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Abstract

Renewable energy production plays a crucial role in the energy transition. However, many

renewable energy sources (RES) are intermittent, and there is often a mismatch between energy

production and consumption, which can be partially solved by storage.

In this paper, we investigate the investment decision in a photovoltaic (PV) power plant coupled

with a Battery Energy Storage System (BESS), namely an Energy Storage System (ESS). We

aim to investigate the relationship between the net present value (NPV) of the investment

and the technical implications related to the maximum amount of energy to be stored while

also accounting for the impact of energy prices. In our setting, the BESS is connected to the

national power grid and the PV plant. Energy can be produced, purchased from the grid, stored,

self-consumed, and fed into the grid. PV production and energy consumption loads evolve

stochastically over time. In addition, as BESS are costly, energy stored has an opportunity cost,

which depends on the prices of energy purchased from the grid and energy fed in and sold to

the grid, respectively. However, BESS can significantly contribute to increase ESS managerial

flexibility and, in turn, ESS value. In detail, we investigate the optimal BESS size that minimizes

ESS net operating costs. We also provide insights on ESS optimal management strategy. Our

results show that ESS net operating costs are relatively small. They reduce for increasing selling

prices of energy, whereas they increase for increasing volatility of the stock of energy stored in

the battery.
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1 Introduction

Incorporating renewable energy sources (RES) in the power sector poses significant challenges to

the creation of decarbonised energy infrastructures, which can support a sustainable and green

future economic growth.

One of the key issues to be addressed, particularly for wind, water, and solar energy, is their in-

termittency (Delucchi and Jacobson, 2011; Ambec and Crampes, 2019), which is intrinsic to their

nature but also exacerbated by the effects of climate change (Ravestein et al., 2018; Yin et al.,

2020). However, these energy sources, and associated generation technologies, are at the forefront

of the policies that governments are developing and adopting to meet the climate change targets

to which they have committed.

The uncertainty associated with these sources has a major impact on the mismatch between RES

energy production and end-user demand, which, in turn, is among the main critical obstacles to

the widespread adoption of renewable energy technologies. In this context, Battery Energy Storage

Systems (BESS) can represent a valuable technological solution to accelerate the penetration of

RES energy production.

When approaching the concept of BESS, several facets emerge, ranging from those related to its

physical nature to those involving engineering aspects such as operation, integration, or manage-

ment. This interdisciplinary context also includes the economic domain. Since the adoption of

BESS requires significant upfront investments and their coupling with RES generation technologies

interacts with the traditional energy system, BESS challenge policy makers and energy managers

in terms of technical and economic optimization, which is highly influenced by market forces such

as energy prices, subsidies, and/or public policies.

Within this complex framework, the aim of this work is twofold. First, we investigate the decision to

invest in an RES production plant coupled with a BESS, namely an Energy Storage System (ESS),

and connected to the power grid. In our setting, indeed, energy can be produced, self-consumed,

stored, and sold to the power grid. Second, we determine the optimal size of the BESS, that is, the

size of the battery which minimizes the ESS net operating costs. In our modelling, we take into

account the technical limits of the battery, in the form of a minimum amount of energy required

for its operation, and we also consider the impact of energy prices and market conditions on the

decision to invest. Unlike other contributions in the literature (see Section 2), we determine the

optimal BESS size, considering the uncertainty on both PV production and end-user demand and
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the uncertainty over the buying price of energy, as well as the opportunity cost of energy stored in

the BESS.

The reference for our theoretical framework is the theory of reflected stochastic processes (Harrison

and Taksar, 1983; Harrison, 1985; Dixit, 1993). Specifically, we rely to models that aim to optimize

some measure of a system’s performance, in particular by exercising a dynamic control capabil-

ity (Harrison and Taksar, 1983). A complete formal discussion in the context of these models is

developed in Stokey (2008). To test the theoretical results of the model, we provide a numerical

application and illustrate relevant implications on the Net Present Value (NPV) of the investment

in an ESS. We also provide insights on ESS optimal management strategy. Our results show that

the net operating costs of the ESS are low compared to the NPV of the ESS and do not affect the

NPV, which is highly negative due to the high investment costs. Consequently, the operation of

the BESS is of limited cost and does not affect the decision to invest. To favour investments, either

policy incentives are needed or investment cost should reduce significantly over time.

The remainder of the paper is organized as follows. In Section 2 we provide an overview of the

most relevant literature in the area of our work; Section 3 presents the model framework; Section

4 illustrates the optimization model and provides analytical results; in Section 5 we discuss a nu-

merical application, drawing attention to the most relevant policy implications; finally Section 6

concludes.

2 Relevant literature

We analyse the decision to invest in an ESS from the perspective of investments under uncertainty

and the optimal investment size. We contribute to the strand of literature on the role of storage in

energy systems and specifically storage coupled with PV plants, and we complement the research

in the field of investment decisions in the power sector as well.

Within this general domain, Andreolli et al. (2022) provide a recent review of related literature to

our domain of investigation. The existing literature on energy storage is extensive and diverse, and

primarily deals with technical issues of battery size and management. Most of the contributions

focus on deterministic optimization models to identify different scenarios of optimal management

strategies of a BESS from a technical point of view. Although these models are well detailed in

technical parameters, such as irradiation, state of charge (SOC) and discharge (SOD) of the battery,

etc., they are more parsimonious in terms of economic characterization of the problem addressed,
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which is mainly related to the investment profitability.

