAR Normality test

VAR Residual Heteroskedasticity Tests (Levels and Squares)

Sample: 1974 2018 Included observations: 43

Joint test:

Chi-sq	df	Prob.
95.32792	80	0.1162

Individual components:

Dependent	R-squared	F(8,34)	Prob.	Chi-sq(8)	Prob.
res1*res1	0.271266	1.582032	0.1669	11.66444	0.1668
res2*res2	0.109231	0.521158	0.8321	4.696927	0.7894
res3*res3	0.505742	4.348744	0.0011	21.74690	0.0054
res4*res4	0.027438	0.119901	0.9981	1.179827	0.9968
res2*res1	0.173394	0.891507	0.5341	7.455943	0.4883
res3*res1	0.281328	1.663682	0.1436	12.09709	0.1469
res3*res2	0.210071	1.130229	0.3687	9.033042	0.3395
res4*res1	0.183578	0.955639	0.4858	7.893840	0.4439
res4*res2	0.011065	0.047554	0.9999	0.475814	0.9999
res4*res3	0.125995	0.612672	0.7609	5.417781	0.7121

Table 38: Model 3 VAR Heteroskedasticity test

Granger Causality Tests

VAR Granger Causality/Block Exogeneity Wald Tests Date: 11/17/22 Time: 14:01 Sample: 1974 2018 Included observations: 43

Dependent variable: GDP(-1) Excluded Chi-sq df Prob. 4.949425 D(GGCE) 1 0.0261 D(DEBT) 21.28441 0.0000 1 D(TAXRATE) 7.664945 0.0056 1 37.67430 0.0000 All 3

Dependent variable: D(GGCE)

Excluded	Chi-sq	df	Prob.
GDP(-1) D(DEBT) D(TAXRATE)	4.533668 0.000664 0.968267	1 1 1	0.0332 0.9794 0.3251
All	6.664888	3	0.0834

Dependent variable: D(DEBT)

Excluded	Chi-sq	df	Prob.
GDP(-1) D(GGCE) D(TAXRATE)	1.130713 0.485770 0.211308	1 1 1	0.2876 0.4858 0.6457
All	1.342247	3	0.7191

Dependent variable: D(TAXRATE)

Excluded	Chi-sq	df	Prob.
GDP(-1) D(GGCE) D(DEBT)	1.739775 1.095605 0.593058	1 1 1	0.1872 0.2952 0.4412
All	3.444811	3	0.3280

Table 39: Model 3 VAR Granger Causality/Block Exogeneity Tests

Systems Equations

System: UNTITLED Estimation Method: Least Squares

Sample: 1976 2018 Included observations: 43 Total system (balanced) observations 172

	Coefficient	Std. Error	t-Statistic	Prob.
C(1)	0.577066	0.091968	6.274643	0.0000
C(2)	-0.877789	0.394560	-2.224730	0.0276
C(3)	-0.196974	0.042695	-4.613503	0.0000
C(4)	-0.772671	0.279087	-2.768564	0.0063
C(5)	0.019481	0.004061	4.796900	0.0000
C(6)	0.077252	0.036281	2.129241	0.0348
C(7)	-0.325420	0.155654	-2.090669	0.0382
C(8)	0.000434	0.016843	0.025768	0.9795
C(9)	-0.108339	0.110100	-0.984006	0.3267
C(10)	0.000950	0.001602	0.592891	0.5541
C(11)	-0.372270	0.350091	-1.063350	0.2893
C(12)	1.046822	1.501957	0.696972	0.4869
C(13)	0.026379	0.162526	0.162307	0.8713
C(14)	-0.488362	1.062392	-0.459682	0.6464
C(15)	0.044548	0.015460	2.881556	0.0045
C(16)	-0.068625	0.052028	-1.319005	0.1892
C(17)	0.233637	0.223210	1.046711	0.2969
C(18)	0.018601	0.024153	0.770102	0.4424
C(19)	-0.120719	0.157885	-0.764599	0.4457
C(20)	0.005566	0.002298	2.422714	0.0166
Determinant residual of	covariance	9.21E-15		

