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Abstract

Mechanisms where intermediaries charge a commission fee and have the sellers
set the price are widely used in practice e.g. by real estate agents, stock brokers,
art galleries, or auction houses. We model competition between intermediaries
in a dynamic random matching model, where in every period a buyer, a seller,
and an intermediary are randomly matched. In any period, every intermediary
has a temporary monopoly and designs an exchange mechanism that maximizes
his own expected profits. Traders’ valuations for the indivisible good depend on
their option value of future trade. The following results obtain. First, we show
that the intermediary can achieve the highest possible profit with a fee setting
mechanism. Second, we characterize when these fees are linear. Third, fee setting
is an equilibrium outcome in a dynamic market. Fourth, when the rematching
probability increases or, equivalently, the period length decreases, the equilibrium
fees become smaller. Our model is applicable to stock brokers and auction houses
as intermediaries. It can further explain several of the stylized facts observed in real
estate brokerage, such as the 6 percent fee, the relation between listing price and
time on market, inefficient free entry, higher prices for houses owned by brokers,
and home owners who bought during a boom asking higher prices. We also provide
various extensions.
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1 Introduction

Many markets are organized by intermediaries, and many of these intermediaries neither

buy nor sell the goods whose exchange they enable. Instead they set percentage fees to

be levied on the price, which is subsequently set by the seller. Buyers then either accept

or reject the price. If the mechanism involves an auction where the seller sets a reserve

price, the buyers bid in the auction, and the fee is levied on the realized price. We call

such mechanisms “fee setting mechanisms”.

Real estate brokers, stock brokers, art galleries, and auction houses or sites are just

a few examples of fee setting intermediaries. Real estate brokers in the U.S. typically

charge 5 to 6 percent. Commission fees by art galleries are said to be in the range of 30 to

50 percent. The auction houses Sotheby’s and Christie’s use a regressive fee structure

and so does eBay.1 Sotheby’s and Christie’s used a linear fee of 20 percent prior to

being investigated by U.S. Department of Justice, convicted for collusive behavior, and

induced to change the fee structure.2 Other industries where fee setting mechanisms are

frequently used include stock brokerage, share-cropping in agriculture, contracts between

authors and publishing companies, and retailers that charge a percentage on the revenue

a manufacturer generates with his product. Similarly, electronic payment systems and

credit cards charge percentage fees. Further, most governments collect substantive parts

of their revenue through value added taxes without being directly involved in price

setting. Percentage fees are also used in a slightly different environment in investment

banking3 and by labor market intermediaries, in particular by head hunters.

1The marginal rate at Sotheby’s is 25 percent for items with prices up to USD 20,000, 25 percent
between USD 20,000 and USD 500,000 and 12 percent beyond. At eBay (ebay.com, accessed on May 5,
2008) the marginal fee on the closing price is 8.75 percent below USD 25, 3.5 percent between USD 25
and USD 1000, and 1.5 percent above USD 1000.

2Similarly, real estate brokerage has come under scrutiny by the U.S. Department of Justice (DOJ,
2007). There is a widespread, though rarely explicit, suspicion that in particular the almost complete
invariance of broker commission fees reflects collusive behavior by intermediaries.

3Underwriters on initial public offerings in the U.S. charge in most cases exactly 7 percent, see
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As a matter of fact, industries where fee setting mechanisms are predominantly used

are quite sizeable. For example, the sales generated by Sotheby’s in 2007 alone exceeded

USD 4 billions.4 The annual operating revenue of eBay was more than USD 7.5 billion

in 2007, and Christie’s annual sales in 2006 exceeded USD 4.5 billion.5 The real estate

brokerage industry in the U.S. generates annual sales beyond USD 1000 billions and

commission fees of more than USD 60 billions per year.6 Credit card companies are

big business, too. For example, MasterCard’s annual revenue in 2007 exceeded USD

4 billion.7 The revenue collected through excise taxation, which consists of both value

added taxes and specific (unit) taxes in the U.S. exceeds USD 100 Billion.8

Despite their widespread use and economic significance, fee setting mechanisms have

received little attention in the theoretical economic literature. In particular, no prior

analysis of the optimality of fee setting and the structure of fees from a mechanism design

perspective exists.9 The purpose of this paper is to start filling this gap and to improve

economists’ understanding what determines whether intermediaries set commission fees

and, if they choose to do so, what determines the size and form of these fees.10 Our

main contribution is that we derive the exchange mechanism of every intermediary as the

endogenous outcome of a mechanism design problem that depends on the distributions of

Chen and Ritter (2000).
4See Sotheby’s Annual Report 2007, p.28, available at Sothebys.com. The fee structure was reported

in the New York Times (2008).
5See www.marketwatch.com and www.sgallery.net, respectively.
6See Rutherford, Springer, and Yavas (2005).
7MasterCard Worldwide, Annual Report 2007.
8This includes both taxation at the federal and at the state level; see

Anderson, De Palma, and Kreider (2001a, p.174).
9The fact that, to the best of our knowledge, no name for this type of mechanism exists only

goes to show how little theoretical interest these mechanisms have received. Two papers that provide
explanations of when intermediaries may use percentage fees and when they set prices are Hagiu (2006)
and Yavas (1992). Hagiu’s argument relies on the presence and nature of network externalities, while
Yavas’ explanation depends on the presence and working of search markets.

10 That said, this means also that we do not aim to explain why intermediaries emerge in equilibrium
(as do e.g. Gehrig (1993); Spulber (1999); Rust and Hall (2003)). Rather, we take the existence and
importance of intermediated exchange as given and ask why (some) intermediaries use fee setting mech-
anisms. Empirically the predominance of intermediation we presume in this paper is on solid ground.
For example, real estate brokers account for approximately 80 percent of all single-family dwellings in
the U.S. (see Rutherford, Springer, and Yavas, 2005). A rather simple explanation for the exclusivity of
trade through intermediaries is that there is an alternative search market where traders meet directly,
but search costs are prohibitively high. Alternatively, it should be possible to extend the framework
by a search market as an outside option. Traders’ willingness to pay an intermediary is limited by the
outside option of going to the search market.
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the types of buyers and sellers which are, in turn, endogenous to the choice of mechanisms

by all intermediaries.

We model competition between intermediaries in a dynamic random matching model

with a continuum of buyers, sellers, and intermediaries. Buyers and sellers have private

information about their valuations for an indivisible homogeneous good. In every period

one buyer, one seller, and one intermediary are randomly matched. Intermediaries are

free to choose the trading mechanism anew in every period. The equilibrium mechanism

used by the intermediaries in the market determines the option value of future trade and

hence the valuations of buyers and sellers. The distributions of these valuations in turn

determine the best response mechanism of an intermediary. We look at market equi-

libria where the mechanism in the market and the best response to it correspond. We

show that this model permits an analytical solution for certain cases. In a steady state

equilibrium intermediaries choose a stationary fee setting mechanism. Interestingly, this

equilibrium mechanism does not vary with the number of intermediaries under standard

assumptions on the matching technology. The equilibrium fees become smaller as the

matching frequency increases, or equivalently the period length between subsequent re-

matchings decreases. Moreover, we derive some empirically testable predictions, such as

the implied time goods stay on the market as a function of their prices, the distribution

of price on the market, and the probability that a good is ever sold.

The intuition for the intermediaries’ equilibrium choice of mechanism stems from a

one period model, where a monopolistic intermediary is matched to one buyer and one

seller. In this setup fee setting is optimal for the intermediary under the assumption that

the buyer’s and the seller’s valuation distributions satisfy Myerson and Satterthwaite’s

regularity condition. Results are likely to carry over to the irregular case. In the dynamic

model this mechanism is still intermediary optimal. We show also that if seller’s valuation

is drawn from a power distribution, then the optimal fee is linear and independent of

the buyer’s distribution. Further, with many buyers whose valuations are i.i.d. draws

and one seller, a fee setting mechanism followed by an optimal auction (such as used by

eBay, Sotheby’s or Christie’s) is intermediary optimal.

Our base line model allows for various extensions. We study inefficient free entry by
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intermediaries with heterogeneous opportunity costs of entry and heterogeneous levels

of ability. Under the assumption that power distributions are a good approximation,

the model also allows for costs of intermediation that vary with transactions. We also

show that a vertically integrated intermediary (who is also a seller) charges a lower price

than an independent seller in a one period model. However, in a dynamic model this

may be reversed. Furthermore, we show that price posting (i.e. the intermediary himself

sets a price for the seller and a price for the buyer) is not optimal for the intermediary

in a static setup with one buyer and one seller, but becomes intermediary optimal in a

dynamic setup if the good in question can be stored without cost.

Our paper contributes to the large and growing literature on intermediation such as

Gehrig (1993), Yavas (1992, 1996), Hackett (1992), Spulber (1996, 1999, 2008), Wooders

(1997), Rust and Hall (2003), Duffie, Garleau, and Peddersen (2005), Loertscher (2007)

and Burani (2008) by adding a mechanism design perspective to the notion of (dynamic)

random matching present in most of these papers. The only articles applying mechanism

design to intermediation we are aware of are Spulber (1988) and Matros and Zapechelnyuk

(2006). We differ from the former by having multiple buyers and an indivisible good;

from the latter by the private information of the seller affecting payments; and from both

by having dynamic random matching, multiple competing sellers and intermediaries, and

predictions on price dispersion, fee structures, and time on market. Our paper also relates

to the literature on bilateral trade initiated by Myerson and Satterthwaite (1983) and

Chatterjee and Samuelson (1983).11 That the fee setting mechanism is intermediary opti-

mal is interesting on its own as it provides a practical counterpart to the direct, and there-

fore abstract, intermediary optimal mechanism derived by Myerson and Satterthwaite.

As we add intermediaries to a dynamic random matching model with incomplete

information similar to Satterthwaite and Shneyerov (2007, 2008) and Atakan (2006b) it

also relates to this strand of literature.12 Insofar as the intermediaries in our dynamic

11Recall that the double auction described by Chatterjee and Samuelson (1983) satisfies the social
optimality condition stated in Myerson and Satterthwaite (1983, Theorem 2) for uniform distributions.
We show under regularity assumptions that the fee setting mechanism described here satisfies the inter-
mediary optimality conditions for general distributions. Further, fees are linear for general distributions
of the buyer and a power distribution of the seller, of which a uniform distribution is a special case.

12See also Wolinsky (1988), De Fraja and Sakovics (2001), Serrano (2002), Moreno and Wooders
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model are competing mechanism designers, the paper is related to the work of McAfee

(1993), Peters and Severinov (1997, 2006), and Damianov (2005) who study mechanism

design by sellers whereas in our model the mechanisms are chosen by intermediaries.13

In that respect, and because real estate brokerage is an industry to which our model

applies, the paper also contributes to the literature on real estate economics. Most of

the theoretical and empirical literature analyzing real estate brokerage remains in the

principal-agent framework, where the seller, and occasionally the buyer, is the princi-

pal and the broker the agent; see e.g. Anglin and Arnott (1991), Bagnoli and Khanna

(1991), Arnold (1992), Williams (1998), Lewis and Ottaviani (2008)14 for theoretical

and Rutherford, Springer, and Yavas (2005) and Levitt and Syverson (2008) for empiri-

cal work. The present paper offers a new perspective in that we assume that the brokers

have all the bargaining power within a period and propose a mechanism of their choice to

the traders. We think there are good reasons to depart from the principal-agent frame-

work. Chief among them are that a buyer’s agent’s incentives are completely misaligned

to those of his client, that the observed marginal fees charged by intermediaries are too

low, and that his inframarginal fee is too high. We lay out these and further reasons in

detail in Subsection 4.3 below.

Our article also gives possible explanations for various stylized facts observed in the

empirical literature.15 Broker fees are close to invariant with respect to the number of

intermediaries and the prices of houses. Further, the number of intermediaries grew

proportionally to overall industry profits, so that profits per intermediary remained con-

stant (Hsieh and Moretti, 2003). Comparable houses owned by brokers sell at a higher

price than houses owned by independent sellers (Levitt and Syverson, 2008). Much of

the empirical literature finds a positive correlation between the listing price and the time

(2002), Lauermann (2007), Lauermann and Wolinsky (2008). For complete information models see
e.g. Mortensen and Wright (2002), Gale (2000), and the references therein.

13McAfee (1993, p.1304) notes that [his] “paper falls far short of a real theory of equilibrium institu-
tions partly because it places the design of institutions in the hands of the sellers. A more satisfactory
approach requires explicit modelling of the role of intermediaries, or auctioneers, who compete among
each other for both buyers and sellers.”

14Lewis and Ottaviani have a general model of dynamic search agency with research and development
as the main application. However, real estate brokerage is one of the many applications of their model.

15See e.g. Hsieh and Moretti (2003), Rutherford, Springer, and Yavas (2005),
Hendel, Nevo, and Ortalo-Magné (forthcoming) and Levitt and Syverson (2008).
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on market in cross-sectional data. However, the correlation is negative in longitudinal

data.16 Home owners who bought their houses during booms demand a higher price

than owners of houses of comparable characteristics who bought it during a recession

(Genesove and Mayer, 2001). Sellers with a higher loan-to-value ratio ask higher prices

(Genesove and Mayer, 1997).

The remainder of this paper is structured as follows. Section 2 lays out and analyzes

the one period model with one intermediary, one buyer and one seller. Section 3 intro-

duces and analyzes dynamic competition between intermediaries with random matching.

Section 4 discusses the model’s empirical implications. Section 5 extends the model in

various important directions. Section 6 concludes. All proofs are in the Appendix.

2 Static Monopoly

In this paper we model a market with a pool of buyers, sellers, and intermediaries. In

every period every buyer and seller is matched in a triple consisting of a buyer, a seller,

and an intermediary. The intermediary proposes an exchange mechanism and traders

can either trade or wait until the next rematching. The market is in steady state and

there is a constant inflow of traders that compensates the outflow of traders that have

either exchanged the good or dropped out for exogenous reasons. As we will see in

Section 3, understanding a simple one period model with one buyer, one seller, and one

intermediary proves to be very helpful for understanding the larger model.

We focus on the static one period problem with one intermediary, one seller, and

one buyer in this section. In Section 5.3 we will argue that the buyers’ and the sellers’

valuations for the good incorporate the option of future trade available in the market.

The solution of the static problem in this section can be viewed as a best response to

the mechanism employed in the market. Consider the following static setup. There is a

seller who owns one unit of a homogeneous indivisible good of known quality. There is

a buyer who has private information about his valuation of the good v which is drawn

from the distribution F with strictly positive density f on the support [v, v̄]. For brevity,

16Larsen and Park (1989) find that disregarding unsold houses when analyzing time on market biases
estimations.
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we refer to the seller’s valuation of the good, or his opportunity cost of selling it, as his

cost.17 The seller has private information about his cost c, which is drawn from G with

strictly positive density g on [c, c̄]. F and G are common knowledge and independent.

All agents are risk neutral, and preferences are quasilinear, i.e. the buyer’s utility

is v − p and the seller’s payoff if p − c in case of trade at price p. The seller and the

buyer can only trade through the monopolistic intermediary who has all the bargaining

power and can hence choose the trade mechanism. For brevity we call mechanisms that

maximize the intermediary’s expected profit intermediary optimal.

Denote by Φ(v) := v− (1−F (v))/f(v) the buyer’s virtual valuation function. Anal-

ogously let the seller’s virtual cost function be denoted as Γ(c) := c + G(c)/g(c). We

make the assumption that Myerson (1981)’s regularity condition holds, i.e. both virtual

type functions are increasing. Our results are likely to carry over to cases where the

regularity condition does not hold.18

Fee Setting Mechanisms The main focus of this paper is on the following type of

indirect mechanisms, which we call fee setting mechanisms.

Stage 1: The intermediary first announces a fee function ω(.) that determines the

amount the intermediary gets upon successful sale at price p, leaving p − ω(p) to the

seller.

Stage 2: Observing ω(.) and his own cost c the seller sets a price p.

Stage 3: Observing p and her own valuation v, the buyer then accepts or rejects the

offer p and the game ends. If the buyer accepts, the seller gets the net price p − ω(p)

and the intermediary the fee ω(p).

