Loertscher, Simon; Niedermayer, Andras

Working Paper

Fee setting intermediaries: on real estate agents, stock brokers, and auction houses

Discussion paper // Center for Mathematical Studies in Economics and Management Science, No. 1472

Provided in Cooperation with:
Kellogg School of Management - Center for Mathematical Studies in Economics and Management Science, Northwestern University

This Version is available at:
http://hdl.handle.net/10419/31162

Terms of use:
Documents in EconStor may be saved and copied for your personal and scholarly purposes.
You are not to copy documents for public or commercial purposes, to exhibit the documents publicly, to make them publicly available on the internet, or to distribute or otherwise use the documents in public.
If the documents have been made available under an Open Content Licence (especially Creative Commons Licences), you may exercise further usage rights as specified in the indicated licence.
Fee Setting Intermediaries: On Real Estate Agents, Stock Brokers, and Auction Houses*

Simon Loertscher† Andras Niedermayer‡

November 14, 2008

Abstract

Mechanisms where intermediaries charge a commission fee and have the sellers set the price are widely used in practice e.g. by real estate agents, stock brokers, art galleries, or auction houses. We model competition between intermediaries in a dynamic random matching model, where in every period a buyer, a seller, and an intermediary are randomly matched. In every period, every intermediary has a temporary monopoly and designs an exchange mechanism that maximizes his own expected profits. Traders’ valuations for the indivisible good depend on their option value of future trade. The following results obtain. First, we show that the intermediary can achieve the highest possible profit with a fee setting mechanism. Second, we characterize when these fees are linear. Third, fee setting is an equilibrium outcome in a dynamic market. Fourth, when the rematching probability increases or, equivalently, the period length decreases, the equilibrium fees become smaller. Our model is applicable to stock brokers and auction houses as intermediaries. It can further explain several of the stylized facts observed in real estate brokerage, such as the 6 percent fee, the relation between listing price and time on market, inefficient free entry, higher prices for houses owned by brokers, and home owners who bought during a boom asking higher prices. We also provide various extensions.

*We want to thank Alp Atakan, Markus Brunnermeier, Yuelan Chen, Daniele Condorelli, Eddie Dekel, Winand Emons, Péter Esó, Ekaterina Goldfayn, Philipp Kircher, Aviv Nevo, Ferenc Niedermayer, Marco Ottaviani, Mark Satterthwaite, Armin Schmutzler, Art Shneyerov, Dan Spulber, Asher Wolinsky, Abdullah Yavas and participants of SMYE 2007 in Hamburg, SAET 2007 in Kos, ESEM 2007 in Budapest, SSES 2008 in Lausanne, IIOC 2008 in Washington DC, SED 2008 in Ann Arbor, the Midwest Economic Theory Meeting 2008 in Columbus and seminars at the Universities of Basel, Bern, Bristol, Melbourne, Pennsylvania, Sydney, Zurich, and Northwestern University for helpful comments. The second author gratefully acknowledges financial support by the Swiss National Science Foundation through grant PBBE1-121057.

†Department of Economics, Economics & Commerce Building, University of Melbourne, Victoria 3010, Australia. Email: simonl@unimelb.edu.au.

‡Kellogg School of Management, CMS-EMS, Northwestern University, Evanston, IL 60208, USA. Email: a-niedermayer@kellogg.northwestern.edu.
Introduction

Many markets are organized by intermediaries, and many of these intermediaries neither buy nor sell the goods whose exchange they enable. Instead they set percentage fees to be levied on the price, which is subsequently set by the seller. Buyers then either accept or reject the price. If the mechanism involves an auction where the seller sets a reserve price, the buyers bid in the auction, and the fee is levied on the realized price. We call such mechanisms “fee setting mechanisms”.