The economics of energy storage and the profitability of related investments are currently attracting

increasing attention. Among recent contributions, Moon (2014), Bortolini et al. (2014), Locatelli

et al. (2016), Ma et al. (2020), Kappner et al. (2019), Hassi et al. (2022), Andreolli et al. (2022)

and Karaduman (2023) deserve a mention in relation to our present work.

Kappner et al. (2019) consider the investment profitability under a Total-Cost-of-Ownership per-

spective and show that although storage increases household self-sufficiency, it is not profitable

regardless of the governments subsidies in Germany. Moon (2014) model the optimal investment

timing for energy storage systems at the utility scale when uncertainty affects future payoffs gener-

ated from arbitrage in selling during peak time energy stored during off-peak times and unconsumed.

Locatelli et al. (2016) focuses as well on the option of waiting to invest under arbitrage price con-

ditions during different investment phases, which ranges from the design phase to the construction

phase. In the same line, Ma et al. (2020) investigate investment in residential PV-battery systems

devoted to providing additional grid supply during peak demand periods and consider the options

to defer and to expand as multi-stage compound options. Analogously,Hassi et al. (2022) inves-

tigate the value generated by the option to defer and further expand investments in residential

PV plants coupled with battery storage. Unlike the previous, Karaduman (2023) is more policy-

oriented and analyses incentives in investing and operating grid-scale energy storage in electricity

markets in Australia by modelling the electricity market as a multi-unit uniform price auction and

determining the storage operators optimal bidding strategy by accounting for storage-induced price

effects explicitly.

The works mentioned are certainly of interest to us in terms of their approach to value and prob-

lem setting. Nonetheless, the closest to ours are Bortolini et al. (2014) and Andreolli et al. (2022).

The first provides a model for designing a PV power plant coupled with battery storage (PV-BES

system) and connected to the national grid as a backup source to satisfy the electricity demand.

The objective is to determine the size of the energy storage system (i.e., the PV system rated power

and the battery capacity) that minimizes the Levelized Cost of Electricity (LCOE) according to

technical and climate parameters that affect PV module and battery efficiency. Indeed, their model

grounds in a power-flow control algorithm targeted to meet load profile with the PV-BES system.

Differently, Andreolli et al. (2022) who consider as well a simultaneous investment in a PV plant

coupled with battery storage (PVB), adopt a stochastic dynamic perspective and implement a real

option approach to determine the optimal PVB size. Their objective is to determine the PVB size

4



that maximizes energy cost savings by increasing self-consumption and minimizing grid-purchased

energy.

Although Bortolini et al. (2014) and Andreolli et al. (2022) inspired our work and we depart from

them to consider the decision to invest in an ESS, which enables the possibility to produce and

self-consume PV energy, store PV energy production, buy energy from the grid, and sell energy

to the grid. In detail, differently from previous contributions in the literature, we introduce and

incorporate in the modelling different sources of uncertainty: the uncertainty on PV production

and load (i.e., households demand) and the uncertainty over the buying price of energy. The former

raises an issue in terms of purchase versus sale of energy based on load and production, whereas

the latter provides the economic rationale for the investment decision, as it affects the investment

profitability and drives the ESS optimal operating strategy. Consequently, the novelty of our paper

resides in that we consider storage operating costs and the opportunity cost of energy stored in

the battery to determine the ESS optimal operating strategy, and we develop a dynamic stochastic

optimization model to determine the optimal size of the BESS and the buying price of energy that

triggers the investment. It is worth mentioning that in our setting the opportunity cost of energy

stored and the selling price of energy are expressed in percentage of the buying price.

3 The Model

We consider the investment in an ESS that has to be undertaken by an investor (regardless of

whether they are the owner of the energy system, a household or an energy manager). The ESS

can be stylized according to the following scheme. On the one side, there is power production whose

profile is random, i.e., not under the investor’s control. For the sake of simplicity, we consider a

photovoltaic production plant (PV), hereafter. On the other side, there is an energy demand that

needs to be satisfied, which is random as well. This setting mimics a situation in which households,

in their consumption pattern, simply consider their energy needs, without optimizing their own

consumption profiles. Alternatively, our setting can represent an Energy Community (EC), in

which several end-users are connected to an ESS and power is generated by a single or multiple

producers whose production profiles are similar and can be considered as a single production unit.

Energy flows from the PV to the users through the BESS and the investor’s problem at t = 0 is to

minimize the expected discounted value of the net operating costs of the ESS (which includes the

opportunity cost of storing energy in it), subject to the constraint that demand is always satisfied.
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Following Harrison and Taksar (1983)1 we model the investor’s problem as follows. Let At denote

the total energy produced by PV in the interval [0, t]. We model it as a Brownian motion:

At = EP
t t+ σAWA

t , (1)

where EP
t is production per unit of time, σA is the instantaneous volatility of production, and

WA
t ∼ N (0, t). Similarly to (1), let Bt denote energy demand in the same interval [0, t]. Analogously

to the energy production, we assume that Bt is stochastic and we model it as follows:

Bt = DC
t t+ σBWB

t , (2)

where DC
t denotes energy demand (daily, monthly, annual, etc.), σB is the instantaneous volatil-

ity of demand, and WA
t ∼ N (0, t). Furthermore, for the sake of simplicity, we assume that

cov
(
WB

t ,WA
t

)
= 0 and both EP

t = EP and DC
t = DC are constant over time. The difference

between energy inflows and outflows, Xt ≡ At − Bt, evolves according to a Brownian motion as

well. However, the investor has to account for two constraints on storage capacity. There is a

minimum amount of energy that has to be always present in the BESS to maintain it within the

predetermined operational boundaries. We define it as Z and it depends on the technology of the

battery2 There is also a limit on the maximum amount of energy that can be stored in the BESS,

termed Z̄. This boundary is an operational parameter that depends on the investor’s decision.