Obviously in stage 3 the buyer accepts if and only if v ≥ p. The other two stages of

this one-shot game are analyzed in Section 2.2. In Section 2.4 we also study a slightly

17This makes clear that the model also applies to settings where the good has to be produced by the
seller at a cost.

18Our proofs use Myerson and Satterthwaite (1983)’s theorems on bilateral trade.
Myerson and Satterthwaite make the regularity assumption for the sake of expositional clarity,
but note that their results carry over to the irregular case by using standard techniques described in
Myerson (1981). Even though it seems likely that our results should generalize in a similar way, we
prefer dealing with the regular case. Since these distributions are taken as endogenous outcomes in
Section 5.3, this will mean restricting our attention to cases where the outcome is regular. We will
show later that there are indeed such cases.
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modified version of this game with multiple buyers whose valuations are independent

draws from the distribution F while there is still one seller and one intermediary.

As we will show later, restricting ourselves to such fee setting mechanisms is without

loss of generality, since for every optimal mechanism, there is a corresponding fee setting

mechanism that gives all participants the same payoffs in interim expectations. Further,

at this point there is a symmetry between the buyer and the seller: the intermediary

could just as well let the buyer set a price and set a fee on this price. It is also worth

mentioning that the assumption that the seller pays the fee is without loss of generality.

That is, it does not matter how the intermediary’s fee ω(p) is allocated between the

buyer and the seller.

2.1 The Simple Economics of Optimal Intermediation

Before showing that fee setting is an optimal mechanism, we will describe what we

mean by an optimal mechanism. We use the term mechanism in the sense it is used in

the mechanism design literature.19 A mechanism is intermediary optimal if there is no

mechanism that gives strictly higher profits to the intermediary in expectations over the

buyer’s and the seller’s valuation for the good. The intermediary’s expected profit is the

payment by the buyer minus the payment to the seller in expectations.

The buyer’s virtual valuation Φ(v) can be interpreted as the marginal revenue of

increasing the probability of trade, the seller’s virtual cost as marginal cost.20 Therefore,

the intermediary wants the seller and the buyer to trade if and only if marginal revenue

exceeds marginal cost, i.e. whenever Φ(v) ≥ Γ(c).

As Myerson and Satterthwaite (1983) show formally, this is indeed the optimal allo-

19A mechanism means the following. First, the mechanism designer (here the intermediary) offers a
menu of possible actions to the seller and the buyer, for each combination of actions he announces the
payments a participant pays or receives and whether the good is exchanged, then both seller and buyer
pick actions that are mutually best replies. A more detailed explanation of these concepts is provided
e.g. in Krishna (2002, Chapter 5).

20The reasoning is similar to Bulow and Roberts (1989)’s for optimal auctions: interpret the proba-
bility that Ṽ ≥ v and C̃ ≤ c as quantity demanded and supplied, i.e. q := 1−F (v) and q := G(c). Thus
the inverse demand and supply function are v = F−1(1−q) and c = G−1(q), yielding R(q) = qF−1(1−q)
and C(q) = qG−1(q) as revenue and cost functions. Taking derivative w.r.t. q and substituting back in
yields R′(q) = Φ(v) and C′(q) = Γ(c).
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cation rule for the intermediary.21 Due to payoff equivalence (a notion well known from

the auction and mechanism design literature, see e.g. Krishna (2002)), once the alloca-

tion rule is determined the equilibrium payoffs for all types of all players are determined

up to an additive constant. It is in the intermediary’s interest to minimize this constant

under the constraint that all types of buyers and sellers are willing to participate in the

mechanism (individual rationality constraint). Therefore, under the intermediary opti-

mal mechanism the worst off agents are just indifferent between participating and not,

i.e. the lowest valuation buyer v and the least efficient seller c get expected payoffs of

zero. See Lemma 2 in the Appendix for a summary and formalization of these results.

2.2 Optimality of Fee Setting Mechanisms

We now show that fee setting is an intermediary optimal mechanism. For notational

ease, let us denote P (c) := Φ−1(Γ(c)), which will turn out to be the price the seller sets

in equilibrium, and denote its inverse as P−1. To simplify the analysis we also maintain

the following assumption throughout the rest of the paper:

Assumption 1. Φ(v̄) ≤ Γ(c̄) and Φ(v) ≤ Γ(c).

Intuitively, this assumption means that under an optimal mechanism, there are sellers

who are unwilling to sell for sure and there are buyers that are unwilling to buy for sure.

This seems plausible for many markets, e.g. most home owners do not offer their house

for sale every year. Assumption 1 simplifies the exposition, because it ensures that we

do not have to deal with corner solutions and Φ−1(Γ(c)) and Γ−1(Φ(v)) are defined on

the supports of G and F , respectively.22

21Myerson and Satterthwaite (1983) are almost exclusively cited for their impossibility results. A
notable exception is Spulber (1999, Ch.7). However, he merely compares the optimal direct mechanism
of Myerson and Satterthwaite with price posting by the intermediary.

22Formally, the assumption ensures that a mechanism satisfying (i) of Lemma 2 in the Appendix also
satisfies (ii). Dropping this assumption would make the equations unnecessarily complicated without
adding any substantial insights. Φ(v) > Γ(c) is not difficult to accommodate for. A seller would never
set a price less than v and therefore (ii) holds. For Φ(v̄) > Γ(c̄) the intermediary should be able to solve
the problem by imposing a price cap: the seller is not allowed to set a price satisfying Φ(p) > Γ(c̄).
Therefore, the highest cost seller would get zero profits. Formally, we will show that the intermediary
induces the seller to set the price arg minv{Φ(v) ≥ Γ(c)}, under Assumption 1, notation simplifies to
Φ−1(Γ(c))
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An intuitive derivation of the optimal fee setting mechanism can be obtained by

taking a brief detour through a dominant strategy direct mechanism implementation.23

The dominant strategy implementation is that the intermediary asks agents to report

their types and allows trade iff v ≥ P (c) (or equivalently c ≤ P−1(v)) and in case

of trade the buyer pays P (c) and the seller gets P−1(v).24 In case of trade the seller

gets Ev[P
−1(v)|v ≥ P (c)] in expectations over v. Since the seller cares only about

what he gets in expectation rather than individual realizations of v (payoff equivalence),

the intermediary could just as well pay the seller the expected value as the net price

P (c)− ω(P (c)). Equating the net price P (c)− ω(P (c)) with the seller’s expected payoff

and replacing P (c) with p gives the optimal fee as stated in Proposition 1. Alternatively,

one can equate the seller’s utility under fee setting [P (c)−ω(P (c))−c][1−F (P (c))] with

his information rent and solve first for ω(P (c)) and then for ω(p) (see the formal proof

in the Appendix).

Proposition 1. Fee setting with

ω(p) = p−Ev[P
−1(v) | v ≥ p] (1)

is an intermediary optimal mechanism, where the seller with cost c sets the price p =

P (c).

A few remarks are in order. First, the derivative of ω(p) in (1) is

ω′(p) = 1 − f(p)

1 − F (p)

∫ v̄

p

1 − F (x)

1 − F (p)
[P−1(x)]′dx. (2)

Therefore the marginal fee can never be higher than 100 percent, since by Myerson’s

regularity assumption [P−1]′ is positive, just as the other terms, and hence ω′(p) < 1.25

This is of course what one would expect from incentive compatibility. One can also see

23A direct mechanism requires participants to report their valuations to the mechanism designer who
will take actions for them rather than taking actions themselves. The idea of a dominant strategy
implementation goes back to Vickrey (1961)’s analysis of second price auctions. It basically means that
it is a dominant strategy (i.e. optimal independently of the other agent’s actions) for every participant
to report their types truthfully.

24The buyer gets a take-it-or-leave-it offer at price P (c). It is clearly a dominant strategy to accept
the offer iff v ≥ P (c). The same applies to the seller. This dominant strategy implementation is already
mentioned in Myerson and Satterthwaite (1983) after Theorem 4.

25A similar observation in the context of income taxation is made by Mirrlees (1971, p.178).
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that a decrease of [Γ−1(x)]′ at every point x (in the image of Φ) leads to an increase of

the overall fee ω(p) and the marginal fee ω′(p) for all prices p. The reason is that ω(p)

and ω′(p) decrease with [P−1(x)]′ = [Γ−1(Φ(x))]′. Second, Proposition 1 implies that the

intermediary can achieve his maximal expected profit without knowing or making use of

the buyer’s valuation when determining payments in case of trade. The buyer’s valuation

is only needed to determine whether the good is traded. However, the optimal mechanism

depends in general on the distribution of the buyer’s valuation F . It is therefore rather

striking that for a certain family of distributions of seller’s types, namely all those that

exhibit virtual costs that are linear in c, the optimal fee charged by the intermediary is

independent of F and linear.

2.3 Optimality of Linear Fee Mechanisms

Let us start with a uniform distribution G on [0, 1] implying Γ(c) = 2c. The fee is hence

ω(p) = p − Ev[Φ(v)/2|v ≥ p] = p/2 and independent of F . There is actually a more

general principle behind this, which we will show in the following.

Proposition 2. The following are equivalent statements:

(i) a linear fee mechanism is optimal, i.e. ω(p) = ξp+ ζ is intermediary optimal,

(ii) c is drawn from a generalized power distribution G(c) =
(

c−c
c̄−c

)β

with β > 0,

where ξ = 1/(β + 1) and ζ = −c/(1 + β) holds.

As the optimal linear fee is fully determined by the two parameters (β, c) of the

distribution of the seller’s cost G, Corollary 1 follows directly from Proposition 2.

Corollary 1 (Invariance of Linear Fees). If a linear fee is intermediary optimal for some

distributions (G,F ), then it will also be optimal for (G, F̂ ), where F̂ is an arbitrary

regular distribution.

It can also be shown that the reverse implication – in some sense – of Corollary 1

holds.

Proposition 3. If a fee function ω(p) is optimal for a given G and for an arbitrary

regular F , then the fee has to be linear and G has to be a generalized power distribution.
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As optimality of linear fees implies invariance of the fees with respect to the buyer’s

distribution, the empirical prediction of Proposition 2 is that whenever profit maximizing

intermediaries choose linear fee setting as a mechanism, these fees will be invariant.

Clearly, this prediction is consistent with available empirical evidence, provided that the

seller’s distributions are the same across time and regions.

Of course, this raises the question whether the seller’s distribution should vary if the

buyer’s varies as well. There are two answers. First, the upper part of the seller’s cost

distribution [P−1(v̄), c̄], i.e. those sellers who for sure cannot sell, is irrelevant for the

intermediation problem at hand. Therefore, Proposition 2 means that a linear fee only

implies a generalized power distribution in the relevant range [c, P−1(v̄)]. Above this

range, G can have any shape, provided its virtual cost function is increasing.26 Note

further that the relevant range [c, P−1(v)] can be say [0; $100, 000] in the countryside and

[0; $1, 000, 000] in a big city, but they both lead to the same fee if they have the same

shape in this range.

Corollary 1 and the empirical prediction thus hold not only when the cost distribution

is the same over time and across regions, but even if it has only the same shape in the

relevant range. This is illustrated in Fig. 1 that shows two different distributions of the

seller’s cost that lead to the same fee.

The second answer relies on how the distributions of steady state dynamic types are

related to the distributions of entrant static types in the dynamic game with random

matching. Therefore, we defer it to the end of Section 3.4.

The widespread use of linear fees raises the question whether linear fees may perform

well even when the seller’s distribution does not exhibit linear virtual costs. Though

a complete analysis of the performance of linear fees in such environments is beyond

the scope of the present paper, we provide some numerical examples in Appendix A

that suggest that linear fees are close to optimal for other distributions than power

distributions. Here we restrict ourself to the example g(c) = 6c(1 − c) and f(v) = 1

as depicted is Fig. 2. Even though g is far from a power distribution, choosing a linear

26For many markets, it is reasonable to assume that most sellers are above the relevant range, so that
the sellers with a positive probability of trade are just the “tip of the iceberg”. E.g. most house owners
prefer staying in their houses rather than offer them for sale.
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c P−1
1 (v̄1) P−1

2 (v̄2)
c

g1(c)

g2(c)

Figure 1: Two distributions of the seller’s cost c leading to the same fee. The densi-
ties g1 and g2 have the same shape in their respective relevant ranges [c, P−1

1 (v̄1)] and
[c, P−1

2 (v̄1)].

fee (equivalent to acting as if though having a power distribution G(c) = c(1−ξ)/ξ with

ξ = 0.4) gives the intermediary 99.8 percent of the profits he would get with the optimal

mechanism. Similar results were found for other distributions in Appendix A. This gives

rise to the conjecture that power distributions are a useful approximation in many cases,

even if the seller’s distribution is of a different kind.27

It is also worth mentioning that analogous results can be obtained for mechanisms

where the buyer sets the price and the fee is conditioned on this price. It is for instance

optimal for the intermediary to let the buyer set the price and charge the fee ωB(p) =

Ec[P (c)|c ≤ p] − p, which induces the buyer to set the price p = P−1(v). For F (v) =

1− [(v− v)/(v̄− v)]βB the fee will be linear and independent of the seller’s distribution.

27One may further conjecture that the distributions for which linear fees are closer to optimality are
also the ones that are more invariant to changes of the buyer’s distribution. But these conjectures, of
course, remain to be shown.
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Figure 2: Optimal and linear fee for g(c) = 6c(1 − c) and f(v) = 1.



2 STATIC MONOPOLY 16

2.4 Static Monopoly with Many Buyers

The results obtained so far can be extended to a setup with one intermediary, one seller,

and many buyers. As a preliminary, we first derive the intermediary optimal mechanism

with many buyers and possibly many sellers. Since this is a generalization of the Myerson-

Satterthwaite results on intermediary optimal mechanisms summarized in Lemma 2 in

the Appendix, it is of some interest on its own.28

Let NB and NS, respectively, be the number of buyers and sellers, whose valuations vb

and costs cs are independent draws from distributions Fb with densities fb and supports

[vb, vb] and distributions Gs with densities gs and supports [cs, cs]. As before, we consider

cases where virtual valuations Φb(vb) and the virtual costs Γs(cs) are strictly increasing

and we use b (s) exclusively to indicate a buyer (seller). Order and relabel the realized

virtual valuations in decreasing and virtual costs in increasing order, i.e. Φ1 > Φ2 >

.. > ΦNB
and Γ1 < Γ2 < .. < ΓNS

. Pair buyers and sellers with equal index. The

case where NB 6= NS can be easily dealt with by adding fictitious traders.29 We define

the Virtual-Walrasian allocation rule such that all pairs with Φk ≥ Γk trade and all

others do not. The Virtual-Walrasian quantity is the number of trading pairs, formally

K := max{k|Φk ≥ Γk}.

Lemma 1. The intermediary optimal mechanism that respects individual rationality and

incentive compatibility of buyers and sellers has a Virtual-Walrasian allocation rule and

gives zero expected utility to buyers with vb = vb and sellers with cs = cs.

A sketch of the proof is in the appendix. ForNB = NS = 1 the Virtual-Walrasian allo-

cation rule reduces to the intermediary optimal allocation rule of Myerson and Satterthwaite

(1983).

We now assume that there is one seller (i.e. NS = 1) and that the NB > 1 buyers’

valuations are independently drawn from the identical distribution F with support [v, v].

It is well known from the auction literature that the reservation price is the same irre-

28See also Baliga and Vohra (2003).
29If there are less buyers than sellers, fill up the ranks of buyers with fictitious buyers who do not

trade for sure (i.e. Φk = −∞ for NB < k ≤ NS). If there are less sellers, use fictitious sellers with
Γk = ∞ for NS < k ≤ NB.
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spective of the number of buyers. Hence one would suspect that results for price setting

with one buyer carry over to an auction with a reservation price equal to the price one

would set for one buyer. Prop. 4 shows that this is the case indeed.

Proposition 4. Assume the intermediary faces NB buyers whose valuations are i.i.d.

draws from F and one seller whose cost is drawn from G. Then the following is an

intermediary optimal mechanism. The intermediary sets the fee function ω(pS) = pS −
Ev[P

−1(v) | v ≥ pS], where pS is the final sale price. Then the seller sets the reserve

price p = P (c), and a standard auction ensues.