Equation: GDP(-1) = $C(1)^*GDP(-2) + C(2)^*D(GGCE(-1)) + C(3)$ *D(DEBT(-1)) + $C(4)^*D(TAXRATE(-1)) + C(5)$

Observations: 43		i	
R-squared	0.717850	Mean dependent var	0.015842
Adjusted R-squared	0.688149	S.D. dependent var	0.035626
S.E. of regression	0.019895	Sum squared resid	0.015041
Durbin-Watson stat	1.648024		

Equation: D(GGCE) = C(6)*GDP(-2) + C(7)*D(GGCE(-1)) + C(8) *D(DEBT(-1)) + C(9)*D(TAXRATE(-1)) + C(10)

Observations: 43			_
R-squared	0.196821	Mean dependent var	0.001147
Adjusted R-squared	0.112276	S.D. dependent var	0.008330
S.E. of regression	0.007849	Sum squared resid	0.002341
Durbin-Watson stat	1.921933		

Equation: D(DEBT) = C(11)*GDP(-2) + C(12)*D(GGCE(-1)) + C(13) *D(DEBT(-1)) + C(14)*D(TAXRATE(-1)) + C(15) Observations: 43

R-squared	0.038523	Mean dependent var	0.039016
Adjusted R-squared	-0.062685	S.D. dependent var	0.073466
S.E. of regression	0.075733	Sum squared resid	0.217951
Durbin-Watson stat	2.062378		

Equation: D(TAXRATE) = C(16)*GDP(-2) + C(17)*D(GGCE(-1)) + C(18) *D(DEBT(-1)) + C(19)*D(TAXRATE(-1)) + C(20)

Observations: 43			
R-squared	0.087705	Mean dependent var	0.004951
Adjusted R-squared	-0.008326	S.D. dependent var	0.011208
S.E. of regression	0.011255	Sum squared resid	0.004814
Durbin-Watson stat	2.102916		

Table 40: Model 3 VAR System Equation

System Residual Portmanteau Tests for Autocorrelations Null Hypothesis: no residual autocorrelations up to lag h

Sample: 1976 2018
Included observations: 43

Lags	Q-Stat	Prob.	Adj Q-Stat	Prob.	df
1	2.856603	0.9999	2.924617	0.9999	16
2	12.23855	0.9994	12.76422	0.9990	32
3	29.92294	0.9810	31.77494	0.9657	48
4	45.03182	0.9655	48.43345	0.9260	64
5	63.42444	0.9131	69.24615	0.7990	80
6	71.53446	0.9709	78.67130	0.9008	96
7	91.89514	0.9174	102.9910	0.7170	112
8	99.57417	0.9703	112.4252	0.8349	128
9	110.6093	0.9823	126.3815	0.8518	144
10	118.0158	0.9947	136.0323	0.9155	160
11	129.8067	0.9963	151.8764	0.9055	176
12	140.1921	0.9981	166.2819	0.9101	192

*The test is valid only for lags larger than the System lag order.

df is degrees of freedom for (approximate) chi-square distribution

*df and Prob. may not be valid for models with lagged endogenous...

Table 41: Model 3 VAR System Residual Portmanteau Tests for Autocorrelations

System Residual Normality Tests Orthogonalization: Cholesky (Lutkepohl) Null Hypothesis: residuals are multivariate normal Date: 11/17/22 Time: 14:06 Sample: 1976 2018 Included observations: 43

Component	Skewness	Chi-sq	df	Prob.
1 2 3 4	0.487822 0.197669 0.317266 -0.370090	1.705452 0.280025 0.721379 0.981592	1 1 1 1	0.1916 0.5967 0.3957 0.3218
Joint		3.688447	4	0.4498
Component	Kurtosis	Chi-sq	df	Prob.
1 2 3 4	3.867958 5.601857 6.656152 2.715599	1.349755 12.12898 23.95001 0.144917	1 1 1 1	0.2453 0.0005 0.0000 0.7034
Joint		37.57365	4	0.0000
Component	Jarque-Bera	df	Prob.	
1 2 3 4	3.055207 12.40900 24.67139 1.126508	2 2 2 2	0.2171 0.0020 0.0000 0.5694	
Joint	41.26210	8	0.0000	

Table 42: Model 3 VAR System Residual Normality Tests.