Real estate brokers, stock brokers, art galleries, and auction houses or sites are just a few examples of fee setting intermediaries. Real estate brokers in the U.S. typically charge 5 to 6 percent. Commission fees by art galleries are said to be in the range of 30 to 50 percent. The auction houses Sotheby’s and Christie’s use a regressive fee structure and so does eBay. Sotheby’s and Christie’s used a linear fee of 20 percent prior to being investigated by U.S. Department of Justice, convicted for collusive behavior, and induced to change the fee structure. Other industries where fee setting mechanisms are frequently used include stock brokerage, share-cropping in agriculture, contracts between authors and publishing companies, and retailers that charge a percentage on the revenue a manufacturer generates with his product. Similarly, electronic payment systems and credit cards charge percentage fees. Further, most governments collect substantive parts of their revenue through value added taxes without being directly involved in price setting. Percentage fees are also used in a slightly different environment in investment banking and by labor market intermediaries, in particular by head hunters.

1 The marginal rate at Sotheby’s is 25 percent for items with prices up to USD 20,000, 25 percent between USD 20,000 and USD 500,000 and 12 percent beyond. At eBay (eBay.com, accessed on May 5, 2008) the marginal fee on the closing price is 8.75 percent below USD 25, 3.5 percent between USD 25 and USD 1000, and 1.5 percent above USD 1000.

2 Similarly, real estate brokerage has come under scrutiny by the U.S. Department of Justice [DOJ 2007]. There is a widespread, though rarely explicit, suspicion that in particular the almost complete invariance of broker commission fees reflects collusive behavior by intermediaries.

3 Underwriters on initial public offerings in the U.S. charge in most cases exactly 7 percent, see
As a matter of fact, industries where fee setting mechanisms are predominantly used are quite sizeable. For example, the sales generated by Sotheby’s in 2007 alone exceeded USD 4 billions.\(^4\) The annual operating revenue of eBay was more than USD 7.5 billion in 2007, and Christie’s annual sales in 2006 exceeded USD 4.5 billion.\(^5\) The real estate brokerage industry in the U.S. generates annual sales beyond USD 1000 billions and commission fees of more than USD 60 billions per year.\(^6\) Credit card companies are big business, too. For example, MasterCard’s annual revenue in 2007 exceeded USD 4 billion.\(^7\) The revenue collected through excise taxation, which consists of both value added taxes and specific (unit) taxes in the U.S. exceeds USD 100 Billion.\(^8\)

Despite their widespread use and economic significance, fee setting mechanisms have received little attention in the theoretical economic literature. In particular, no prior analysis of the optimality of fee setting and the structure of fees from a mechanism design perspective exists.\(^9\) The purpose of this paper is to start filling this gap and to improve economists’ understanding what determines whether intermediaries set commission fees and, if they choose to do so, what determines the size and form of these fees.\(^10\) Our main contribution is that we derive the exchange mechanism of every intermediary as the endogenous outcome of a mechanism design problem that depends on the distributions of

\(^5\)See www.marketwatch.com and www.sgallery.net, respectively.

\(^8\)This includes both taxation at the federal and at the state level; see Anderson, De Palma, and Kreider (2001a, p.174).

\(^9\)The fact that, to the best of our knowledge, no name for this type of mechanism exists only goes to show how little theoretical interest these mechanisms have received. Two papers that provide explanations of when intermediaries may use percentage fees and when they set prices are Hagiu (2006) and Yavas (1992). Hagiu’s argument relies on the presence and nature of network externalities, while Yavas’ explanation depends on the presence and working of search markets.

\(^10\) That said, this means also that we do not aim to explain why intermediaries emerge in equilibrium (as do e.g. Gehrig (1993), Spulber (1999), Rust and Hall (2003)). Rather, we take the existence and importance of intermediated exchange as given and ask why (some) intermediaries use fee setting mechanisms. Empirically the predominance of intermediation we presume in this paper is on solid ground. For example, real estate brokers account for approximately 80 percent of all single-family dwellings in the U.S. (see Rutherford, Springer, and Yavas, 2005). A rather simple explanation for the exclusivity of trade through intermediaries is that there is an alternative search market where traders meet directly, but search costs are prohibitively high. Alternatively, it should be possible to extend the framework by a search market as an outside option. Traders’ willingness to pay an intermediary is limited by the outside option of going to the search market.
the types of buyers and sellers which are, in turn, endogenous to the choice of mechanisms by all intermediaries.