Observe that the intermediary need not know the number of buyers NB when deter-

mining the optimal mechanism. Of course, this is not surprising given that the optimal

reserve price only depends on F and not on NB.

3 Dynamic Competition with Random Matching

Two salient features of real world markets where exchange occurs predominantly via

intermediaries are that agents can typically postpone trade to the future if it fails in the

present and that intermediaries usually compete with one another. To account for these

features that were absent in the static model of Section 2, we now extend the model as

described next.

3.1 Setup

Consider a market in an infinite horizon setup as illustrated in Fig. 3. Each period mass

1 buyers and mass 1 sellers enter the market. A buyer’s valuation of the good ṽ is drawn

from the distribution F̃0 with strictly positive density f̃0 on the support [ṽ0, ¯̃v0]. A seller’s

cost c̃ is drawn from G̃0 with g̃0 > 0 on [c̃0, ¯̃c0]. We refer to ṽ and c̃ as a buyer’s and

seller’s static type (i.e. static valuation and cost, respectively). We will describe the

distinction between static and dynamic types later. Buyers enter a pool of buyers with

mass σ with a distribution of their valuations ṽ ∼ F̃ . Sellers enter a pool of mass σ

with c̃ ∼ G̃. We assume that the market is in steady state, i.e. the traders entering the

market (pool) have the same mass and distribution of valuations as those who leave. G̃
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and F̃ are hence the steady state cumulative distribution functions. Their densities are

denoted with f̃ and g̃. There is an unlimited supply of intermediaries standing ready

to offer their services. For the moment we abstract away from the entry decision of

intermediaries, but will return to this in Section 4.3.2. In each period each buyer, each

seller, and each intermediary is uniform randomly matched30 in a triple consisting of one

member each of the three groups.

As in the one-shot game, the intermediary offers the following mechanism to the two

traders. He first announces a fee ω that is a function of the price the seller will set.

Then the seller sets a price p. If the buyer accepts, he pays p, the seller gets the net

price p − ω(p), and the intermediary the fee ω(p). If there is trade, the net utility of

the seller with cost c̃ is p − ω(p) − c̃, the buyer’s net utility is ṽ − p, and both traders

leave the market. Intermediaries stay in the market forever.31 Traders who do not trade

stay in the market with the exogenous probability e−ητ until the next period, where τ

represents the length of a period and η a parameter of the hazard rate. With probability

1 − e−ητ a trader drops out of the market and has utility 0. Future utility is discounted

with a factor e−rτ . As for most of the analysis only the product of these two factors

matters, we define δ := e−(η+r)τ as the total discount factor, where τ can be interpreted

as a parameter of the degree of competition: the shorter the time of a new match after

a failed trade, the more competition intermediaries face.

Since in the dynamic setup agents are always given positive probability of trading in

the future if trade fails in the presence, a buyer whose static type is ṽ will have a dynamic

type v < ṽ. The difference between the static and the dynamic valuation of a buyer can

be described as follows. If a buyer were (hypothetically) given the choice between buying

a house now or never, the maximal amount he would be willing to pay would be his

static valuation ṽ. If he were, however, given the choice between buying a house now or

searching for an opportunity to buy in the future, his maximal willingness to pay would

30This matching technology is essentially the same as in Atakan (2006a,b). It differs from
Satterthwaite and Shneyerov (2007, 2008) who assume a seller who is matched with zero, one, or many
buyers.

31This actually does not matter since they are all identical. We could just as well have intermediaries
arriving each period and others dropping out.
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be lowered by the value of his outside option. We call this lowered willingness to pay his

dynamic valuation. Similarly, a seller with static type c̃ will have a dynamic cost c > c̃.32

The crucial point of the our analysis is that there is monotonic relation between static

and dynamic types. Therefore, we can use the dynamic valuation of the buyer v = B(ṽ)

and the dynamic cost of the seller c = S(c̃) (which of course remain to be determined)

to derive the endogenous distributions F (v) = F̃ (B−1(v)) and G(c) = G̃(S−1(c)). A

typical intermediary will simply use the dynamic types, or their distributions, rather

than the static types and distributions to design the exchange mechanism described

in the previous section. Note that from the point of view of an intermediary this is

equivalent to a one-shot game, since the probability that he will meet the same buyer or

the same seller in a subsequent period is 0 and he takes the mechanisms offered by other

intermediaries in subsequent periods as given.

3.2 Dynamic Types

The analysis in Section 5.3 can be reinterpreted as the best response mechanism of an

intermediary given a mechanism prevalent in the market, which induces distributions

F and G. As a next step we derive the distributions F and G that would arise if all

intermediaries were to choose the best response mechanism. In an equilibrium these

have to be the same distributions we started with. In the following we will determine

the relation of dynamic types and static types for a given mechanism. From now on

we will assume in accordance with the literature that buyers and sellers who cannot

trade do not enter the market in steady state. This is equivalent to the inequalities in

Assumption 1 being binding in steady state.

First, fix the mechanism used by the intermediaries. Following a similar logic as

Satterthwaite and Shneyerov (2007) we first consider the discounted utility of a buyer

with static valuation ṽ who cannot commit to reject an offer below his dynamic valuation

32Put differently, the fact that there is a future drives a positive (negative) wedge between a buyer’s
(seller’s) static type and his dynamic type.
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Figure 3: Market in steady state. Each period mass 1 of traders with distributions
F̃0 and G̃0 enter the market and join pools with distributions F̃ and G̃. Traders have
dynamic type distributions F and G. With probabilities ρB(v) and ρS(c) they leave the
market because they trade, with probability 1−e−ητ they leave the market for exogenous
reasons.

v

WB(ṽ, v) = ρB(v)(ṽ −DB(v)) + (1 − ρB(v))δWB(ṽ, v), (3)

where ρB(v) is the probability of trade implied by the mechanism chosen by the interme-

diaries and DB(v) := Ec[P (c)|P (c) ≤ v] is the buyer’s expected payment. Rearranging

yields

WB(ṽ, v) = (ṽ −DB(v))PB(v),

where

PB(v) :=
ρB(v)

1 − (1 − ρB(v))δ

is “the discounted ultimate probability of trade” in Satterthwaite and Shneyerov (2007)’s

terminology.



3 DYNAMIC COMPETITION WITH RANDOM MATCHING 21

Assuming that the buyer plays a steady state strategy (i.e. the maximal price v that

he is willing to accept is the same in each period), his “interim utility” is

WB(ṽ) = sup
v

(ṽ −DB(v))PB(v) = (ṽ −DB(B(ṽ)))PB(B(ṽ)).

By the same logic as Satterthwaite and Shneyerov (2007)’s Lemma 3 (i.e. using Milgrom and Segal

(2002)’s generalized versions of the envelope theorem)

WB(ṽ) = WB(ṽ) +

∫ ṽ

ṽ

PB(B(x))dx.

WB(ṽ) turns out to be zero, since the lowest valuation buyer is just indifferent between

participating and not. A buyer will accept an offer if the price is below his dynamic

valuation

v = B(ṽ) = ṽ − δWB(ṽ).

Combining this with the previous result we get

B(ṽ) = ṽ − δ

∫ ṽ

ṽ

PB(B(x))dx, (4)

and the differential equation

B′(ṽ) = 1 − δPB(B(ṽ)). (5)

One can easily check that for infinitely long waiting times between trading opportunities

τ → ∞ (and hence δ = e−(η+r)τ → 0, this basically means a single shot game) the

dynamic valuation approaches the static valuation, i.e. B(ṽ) → ṽ. Observe also that

B′(ṽ) = (1 − δ)/(1 − (1 − ρB(v))δ) ∈ [1 − δ, 1].

A similar analysis can be carried out for the seller. For expositional clarity assume for

the moment that the intermediary uses the dominant strategy implementation described

in Myerson and Satterthwaite (1983) (there is trade iff Φ(v) ≥ Γ(c), in case of trade the

buyer pays Φ−1(Γ(c)) and the seller gets Γ−1(Φ(v))). For this mechanism clearly the

same logic applies for the seller as for the buyer: he accepts any offer that is above his

dynamic costs. By the same procedure we get

S(c̃) = c̃+ δ

∫ c̃

c̃

PS(S(x))dx, (6)
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and

S ′(c̃) = 1 − δPS(S(c̃)), (7)

where the ultimate discounted probability of trade is analogous for the seller, i.e. PS(v) :=

ρS(v)/(1 − (1 − ρS(v))δ)

The probabilities of trade are given by the optimal allocation rule (applied to the

dynamic types):

ρB(v) = G(Γ−1(Φ(v))), (8)

ρS(c) = 1 − F (Φ−1(Γ(c))). (9)

Equations (5), (7), (8), (9), F (v) = F̃ (B−1(v)), and G(c) = G̃(S−1(c)) characterize

the dynamic types v = B(ṽ), c = S(c̃) and their distributions F and G for any given

steady state distributions F̃ and G̃. We will determine the relation of these distributions

to the distributions of the entrants F̃0 and G̃0 below.

In principle, this already allows us to derive the optimal fee function ω, by obtaining

F and G from the underlying steady state static distributions and substituting into (1).

This allows us to state the following corollary to Proposition 1:

Corollary 2. If the distributions (F,G) are regular, then fee setting with ω(p) given by

Proposition 1 is an optimal mechanism for every intermediary in every period. Conse-

quently, it is an equilibrium mechanism.

Of course, the distributions (F,G) are endogenous, so the condition in the above

statement is rather stringent. However, deriving the properties of F and G from the

fundamentals of the model is very hard in general. Below we present examples where

(F,G) are indeed regular. One approach is solving the problem numerically. Another

approach is to solve the problem backward, starting with dynamic type distributions F

and G and finding the corresponding static distributions F̃ and G̃. The second approach

resembles more how one would proceed empirically since the distribution of the dynamic

types is closer to what one observes empirically: if a buyer rejects a price p we know that

it is above his dynamic valuation v, while his static valuation has to be inferred from the

estimate of his dynamic valuation. We will use this second approach in the following.
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3.3 The Relation Between Static and Dynamic Valuations

For the sake of analytical tractability we will choose dynamic distributions with support

[0, 1] such that the virtual valuation/cost functions are linear.G(c) = cβ and F (v) =

1 − (1 − v)α is the most straightforward choice. However, we need to truncate the

distributions to get rid of buyers and sellers who do not trade for sure (Γ(c) > Φ(1) and

Φ(v) < Γ(0)). This gives us

F (v) = 1 −
(

α + 1

α

)α

(1 − v)α and G(c) =

(

β + 1

β
c

)β

,

on supports [1/(α+ 1), 1] and [0, β/(β+ 1)], respectively. Note that truncation does not

change Φ and Γ. From (8) and (9) we get with some algebra the probabilities of trade

ρB(v) =

(

α + 1

α
v − 1

α

)β

and ρS(c) =

(

1 − β + 1

β
c

)α

.

The solutions for the differential equations (5) and (7) for B(ṽ) and S(c̃) are given

implicitly by

v = B(ṽ) +
δ

1 − δ

α

α + 1

1

β + 1

(

(α + 1)B(ṽ)

α

)β+1

+ const,

c = S(c̃) − δ

1 − δ

β

β + 1

1

α + 1

(

1 − (β + 1)S(c̃)

β

)α+1

+ const,

where the constants are such that B(ṽ) = ṽ and S(c̃) = c̃. To obtain the functions

B and S one needs to solve (β + 1)th and (α + 1)th degree polynomials.33 For the

uniform-uniform case (α = β = 1) we can obtain the closed form solutions

B(ṽ) =
1

2δ

(

2δ − 1 +
√

(1 − δ)(1 − 3δ + 4ṽδ)
)

, (10)

S(c̃) =
1

2δ

(

1 −
√

(1 − δ)(1 + δ − 4c̃δ)
)

. (11)

S(c̃) is plotted for in Fig. 4. Fig. 4 illustrates that especially low cost sellers have a

higher dynamic type: if they cannot sell in the current period for a high price, they are

willing to wait further. Fig. 5 shows how g̃(c) relates to g(c). For δ = ǫ = 0, g̃ and g

coincide.

33Obtaining the inverse functions B−1 and S−1 is fairly simple. Unfortunately, since we started from
the dynamic types, we need B and S for our exercise to find the distributions F̃ and G̃.



3 DYNAMIC COMPETITION WITH RANDOM MATCHING 24

0.5

0 1−1−2
c̃

c = S(c̃)

Figure 4: S(c̃) for η = r = 0.1 and τ = 1. For τ = ∞, S(c̃) is equal to the 45 degree line
(dashed line).
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Figure 5: g̃0(c), g̃(c), and g(c) for η = r = 0.1 and τ = 1.
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3.4 Entrant Types

Let us turn to the types of the entrants. Again, solving the problem backward turns out

to be simpler than forward. Assume we already know the dynamic distributions F and

G and the static steady state distributions of the types in the market F̃ and G̃. Now we

want to derive the distributions F̃0 and G̃0 entrants must have for the market to remain

in steady state.

The probability that a seller remains in the market is (1 − ρS(c))e−ητ . Note that

here the distinction between the total discount rate δ = e−(η+r)τ and the probability

of remaining in the market e−ητ matters again. The mass of sellers of dynamic type c

leaving the market is the probability that such sellers do not remain in the market times

the mass of all sellers σ. To obtain steady state we equate this with the mass of entrants

of type c:

σ(1 − (1 − ρS(c))e−ητ )g(c) = g0(c), (12)

where g0 is the distribution of entrants’ dynamic types and where σ has to be such that
∫

g0(c)dc = 1, i.e. the total mass of entrants is equal to the total mass of sellers leaving

the market. Eq. (12) shows that for every seller with dynamic type c there are

[σ(1 − (1 − ρS(c))e−ητ )]−1

sellers with the same c in the market. Since this is increasing with c, this means that

sellers with high dynamic costs cumulate more in the market. This is intuitive, after all

they have to wait longer until they can sell their good for the high price they charge.

We are now able to formulate the second answer to the question raised in Section 2

whether the seller’s distribution should vary in different markets if the buyer’s does. Even

if the distributions of the entering buyers and sellers are the same, since high cost sellers

and low valuation buyers wait longer in the market, the steady state probability density

functions become steeper compared to the entrant densities with higher costs and lower

valuations. This explains why buyers’ dynamic distributions are different from sellers’.

It seems plausible (even though it has yet to be shown formally) that even if entering

sellers’ distributions have a somewhat different shape34 in different geographical regions,

34Note that the first answer to this question pointed out that if the sellers’ distributions in different
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the cumulation of high cost sellers transforms the distributions to similar distributions

close to a power distribution.

So far the argument concerned distributions of dynamic types. As Eqs. (4) and (6)

(and graphically Fig. 5) illustrate, the transformation from static type distributions to

dynamic type distributions has an opposing effect to the cumulation of high cost sellers:

since the value of continuing is higher for low cost sellers, the distribution of dynamic

types is flatter than the static type distribution. In the following we illustrate in a

simple example that cumulation can be a stronger effect than the dynamic valuation

effect. Whether this is true in general is yet to be shown.

To get the static type distribution of entrants, one has to substitute S(c̃) for c in

(12):

σ(1 − (1 − ρS(S(c̃)))e−ητ )g̃(c̃) = g̃0(c̃).

We will do this procedure for c, v uniform explicitly. Eq. (12) simplifies to

2σ(1 − 2ce−ητ ) = g0(c).

Using g̃0(c̃) = g0(S(c̃))S ′(c̃) one gets

2 σ
1 − δ

δ
e−η τ

(

1 − 1 − e−rτ

√

(1 − δ) (1 + δ − 4 cδ)

)

g̃0(c) is shown in Fig. 5.