In other words, Z̄ is chosen by the investor. The system is also connected to a power grid, which

operates as a backup source. The grid is used to inject energy into the BESS, whenever PV produc-

tion, given the energy demand, is not sufficient to keep the BESS within its technical boundaries,

i.e. above Z. Similarly, the power grid receives excess energy that cannot be stored whenever the

energy generated, given the energy demand, reaches Z̄. Thus, denoting by Lt and Ut the total

controls that the investor has adopted at Z and Z̄, respectively, in the interval [0, t], the stock of

energy stored in the BESS at time t can be described by the following stochastic process:3

Zt = (nS) t+ σWZ
t + Lt − Ut, (3)

1See Stokey (2008) Chapter. 10, for an exhaustive discussion of this methodology
2For the sake of simplicity in our approach, we neglect all battery decays, see for example Bortolini et al. (2014).
3Analytically, Lt measures the amount of energy consumption imported from the grid up to time t to maintain

the storage at its minimum level Z. Conversely, Ut measures the amount of energy fed into the grid up to time t in
excess of the maximum storage capacity Z̄. Both Lt and Ut are continuous processes with L0 = U0 = 0, and they
increase in t only when Zt = Z and Zt = Z̄ respectively (Stokey (2008), Ch. 10).
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where Z0 ≥ 0 and nS = EP − DC ≥ 0 indicates the average net-supply. In addition WZ
t =

WA
t − WA

t ∼ N (0, t) and σ =

√
(σA)2 + (σB)2. By the continuous-time representation, we can

write (3) as a stochastic differential equation:

dZt = (nS)dt+ σdWZ
t + dLt − dUt. (4)

Disregarding the stochastic terms, a discrete time representation of (4) is the following:4

Zt = Zt−1 + (At −At−1)︸ ︷︷ ︸
EP

t

− (Bt −Bt−1)︸ ︷︷ ︸
DC

t

+max[Lt − Lt−1, 0]︸ ︷︷ ︸
EIN

t

−max [Ut − Ut−1, 0]︸ ︷︷ ︸
EOUT

t

, (5)

where EIN
t is the energy purchased from the grid in the interval (t, t− 1) and EOUT

t is the energy

fed into the grid in the interval (t, t− 1). Consequently, the ESS can be schematized as in Figure

1. Clearly, the energy flowing in the ESS has a value, which depends on the costs paid for buying

Figure 1: ESS and energy flow schematization.

energy from the power grid, the revenues obtained from feeding and selling energy to the grid,

and the opportunity cost of the energy stored in the BESS, which indeed can derive from energy

self-produced or purchased from the grid and can be used to serve demand or be sold to the grid.

Energy is purchased from the grid if Zt < Z. We assume that the buying price of energy P b
t is

4This is the typical representation of the accumulation process of a BESS, see for example Bortolini et al. (2014)
and Alvaro-Hermana et al. (2019)
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driven by a Geometric Brownian Motion (GBM):

dP b
t = γP b

t dt+ σb
tPtdW

b
t with P b(0) = P b

0 , (6)

where dW b
t is the increment of a Wiener process, σb is the instantaneous volatility, and γ is the drift

term that is less than the market discount rate ρ, i.e. γ ≤ ρ.5 We also assume that cov
(
W b

t ,W
A
t

)
=

cov
(
W b

t ,W
B
t

)
= 0. Energy is fed into the grid if Z ≥ Z̄. We set the selling price of energy P s

t as:

P s
t = (1 + k)P b

t , (7)

where k ∈ [−1, 0]. The parameter k captures the fact that the selling price of energy is generally

lower than the buying price. This is a common feature of those systems in which the buying price

includes tariff components such as grid transmission cost, constraints management costs, etc.6

Finally, it is worth noting that the value of the energy stored in the BESS corresponds to the

opportunity cost of keeping it in the BESS. BESS are used to hedge energy prices: usually they

are charged either directly from the power grid or from the PV (in this case the opportunity cost

is low accrues from not selling it to the grid) when energy prices are low, and discharged when

energy prices are high to feeding energy into the power grid or satisfying energy demand (which

otherwise should be served by purchasing power at a high cost). The daily operation of BESS

affects the average amount of energy that is stored and used to perform such an edging. In the

BESS literature, this average is referred to as the State of Charge (SOC) (Bortolini et al., 2014).

Thus, the opportunity cost of storage is the value of the SOC. To consider different cases, which

corresponds to different possible SOC and several possible timing of charging and discharging, we

frame it as a percentage of the selling price:

P z
t = κP s

t , (8)

where κ ∈ [0, 1].

5This assumption is necessary to guarantee convergence (Dixit and Pindyck, 1994).
6Another justification can refer, for instance, to the case of a buying price that corresponds to the Italian Unified

National Price (PUN) that is a weighted average of zonal selling prices. In this case, the buying price would refer to
a southern zone in which a high penetration of renewables would lower the price below the PUN
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4 Optimization

The investor’s problem is to choose the optimal size of the battery at t = 0, i.e. the size that

minimizes the expected discounted flow of the opportunity cost of holding the energy in it plus the

cost of buying energy net of the revenues obtained from selling excess energy to the power grid

over its lifetime, which we assume long enough to be reasonably approximated by an infinite time

horizon. Recalling that Z0 ≥ Z, we can define:

F (Z0) = E0

[∫ ∞

0
e−ρtP z

t Zt +

∫ ∞

0
e−ρtP b

t dLt −
∫ ∞

0
e−ρtP s

t dUt

]
(9)