We model competition between intermediaries in a dynamic random matching model with a continuum of buyers, sellers, and intermediaries. Buyers and sellers have private information about their valuations for an indivisible homogeneous good. In every period one buyer, one seller, and one intermediary are randomly matched. Intermediaries are free to choose the trading mechanism anew in every period. The equilibrium mechanism used by the intermediaries in the market determines the option value of future trade and hence the valuations of buyers and sellers. The distributions of these valuations in turn determine the best response mechanism of an intermediary. We look at market equilibria where the mechanism in the market and the best response to it correspond. We show that this model permits an analytical solution for certain cases. In a steady state equilibrium intermediaries choose a stationary fee setting mechanism. Interestingly, this equilibrium mechanism does not vary with the number of intermediaries under standard assumptions on the matching technology. The equilibrium fees become smaller as the matching frequency increases, or equivalently the period length between subsequent re-matchings decreases. Moreover, we derive some empirically testable predictions, such as the implied time goods stay on the market as a function of their prices, the distribution of price on the market, and the probability that a good is ever sold.

The intuition for the intermediaries’ equilibrium choice of mechanism stems from a one period model, where a monopolistic intermediary is matched to one buyer and one seller. In this setup fee setting is optimal for the intermediary under the assumption that the buyer’s and the seller’s valuation distributions satisfy Myerson and Satterthwaite’s regularity condition. Results are likely to carry over to the irregular case. In the dynamic model this mechanism is still intermediary optimal. We show also that if seller’s valuation is drawn from a power distribution, then the optimal fee is linear and independent of the buyer’s distribution. Further, with many buyers whose valuations are i.i.d. draws and one seller, a fee setting mechanism followed by an optimal auction (such as used by eBay, Sotheby’s or Christie’s) is intermediary optimal.

Our base line model allows for various extensions. We study inefficient free entry by
intermediaries with heterogeneous opportunity costs of entry and heterogeneous levels of ability. Under the assumption that power distributions are a good approximation, the model also allows for costs of intermediation that vary with transactions. We also show that a vertically integrated intermediary (who is also a seller) charges a lower price than an independent seller in a one period model. However, in a dynamic model this may be reversed. Furthermore, we show that price posting (i.e. the intermediary himself sets a price for the seller and a price for the buyer) is not optimal for the intermediary in a static setup with one buyer and one seller, but becomes intermediary optimal in a dynamic setup if the good in question can be stored without cost.

Our paper contributes to the large and growing literature on intermediation such as Gehrig (1993), Yavas (1992, 1996), Hackett (1992), Spulber (1996, 1999, 2008), Wooders (1997), Rust and Hall (2003), Duffie, Garreau, and Pedersen (2003), Loertscher (2007) and Burani (2008) by adding a mechanism design perspective to the notion of (dynamic) random matching present in most of these papers. The only articles applying mechanism design to intermediation we are aware of are Spulber (1988) and Matros and Zapechelnyuk (2006). We differ from the former by having multiple buyers and an indivisible good; from the latter by the private information of the seller affecting payments; and from both by having dynamic random matching, multiple competing sellers and intermediaries, and predictions on price dispersion, fee structures, and time on market. Our paper also relates to the literature on bilateral trade initiated by Myerson and Satterthwaite (1983) and Chatterjee and Samuelson (1983) 11. That the fee setting mechanism is intermediary optimal is interesting on its own as it provides a practical counterpart to the direct, and therefore abstract, intermediary optimal mechanism derived by Myerson and Satterthwaite.