This analysis should already provide a basic idea of this relation. It shows that high

cost sellers (and analogously low valuation buyers) cumulate more in the market. This

turns the density of the sellers to a “more convex” one that is closer to a power distri-

bution and possibly makes differences in entrant distributions in different regions less

important. This is a possible explanation for the small variance in real estate brokerage

fees. The fact that the dynamics of such markets turns densities “more convex” also

helps to explain the steep increase in the shape of the distribution of the sellers’ dynamic

types which corresponds to a fee of 6 percent: G(c) ≈ c16.

geographical regions are different, but have the same shape after truncation, the argument about invari-
ance of fees still holds. Here we are only dealing with the issue of distributions having different shapes
after truncation.
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Preliminary results from numerical simulations with F̃0 and G̃0 uniform on [0, 1] are

provided in Fig. 6.
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Figure 6: Relation between static entrant, static steady-state, and dynamic steady state
distributions for buyers and sellers. δ = e−(η+r)τ = 0.54 and ǫ = e−ητ = 0.73.

3.5 First Order Effects – Perturbation Analysis

Even though an analytical solution cannot be found in general, we can describe the

effects of infinitesimally small perturbations of an analytically tractable solution.

We will start out with a case where we have an analytical solution: the static model. If

traders discount the future with factor δ = e−(r+η)τ → 0 (equivalent to r → ∞) and their

probability of staying in the market ǫ := e−ητ → 0 (equivalent to η → ∞), the solution

of the dynamic game trivially coincides with the static game, we have c = S(c̃) = c̃

and g = g̃ = g̃0. As a next step we increase the probability of staying in the market

ǫ infinitesimally, but keep the discount rate δ constant. This has the effect that static

types and dynamic types still coincide, but entrant and steady state distributions become

different since sellers accumulate. We will also assume that the change of ǫ only affects
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G and not F , because only the drop out rate of sellers changes. Another possible reason

is that we are close to a power distribution, so that a change of F hardly has any effect.

The following analysis uses perturbation analysis to perturb a function infinitesimally

and look at the first order effect of this perturbation on the system of differential equa-

tions. As long as second order effects are sufficiently small, this is a good approximation

of the exact solution.

To simplify the exposition, we will denote in this subsection the entrant static type

distributions F and G instead of F̃0 and G̃0; the distributions of the steady state dynamic

types (which coincide with the static types) will be denoted by F̂ and Ĝ.

Now recall from (12)

σ(1 − (1 − ρS(c))ǫ)ĝ(c) = g(c), (13)

where ρS(c) = 1−F (Φ−1(Γ(c))) and σ is a constant such that the density function ĝ adds

up to one. In the following, we want to have a function γ that infinitesimally perturbs ĝ

ĝ(c) = (1 + ǫγ(c))g(c)

and ensures that ĝ adds up to one, i.e.
∫ c

c
γg = 0.

Increasing ǫ infinitesimally has the following first order effects.

Proposition 5. The first-order effects of an increase of ǫ from ǫ = 0 are the following:

(i) (ln Ĝ)′ increases,

(ii) Γ̂ decreases and Γ̂−1 increases,

(iii) the sign of the change of (Γ̂−1)′ is ambiguous.

Since Ĝ enters ω̂ only through Γ̂−1 and ω̂′ only through (Γ̂−1)′ (see equations (1) and

(2)), this leads us immediately to the following Corollary.

Corollary 3. As the waiting time between rematchings decreases (starting from an in-

finite waiting time and considering first-order effects)

(i) the overall fee ω(p) becomes lower,
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(ii) the sign of the change of the marginal fee ω′(p) is ambiguous.

That the overall fee is lower with more frequent rematching could be suspected by

intuition for two reasons. First, a more frequent rematching resembles more competition

and should therefore drive down fees. Second, we have seen for the case of uniform

dynamic cost distributions that more frequent rematching makes the seller’s cost dis-

tribution more convex, which corresponds for a power distribution to β increasing. A

higher β means a lower fee. But a formal derivation of the first order effects shows

that the intuition does not carry over further. An increase of β for a power distribution

also means a lower marginal fee. However, the first order effect for the marginal fee is

ambiguous.

The role private information plays in our model is also worth a brief discussion in

this context. If buyers and sellers did not have price information, then each intermediary

would optimally leave zero net utility to each of them. Therefore, as in Diamond (1971),

reducing the search friction, which in our setup corresponds to shortening the period

length, would have no effect on equilibrium fees unless the search friction can be abolished

completely.35 With private information, however, shortening the period length does have

a discernible effect on the equilibrium fee structure.36

4 Applications

We now discuss how our analysis relates to various important applications such as stock

brokerage, auction houses and sites, and real estate brokerage.

35A simple illustration of the logic of the so called Diamond paradox (see e.g. Anderson and Renault,
1999) is to assume that, say, a buyer searches sequentially and discounts future payoffs with the factor
δ ∈ (0, 1). Let UB(ṽ) be the payoff he gets when buying from the intermediary he is currently matched
to. Since he has the option of continuing search, UB(ṽ) = δUB(ṽ) has to hold. But since δ < 1 this
implies UB(ṽ) = 0. With incomplete information, the buyer enjoys an informational rent of ṽ − DB(v)
as given in (3). Notice in particular that if it were the case that ṽ − DB(v) = 0, then WB(ṽ, v) = 0
would follow for exactly the same reason as in Diamond (1971). See also Satterthwaite and Shneyerov
(2007, 2008), Lauermann (2007) and Lauermann and Wolinsky (2008) for comparisons of effects arising
in incomplete and complete information models with dynamic matching.

36Notice also that initial condition for the comparative statics exercise of Proposition 5 and Corollary
3, ǫ = 0, corresponds to a prohibitively high search cost in Diamond (1971). So at this point the
Diamond model is continuous (though, obviously, invariant) in the search cost.
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4.1 Stock Brokers

Linear fees are widely used in stock brokerage. The empirical finance literature describes

two kinds of fees used: flat fees and percentage fees (see Conrad, Johnson, and Wahal,

2001).

An important reason why stock brokers may prefer percentage fees to (bid and ask)

price posting (see Section 5.3) may be the highly volatile nature of the value of the goods

(i.e. stocks) in the exchange of which they are engaged. This feature is arguably well

captured by our model, where the buyer’s and seller’s valuations v and c are stochas-

tic. Consequently, the market price exhibits substantial variability and price posting is

not optimal for the intermediary, as shown in Proposition 9 below, whereas percentage

fee setting is. Interestingly, the literature on market microstructure and intermedia-

tion mainly focuses on price posting by brokers. For example, Gehrig (1993) studies

a static model with a monopolistic broker who quotes bid and ask prices. Similarly,

Duffie, Garleau, and Peddersen (2005) analyze market making by price setting inter-

mediaries in a dynamic setup, where the intermediaries’ search intensity is determined

endogenously and price posting is the exogenously given mechanism. An exception is the

paper by Duffie and Strulovici (2008), who provide a model with intermediaries in capital

markets that charge percentage fees.37 Another paper that departs from the assumption

of price posting is Parlour and Rajan (2003) who study an infinite horizon model with

market makers who quote bid-ask spreads rather than post bid and ask prices. This

is obviously related yet distinct from the percentage fees used in practice and the ones

studied in the present paper.

4.2 Auction Houses and Auction Sites

Auction houses like Sotheby’s and Christie’s and auction internet sites like eBay set

percentage fees38 and the seller then sets a reservation price rather than a take-it-or-

37However, their focus is on capital mobility between markets and they assume the percentage fee
mechanism as exogenously given. Moreover, capital owners who wish to trade do not have any private
information, so that percentage fees can be charged directly on the surplus generated by a transaction.
See also Yavas (1992) who makes a similar assumption.

38Prior to being convicted of collusion, this fee was 20 percent for Sotheby’s and Christie’s. Before
they changed to a regressive fee structure, eBay used to charge a linear fee of 5 Percent.
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leave-it price. Our dynamic model sheds some light on the determinants of these fees.

In a market where it takes a long time until participants are rematched, i.e. where τ is

large, there is less cumulation of high cost sellers.39 Therefore, the probability density

function is less steep. The lower β in a power distribution G(c) = cβ implies a higher fee

ξ = 1/(1+β). By the same logic a short period τ implies a lower fee. For example, a fee

of 6 percent as used by real estate agents corresponds to a distribution G(c) = cβ with

β ≈ 16. The 5 percent formerly charged by eBay to β ≈ 19, and the 20 percent previously

charged by Sotheby’s and Christie’s to β = 4. This result seems intuitive: a shorter time

between consecutive matches is similar to more competition between intermediaries and

hence leads to lower fees.

Of course, whereas for real estate brokerage a large number of intermediaries is ar-

guably a good approximation, for Sotheby’s, Christie’s and eBay it is not. Having few

competitors has the effect that every intermediary will take into account that agents not

trading today will be matched with him in the future with a positive probability. Hence

he will choose a mechanism that leads to no trade occurring more often. For auction

houses, however, there are two (partially) offsetting effects. First, since in an auction

the probability that no buyer bids more than the reserve price is smaller, it is less likely

that the seller will return to the intermediary. Second, goods auctioned off are likely to

be further away from the assumption of homogeneity we have made. Hence, a buyer not

buying the good now is less likely to bid for a sufficiently similar good in the next period.

Collusion Another issue we have abstracted from is collusion. The U.S. Department of

Justice uncovered commission fixing between Sotheby’s and Christie’s in the 1990s and is

currently investigating whether real estate agents are colluding (DOJ, 2007). Analyzing

how collusion would look like in our dynamic setup is therefore of particular interest and

relevance. For the two extreme cases where τ is either zero or infinite, the answer is

simple. For τ → ∞ the probability of being rematched is zero. Therefore, the optimal

collusive mechanism, i.e. the mechanism that maximizes joint profits, is given by the

39For example, as τ → ∞ there is no cumulation at all since all sellers leave the market with probability
1 − e−ητ → 1.
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optimal mechanism in the static model derived in Section 2. For τ → 0 all the bilateral

matchings essentially become one multilateral, simultaneous matching of all buyers and

all sellers. An optimal mechanism for a monopolist, or equivalently for colluding firms, in

this setup is to post bid and ask prices at which sellers are allowed to sell and buyers are

allowed to buy, as we show in Proposition 10 below. Determining the optimal collusive

mechanism for intermediate values of τ requires solving a rather complicated dynamic

mechanism design problem, where the feasibility constraint is that only matched buyers

and sellers can trade in any given period. This is left for future research.

4.3 Real Estate Brokers

An important assumption that we maintain throughout the paper is that the intermedi-

ary has all the bargaining power. In the context of the real estate brokerage literature,

which has almost exclusively stayed within principal-agent models, where the seller or

occasionally the buyer is the principal, this is a novel perspective. As we outline next,

we think there are good reasons to look at real estate brokerage from this new angle.

First, in the case where a broker represents a buyer, the broker typically charges 3

percent of the price paid by the buyer. This percentage fee cannot be explained in a prin-

cipal agent framework where the buyer incentivizes the broker to find an advantageous

price for him, since their interests are diametrically opposed under such a contract.

Second, even in the cases where the broker represents the seller, it is not clear why the

broker typically gets 6 percent of the total price. If it were the seller who proposes the

contract to the broker, incentive compatibility implies that he would give a much higher

percentage to the broker for the marginal increase of price he achieves. Making the

individual rationality constraint binding should lead to a lower fee on the inframarginal

price.40

Third, many observations suggest that bargaining rests with the broker rather than

the buyer or the seller: the almost complete invariance of commission fees, the concerns

about collusion by real estate brokers, and the fact that brokers are long-term players

40As Hsieh and Moretti (2003) point out in their empirical analysis, a 6 percent fee seems to be far
above the costs incurred by a broker for a house selling for say USD 500,000, especially so as 6 percent
is sufficient to cover the broker’s costs for a house selling for USD 100,000.
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with substantial benefits from reputation, whereas individual buyers and sellers trade

with very low frequency with brokers. It is also not clear why as a consequence of

competition between brokers sellers, or buyers, should propose the contract since in most

other industries competing firms like e.g. retailers, car manufacturers or gas stations

make take-it-or-leave-it (price) offers to their clients. Competition merely constrains

these firms in what they can optimally offer.

Fourth, empirical observations of price dispersion of houses with the same quality

and the relation of the price and the time on market are difficult to explain in a principal

agent framework.

Stylized Facts in Real Estate Brokerage We have abstracted from many details of

individual markets so as to develop a fairly general model of intermediation. It is there-

fore remarkable, that our baseline model, and straightforward extensions of it, already

match many of the stylized facts observed in real estate brokerage. Extending the model

to the specificities of real estate brokerage should lead to a better match of facts.41

First, real estate brokers charge 6 percent of the transaction price, a commission

rate that shows very little variance over time and across regions. Second, sellers with a

higher loan-to-value ratio ask higher prices (Genesove and Mayer, 1997). Third, sellers

who had bought their houses when average real estate prices were high, ask for higher

prices than those who had bought when prices were low (Genesove and Mayer, 2001).

Fourth, quality adjusted prices and time on market of a house are positively correlated

in cross sectional and negatively correlated in longitudinal data. Fifth, broker fees are

the same irrespective of the number of intermediaries and house prices. Sixth, while

industry profits doubled, the number of brokers doubled as well (Hsieh and Moretti,

2003). Seventh, brokers sell their own houses at higher prices than those of others (see

Levitt and Syverson, 2008; Rutherford, Springer, and Yavas, 2005)

We have dealt with the first stylized fact in the previous sections. The second and

the third are relatively easy to explain, the others will be dealt with later on. The second

41One extension we are currently working on is having a different rematching frequency for sellers
than buyers.
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fact can be interpreted as the loan-to-value ratio being a proxy for the seller’s cost. Note

that in a Walrasian equilibrium, by the law of one price, the price of a house must only

depend on its characteristics and not on the seller’s preferences. Therefore, this fact is

inconsistent with the law of one price. However, it is consistent with a setup with search

frictions and incomplete information, since this leads to price dispersion.

The third fact can, again, be explained by price dispersion of houses of the same

quality. During a boom only buyers from the upper quantiles of the valuation distribution

buy, for low valuation buyers prices are too high. When average prices are low, also buyers

from the lower quantiles buy. Assuming that individuals that were high valuation buyers

when they bought their houses are more likely to be high cost sellers when they sell later,

we would expect the effect described in Genesove and Mayer (2001): buyers who bought

during a boom ask for higher prices.

In the following, besides giving explanations for the other stylized facts, we will show

the empirical implications of our model. Of course, an empirical analysis would have to

incorporate the specificities of the housing market.

4.3.1 Quality Adjusted Price and Time On Market

There is a large empirical literature dealing with the relation between the quality adjusted

listing price and the time on market.42 For example, Rutherford, Springer, and Yavas

(2005) consider the degree of overpricing (DOP) which is similar to a quality adjusted

price. Assuming that everyone agrees that the objective value of a certain house is θ, an

individual trader’s valuation for the house is the product of θ and the trader’s subjective

valuation, i.e. θv and θc for the buyer and the seller, respectively. The observed price

p̂ is given by P̂ (c) = θP (c), where P (c) is the quality adjusted price. The degree of

overpricing is the percentage which the listing price of the house is above the objective

value of the house, DOP = (P̂ (c) − θ)/θ. The quality adjusted price would hence be

P (c) = DOP + 1. The price P (c) in our model can be interpreted as a quality adjusted

42See e.g. Hendel, Nevo, and Ortalo-Magné (forthcoming), Rutherford, Springer, and Yavas
(2005), Genesove and Mayer (1997, 2001), Kang and Gardner (1989), Yavas and Yang (1995) and
Larsen and Park (1989)
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price.43 Therefore, our model can be interpreted e.g. as consisting of several separate

submarkets that differ only in their θ, which is publicly observable, the distributions of

v and c being the same. If the submarkets were not separate, it would be an issue that

a trader’s dynamic valuation depends on the distribution of θ he expects to get matched

with in the next period.

A very relevant issue in practice in real estate brokerage is the time an object is on

the market. We now derive predictions on the relation between the quality adjusted price

and the time a house is on the market before being taken off the list, which happens either

because it is sold or because the seller leaves the market without selling. Interestingly,

the baseline model predicts that the average time on market is the same for sold and

unsold houses.

Homogeneous Market First, consider a market with only one homogeneous good.