= P b
0E0

[∫ ∞

0
e−rt[κ(1 + k)Zt + dLt − (1 + k)dUt

]
,

where r = ρ− γ > 0 is the risk-adjusted discount rate and E0 (.) is the expected value taken with

the information at time zero.7

Equation (9) must be minimized with respect to (4). The problem is determining the optimal

storage capacity Z̄ to keep the process Zt within the boundaries
[
Z, Z̄

]
while exerting the least

effort to do so, i.e. by satisfying energy demand and, at the same time, reducing the need for

purchasing energy from the grid. The solution is provided by the following proposition:

Proposition 1 Given the initial level of energy stored Z0 ≥ Z, the minimum net operating cost of

the ESS is:

F (Z0) =
P b
0

r

(
κ (1 + k) (Z0 − Z) +

(nS)

r

)
(10)

+P b
0

[
v(eη2(Z̄

∗−Z) − 1)− k

η1(eη1(Z̄
∗−Z) − eη2(Z̄∗−Z))

eη1(Z0−Z) +
k + v(1− eη1(Z̄

∗−Z))

η2(eη1(Z̄
∗−Z) − eη2(Z̄∗−Z))

eη2(Z0−Z)

]
,

where v = 1 + κ(1+k)
r > 0, η1 =

−nS+
√

(nS)2+2σ2r
σ > 0 and η2 =

−nS−
√

(nS)2+2σ2r

σ2 < 0.

Whereas, the optimal BESS size Z̄∗ − Z > 0 is given by the solution of:

v (η1 − η2) e
(η2+η1)(Z̄∗−Z) − (v + k)

(
η1e

η1(Z̄∗−Z) − η2e
η2(Z̄∗−Z)

)
= 0. (11)

Proof. See Appendix A

The first term on the right hand side of (10) denotes the opportunity cost of keeping the energy

stored if there were no controls given by BESS technical limits. The second term denotes the cost
7Note that 1− (1 + k) = −k > 0. Differently, the control problem would make no sense (Stokey, 2008)
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of buying energy from the grid when Zt is below Z
¯

net of the expected revenues obtained from

selling energy to the grid when Zt crosses Z̄∗.

It should be noted that
v
(
eη2(Z̄

∗−Z)−1
)
−k

η1(eη1(Z̄
∗−Z)−eη2(Z̄

∗−Z))
eη1(Z0−Z) < 0 shows the cost reduction obtained

by selling energy to the power grid when the energy in the battery exceeds Z̄∗. In contrast,
k+v

(
1−eη1(Z̄

∗−Z)
)

η2
(
eη1(Z̄

∗−Z)−eη2(Z̄
∗−Z)

)eη2(Z0−Z) > 0, captures the cost of buying energy from the grid on a regular

basis to satisfy the energy demand when the battery is discharged.

An interesting case is where Z0 = Z and nS = 0, and consequently, the energy produced is used to

satisfy the demand, that is, E0 [Xt] = 0.

Corollary 1 The minimum net operating cost of the ESS is given by:

F (Z) =
P b
0

(e

√
2r
σ2 (Z̄

∗−Z) − e
−
√

2r
σ2 (Z̄

∗−Z)
)

√
2σ2

r

[
−k (2v + k)

(k + v)

]
(12)

While, the optimal BESS size Z̄∗ − Z is given by the solution of:

e

√
2r
σ2 (Z̄

∗−Z)
+ e

−
√

2r
σ2 (Z̄

∗−Z) − 2
v

v + k
= 0 (13)

Proof. See Appendix A

We conclude by performing some comparative statics. Let us analyze the effect of k ∈ [−1, 0] on

the optimal size of the battery. From (11) it is easy to show that (See Appendix B):

∂Z̄∗

∂k
< 0. (14)

When the selling price of energy increases (i.e. k is high), the investor reduces the size of the BESS.

In other words, the optimal operating strategy is to sell energy to the grid and leave as little energy

as possible in storage. The cost related to the need of buying energy from the grid in the future is

more than offset by the benefits obtained by selling excess energy to the power grid. Conversely,

when the selling price of energy falls, it is not advantageous to feed energy into the power grid,

and, in turn, the value of the energy stored in the BESS increases because it allows for hedging

against the risk of having to buy energy from the grid. This circumstance provides an incentive for

the investor to increase the size of the BESS.
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The comparative statics with respect to σ gives (See Appendix B):

∂Z̄∗

∂σ
> 0. (15)

In other words, when the uncertainty on the evolution of Zt increases, the investor reduces the risk

of incurring high net operating costs in the future by increasing the size of the BESS.

5 Calibration and discussion

This section presents a numerical application to illustrate and discuss the model’s results. The

objective is to provide: i) the optimal maximum storage capacity level Z∗ − Z, ii) the optimal net

operating costs of the ESS F (Z), and iii) relevant implications on the Net Present Value (NPV)

of the ESS investment.

We assume the following technical parameters of the model: the annual volatility of the power gen-

eration σA is set at 0.18; the volatility of the load σB, is 0.08; the volatility of the energy stored in

the battery σ, is approximately 0.20, all at each time t. Furthermore, we assume that, in expected

terms, energy generation equals demand: nS = 0.

Regarding the economic dimension, we consider three main cases for k, namely {−0.20;−0.40;−0.50}

as in our setup the selling price of energy P s
t is always lower than the buying price P b

t . We derive

the initial value of the buying price P b
0 from the literature (Bonaldo et al., 2024), and we set it equal

to 59.21 Euros/MWh. As to the opportunity cost of the energy stored in the BESS, we consider

for κ four possible levels: {0.10; 0.15; 0.20; 0.25}. Finally, the annual risk-adjusted discount rate r

is assumed to be equal to 0.05. All parameters are summarized in Table 1.