As we add intermediaries to a dynamic random matching model with incomplete information similar to Satterthwaite and Shnevertov (2007, 2008) and Atakan (2006b) it also relates to this strand of literature. 12 Insofar as the intermediaries in our dynamic

11Recall that the double auction described by Chatterjee and Samuelson (1983) satisfies the social optimality condition stated in Myerson and Satterthwaite (1983, Theorem 2) for uniform distributions. We show under regularity assumptions that the fee setting mechanism described here satisfies the intermediary optimality conditions for general distributions. Further, fees are linear for general distributions of the buyer and a power distribution of the seller, of which a uniform distribution is a special case.
12See also Wolinsky (1988), De Fraja and Sakovics (2001), Serrano (2002), Moreno and Wooders
model are competing mechanism designers, the paper is related to the work of McAfee (1993), Peters and Severinov (1997, 2006), and Damianov (2005) who study mechanism design by sellers whereas in our model the mechanisms are chosen by intermediaries. In that respect, and because real estate brokerage is an industry to which our model applies, the paper also contributes to the literature on real estate economics. Most of the theoretical and empirical literature analyzing real estate brokerage remains in the principal-agent framework, where the seller, and occasionally the buyer, is the principal and the broker the agent; see e.g. Anglin and Arnott (1991), Bagnoli and Khanna (1991), Arnold (1992), Williams (1998), Lewis and Ottaviani (2008) for theoretical and Rutherford, Springer, and Yavas (2005) and Levitt and Syverson (2008) for empirical work. The present paper offers a new perspective in that we assume that the brokers have all the bargaining power within a period and propose a mechanism of their choice to the traders. We think there are good reasons to depart from the principal-agent framework. Chief among them are that a buyer’s agent’s incentives are completely misaligned to those of his client, that the observed marginal fees charged by intermediaries are too low, and that his inframarginal fee is too high. We lay out these and further reasons in detail in Subsection 4.3 below.

Our article also gives possible explanations for various stylized facts observed in the empirical literature. Broker fees are close to invariant with respect to the number of intermediaries and the prices of houses. Further, the number of intermediaries grew proportionally to overall industry profits, so that profits per intermediary remained constant (Hsieh and Moretti, 2003). Comparable houses owned by brokers sell at a higher price than houses owned by independent sellers (Levitt and Syverson, 2008). Much of the empirical literature finds a positive correlation between the listing price and the time

13 McAfee (1993, p.1304) notes that “paper falls far short of a real theory of equilibrium institutions partly because it places the design of institutions in the hands of the sellers. A more satisfactory approach requires explicit modelling of the role of intermediaries, or auctioneers, who compete among each other for both buyers and sellers.”

14 Lewis and Ottaviani have a general model of dynamic search agency with research and development as the main application. However, real estate brokerage is one of the many applications of their model.

15 See e.g. Hsieh and Moretti (2003), Hendel, Nevo, and Ortalo-Magné (forthcoming) and Levitt and Syverson (2008).
on market in cross-sectional data. However, the correlation is negative in longitudinal
data.\footnote{Larsen and Park (1989) find that disregarding unsold houses when analyzing time on market biases estimations.} Home owners who bought their houses during booms demand a higher price than owners of houses of comparable characteristics who bought it during a recession (Genesove and Mayer, 2001). Sellers with a higher loan-to-value ratio ask higher prices (Genesove and Mayer, 1997).

The remainder of this paper is structured as follows. Section 2 lays out and analyzes the one period model with one intermediary, one buyer and one seller. Section 3 introduces and analyzes dynamic competition between intermediaries with random matching. Section 4 discusses the model’s empirical implications. Section 5 extends the model in various important directions. Section 6 concludes. All proofs are in the Appendix.

2 Static Monopoly

In this paper we model a market with a pool of buyers, sellers, and intermediaries. In every period every buyer and seller is matched in a triple consisting of a buyer, a seller, and an intermediary. The intermediary proposes an exchange mechanism and traders can either trade or wait until the next rematching. The market is in steady state and there is a constant inflow of traders that compensates the outflow of traders that have either exchanged the good or dropped out for exogenous reasons. As we will see in Section 3 understanding a simple one period model with one buyer, one seller, and one intermediary proves to be very helpful for understanding the larger model.