Consider only the subsample of houses offered for a certain price p. Then in each period

a constant fraction 1 − F (p) of houses leaves the market because they are sold and a

constant fraction ǫF (p) = e−ητF (p) drops out for exogenous reasons. Since in every

period the ratio of those selling and of those dropping out is constant, the distribution

of the time on market is the same (geometric) distribution for sold houses and for houses

that drop out for exogenous reasons. The continuous time approximation of the discrete

time geometric distribution is described in Prop. 6.44

Proposition 6. For homogeneous houses the time on market of sold and unsold houses

has the same distribution. The continuous time approximation of this distribution is

exponential with the cumulative distribution function 1 − exp(−(φ(p) + η)t) and mean

T (p) =
1

φ(p) + η
, (14)

where φ is defined as e−φ(p)τ := F (p). For a price p the ratio of houses ever sold, denoted

43Since Rutherford, Springer, and Yavas (2005) estimate DOP as the average listing price a house with
certain characteristics has, this means that DOP has mean 0. This corresponds to a quality adjusted
price normalized to have mean 1.

44We provide the continuous time version of the distribution since it is more convenient for empirical
purposes. The discrete time version is derived in the formal proof in the Appendix.
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1 − F∞(p), is

1 − F∞(p) =
φ(p)

φ(p) + η
. (15)

Consistent with our model the empirical literature (see e.g. Hendel, Nevo, and Ortalo-Magné,

forthcoming) finds that the quality adjusted listing price and the time on market are pos-

itively correlated in cross-sectional data. One can also easily find an explanation in our

framework for the negative correlation observed in longitudinal data.45

In theory, observing the relation between listing price p and the time on market T (p)

on the one hand and the ratio of houses sold, 1 − F∞(p), on the other hand would be

sufficient to estimate the steady state dynamic distribution F . The most straightforward

approach is solving (14) and (15) for φ(p) and η which results in φ(p) = (1−F∞(p))/T (p)

and η = F∞(p)/T (p).

An empirical analysis would of course have to overcome further issues not present

in our theoretical framework. Some could be dealt with by straightforward extensions

of our framework or standard econometric tools, such as seasonal differences, the fact

that it takes some (random) time until advertisements for a house appear and potential

buyers first view the house,46 or truncation of data. Others will require further thought.

To illustrate, we provide a numerical example of the prediction our model would

give for dynamic type distributions F (v) = v and G(c) = c16 in Fig. 7. Note that the

two subfigures on the left are our assumptions on F and G, the other four subfigures

represent our predictions of the empirically observable functions.

Our results concerning the average time on market of sold and unsold houses can

be used in two ways. If one does have data on the time on market of unsold houses,

a comparison of these two variables can be used as an indicator of how well one has

corrected for heterogeneity of house characteristics (see next paragraph). If one does not

45I.e. during a boom period houses are sold faster and at higher prices than during a recession. In our

framework this means that F and G change in booms such that both the average price
∫ P−1(v̄)

c
P (c)dG(c)

increases and the overall average time on market
∫ P−1(v̄)

c
T (P (c))dG(c) decreases.

46This leads to the time on market not being exponentially distributed, but having a peak for some
t > 0.
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have this data for unsold houses, using the time on market of sold houses is enough for

the analysis so far.

Heterogeneous Submarkets Typically a data set includes heterogeneous submar-

kets. Difficulties arise when drawing borders between submarkets, some of which are

similar to the well-known difficulties in antitrust economics of defining the relevant mar-

ket.47 A simple approach to the heterogeneity of submarkets is to assume that they

differ only by a constant multiplier θ, e.g. the distributions of valuations and costs of

one bedroom apartments and mansions have the same shape, but mansions are worth,

say, four times more to everyone. Our previous results carry over without any change to

such forms of heterogeneity.

However, for other kinds of heterogeneity, observations from several submarkets with

different shapes of distributions showing up in the data would lead to average times on

market that are lower for sold than for unsold houses. Intuitively, houses that have a

higher probability of selling at the same price have a shorter time on market and are also

relatively overrepresented in the set of sold houses. This is formally shown in Prop. 7.

Proposition 7. If heterogeneous submarkets are in the observed sample, the time on

market is lower for sold than unsold houses.

This result is consistent with Larsen and Park (1989)’s remark in their empirical

analysis that failing to include unsold houses may lead to a bias in the estimation of

time on market. The analysis above suggests that such a bias stems from heterogeneity.

Results in Prop. 7 naturally carry over to the case where times on market are estimated

as averages over all prices rather than for a specific price.

4.3.2 Inefficient Free Entry

Inefficient free entry of real estate agents is studied by Hsieh and Moretti (2003). Their

empirical analysis also includes a reduced form model of inefficient free entry, similar

47For example, is the joint group of one and two bedroom apartments one submarket or are one bed-
room apartments in Evanston with central air conditioning a separate submarket? Other difficulties may
simply stem from the choice of narrow submarkets leading to too few data points within a submarket.
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in spirit to Salop’s (1979) and Mankiw and Whinston’s (1986) theoretical work. Their

model takes fees as exogenously given and hence independent of the number of interme-

diaries. Our framework can be easily extended to allow for endogenous entry of inter-

mediaries. We can show that, under a condition we maintained in the dynamic model

above and that seems empirically warranted, the mass of active intermediaries does not

affect the equilibrium mechanism. Our model can hence also serve as a microfoundation

for Hsieh and Moretti’s assumption of exogenously given fees.

Homogeneous Intermediaries Assume first that intermediaries are homogeneous

and have the per period opportunity cost K of participating in the market. Denote an in-

termediary’s expected profit during a match as Π :=
∫ v

v

∫ c

c
max{0,Φ(v)−Γ(c)}f(v)g(c)dcdv

and the mass of intermediaries in the market as ι.

First, consider the case where there are more intermediaries than traders in the market

(ι > σ). A trader will always be matched and his probability of trade will be independent

of ι. Therefore, his dynamic valuation and the equilibrium mechanism intermediaries use

will be independent of ι and so will, therefore, be Π. An intermediary, on the other hand,

is matched with probability σ/ι. If entry is free, intermediaries will enter until expected

profits equal opportunity costs, i.e. (σ/ι∗)Π = K, which gives us the equilibrium mass

ι∗ of active intermediaries in the market.

For Π < K excess supply of intermediaries (ι > σ) is not possible. In this case

there is a scarcity of intermediaries, therefore, buyers and sellers will have to take into

account that their matching probability ι/σ is less than 1. Hence ι will determine

traders’ dynamic valuations, an intermediary’s equilibrium mechanism, and his profit

per transaction Π. The equilibrium number of intermediaries is then given by Π̂(ι) = K,

where Π̂(ι) is some (decreasing) function that determines equilibrium per transaction

profits depending on the number of intermediaries in the market.

Which of the two scenarios (ι > σ or ι < σ) is relevant is, of course, an empirical

question. Hsieh and Moretti find that the number of transactions per year per interme-

diary decreased over the time horizon where real estate was booming and attracted a

lot of entry. This means that after the increase in housing prices and the wave of entry
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associated with it there was an excess supply of intermediaries (ι > σ). Further, the

number of intermediaries ι has increased proportionally to the overall profits made in

real estate brokerage (σΠ). This means that there was an excess supply of intermedi-

aries already before new intermediaries entered. Therefore, the empirically relevant case

seems indeed to be the one with ι > σ we focus on.48

Heterogeneous Intermediaries Let us now assume that intermediaries are hetero-

geneous with respect to their opportunity costs and their productivity.49 This is more in

line with the empirical observation of a small number of “star brokers” who account for

a large fraction of profits in the industry. Index intermediaries by ι ≥ 0 with ι increasing

with their costs K(ι) (hence K ′(ι) > 0). We model an intermediary’s productivity by his

relative probability of being matched r(ι). This means that if the set I of intermediaries

is active, an intermediary’s matching probability is r(ι)/R(I) with R(I) :=
∫

ι∈I
r(ι)dι

and his expected profit (σr(ι)/R(I))Π in case of excess entry.50

Consider the simple case with r′(ι) ≤ 0, i.e. agents with higher opportunity costs are

(weakly) less talented as brokers. This means the lower ι the more willing to participate

a broker is. Hence brokers in I∗ = [0, ι∗] participate in equilibrium for some marginal

broker ι∗. I∗ and ι∗ are given by (σr(ι∗)/R(I∗))Π = K(ι∗). Since r is decreasing and

K increasing, an increase of Π will clearly increase per year profits of the marginal

intermediary ι∗. Hence, average industry profits will increase even more.

For other slopes of r we can get e.g. the case described in Hsieh and Moretti Appendix

A: brokers in I∗ = [ι∗min, ι
∗

max] ⊂ (0,∞) participate, where ι∗min and ι∗max are the marginal

indifferent brokers. This is Hsieh and Moretti’s story of the “middle class” doing real

estate brokerage: people with very low skills would not earn enough as brokers, people

with very high skills earn more in other jobs. If r is strongly increasing in the upper part

48Besides, the number of transactions (only including sales, not rentals) changed from 6 to 3 per year
in the region investigated by Hsieh and Moretti. It is unlikely that intermediaries had to turn away
potential traders because they did not have capacity to take care of them.

49This relates to Hsieh and Moretti’s Appendix A, where they study differently talented brokers with
heterogeneous participation costs.

50If entry is not excessive, i.e. the mass of intermediaries
∫

ι∈I
dι is less than σ, profits per transaction

will be some Π̂(I).
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of the interval I∗ of active brokers, we have the case of a few “star brokers” that get a

large share of the transactions and the profits in the industry.

The shapes of r and K determine whether the active set of intermediaries may con-

sist of multiple non-connected intervals, whether there is multiplicity of equilibria, the

sign of the effect of an increase of per transaction profits Π on average industry profits

(σ/
∫

ι∈I
dι)Π,51 and the welfare effect of entry tests for brokers.52 Empirical observa-

tions of the distribution of per year profits among intermediaries should allow to make

inferences about the slopes of r and K.53

4.3.3 Vertically Integrated Intermediary-Seller

Levitt and Syverson (2008) and Rutherford, Springer, and Yavas (2005) observe that

houses owned by brokers yield on average a higher price than comparable houses of

independent sellers. Our dynamic model can be used to investigate the selling behavior

of intermediaries who are also owners. Suppose the intermediary owns the good (i.e. the

seller and the intermediary can be considered as a vertically integrated firm), so that he

knows his cost c̃. Then price posting will be optimal for this vertically integrated seller.54

Not surprisingly, the profit of the vertically integrated seller will exceed the joint profits

of the stand alone seller and stand alone intermediary.

51That average industry profits can increase with per transaction profits has been already shown for
r weakly decreasing and K increasing. That they can decrease can be illustrated with the following
example. Let initial per transaction profits be Π0. Assume r(ι) = 1 for ι < 1 and r(ι) = 2 for ι ≥ 1.
Assume K(ι) = σΠ0/2 + ǫ for ι < 2 with some small ǫ and K(ι) = ∞ else. Initially, only agents in the
interval I∗ = [1, 2] participate. Per year profits are σΠ0. An increase to Π1 = (3/2)Π0 − ǫ results in the
entry of low ability agents with ι ∈ [0, 1]. Average per year per intermediary profits fall to σ(3/4)Π0.

52The National Realtor Association and individual states require candidates to pass an exam to be
licensed as a broker. Besides the slopes of r and K the effect would also depend on the details of the
test. E.g. for r weakly decreasing a test that excludes brokers with the highest opportunity costs would
be clearly welfare enhancing, a test that excludes the lowest opportunity cost intermediaries welfare
reducing. Otherwise the effect is ambiguous.

53If the cumulative distribution function H of per year profits among intermediaries is observable, the
following reasoning applies. Under the assumption that r is weakly increasing and I∗ = [ι∗min, ι

∗
max], the

inverse of the cumulative distribution function is equal to H−1(x) = σr((ι∗max − ι∗min)x + ι∗min)/R(I∗)Π,
which should allow to recover r for the domain I∗. For the opportunity cost K one can only infer that
it is weakly less than per year profits in I∗ and equal at the boundaries of the interval, ι∗min and ι∗max.
A change of I∗ over time (e.g. because of a change of Π) would allow for further estimates.

54If the intermediary and the seller are independent agents, then the intermediary will offer pS = c to
the seller and the seller’s profit is zero. Whether the intermediary and the seller are vertically integrated
or not, the optimal price charged to the buyer will be pB = Φ−1(c). That price posting is optimal with
one buyer follows from the theory of optimal selling mechanisms; see e.g. Myerson (1981).
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However, because the fee setting mechanism that is optimal for the non-integrated in-

termediary imposes an upward distortion in the seller’s effective cost, the price set by the

non-integrated seller should be larger than the price set by the integrated intermediary-

seller in a static setup. Formally, Φ−1(Γ(c)) = P (c) > PI(c) := Φ−1(c), since Γ(c) > c

and Φ is increasing, where PI is the price set by the intermediary-seller. Accordingly, the

welfare of the buyer with an integrated intermediary-seller should be larger than when

the seller and the intermediary are independent. This prediction of lower prices under

vertical integration contrasts with the empirical findings of Levitt and Syverson (2008)

and Rutherford, Springer, and Yavas (2005).

Quite interestingly, dynamics may reverse this result, as we show next. The dynamic

costs satisfy SI(c̃) > S(c̃), where SI is the dynamic cost of the intermediary-seller. So the

intermediary-sellers with static cost c̃, having a higher dynamic cost than the independent

seller, will optimally set a higher price than the independent seller would, absent the fee

charged by an intermediary. Therefore, dynamics tend to mitigate and in some cases

overturn the price difference between vertically integrated and stand alone sellers. To see

this, consider the following example where dynamic valuations are uniformly distributed

with F (v) = 2v − 1 for v ∈ [1/2, 1] and G(c) = 2c for c ∈ [0, 1/2]. Consequently in

equilibrium the independent seller with dynamic cost c sets the price P (c) = c + 1/2.

Since c = S(c̃) as given in (11), the seller with the static cost c̃ sets the price P (c̃) =

S(c̃) + 1
2

= 1
2δ

(

1 + δ −
√

(1 − δ)(1 + δ − 4c̃δ)
)

.

A simple way of introducing integrated sellers is to assume that there are few of them

(i.e. they are of measure zero) so that their behavior does not affect the distribution

of dynamic valuations. Assume also that an integrated seller leaves the market after

successful sale just like stand alone sellers do and are matched to a buyer with probability

one in every period. Then, we have the following:

Proposition 8. An integrated seller with static cost c̃ may set a higher price in equilib-

rium than a stand alone seller with the same static cost.

An analysis yet to be done is to assume that intermediary-sellers have the same

entrant static cost distribution as other sellers and see whether the average price set by
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intermediaries is higher.

5 Extensions

5.1 Per Transaction Costs of Intermediation

Instead of or in addition to assuming a fixed cost of intermediation, let us now briefly

consider now the case where intermediation services involve a variable (as well). We

show that under the assumption of a power distribution with c > 0 of the seller’s cost,

all the previous results go through rather nicely.

Recall first that a power distribution G with c > 0 implies a negative fee ξ < 0, i.e. a

subsidy from the intermediary to the seller which we typically do not observe. However,

intermediaries also provide services (advertising, showing the house to potential buyers,

legal advice) we do not account and that are costly. Thus, the free of charge provision

of these services can be interpreted as a subsidy from the intermediary to the seller paid

in resources.

This is also consistent with the following observation. In the U.K. real estate brokers

typically charge a lower fee (2.5 percent) than in the U.S. but they do also provide less

services. Recall that for a power distribution a larger β implies a lower percentage fee ...

but also a smaller subsidy. Thus, assuming that the seller side both in the U.S. and the

UK are characterized by power distributions, this is consistent with βUK > βUS which

in turn implies ξUS < ξUK < 0, which is consistent with the difference in service levels

provided by brokers.