System: {%system}	Wald Test:	
	System: {%system}	

Test Statistic	Value	df	Probability
Chi-square	123.9443	5	0.0000

Null Hypothesis: C(1)=C(2)=C(3)=C(4)=C(5)=0 Null Hypothesis Summary:

Normalized Restriction (= 0)	Value	Std. Err.
C(1)	0.577066	0.091968
C(2)	-0.877789	0.394560
C(3)	-0.196974	0.042695
C(4)	-0.772671	0.279087
C(5)	0.019481	0.004061

Restrictions are linear in coefficients.

Table 43: Model 3 VAR Wald Tests

VECM and Cointegration

Sample (adjusted): 1976 2018 Included observations: 43 after adjustments Trend assumption: Linear deterministic trend Series: GDP GGCE DEBT TAXRATE Lags interval (in first differences): 1 to 1

Unrestricted Cointegration Rank Test (Trace)

Hypothesized No. of CE(s)	Eigenvalue	Trace Statistic	0.05 Critical Value	Prob.**
None *	0.576712	64.22150	47.85613	0.0007
At most 1	0.328399	27.25429	29.79707	0.0956
At most 2	0.196647	10.13636	15.49471	0.2704
At most 3	0.016629	0.721059	3.841465	0.3958

Trace test indicates 1 cointegrating eqn(s) at the 0.05 level

* denotes rejection of the hypothesis at the 0.05 level

**MacKinnon-Haug-Michelis (1999) p-values

Unrestricted Cointegration Rank Test (Maximum Eigenvalue)

Hypothesized No. of CE(s)	Eigenvalue	Max-Eigen Statistic	0.05 Critical Value	Prob.**
None *	0.576712	36.96721	27.58434	0.0023
At most 1	0.328399	17.11793	21.13162	0.1665
At most 2	0.196647	9.415301	14.26460	0.2532
At most 3	0.016629	0.721059	3.841465	0.3958

Max-eigenvalue test indicates 1 cointegrating eqn(s) at the 0.05 level

* denotes rejection of the hypothesis at the 0.05 level

**MacKinnon-Haug-Michelis (1999) p-values

Table 44: Model 3 VAR Cointegration Tests

Vector Error Correction Estimates

Sample (adjusted): 1977 2018	
Included observations: 42 after adjustments	
Standard errors in () & t-statistics in []	

Standard errors in () & t	-statistics in []			
Cointegrating Eq:	CointEq1			;
GDP(-2)	1.000000			
GGCE(-1)	0.893718 (0.32351) [2.76258]			
DEBT(-1)	0.084016 (0.02579) [3.25823]			
TAXRATE(-1)	-0.853110 (0.25985) [-3.28307]			
С	-0.014257			
Error Correction:	D(GDP(-1))	D(GGCE)	D(DEBT)	D(TAXRATE)
CointEq1	-0.660353 (0.11628) [-5.67892]	0.077415 (0.06293) [1.23020]	0.067799 (0.58270) [0.11635]	-0.010168 (0.08776) [-0.11586]
D(GDP(-2))	0.140172 (0.09135) [1.53440]	-0.002920 (0.04944) [-0.05907]	-0.582629 (0.45778) [-1.27273]	0.038208 (0.06895) [0.55416]
D(GGCE(-1))	-0.468687 (0.33063) [-1.41755]	-0.334675 (0.17893) [-1.87042]	0.488869 (1.65684) [0.29506]	0.159319 (0.24954) [0.63846]
D(DEBT(-1))	-0.099316 (0.03307) [-3.00333]	-0.011676 (0.01790) [-0.65246]	0.014757 (0.16571) [0.08905]	0.033728 (0.02496) [1.35140]
D(TAXRATE(-1))	-0.995446 (0.22616) [-4.40149]	-0.098566 (0.12239) [-0.80532]	-0.156663 (1.13332) [-0.13823]	-0.100987 (0.17069) [-0.59164]
С	0.008070 (0.00286) [2.81796]	0.002622 (0.00155) [1.69202]	0.040085 (0.01435) [2.79335]	0.003644 (0.00216) [1.68597]
R-squared Adj. R-squared Sum sq. resids S.E. equation F-statistic Log likelihood Akaike AIC Schwarz SC Mean dependent S.D. dependent	0.694411 0.651968 0.008428 0.015301 16.36106 119.1949 -5.390233 -5.141995 -0.001136 0.025936	0.148362 0.030079 0.002468 0.008281 1.254296 144.9832 -6.618247 -6.370009 0.001240 0.008408	0.057475 -0.073431 0.211647 0.076675 0.439058 51.50521 -2.166915 -1.918676 0.040102 0.074006	0.067222 -0.062331 0.004801 0.011548 0.518874 131.0138 -5.953038 -5.704800 0.004683 0.011204
Determinant resid covariance (dof adj.) Determinant resid covariance Log likelihood Akaike information criterion Schwarz criterion Number of coefficients		1.14E-14 6.16E-15 448.7633 -20.03635 -18.87790 28		