Table 1: Calibration parameters

Parameter Value Description
σA 0.18 annual production instantaneous volatility; assumption
σB 0.08 annual load instantaneous volatility; assumption
σ 0.20 volatility of the stock of the energy stored in the BESS at time t;

computed as σ ∼=
√
σ2
A + σ2

B

k {−0.20;−0.40;−0.50} relation among the buying and selling prices of energy
κ {0.10; 0.15; 0.20; 0.25} relation among the opportunity of cost the energy stored in the

BESS and the selling price of energy
r 0.05 annual risk-adjusted discount rate; assumption
nS 0 net energy supply; assumption
P b
0 59.21 Euros/MWh buying price of energy, with σP b = 0.3737; (Bonaldo et al., 2024)

We refer to equation (13) to estimate the difference Z
∗ − Z, as we assume nS = 0. This allows
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us to calculate the ESS net operating costs F (Z). The results are reported in Table 2, in which

the effects of variations in σ are illustrated. Figure 2 displays the net operating costs of ESS F (Z)

against parameters k and κ.8 Finally, in Table 3 we report the results of comparative statics on

the risk-adjusted discount rate r.

By direct inspection of Table 3, it emerges that as k approaches zero, the optimal level of energy

to be stored in the BESS reduces, while the opposite occurs as volatility σ increases, in accordance

with equation (15). In other words, as the difference between the buying and selling prices of

energy decreases, the optimal size of the BESS decreases. The opposite occurs when the volatility

of the energy stored in the battery increases. When the value of κ increases, the optimal amount

of energy to be stored in the BESS decreases, because its opportunity cost increases. The effect of

k and κ on the size of BESS Z
∗ −Z and the net operating costs of ESS F (Z) are shown in Figure

2. As k approaches its maximum level, that is, -0.20, both Z
∗ − Z and F (Z) decrease, and these

decrease widen when κ reaches its lower bound. The maximum net operating cost of the ESS is

reached when both k and κ reach their upper bounds. Finally, with respect to the sensitivity to

changes in the discount rate r, it is worth mentioning that when r increases both the optimal BESS

size and the ESS net operating costs reduce.

Table 2: Results for Z
∗ − Z (MWh) and F (Z) (Euro/MWh)

1 + k κ (1 + k) σ = 0.15 σ = 0.20 σ = 0.30

Z
∗ − Z F (Z) Z

∗ − Z F (Z) Z
∗ − Z F (Z)

0.8000 0.0800 0.1923 28.0856 0.2526 36.8821 0.3846 56.1712
0.6000 0.0600 0.3106 35.5255 0.4079 46.6514 0.6213 71.0524
0.5000 0.0500 0.3773 37.1546 0.4954 48.7899 0.7546 74.3080

0.8000 0.1200 0.1668 32.2688 0.2191 42.3730 0.3337 64.5357
0.6000 0.0900 0.2702 40.5065 0.3548 53.1921 0.5404 81.0113
0.5000 0.0750 0.3288 42.1284 0.4318 55.3224 0.6576 84.2569

0.8000 0.1600 0.1494 35.9678 0.1962 47.2305 0.2988 71.9356
0.6000 0.1200 0.2423 44.9364 0.3182 59.0110 0.4846 89.8748
0.5000 0.1000 0.2952 46.5754 0.3877 61.1609 0.5904 93.1508

0.8000 0.2000 0.1365 39.3200 0.1792 51.6332 0.2729 78.6399
0.6000 0.1500 0.2216 48.9684 0.2910 64.3062 0.4432 97.9391
0.5000 0.1250 0.2702 50.6331 0.3548 66.4901 0.5404 101.2641

In Table 4 we analyze the ESS net operating costs F (Z) when κ = 0 (namely, there is no oppor-

tunity cost of storing energy in the BESS) and evaluate the difference F (Z)κ=i − F (Z)κ=0 with
8For a better visualization, Figure 2 is created with a finer numerical detail for both k and κ compared to the

values reported in Table 1.
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Figure 2: Visualisation of F (Z) (Euro/MWh) as a function of k and κ, where the colours represent
the different related levels of Z∗ − Z (MWh).

Table 3: Results for Z
∗ − Z (MWh) and F (Z) (Euro/MWh) with σ = 0.20.

1 + k κ (1 + k) r = 0.04 r = 0.05 r = 0.06

Z
∗ − Z F (Z) Z

∗ − Z F (Z) Z
∗ − Z F (Z)

0.8000 0.0800 0.2617 44.4114 0.2526 36.8821 0.2443 31.8216
0.6000 0.0600 0.4233 55.9344 0.4079 46.6514 0.3941 40.4019
0.5000 0.0500 0.5147 58.3154 0.4954 48.7899 0.4782 42.3653

0.8000 0.1200 0.2250 51.5022 0.2191 42.3730 0.2137 36.2619
0.6000 0.0900 0.3648 64.4106 0.3548 53.1921 0.3456 45.6695
0.5000 0.0750 0.4443 66.8087 0.4318 55.3224 0.4202 47.6143

0.8000 0.1600 0.2003 57.7282 0.1962 47.2305 0.1922 40.2134
0.6000 0.1200 0.3253 71.8954 0.3182 59.0110 0.3115 50.3893
0.5000 0.1000 0.3967 74.3381 0.3877 61.1609 0.3792 52.3388

0.8000 0.2000 0.1824 63.3454 0.1792 51.6332 0.1762 43.8106
0.6000 0.1500 0.2964 78.6723 0.2910 64.3062 0.2858 54.7048
0.5000 0.1250 0.3617 81.1708 0.3548 66.4901 0.3483 56.6721
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i ∈ {0.10; 0.15; 0.20; 0.25}. In line with Figure 2, the findings relative to this case (reported in the

third column of Table 4) are always lower than the corresponding case displayed in Table 2 (sixth

column). The difference in the ESS net operating costs, that is, the opportunity cost of the energy

stored in the BESS, increases when the value of the energy stored increases, as shown in the last

four columns of Table 4.