5.2 Many Buyers in the Dynamic Game

“Non-Discriminating Mechanisms” One can also consider a market with more

buyers than sellers in the pool of current potential traders55, where a seller and an

intermediary are matched with a predetermined number of buyers in each period. Our

results relatively easily generalize to such a setup if we assume that the intermediary

is retricted to a certain class of mechanisms. Define “non-discriminating mechanisms”

55This can be the case because the mass of entering buyers is larger then that of entering sellers or
because the exit rates of sellers are higher.
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as mechanisms that cannot distinguish between buyers. An intermediary restricted to

non-discriminating mechanisms basically treats all buyers as one “representative buyer”

whose valuation is drawn from a distribution F , F being the distribution of the highest

order statistic of the buyers.56 Our results carry over to such a setup if we adapt the

dynamic valuations of the buyers adequately. This implies in particular that whenever

linear fees are an optimal non-discriminating mechanism, they are independent of the

distributions of the buyers’ valuations and, therefore, also of the number of buyers.

An advantage of looking at non-discriminating mechanisms is that they are a superset

of mechanisms that do not condition transfers on the buyers’ valuations and, therefore,

our optimality results carry over a fortiori to these mechanisms. Not conditioning trans-

fers on buyers’ valuations reduces communication costs: imagine a real estate agent

posting prices of houses on sale outside of his office. Passers-by see the prices and only

walk into the office if they are willing to buy at the posted price.

This allows us to interpret our model as equivalent to a model that takes into account

a feature of real estate brokerage markets: buyers are rematched more frequently with

an intermediary than sellers, a seller typically has a real estate agent show his house

to several buyers before he looks for another real estate agent. Consider the following

alternative description of what happens in a period in which a seller and an intermediary

stay together. n buyers with dynamic distributions F1, F2, ..., Fn arrive sequentially in

a random order. Assume that time 0 passes between their arrivals, so that discounting

and exogenous exit do not matter. Then the intermediary and the seller can choose the

fee and the price as if though there were only one buyer with distribution F equal to

the highest order statistic of the distributions {Fi}n
i=1. The first buyer who is willing to

accept the price gets the house.57

Auctions An alternative view of many buyers being matched with one intermediary

in each period is that all buyers arrive at the same time. Then, as argued in Section 2.4,

56One can interpret F (p) as the probability that no buyer is willing to buy at price p.
57This will clearly be optimal in the class of non-discriminating mechanisms. We should compare

this setup to Riley and Zeckhauser (1983) to have a clearer view of optimality in a general class of
mechanisms under the assumption that a buyer who didn’t get the house when he arrived will never
return.
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the optimal mechanism for the intermediary is – provided the seller’s cost is drawn from

a power distribution – to charge a percentage fee and let the seller auction off the good.

Even though this part of the analysis is yet to be formally investigated, results from the

static problem with many buyers should carry over.58

5.3 Price Posting

Static Setup Consider now an alternative mechanism, called price posting, which is

widely used e.g. by stock markets, used car dealers, and currency exchange offices: the

intermediary sets an ask (or buyer) price pB and a bid (or seller) price pS. If both

seller and buyer are willing to trade at these prices, then the intermediary earns the bid-

ask spread. Otherwise, there is no trade. The following proposition characterizes the

optimal bid and ask price and shows under somewhat stricter regularity conditions that

price posting is never optimal for the intermediary in a static setup.59 This is puzzling

at first sight since we observe price posting in many real world examples. We will show

later on how this puzzle is resolved in a dynamic setup.

Proposition 9. Assume the inverse hazard rate (1 − F (v))/f(v) is decreasing and

G(c)/g(c) is increasing and that there is one buyer and one seller. Then the optimal

ask price pB and bid price pS are given by the equations pB = Γ(pS) and pS = Φ(pB).

Further, price posting is never optimal for the intermediary.

This rather general non-optimality result of price posting hinges critically on As-

sumption 1. If one assumes instead that distributions do not overlap and that there is a

sufficiently large gap between the two distributions (more precisely Φ(v) > Γ(c̄)). Then

by Lemma 2 the intermediary always allows trade to occur and sets prices pB = v and

pS = c̄.

58One has to take into account that a buyer’s dynamic value changes for two reasons. First, the
probability that he will trade in a period is lower. Second, the price he pays will be higher.

59These conditions ensure global concavity of the profit function and one can hence work with a
unique solution of the first order conditions. However, without these assumptions, most of the analysis
should carry over since our non-optimality result does not rely on uniqueness.
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Dynamic Setup Proposition 9 stands in contrast with the empirical observation that

many intermediaries do use price posting mechanisms and trade does not occur each

time a potential buyer or seller meets an intermediary. However, a closer look reveals

that in all of the examples of price posting intermediaries there is a crucial difference

to real estate brokers: an intermediary has the possibility of storing the good. Hence

demand and supply need not equal in every point in time, but only on average. A

possible explanation of why real estate agents cannot do this are liquidity constraints

and other costs of storage. Interestingly, as we show next, if storing the good is possible,

price posting becomes optimal.60

For simplicity, let us model the ability to store the good in the following way. An

intermediary can store the good between subsequent rematchings. Assume he has no

liquidity constraints, no storage constraints, his discount factor is 1, he can have short

positions of the good, and storage costs are zero. His only constraint is that he has to buy

and sell with the same probability.61 Therefore we can just as well consider a mechanism

design problem where all buyers and sellers that will be matched with the intermediary

at any point in time arrive at once. In the following we will solve this mechanism design

problem.

Assume that there are N buyers and N sellers with i.i.d. draws vi ∼ F and ci ∼ G.

In a static setup where all buyers and sellers arrive at the same time, vi and ci are

60Riley and Zeckhauser (1983) and Peck (1996) also look at the optimality of price posting mecha-
nisms, but in different setups and without intermediaries. The former relies on buyers’ ability to wait
without costs for a cheaper offer by the same seller, the latter assumes buyers with identical valuations
for the good choosing simultaneously between offers from multiple sellers.

61 Our assumption is essentially the same as Garman’s (1976) assumption of an intermediary with an
infinite inventory of cash and stock and Glosten and Milgrom’s (1985) assumption of “zero costs associ-
ated with all short positions in cash and stock”. Both papers look at intermediaries facing sequentially
arriving traders (in stock markets), but in a very different setup and with a very different focus: both
assume the price posting mechanism as exogenously given, the former considers non-strategic traders
arriving in continuous time, the latter the bid-ask spread set by zero profit intermediaries in the pres-
ence of insider trading. In Garman (1976) an intermediary also faces the constraint that his probability
of buying and selling must equal. We could depart from our assumptions and the equal probability
constraint by using a more complicated setup where the intermediary has a limited storage capacity
and no possibility of short positions. In the long run, he would still have to buy and sell with the same
probability on average, but in the short run the probabilities would be different. E.g. if the intermediary
is about to run out of stocks, he will increase prices to have a higher probability of trading with a seller
than with a buyer. However, one would conjecture that as storage capacity approaches infinity, the
mechanism used in such a setup should approach our mechanism.



5 EXTENSIONS 47

valuations and costs. For the dynamic setup, vi and ci are interpreted as steady state

dynamic valuations and costs. Our analysis relies on N converging to infinity. To

simplify exposition index the realized valuations in decreasing and costs in increasing

order. To avoid dealing separately with the special case where all buyers and sellers

trade, add a fictitious buyer who will never trade with vN+1 = −∞ and a fictitious seller

with cN+1 = ∞.62 Denote the Virtual-Walrasian quantity as defined before Lemma 1

as K := max{i|Φ(vi) ≥ Γ(ci)}. The following Proposition shows that posting two

prices maximizes the intermediary’s profits as the number of buyers and sellers goes to

infinity. The basic idea is that for an infinite number of traders the intermediary knows

the distribution of the realized types. Hence he knows the Virtual-Walrasian quantity

without any reports by the traders, he only has to make sure that traders within the

Virtual-Walrasian quantity trade.

Proposition 10. Consider a price posting mechanism with N buyers and sellers, where

prices are given by the equation system Φ(pB) = Γ(pS) and 1 − F (pB) = G(pS). As N

converges to infinity

(i) the optimal mechanism converges to a price posting mechanism with these prices,

(ii) the price posting mechanism with these prices converges to optimality.

By the argument at the beginning of this subsection, this leads us to the following

corollary.

Corollary 4. If the good is storable, price posting is the optimal mechanism.

The intuition for why for non-storable goods fee setting is the optimal mechanism

and for storable goods price posting is fairly clear. The intermediary is more likely to

make the payments contingent on the seller’s (or the buyer’s) report for non-storable

than for storable goods, since for non-storable goods the type of an individual trader

is more important. For storable goods, the intermediary’s problem of simultaneously

trading with a buyer and a seller can be separated to two separate problem, that of

selling a good and that of buying a good.

62The number of buyers and sellers being unequal could be dealt with in a similar fashion. If there
are e.g. less sellers than buyers, the missing sellers can be filled up with fictitious sellers.
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One seller – infinite number of buyers Another result concerns the equivalence

between, and optimality of, price posting by the intermediary and linear fee setting when

the number of buyers NB approaches infinity while the number of sellers NS is kept fixed

at one. For simplicity, assume that buyers’ valuations are identically and, as before,

independently distributed according to the distribution F on [v, v]. The seller’s cost is

distributed according to G on [c, c] with c < v and as in Proposition 9, we assume that

G(c)/g(c) is increasing. Moreover, as in the rest of the paper, we assume that F and G

satisfy Assumption 1.

Proposition 11. As NB approaches infinity, intermediary price posting and fee setting

are equivalent. Moreover, both mechanisms are intermediary optimal if F is regular.

Note that for an infinite number of buyers and fee setting any ω satisfying ω(v̄) =

v̄ − Γ−1(v̄) and incentive compatibility is profit maximizing for the intermediary. For

instance the intermediary could just as well charge a fixed fee v̄ − Γ−1(v̄).

5.4 Slotting Allowances

Real world retailers often require upfront payments by sellers to allocate scarce shelf

space and then charge a percentage fee on the revenue generated by the seller.63 We

now briefly argue that this type of mechanism arises naturally as the intermediary op-

timal mechanism when the intermediary faces several competing sellers but cannot sell

more than one unit. The latter may occur either because he only attracts one buyer or

because he is capacity constrained. So consider a static model with one buyer whose

valuation is drawn independently from the distribution F and several sellers whose costs

are independent draws from the distribution G, where both F and G are regular.

Proposition 12. The following two-stage mechanism is intermediary optimal:

Stage 1: The intermediary runs a second price auction among the sellers for the

right to participate in the second stage.

Stage 2: The winner of stage 1 sets the price p = P (c), facing the fee function ω(p)

given in Proposition 1.

63See e.g. Sullivan (1997) or Marx and Schaffer (2007).
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The intuition is simple. The intermediary optimal allocation rule is to have the good

change hands, from the seller with the lowest cost to the buyer, if and only if this seller’s

virtual cost is less than the buyer’s virtual valuation (see Lemma 1). The Vickrey auction

in stage 1 picks the lowest cost seller, who due to regularity is also the seller with the

smallest virtual valuation. The fee structure used in stage 2 makes sure that this seller

sets a price such that the buyer accepts if and only if her virtual valuation exceeds his

virtual cost.

Two further remarks are in order. First, any efficient allocation mechanism in stage 1

will achieve the same result. So the result goes through if the bidding process by sellers is

more appropriately described as a first price sealed bid auction. A Vickrey auction just

simplifies the proof because of dominant bidding strategies. Second, if the intermediary

attracts several buyers whose valuations are i.i.d. draws but is constrained by his physical

capacity not to sell more than one unit, then the mechanism in Proposition 12 is still

intermediary optimal, provided the price set by the seller in stage 2 is a reserve price in

an optimal auction.

5.5 Ad Value vs. Per Unit Taxation

The present analysis also sheds new light on the relative performance of ad value and

per unit taxes under imperfect competition, which so far have been mainly analyzed in

complete information setups64 and which are widely used in practice. As ad value taxes

imposed by governments work like percentage fees set by intermediaries, a corollary to

Proposition 1 follows immediately:

Corollary 5. The maximal expected revenue under an ad value tax is weakly larger than

under a per unit tax.

Under a per unit tax t, the seller nets the price p− t when setting p. So the problem

of the seller with cost c is to maximize (1−F (p))(p− c− t), yielding p(c, t) = Φ−1(c+ t)

as solution. To simplify, let us assume that F and G are uniform on [0,1]. Then the

maximal expected revenue under a per unit tax is 1/27, which is achieved with t∗ =

64See e.g. Anderson, De Palma, and Kreider (2001b,a) or the survey by Keen (1998).
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1/3. Consequently, only revenue targets R ≤ 1/27 are feasible under per unit taxation.

Interestingly, this is the same revenue that the intermediary can maximally achieve by

price posting, where the optimal buyer and seller prices are pB∗ = 2/3 and pS∗ = 1/3,

respectively. Moreover, the spread pB∗ − pS∗ equals t∗.65 On the other hand, under an

ad value tax the maximal expected revenue is 1/24, which is achieved with a tax of 50

percent. When talking about price posting in the following proposition, we assume that

prices are set so as to maximize expected welfare subject to the constraint of achieving the

revenue target in expectation. Not surprisingly, given that both F and G are uniform,

these prices are symmetric around 1/2 so that pB = 1/2 + z and pS = 1/2 − z for

z ∈ [0, 1/6]. Clearly, there is a monotone relationship R(z) between the revenue target

R and z satisfying R(0) = 0 and R(1/6) = 1/27.

Proposition 13. First, a per unit tax and price posting are welfare equivalent for a given

feasible revenue target R, and the per unit tax satisfies t = 2z, where R(z) = R. Second,

for any given feasible revenue target R the buyer’s and the seller’s expected surplus is

larger under an ad value tax than under a per unit tax. Third, the incidence of the per

unit tax is borne evenly by the buyer and the seller, whereas the ad value tax hits the

seller relatively harder.

Clearly, it would be interesting to see which of these results generalize. It seems quite

likely that the welfare superiority of the ad value tax carries over whereas the equivalence

between price posting and a per unit tax does not. However, a formal analysis, that

possibly adapts the arguments of Anderson, De Palma, and Kreider (2001b) to a setup

with incomplete information and which would be well in line with the spirit of Mirrlees

(1971)’s seminal analysis, remains to be done.

6 Conclusions

In this paper we study intermediation from an applied Bayesian mechanism design per-

spective, under the assumption that the intermediary has the bargaining power. We find

65This analogy between price posting and a per unit tax is even stronger, as Proposition 13 shows, in
that expected welfare is the same for any target revenue R when prices are set in a welfare maximizing
way subject to achieving the target revenue in expectation.
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that fee setting mechanisms, which are widely used in practice, but so far little under-

stood in economics, are optimal for intermediaries in a wide array of settings, i.e. they

maximize the intermediaries’ expected profits subject to buyers’ and sellers’ incentive and

individual rationality constraints. We show that these mechanisms are optimal in a static

model where one or more buyer(s) and one seller are matched to an intermediary, and

they are optimal for intermediaries in a dynamic model where in every period a buyer,

a seller and an intermediary are randomly matched, and where the valuations of buyers

and sellers are endogenously determined. We show also that the dynamic model with

random matching, in which each intermediary chooses an optimal mechanism, permits

an analytical solution. Perturbation analysis reveals that the equilibrium fees become

smaller when the rematching probability increases, which contrasts with models with

complete information. Our baseline model can be applied to different industries with

intermediaries. In particular, we show that our model can explain several stylized facts

observed in real estate brokerage. The dynamic model also provides a parsimonious ex-

planation for why vertically integrated sellers, e.g. intermediaries who sell houses they

own, may set higher prices than independent sellers, which is consistent with empirical

evidence (see e.g. Levitt and Syverson, 2008). Further research on the optimal collu-

sive mechanism in the dynamic model with random matching seems particularly fruitful

given the widespread suspicion that intermediaries like real estate brokers set their fees

collusively.