Variance De	composition	of GDP(-1):				
Period	S.E.	GDP(-1)	GGCE	DEBT	TAXRATE	
1	0.015301	100.0000	0.000000	0.000000	0.000000	
2	0.024022	55.30322	15.28498	25.32801	4.083784	
3	0.028163	43.05954	17.20349	30.97150	8.765467	
4	0.031155	35.55493	16.28493	27.76845	20.39168	
5	0.033917	30.04389	14.95041	24.06742	30.93829	
6	0.036405	26.11406	13.77145	21.13785	38.97663	
7	0.038576	23.32009	12.97128	19.03590	44.67272	
8	0.040548	21.19367	12.42758	17.47665	48.90211	
9	0.042403	19.47377	12.02522	16.25072	52.25030	
10	0.044181	18.02852	11.70163	15.23877	55.03109	
Varianaa Da	oomposition (of CCCE.				
Period	composition S.E.	GDP(-1)	GGCE	DEBT	TAXRATE	
	0.L.		000L	DEDI		
1	0.008281	0.073436	99.92656	0.000000	0.000000	
2	0.010329	0.585448	95.90683	0.301911	3.205807	
3	0.012292	1.190615	91.78200	1.327382	5.700003	
4	0.013938	1.685051	88.48992	2.309647	7.515379	
5	0.015403	1.969888	86.37621	3.071933	8.581968	
6	0.016725	2.133154	85.09126	3.579615	9.195977	
7	0.017945	2.231974	84.27258	3.913985	9.581461	
8	0.019085	2.300474	83.69564	4.148010	9.855874	
9	0.020161	2.353922	83.24950	4.325054	10.07152	
10	0.021183	2.398368	82.88335	4.467822	10.25046	
Period	composition S.E.	GDEBT.	GGCE	DEBT	TAXRATE	
Fellou	3.E.	GDF(-1)	GGCE	DEBT		
1	0.076675	4.168113	0.004487	95.82740	0.000000	
2	0.111008	6.805475	0.111646	93.03575	0.047127	
3	0.139744	6.338527	0.351891	93.26976	0.039824	
4	0.162397	5.772643	0.400309	93.51787	0.309182	
5	0.180774	5.353847	0.383864	93.60574	0.656552	
6	0.196881	5.049013	0.362408	93.65082	0.937759	
7	0.211586	4.837843	0.342821	93.67660	1.142733	
8	0.225334	4.687853	0.328133	93.70127	1.282741	
9	0.238344	4.575149	0.317493	93.72485	1.382505	
10	0.250716	4.485885	0.309487	93.74547	1.459154	
Variance Decomposition of TAXRATE:						
Period		GDP(-1)	GGCE	DEBT	TAXRATE	
	0.L.	GDI (-1)	GGCL	DEDI		
1	0.011548	2.461348	2.003691	0.889690	94.64527	
2	0.016092	2.165807	3.868649	5.070675	88.89487	
3	0.019242	1.852403	3.846089	5.666418	88.63509	
4	0.022240	1.656917	4.045903	6.178253	88.11893	
5	0.024829	1.548980	4.162985	6.592092	87.69594	
6	0.027153	1.483566	4.237036	6.838691	87.44071	
7	0.029289	1.442024	4.290973	7.011254	87.25575	
8	0.031273	1.412411	4.329562	7.136280	87.12175	
9	0.033138	1.389390	4.358855	7.231011	87.02074	
10	0.034905	1.370646	4.382270	7.306863	86.94022	
	e S.D. (d.f. a	diu atad)				

Cholesky One S.D. (d.f. adjusted) Cholesky ordering: GDP(-1) GGCE DEBT TAXRATE