Table 4: Results for Z
∗ − Z (MWh) and F (Z) (Euro/MWh) with σ = 0.20, r = 0.05 and κ = 0,

and ∆F (Z)κ∈{i;0} = F (Z)κ=i − F (Z)κ=0 with i ∈ {0.10; 0.15; 0.20; 0.25}

1 + k Z
∗ − Z F (Z) ∆F (Z)κ∈{0.10;0} ∆F (Z)κ∈{0.15;0} ∆F (Z)κ∈{0.20;0} ∆F (Z)κ∈{0.25;0}

0.8000 0.4318 22.1290 14.7532 20.2441 25.1015 29.5043
0.6000 0.6843 29.5055 17.1460 23.6866 29.5056 34.8007
0.5000 0.8203 31.9404 16.8495 23.3820 29.2205 34.5497

Finally, we consider a reference case to assess the value of the investment in an ESS. To this aim,

we consider a simple Net Present Value (NPV) equation:

NPV (Z) = [R− F (Z)]Dc − [I (PV ) + I (Z)] with R =
P b
0

r
, (16)

where R is the cost saving obtained by not purchasing energy from the grid at the buying price P b
0 ,

F (Z) represents the ESS net operating costs computed according our framework, I (PV ) is the PV

investment cost (including operation and maintenance) and I (Z) represents the BESS investment

costs. Equation 16 shows that the investment value is driven by the cost savings for energy that

does not need to be purchased due to the ESS, net of costs, which includes both the investment

and operating costs.

We consider the investment in an ESS in southern Italy as a benchmark case study. In Italy, the

reference energy consumption of a household amounts to roughly 3000 KWh per year, i.e., 3MWh

per year. We assume a PV production of 1500 hours per year (which corresponds roughly to the

estimated production of a PV in southern Italy).

For simplicity, we set nS = 0, that is, the demand is satisfied by 2KW of power. To assume

simplified yet plausible figures for the investment, we need to define the household demand and

the power generation profiles, as well as the BESS size and operation. For this purpose, we refer

to a simplified setting based on the following pattern for demand, power generation, and battery

operation: photovoltaic production lasts 6 hours, collected around noon; on those hours, the PV

production is entirely devoted to charge the battery, that is, there is no demand (or there is a
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minimum baseload that we neglect for simplicity of calculation).

The average power per hour needed to satisfy the demand in the remaining hours is equal to

3000/ [8760 ∗ (18/24)] = 0.45 KW. We suppose that PV power produces for 6 hours per day and

charges the BESS. According to demand, energy is needed for the remaining 18 hours, that is,

0.45 ∗ 18 ∼= 8 KWh. Consequently, we consider two lithium-ion batteries of 1KW, 4KWh each.

Note that this BESS has an SOC equal to 0.33 KWh, and an opportunity cost that, according

to the simplifying assumptions above, is null, so κ = 0. Clearly, such a calculation completely

disregards the volatility of demand within each hour, the fact that energy needs are not fixed

around at the mean level across the day, and similarly the volatility of power generation. For this

reason, the ESS is connected to the power grid, and the energy purchased from the grid (as well

as the sale of excess energy to the grid) guarantees the ESS balancing at each point in time. We

account for this aspect by simulating the opportunity cost for different values of κ. ESS investment

costs are the following: 2000 euros / KW for PV panels (including operation & maintenance) , i.e.

4000 euros in total, and 6000 euros for the battery.9 The results of the calculations are reported in

Table 5.

Table 5: NPV results with parameters of Table 1,
with κ = {0; 0.25}, Dc = 3 MWh and R = 1184.2 euros.

1 + k κ (1 + k) NPV

0.8000 0.0000 -6513.79
0.6000 0.0000 -6535.92
0.5000 0.0000 -6543.22

0.8000 0.2000 -6602.30
0.6000 0.1500 -6640.32
0.5000 0.1250 -6646.87

The NPV of the investment is highly negative, due to the high investment costs. The net operating

costs of ESS have a limited impact on the NPV, within a range of 0.5-1%. It should be noted that

the NPV is highly sensitive to the buying price of energy. In Table 6 we show the effect of a change

in the energy price with a variation of ±37.37%, according to the estimated average volatility in

Bonaldo et al. (2024). As expected, an increase in the level of avoided energy costs R improves

the NPV, although it remains largely negative. In a best-case scenario, an average buying price of

about 160-180 euros/MWh would be required to break even on investment and operating costs.10

9Source, private offers to authors; note that these are to be taken as reference numbers, commercial offers can
have a large volatility.

10It is worth mentioning that on December 30, 2024, the Italian PUN was 147.63 euros/MWh (access 30/12/2024
- website https://www.mercatoelettrico.org/).
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Table 6: NPV results with parameters of Table 1,
κ = {0; 0.25}, Dc = 3 MWh and for different values of R and P b

0 .