Appendix

A Robustness of Linear Fees

In the following, we will make a semi-formal argument in favor of the robustness of

linear fees, i.e. that they perform well even if the seller’s cost is not drawn from a power

distribution. Alternatively, this can be interpreted as arguing in favor of using a power

distribution as an approximation of another distribution G. For analytical convenience,

we assume that the buyer’s valuation is drawn from the uniform on [0,1], so that given

the linear fee ξ the seller’s optimal price is p(ξ, c) = 1/2 + c/(2ξ) independently of the



B PROOFS 52

distribution Gk. We consider the following four different distributions of c on [0,1]:

(i) GH(c) = c2(3 − 2c) with gH(c) = 6c(1 − c) and ΓH(c) = c
1−c

9−8c
6

(ii) GT (c) = 2c− c2 with gT (c) = 2(1 − c) and ΓT (c) = c
1−c

4−2c
2

(iii) GC(c) = 3(c− c3/3)/2 with gC(c) = 3(1 − c2)/2 and ΓC(c) = 2c(3−2c2

1−c2

(iv) GO(c) = 2c3/2/3 − 2c5/2/5 with gO(c) = 15c1/2(1 − c)/4 and ΓO(c) = c
1−c

25−21c
15

.

Observe that all of these satisfy increasing virtual costs. Denote by Π∗

Gk
:= Ev,c[Φ−

Γk | Φ − Γk > 0] the intermediary’s expected profit under the optimal mechanism

when the distribution is Gk and by ΠL
Gk

= maxξ(1 − ξ)
∫ ξ

0
p(ξ, c)(1 − p(ξ, c))gk(c)dc the

intermediary’s expected profit under the same distribution when using the linear fee ξ

optimally with k ∈ {H, T, C,O}. Quite interestingly, for all examples ΠL
Gk
> 0.9979Π∗

GK
.

For these examples, and it seems reasonable to conjecture also for others, even if the

intermediary merely uses an optimal linear mechanism he only loses very little of the

profit he could achieve using an optimal mechanism. Though farther analysis is certainly

warranted, we find this result quite remarkable.

B Proofs

Since we will refer to the properties of intermediary optimal mechanisms often, we sum-

marize Myerson and Satterthwaite (1983)’s Theorems 3 and 4 on intermediation in the

following lemma.

Lemma 2 (Myerson-Satterthwaite). An incentive compatible, interim individually ra-

tional mechanism is intermediary optimal if and only if it is such that (i) the good is

transferred iff Φ(v) ≥ Γ(c) and (ii) the seller with the highest cost c̄ and the buyer with

the lowest valuation v both have zero expected utility.

Proposition 1: Optimal fee.

Proof of Proposition 1. Even though a shorter proof can be obtained by first considering

the dominant strategy implementation, we will derive our results through the incentive

compatibility constraint because other proofs rely on the intermediate steps of this proof.

Note that an indirect mechanism that lets the seller set the price corresponds to a direct
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mechanism with the properties that there are no payments if the good is not exchanged

and payments in case of exchange can only be conditioned on the seller’s report but

not on the buyer’s. Therefore, by the revelation principle we can focus our attention

to direct mechanisms with these properties. We will first derive the optimal direct

mechanism. Denote the probability that the good is exchanged depending on reported

cost c and reported valuation v as Q(c, v). For the class of mechanisms we consider it

is clearly a weakly dominant strategy for the buyer to accept whenever the price is less

than or equal to his valuation. Therefore, the seller’s expected probability of exchange is

q(c) := Ev[Q(c, v)] = 1−F (P (c)) and consequently, trade occurs iff the buyer accepts the

offer, i.e. iff v ≥ P (c). Combining this with the optimality condition (i) of Lemma 2 and

the monotone increasingness of Φ, we get that for an optimal mechanism trade occurs

iff Φ(v) ≥ Φ(P (c)) = Γ(c). This gives us p = P (c). Because of Assumption 1 property

(i) of Lemma 2 implies (ii).

Denote a truthfully reporting seller’s utility as U(c) := (P (c)− ω(P (c))− c)q(c). By

standard arguments (see e.g. the argument leading up to equation (4) in the proof of

Theorem 1 in Myerson and Satterthwaite (1983)) incentive compatibility implies

U(c) = U(c̄) +

∫ c̄

c

q(t)dt. (16)

This expression for U(c) can be interpreted as the seller’s information rent. We already

know that the highest cost seller is not going to sell and hence U(c̄) = 0. This is also true

for other sellers with sufficiently high cost, namely P (c) ≥ v̄ or c ≥ P−1(v̄) := Γ−1(Φ(v̄)).

Therefore, the upper limit of the integral can be written as P−1(v̄). Equating (16) with

U(c) = (P (c) − ω(P (c))− c)q(c) from its definition and rearranging yields

ω(P (c)) = P (c) − c−
∫ P−1(v̄)

c

q(t)

q(c)
dt = P (c) − c−

∫ P−1(v̄)

c

1 − F (P (t))

1 − F (P (c))
dt. (17)

This function gives the fee the intermediary earns when the seller with cost c sets

the price p = P (c). Ultimately, however, we want to know the intermediary’s fee as a

function of the seller’s price p since this is the empirically relevant concept. To that end,

substitute p = P (c) into (17) and integrate using this substitution to get

ω(p) = p− P−1(p) −
∫ v

p
(1 − F (v))[P−1(v)]′dv

1 − F (p)
. (18)
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Integrating by parts and simplifying reveals that the righthand side in (18) equals p −
Ev[P

−1(v) | v ≥ p] = p − (
∫ v̄

p
f(v)P−1(v)dv)/(1 − F (p)), where the second term is the

expectation of P−1(v) taken with respect to the distribution F conditional on v being

larger than p.

Proposition 2: Linear fee.

Proof of Proposition 2. By the same standard arguments leading to (16) we also get

U ′(c) = −q(c) almost everywhere because of incentive compatibility. Equating this

with the derivative obtained from the definition U ′(c) = [(P (c) − ω(P (c))− c)q(c)]′ and

rearranging yields

Φ(P (c)) = P (c) − P (c) − ω(P (c)) − c

1 − ω′(P (c))
. (19)

(i) implies (ii) Take ω(p) = ξp + ζ . Then the right hand side of (19) becomes

(c + ζ)/(1 − ξ). Equating this with Γ(c) in order to achieve optimality according to

Lemma 2 (i) gives the differential equation g(c) = G(c)(1−ξ)/(ξc+ζ). With the condition

G(c) = 0 one obtains the expression in part (ii) of the proposition with β = (1 − ξ)/ξ

and c = −ζ/ξ. The upper bound of the support c̄ remains arbitrary.

(ii) implies (i) Observe that with the distribution G specified in part (ii) one has

Γ−1(p) = (1− ξ̂)p− ζ̂ with ξ̂ := 1/(β + 1) and ζ̂ := −c/(β + 1) and, therefore, P−1(p) =

Γ−1(Φ(p)) = (1 − ξ̂)Φ(p) − ζ̂. Take (19) and replace P (c) with p, c with P−1(p), and Φ

by its definition. Rearranging leads to

(1 − F (p))(κ′(p) − (1 − ξ̂)) − f(p)(p− ω(p) − ((1 − ξ̂)p− ζ̂)) = 0. (20)

Defining l(p) := p − ω(p) − ((1 − ξ̂)p − ζ̂) equation (20) leads to [l(p)(1 − F (p))]′ = 0.

From part (ii) of Proposition 2 follows that p − ω(p) is not singular at p = v̄ (actually

ω(v̄) = v̄ − P−1(v̄)). Since 1− F (v̄) = 0 it follows that l(p) ≡ 0, i.e. ω(p) = ξp+ ζ as in

part (i) Proposition 2 is satisfied with ξ = ξ̂ and ζ = ζ̂.

Proposition 3: Invariance and linearity of fees.

Proof of Proposition 3. The optimality condition (i) of Lemma 2 implies Φ(P (c)) = Γ(c).

If we want optimality to hold for arbitrary distributions F , and hence for arbitrary
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functions P (c), equating the right hand side of (19) and Γ(c) yields Γ(c) = p − (p −
ω(p) − c)/(1 − ω′(p)) for arbitrary p. This differential equation in ω has the solution

ω(p) = p− (1 − ξ)(p− Γ(c)) − c (21)

defined up to a constant 1−ξ. If we want this to hold for any cwe need c−(1−ξ)Γ(c) = −ζ
for some constant ζ , and hence Γ(c) = (c + ζ)/(1 − ξ). Substituting this back to (21)

results in ω(p) = ξp+ζ , i.e. a linear fee. This also implies a generalized power distribution

G by Proposition 2.

Lemma 1: Optimal mechanism with many buyers and sellers.

Sketch of the Proof of Lemma 1. A direct mechanism asks buyers and sellers to report

their valuations and costs. Denoting by (v, c) a collection of such reports with v =

(v1, .., vNB
) and c = (c1, .., cNS

), the direct mechanism is then characterized by the prob-

ability Qb(v, c) that b gets a unit of the good and Qs(c,v) that s produces a unit of the

good for b = 1, .., NB and s = 1, .., NS and by the payments Mb(v, c) it asks from buyers

and the payments Ms(c,v) it makes to sellers. Clearly, a mechanism is only feasible if for

all (v, c),
∑NB

b=1Qb(v, c) ≤
∑NS

s=1Qs(c,v). Let Q be the collection of these probabilities.

We refer to Q as the allocation rule of the mechanism.

We only sketch the proof, a fully detailed version of which is available upon request.

Lengthy, though completely standard arguments (see e.g. Krishna, 2002) can be applied

to show that a revenue (or payoff) equivalence theorem holds. Formally, mb(vb) =

mb(vb) + qb(vb)vb −
∫ vb

vb
qb(t)dt and ms(cs) = ms(cs) + qs(cs)cs −

∫ c̄s

cs
qs(t)dt for all c, v,

lower case functions standing for expectations about all others’ valuations and costs (e.g.

mb(vb) := Ev−b,c[Mb(v, c)]). Again, by standard arguments, this implies E[mb(vb)] =

mb(vb) +E[Φb(vb)qb(vb)] and E[ms(cs)] = ms(c̄s) +E[Γs(cs)qs(cs)]. A profit maximizing

intermediary will make the individual rationality constraint just binding, therefore, his

expected profit
∑NB

b=1E[mb(vb)] −
∑NS

s=1E[ms(cs)] is

∫

X

{

NB
∑

b=1

Φb(vb)Qb(v, c) −
NS
∑

s=1

Γs(cs)Qs(c,v)

}

f(v)g(c)dvdc, (22)
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where f(v) and g(c) are the joint densities of all buyers and sellers, respectively, and X

is the product set containing all (v, c). Inspection of the term in curly brackets reveals

that the profit can be maximized point by point by implementing the Virtual-Walrasian

allocation for each realization (v, c).

Proposition 4: Intermediary optimal auction.

Proof of Proposition 4. It is sufficient to prove our statement for a second price auction,

since by the revenue equivalence theorem it then also holds for any standard auction.66

So consider a second price auction where the seller faces the fee function ω(pS) levied on

the sale price pS. The seller reports his cost as ĉ and the intermediary sets the reservation

price P (ĉ). This seller’s expected profit is

NB

{

(P (ĉ) − ω(P (ĉ)))(1 − F (P (ĉ)))F (P (ĉ))NB−1

+

∫ v

P (ĉ)

(y − ω(y))(1− F (y))(NB − 1)F (y)NB−2f(y)dy

}

+ cF (P (ĉ))NB

because if the reserve price P (ĉ) is binding, the sale price is pS = P (ĉ), which explains

the first ω(.) term. If the reserve is not binding, the sale price is the second highest bid

y, and this explains the second ω(.); see also Krishna (2002, p.25). Note that the good

is sold to the buyer with the largest virtual valuation, provided this is larger than the

reserve p.

For truth telling to be an equilibrium, the first order condition with respect to ĉ has

to be satisfied at ĉ = c. With some algebra, the first order condition can be rearranged

to

(1 − ω′(P (c)))(1 − F (P (c))) − (P (c) − ω(P (c))− c)f(P (c)) = 0.

As (17) is the solution to this differential equation, it follows from the proof of

Proposition 1 that the fee structure with the fee function ω(pS) = p−Ev[P
−1(v) | v ≥ pS]

induces the seller to set the intermediary the reserve in the intermediary optimal way.

66It follows from Lemma 3 in Myerson (1981) that all standard auction formats will have the same
expected revenue and indeed the same reserve price. See also Milgrom (2004, Ch.3) and Jehle and Reny
(2001, Th.9.9 and Ex.9.20).
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Thus, the mechanism described in Proposition 4 is the intermediary optimal allocation

rule.

Proposition 5: Effect of an infinitesimal perturbation.

Proof of Proposition 5. Since we only care about first-order effects, ĝ(c) = (1−ǫγ(c))g(c)
can be rewritten as

g =
1

1 + ǫγ
ĝ = (1 − ǫγ +O(ǫ2))ĝ, (23)

where O(ǫ2) stands for the second order effect. Taking a constant α with 1 + αǫ = σ,

this has to be equal to

(1 + αǫ)(1 − ǫ(1 − ρS(c)))ĝ(c) = (1 − ǫ[(1 − ρS(c)) − α] +O(ǫ2))ĝ(c). (24)

α has to be chosen as α =
∫

(1−ρS)ĝ so that the density functions add up to one. Hence

equating the right hand sides of (23) and (24) results in

γ(c) = F (Φ−1(Γ(c))) −
∫ c

c

F (Φ−1(Γ(t)))g(t)dt. (25)

We know that γ is increasing, γ and g are orthogonal (
∫

γg = 0), γ(c) < 0, and γ(c) > 0.

(i) We will first show that (lnG(c))′ increases if ǫ increases:

∂2

∂ǫ∂c
ln Ĝ > 0. (26)

Using
∂

∂ǫ
Ĝ =

∂

∂ǫ

∫

(1 + ǫγ)g =

∫

γg, (27)

we get
∂

∂ǫ
ln Ĝ

∣

∣

∣

∣

ǫ=0

=
1

G

∫ c

c

g(c′)γ(c′)dc′. (28)

Taking the derivative with respect to c yields

∂

∂c

∂

∂ǫ
ln Ĝ

∣

∣

∣

∣

ǫ=0

=
g

G2

∫ c

c

g(c′)γ(c′)dc′ +
1

G
g(c)γ(c),

the sign of which is to be determined. Multiplying by the positive expression G2/g we

get

G(c)γ(c) −
∫ c

c

g(c′)γ(c′)dc′ =

∫ c

c

g(c′)[γ(c) − γ(c′)]dc′. (29)
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The expression in the brackets is positive since γ′(c) > 0 and c > c′, therefore, the whole

expression is positive, which proves the statement

∂2

∂ǫ∂c
lnG > 0. (30)

(ii) As next we will prove that Γ is decreasing and Γ−1 increasing with ǫ. The following

analysis can be simplified by defining a further function ψ, such that

Ĝ(c) = (1 − ǫψ(c))G(c), (31)

The relation between ψ and γ is the following

gγ = −(Gψ)′ (32)

or

ψ = − 1

G

∫

gγ (33)

which is equal to the negative of the right hand side of (28). Therefore, ψ′ < 0 by the

argument in the previous section. We also know ψ(c̄) = 0, ψ ≥ 0.

The derivative is

ĝ = g − ǫ(gψ +Gψ′) (34)

By definition

Γ̂
def
= c+

Ĝ

ĝ
= c +

[1 − ǫψ]G

[(1 − ǫψ) − ǫ(G/g)ψ′]g
= c+

(G/g)[1 − ǫψ]

g − ǫ(ψ + (G/g)ψ′)
. (35)

The Taylor expansion is

c+
G

g
[1 − ǫψ]

[

1 + ǫ(ψ +
G

g
ψ′)

]

+O(ǫ2) = c+
G

g

[

1 + ǫ
G

g
ψ′

]

+O(ǫ2) (36)

Using the definition of Γ̂ this gives us

Γ̂ = Γ + ǫ

(

G

g

)2

ψ′ +O(ǫ2). (37)

Since ψ′ is negative Γ̂ is decreasing with ǫ. The inverse of Γ̂ is

Γ̂−1 = Γ−1 − ǫ
(G/g)2ψ′

Γ′
+O(ǫ2). (38)
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The fraction is negative since ψ′ < 0 and Γ is increasing by Myerson’s regularity assump-

tion. Therefore, for a perturbation with ǫ > 0 we have Γ̂−1 > Γ−1.

(iii) Next, we will look at the change of [Γ−1]′. Taking the derivative of (38) gives us

(Γ̂−1)′ = (Γ−1)′ − ǫ

[

(G/g)2ψ′

Γ′

]

′

+O(ǫ2) (39)

= (Γ−1)′ − ǫ
[2(G/g)g2

−Gg′

g2 ψ′ − (G
g
)2ψ′′]Γ′ − (G

g
)2ψ′Γ′′

(Γ′)2
+O(ǫ2) (40)

The sign of the multiplier of ǫ is ambiguous. For instance, since ψ′ < 0, for Γ′′ sufficiently

negative, (Γ̂−1)′ is increasing with ǫ. However, for Γ′′ sufficiently large, we have the

opposite effect.

We can also make the analysis for Γ′′ = 0 (or close to zero), which means that we

have a power distribution and linear fees (or are close to it). After some algebra the

expression in brackets in (40) can be transformed to

− 3Gγ(g2 −Gg′) + 3g

∫

gγ − 2
Gg′

g

∫

gγ +G2gγ′ −Ggγ. (41)

If this is negative then [Γ−1]′ will be larger if ǫ increases, that is we have a flatter fee.

However, one can find examples of power distributions where this condition is not

satisfied. Take G = cβ, F = 1 − (1 − v)α, which results in linear virtual valuation

functions Γ and Φ. E.g. for α = 3 and β = 3, the condition is not satisfied for certain

values of c, the sign of

1

4860

−225 + 1280 c4 − 3840 c3 − 363 c2 + 1920 c

c2
(42)

is different for different values of c as depicted in Fig. 8.

Figure 8: For α = 2 and β = 3 the expression in Eq. (41) has different signs for different
values of c.

Proposition 6: Time on market with one homogeneous good.

Proof of Proposition 6. Discrete Time. Consider first a cohort of sellers, who entered

the market at some point t, normalized to t = 0, and offered their houses for some
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price p. Label the number of rematchings since t = 0 with k := t/τ and the expected

number of sellers in the cohort staying in the market at the beginning with N0 and in

subsequent periods with Nk. The probability that a seller stays in the market until the

next rematching is the probability that he cannot sell times the probability that he does

not drop out for exogenous reasons, i.e. ǫF (p) with ǫ := e−ητ . The number of sellers

in period k is hence Nk = (ǫF (p))kN0. Time on market for the total population of

both sold and unsold houses follows hence a geometric distribution with the cumulative

distribution function 1− (ǫF (p))t/τ and mean T (p) = τ/(1− ǫF (p)). Denote the number

of sellers who leave the market in period k because they sell as N s
k and those who leave

with unsold houses as Nu
k . Clearly, N s

k = (1 − F (p))Nk and Nu
k = ǫNk. Therefore, the

ratio of sellers able to sell is (1 − F (p))/(1 − ǫF (p)). Now consider only the subsample

of sellers who managed to sell their houses. Since N s
k is just a constant factor smaller

than Nk, the distribution of time on market of this subsample is the same as for the

total population. Hence the cumulative distribution function is also 1 − (ǫF (p))k and

the mean time on market for sold houses is T s(p) = 1/(1 − ǫF (p)). The same reasoning

applies for sellers who did not sell their houses, so that T u(p) = 1/(1 − ǫF (p)) is the

mean time on market for unsold houses as well. Since we are looking at a market in

a stationary equilibrium, in every period the same number of N0 sellers enters and the

previous argument carries over to a setup where cohorts of sellers enter every period

rather than only one cohort entering at t = 0.

Continuous Time. The same logic applies to the continuous time approximation of

the distribution. Denote the mass of sellers in the cohort at period t = 0 as N(0).

The number of sellers remaining in the market in period t is N(t) = N(0)e−(φ+η)t

dropping the argument p in φ(p). In each period dN s(t) = N(t)φdt houses are sold

and dNu(t) = N(t)ηdt drop out unsold. Cumulatively, we have N s(t) =
∫ t

0
dN s(t′) =

(φ/(φ + η)) [N(0) −N(t)] and Nu(t) =
∫ t

0
dNu(t′) = (η/(φ + η)) [N(0) −N(t)]. After

infinitely many periods, fraction 1 − F∞ := N s(∞)/N(0) = φ/(φ + η) of houses have

been sold. The average time on market for sold houses is

T s =

∫

∞

0
tdN s(t)

∫

∞

0
dN s(t)

= − ∂

∂φ
ln

∫

∞

0

e−(φ+η)tdt = − ∂

∂φ
ln

1

φ+ η
=

1

φ+ η
.



B PROOFS 61

By the same logic, the average time on market of unsold houses is T u = 1/(φ+ η).

Proposition 7: Time on market in heterogeneous submarkets.

Proof of Proposition 7. Consider multiple submarkets, indexed by i, with different prob-

abilities of sale φi(p). Houses of each submarket are represented with weight wi in the

total sample. Taking averages over submarkets, the mean time on market for sold T s(p)

and unsold T u(p) houses is

T s =

(

∑

i

wi
φi

φi + η

1

φi + η

)(

∑

i

wi
φi

φi + η

)

−1

,

T u =

(

∑

i

wi
η

φi + η

1

φi + η

)(

∑

i

wi
η

φi + η

)

−1

,

the parameter p being dropped. The ratio of the two means is

T u

T s
=

∑

i wi
η

(φi+η)2

∑

j wj
φj

φj+η
∑

i wi
φi

(φi+η)2

∑

j wj
η

φj+η

=:
N

D
.

The difference between the numerator N and the denominator D is

N −D = η
∑

ij

wiwj
φj − φi

(φi + η)2(φj + η)
,

= −η
∑

ij

wiwj
φj − φi

(φi + η)(φj + η)2
,

where the second equation comes from interchanging the summation variables. Adding

the two expressions for N −D one gets

2(N −D) = η
∑

ij

wiwj
(φj − φi)

2

(φi + η)2(φj + η)2
≥ 0 ,

hence T u ≥ T s. The inequality is strict for heterogeneous submarkets.

Proposition 8: Integrated Seller.

Proof of Proposition 8. The value function for an integrated seller is
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V (c̃) = maxp {(1 − F (p))(p− c̃) + F (p)δV (c̃)}, where the first (second) term on the

right hand side is the payoff in case of a sale (no sale). Rearranging yields V (c̃) =

maxp

{

1−F (p)
1−δF (p)

(p− c̃)
}

. Observe that for δ = 0 this reduces, of course, to the static

problem. For F uniform, we get V (c̃) = maxp

{

2(1−p)
1+δ−2δp

(p− c̃)
}

, which is maximized

at PI(c̃) =
1+δ−

√
(1−δ)(1+δ−2c̃δ)

2δ
. Therefore, the equilibrium price difference between an

independent and an integrated seller who both have the same static cost c̃ is

P (c̃) − PI(c̃) =

√

(1 − δ)(1 + δ − 2c̃δ) −
√

(1 − δ)(1 + δ − 4c̃δ)

2δ
, (43)

which is negative for c̃ < 0.67 This means that an intermediary-seller may charge a

higher price than an independent seller, even if their static costs c̃ are equal.

Proposition 9: Non-optimality of price posting mechanisms.

Proof of Proposition 9. The intermediary’s expected profit with price posting is (pB −
pS)(1−F (pB))G(pS). The assumptions about the inverse hazard rates ensure concavity

of the profit function. Therefore, the unique maximum is given by the first order condi-

tions. Taking derivatives with respect to pB and pS yields pS = Φ(pB) and pB = Γ(pS).

We complete the proof by showing that trade with price posting neither implies nor is

implied by trade in the intermediary optimal mechanism of Myerson and Satterthwaite

for arbitrary distributions F and G.

Trade with price posting, no trade with the intermediary optimal mechanism. Take

a buyer and a seller for whom trade just occurs with price setting, i.e. valuation pB

and cost pS. We know that a profit maximizing intermediary will always set pB > pS.

Combining this with the first order conditions we get Φ(pB) = pS < pB = Γ(pS). This

implies by Lemma 2 (i) that no trade occurs with the optimal mechanism for valuation

pB and cost pS.

Trade with the intermediary optimal mechanism, no trade with price posting. Take

the lowest cost seller with cost c and a buyer with valuation v′ such that trade just

67The static cost c̃ is negative for some sellers. This can be seen from the fact that for dynamic cost
c = 0 the seller needs to have a negative static cost c̃, since c is the sum of c̃ and the net present value
of future trade.
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occurs with the optimal mechanism, i.e. Φ(v′) = Γ(c). As pS > c must hold for positive

probabilities of trade with price posting, we have Φ(v′) = Γ(c) = c < pS = Φ(pB). This

implies v′ < pB and hence no trade with price posting.

Proposition 10: Optimality of price posting with infinite number of buyers and sellers.

Proof of Proposition 10. (i) We consider the case where plimN→∞
K/N < 1, i.e. not all

buyers and sellers trade in the limit. For plimN→∞
K/N = 1 the proof is similar and

therefore omitted.

It can be easily shown that for a finite number of buyers and sellers a dominant

strategy implementation of the Virtual-Walrasian allocation rule is optimal: everyone

reports their valuations/costs, a buyer pays the minimal valuation which would have

been sufficient for him to get the good, the seller gets analogously the maximal cost.

Formally, a buyer pays max{vK+1,Φ
−1(Γ(cK))} and a seller gets min{cK+1,Γ

−1(Φ(vK))}.
The valuation of the marginal trading and non-trading buyers and the marginal

seller’s cost plus the spread charged by the intermediary converge in probability to the

same value, which we denote as pB:

plim
N→∞

vK = plim
N→∞

vK+1 = plim
N→∞

Φ−1(Γ(cK)) =: pB. (44)

Similarly,

plim
N→∞

cK = plim
N→∞

cK+1 = plim
N→∞

Γ−1(Φ(vK)) =: pS. (45)

For the fraction of buyers and sellers who trade we have

plim
N→∞

K

N
= plim

N→∞

max{i|vi ≥ pB}
N

= 1 − F (pB), (46)

plim
N→∞

K

N
= plim

N→∞

max{i|ci ≥ pS}
N

= G(pS). (47)

(44), (45), (46), and (47) imply that the optimal mechanism converges to price posting

with pB and pS that satisfy Φ(pB) = Γ(pS) and 1 − F (pB) = G(pS).

(ii) Define the number of buyers willing to trade as kb := max{i|vi ≥ pB}, and for

the sellers ks := max{i|ci ≤ pS}. By Φ(pB) = Γ(pS)

plim
N→∞

kb

N
= 1 − F (pB) = G(pS) = plim

N→∞

ks

N
.
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By 1 − F (pB) = G(pS) we have Φ(vkb
) ≥ Φ(pB) = Γ(pS) ≥ Γ(cks

) and by analogy

Φ(vkb+1) < Γ(cks+1). Therefore, the fraction of traded quantity is in the limit

plim
N→∞

min{kb, ks}
N

=
max{i|Φ(vi) ≥ Γ(ci)

N
def
=
K

N
,

which is the fraction of the Virtual-Walrasian quantity. Further, it is easy to show

that this mechanism is incentive compatible and gives zero utility to the most inefficient

agents. Therefore, by Lemma 1 it maximizes the intermediary’s profit.

Proposition 11: Fee setting and price posting mechanism for one seller and infinite

number of buyers.

Proof of Proposition 11. As NB converges to infinity, the highest bid almost surely con-

verges to v̄. Hence we are back to the one sided incomplete information problem. By

Myerson (1981) the optimal mechanism is pB = v̄ and pS = Γ−1(v̄) when considering

price posting mechanisms. This can also be represented as a fee setting mechanism with

ω(p) = p[1 − Γ−1(v̄)/v̄], which induces the seller to set P (c) = v̄.68

Proposition 12: Slotting Allowances.

Proof of Proposition 12. The intermediary optimal allocation rule is to have the good

change hands, from the seller with the lowest cost to the buyer, if and only if this seller’s

virtual cost is less than the buyer’s virtual valuation (see Lemma 1). The fee ω(p) of

Proposition 1 makes sure that the seller active in stage 2 sets the price in exactly such a

way that the buyer buys if and only if Φ(v) ≥ Γ(c). Denote by US(c) the expected payoff

to a seller with cost c of participating in stage 2 (under the fee ω). Notice that US(c) is

what a seller with cost c will bid in stage 1 and that whenever US(c) > 0, US(c) is strictly

decreasing in c. Therefore, the Vickrey auction in stage 1 allocates the right to set the

price efficiently. That is, it selects the seller with the lowest virtual valuation. (Notice

that all those types of sellers for whom US(c) = 0 will set such a high price in stage 2

68Any other ω that induces the seller to set P (c) = v̄ would do, e.g. ω(p) = v̄ − Γ−1(v̄) for p = v̄ and
ω(p) = ∞ else.
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that they will never sell. Therefore, it is immaterial whether a winner is determined or

not if every seller bids zero in stage 1.) Consequently, the mechanism implements the

intermediary optimal allocation rule. Moreover, the expected payoffs of sellers with costs

c and the buyer with valuation v is zero.

Proposition 13: Ad Value and Per Unit Taxes.

Proof of Proposition 13. Equivalence. We first show the welfare maximizing prices sub-

ject to (pB − pS)pS(1 − pB) = R are symmetric. With prices (pB, pS) expected welfare

is W (pB, pS) = pS(1 − pB)(pB − pS + 1)/2. The unique maximizers of the Lagrangean

L = W (pB, pS)+λ[R−(pB−pS)pS(1−pB)] with multiplier λ are pB = (4λ−1)/(3(2λ−1))

and pS = 2(λ − 1)/(3(2λ − 1)), implying pB = 1 − pS. Therefore, under welfare maxi-

mizing price posting the expected revenue is (2pB − 1)(1 − pB)2. Second, under the per

unit tax t the equilibrium price set by the seller with cost c is p(c, t) = (1 + c + t)/2.

Thus, the expected revenue is t/2
∫ 1−t

0
(1 − c − t)dc = t(1 − t)2/4, which is identical to

the revenue under price posting for pB = 1/2 + t/2 (and hence pS = 1/2 − t/2). So to

complete the proof of the first part of the proposition, we only need to show that for

pB = 1/2 + t/2 welfare is the same under price posting and a per unit tax. But welfare

under price posting is W (pB, 1− pB) = pB(1− pB)2 |pB=1/2+t/2= (1− t)2(1 + t)/8, which

is identical to welfare under a per unit tax:
∫ 1

1/2+t

∫ 2v−1−t

0
[v− c]dcdv = (1− t)2(1 + t)/8.

Incidence. The buyer’s (ex ante) expected utility under a per unit tax t is EUU
B (t) =

(1−t)2/24 and the seller’s (ex ante) expected utility is EUU
S (t) = (1−t)2/12. Defining the

tax borne by agent i for i = B, S as EUU
i (t)/EUU

i (0) we get EUU
B (t)/EUU

B (0) = (1−t)3 =

EUU
S (t)/EUU

S (0). So the per unit tax is borne evenly by the buyer and the seller. On

the other hand, under an ad value tax µ the buyer’s and seller’s expected utilities are

EUV
B (µ) = (1 − µ)/24 and EUV

S (µ) = (1 − µ)2/12, respectively. So EUV
S (µ)/EUV

S (0) =

(1 − µ)2 < 1 − µ = EUV
B (µ)/EUV

B (0) for all µ ≤ 1/2.

Surplus. The surplus comparison would be trivial if revenue RV (µ) = µ(1−µ)/6 under

an ad value tax exceeded revenue under a per unit tax RU(t) = t(1 − t)2/4 for µ = t.

However, since this is not the case, we solve EUV
S (µ) = EUU

S (t) to get µ = 1− (1− t)3/2.

Inspection of the expected utilities of the buyer reveals immediately that the buyer will
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strictly prefer the ad value tax if the seller is indifferent. Moreover, it is readily checked

that for µ = 1 − (1 − t)3/2, we have RV (µ) > RU(t). Thus, the revenue RU (t) can be

achieved with an ad value tax below 1 − (1 − t)3/2, making the seller strictly prefer the

ad value tax as well.
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