1 + k κ (1 + k) NPV
(
R = 1626.74,∆P b

0 = +37.37%
)

NPV
(
R = 741.66,∆P b

0 = −37.37%
)

0.8000 0.0000 -5210.99 -7816.58
0.6000 0.0000 -5241.39 -7830.44
0.5000 0.0000 -5251.42 -7835.02

0.8000 0.2000 -5332.58 -7872.02
0.6000 0.1500 -5384.81 -7895.83
0.5000 0.1250 -5393.81 -7899.93

Differently, the same result can be achieved by significantly reducing the investment costs of the

ESS.

6 Conclusions

In this paper we model the decision to invest in a PV plant coupled with a BESS, namely an ESS.

In our setting, the investor can produce and self-consume PV energy, store excess PV energy in

a battery, buy energy from the grid as a backup source, and sell energy to the grid. Unlike other

contributions in the literature, we determine the optimal BESS size, which minimizes ESS net

operating costs, by considering the uncertainty on both PV production and households demand

and the uncertainty over the buying price of energy. Energy stored in the battery has indeed an

opportunity cost that needs to be accounted for in the identification of the BESS optimal size.

Our results show that ESS operating costs are relatively small (within 0.5-1% of the investments

NPV). They reduce as the selling price of energy increases, whereas they increase for increasing

volatility of the stock of energy stored in the battery. We also calculated the investment NPV and

demonstrated that it is highly negative at current energy prices and is highly dependent on the

energy selling price and buying price, respectively. The investment, indeed, would be profitable for

a buying price of energy significantly higher (i.e., about 160-180 Euros/kWh) than the current one.

Alternatively, to favour investments BESS investment costs should reduce significantly. We also

show that the investment NPV increases significantly in the absence of a BESS and the investment

becomes almost profitable at current energy prices. Consequently, our findings provide a valuable

insight to policy makers in the design of incentive policies. To favor investments in ESS, which

in turn increases self-consumption and energy security, incentives should be designed to cover a

significant share of BESS investment costs.
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A Appendix A

Let us assume that the battery has been installed and that the storage capacity is Z̄∗. The optimal

storage policy requires not selling energy when Zt < Z̄∗, which implies dU∗
t = 0. On the contrary,

if Zt ≥ Z̄∗, the optimal policy is such that this level is maintained. That is, if the energy storage

exceeds Z̄∗, the residual is sold, i.e. dU∗
t = Zt − Z̄∗. Now, disregarding for the moment P0 let’s

calculate:

∆(Z0) = E0

[∫ ∞

0
e−rt[κ (1 + k)Zt + dLt − (1 + k) dUt

]
. (17)

By using dynamic programming, the cost value ∆(Z0) can be obtained by solving the traditional

second order differential equation (Stokey (2008), Ch.10). For a generic value of Z ∈ [Z, Z̄∗), this

is given by:
1

2
σ2∆′′ (Z) + (nS)∆′ (Z)− r∆(Z) = κ (1 + k)Z for Z ∈ [Z, Z̄∗), (18)

with the following boundary conditions:11

∆′(Z̄∗) = − (1 + k) , (19)

∆′′ (Z̄∗) = 0, (20)

∆′ (Z) = −1. (21)

Eq. (19) implies that the energy manager decides to keep the energy stored when the marginal

cost is lower that the marginal revenue ∆′(Z̄∗) ≤ − (1 + k). The manager sells the energy when

∆′ (Z̄∗) > − (1 + k). To see it, note that for any stock Z, the cost ∆(Z) following the optimal

selling policy must be at least equal to the sum of the cost with Z − dZ, i.e. ∆(Z − dZ), and the

cost reduction − (1 + k) dZ, i.e. ∆(Z) ≤ ∆(Z − dZ)− (1 + k) dZ. After rearranging the inequality

and letting dZ go to zero, we get ∆′ (Z) ≤ − (1 + k). The same reasoning applies to Eq.(21).

Finally, Eq.(20) is the Super Contact Condition for optimal capacity Z̄∗ (Dumas, 1991).

The homogeneous solution of (18) is:

∆(Z) = A1e
η1Z +A2e

η2Z , (22)
11The fact that the second derivative of ∆(Z) at Z̄∗ exists is commonly referred as the Super Contact Condition

(Dumas, 1991).
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where A1 and A2 are two constants and η1 < 0, η2 > 0 are the roots of the characteristic equation
1
2σ

2η2 + (nS)η − r = 0. That is:

η1 =
−nS +

√
(nS)2 + 2σ2r

σ2
> 0, (23)

η2 =
−nS −

√
(nS)2 + 2σ2r

σ2
< 0. (24)

Before we go any further, here are some useful results. If nS > 0 we get η1 <| η2 |. On the contrary

if nS < 0, we get η1 >| η2 |. If nS = 0, then η1 =
√
2σ2r
σ2 > 0, and η2 = −η1. Yet, η1 − η2 > 0,

η1 + η2 =
−2nS
σ2 < 0 if nS > 0 and positive otherwise.

Further, we can prove that η21 − η22 = (η1 − η2) (η1 + η2) < 0 if nS > 0 and positive otherwise, and

η1η2 = − 2r
σ2 < 0. Finally ∂η1

∂σ < 0, ∂η2
∂σ > 0.

Adding a particular solution to (22), we obtain the general solution of (17) as:

∆(Z) =
κ (1 + k) (nS)

r2
+

κ (1 + k) (Z − Z)

r
+A1e

η1Z +A2e
η2Z . (25)

To determine the constants A1 and A2 we apply the smooth pasting conditions (19) and (21). From

∆′ (Z) = −1 and ∆′ (Z̄∗) = − (1 + k) we obtain the following system:

η1A1e
η1Z + η2A2e

η2Z = −1− κ (1 + k)

r
, (26)

η1A1e
η1Z̄ + η2A2e

η2Z̄ = − (1 + k)− κ (1 + k)

r
, (27)

or, setting v = 1 + κ(1+k)
r > 0, we get:

η1A1e
η1Z + η2A2e

η2Z = −v, (28)

η1A1e
η1Z̄ + η2A2e

η2Z̄ . = −(v + k) (29)

From the above system the constants are therefore:

A1 =
v
(
eη2(Z̄

∗−Z) − 1
)
− k

η1

(
eη1(Z̄

∗−Z) − eη2(Z̄
∗−Z)

)e−η1Z < 0, (30)

A2 =
k + v

(
1− eη1(Z̄

∗−Z)
)

η2

(
eη1(Z̄

∗−Z) − eη2(Z̄
∗−Z)

)e−η2Z > 0,
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where
(
eη1(Z̄

∗−Z) − eη2(Z̄
∗−Z)

)
> 0. Substituting (30) into (25), the general solution becomes:

∆(Z) =
κ (1 + k) (nS)

r2
+

κ (1 + k) (Z − Z)

r
(31)

+
v(eη2(Z̄

∗−Z) − 1)− k

η1

(
eη1(Z̄

∗−Z) − eη2(Z̄
∗−Z)

)eη1(Z−Z) +
k + v

(
1− eη1(Z̄

∗−Z)
)

η2

(
eη1(Z̄

∗−Z) − eη2(Z̄
∗−Z)

)eη2(Z−Z).

The optimal size Z̄∗ − Z, is determined imposing the Super Contact Condition (20), i.e.:

∆′′ (Z̄∗) = v (η1 − η2) e
(η2+η1)(Z̄∗−Z) − (v + k)

(
η1e

η1(Z̄∗−Z) − η2e
η2(Z̄∗−Z)

)
(
eη1(Z̄

∗−Z) − eη2(Z̄∗−Z)
) = 0. (32)

Provided that
(
eη1(Z̄

∗−Z) − eη2(Z̄
∗−Z)

)
̸= 0 and defining y =

(
Z̄∗ − Z

)+, the optimal capacity is

given by the solution of the following implicit function:

G (y) = v (η1 − η2) e
(η2+η1)y − (v + k) (η1e

η1y − η2e
η2y) = 0, (33)

with G (0) = −k (η1 − η2) > 0. The first derivative of G (y) is given by:

G′ (y) = v
(
(η1)

2 − (η2)
2
)
e(η1+η2)y − (v + k)

(
(η1)

2 eη1y − (η2)
2 eη2y

)
, (34)

with:

G′ (0) = −k
(
(η1)

2 − (η2)
2
)
=

 < 0 if nS ≥ 0

> 0 if nS < 0
(35)

In addition, as v + k > 0, taking the limit to ∞ we obtain limy→∞G (y) = limy→∞G′ (y) = −∞,

regardless of the sign of nS. Thus, by continuity, we can conclude that with nS ≥ 0 the function

G (y) admits at least one positive solution.

Note that, if nS = 0, the first order condition (33) reduces to:

G (y) = 2v − (v + k)
(
eη1y + e−η1y

)
= 0, (36)

with G (0) = −2k > 0. The derivative is always negative:

G′ (y) = − (v + k) (η1)
2 (eη1y − e−η1y

)
< 0, (37)
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which guarantees that the optimal capacity exists and is unique.

Finally, in the special case where Z = Z and (nS) = 0, Eq. (31) reduces to:

∆(0) =
1(

e

√
2r
σ2 (Z̄∗−Z) − e

−
√

2r
σ2 (Z̄∗−Z)

)P b
0

√
2σ2

r

[
−k (2v + k)

(k + v)

]
. (38)

B Appendix B

We can perform some static analysis. First with respect to k. By applying the theorem of implicit

functions on (33), we prove that:

∂Z̄∗

∂k
= −

(η1 − η2)
d
(
− v

(v+k)

)
d(k)

η1η2

(
e−η1(Z̄∗−Z) − e−η2(Z̄∗−Z)

) (39)

=
(η1 − η2)

η1η2

(
e−η1(Z̄∗−Z) − e−η2(Z̄∗−Z)

) [
dv
dkk − v

(v + k)2

]
(40)

=
(η1 − η2)

η1η2

(
e−η1(Z̄∗−Z) − e−η2(Z̄∗−Z)

) [
−1+r

r

(v + k)2

]
< 0 (41)

Secondly, with respect to σ:

∂Z̄∗

∂σ
= −

η′1e
−η2(Z̄∗−Z) − η1η

′
2

(
Z̄∗ − Z

)
e−η2(Z̄∗−Z) − η′2e

−η1(Z̄∗−Z) + η2η
′
1

(
Z̄∗ − Z

)
e−η1(Z̄∗−Z)

η2η1(e
−η1(Z̄∗−Z) − e−η2(Z̄∗−Z))

,

where η′1 =
∂η1
∂σ < 0 and η′2 =

∂η2
∂σ > 0. Note that:

[
η′1 − η1η

′
2

(
Z̄∗ − Z

)]
e−η2(Z̄∗−Z)

(−)

−
[
η′2 − η2η

′
1(Z̄

∗ − Z)
]
e−η1(Z̄∗−Z)

(+)

< 0 (42)

and:

η2η1

(
e−η1(Z̄∗−Z) − e−η2(Z̄∗−Z)

)
(+)

> 0. (43)

Then ∂Z̄∗

∂σ > 0.
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