We focus on the static one period problem with one intermediary, one seller, and one buyer in this section. In Section 5.3 we will argue that the buyers’ and the sellers’ valuations for the good incorporate the option of future trade available in the market. The solution of the static problem in this section can be viewed as a best response to the mechanism employed in the market. Consider the following static setup. There is a seller who owns one unit of a homogeneous indivisible good of known quality. There is a buyer who has private information about his valuation of the good \(v \) which is drawn from the distribution \(F \) with strictly positive density \(f \) on the support \([\bar{v}, \bar{v}] \). For brevity,
we refer to the seller’s valuation of the good, or his opportunity cost of selling it, as his cost. The seller has private information about his cost c, which is drawn from G with strictly positive density g on $[c, \bar{c}]$. F and G are common knowledge and independent.

All agents are risk neutral, and preferences are quasilinear, i.e. the buyer’s utility is $v - p$ and the seller’s payoff if $p - c$ in case of trade at price p. The seller and the buyer can only trade through the monopolistic intermediary who has all the bargaining power and can hence choose the trade mechanism. For brevity we call mechanisms that maximize the intermediary’s expected profit intermediary optimal.

Denote by $\Phi(v) := v - (1 - F(v))/f(v)$ the buyer’s virtual valuation function. Analogously let the seller’s virtual cost function be denoted as $\Gamma(c) := c + G(c)/g(c)$. We make the assumption that Myerson (1981)’s regularity condition holds, i.e. both virtual type functions are increasing. Our results are likely to carry over to cases where the regularity condition does not hold.

Fee Setting Mechanisms The main focus of this paper is on the following type of indirect mechanisms, which we call fee setting mechanisms.

Stage 1: The intermediary first announces a fee function $\omega(.)$ that determines the amount the intermediary gets upon successful sale at price p, leaving $p - \omega(p)$ to the seller.

Stage 2: Observing $\omega(.)$ and his own cost c the seller sets a price p.

Stage 3: Observing p and her own valuation v, the buyer then accepts or rejects the offer p and the game ends. If the buyer accepts, the seller gets the net price $p - \omega(p)$ and the intermediary the fee $\omega(p)$.

Obviously in stage 3 the buyer accepts if and only if $v \geq p$. The other two stages of this one-shot game are analyzed in Section 2.2. In Section 2.4 we also study a slightly

17 This makes clear that the model also applies to settings where the good has to be produced by the seller at a cost.

18 Our proofs use Myerson and Satterthwaite (1983)’s theorems on bilateral trade. Myerson and Satterthwaite make the regularity assumption for the sake of expositional clarity, but note that their results carry over to the irregular case by using standard techniques described in Myerson (1981). Even though it seems likely that our results should generalize in a similar way, we prefer dealing with the regular case. Since these distributions are taken as endogenous outcomes in Section 5.3 this will mean restricting our attention to cases where the outcome is regular. We will show later that there are indeed such cases.
modified version of this game with multiple buyers whose valuations are independent draws from the distribution F while there is still one seller and one intermediary.

As we will show later, restricting ourselves to such fee setting mechanisms is without loss of generality, since for every optimal mechanism, there is a corresponding fee setting mechanism that gives all participants the same payoffs in interim expectations. Further, at this point there is a symmetry between the buyer and the seller: the intermediary could just as well let the buyer set a price and set a fee on this price. It is also worth mentioning that the assumption that the seller pays the fee is without loss of generality. That is, it does not matter how the intermediary’s fee $\omega(p)$ is allocated between the buyer and the seller.

2.1 The Simple Economics of Optimal Intermediation

Before showing that fee setting is an optimal mechanism, we will describe what we mean by an optimal mechanism. We use the term mechanism in the sense it is used in the mechanism design literature.\footnote{A mechanism means the following. First, the mechanism designer (here the intermediary) offers a menu of possible actions to the seller and the buyer, for each combination of actions he announces the payments a participant pays or receives and whether the good is exchanged, then both seller and buyer pick actions that are mutually best replies. A more detailed explanation of these concepts is provided e.g. in \cite[Chapter 5]{Krishna2002}.} A mechanism is intermediary optimal if there is no mechanism that gives strictly higher profits to the intermediary in expectations over the buyer’s and the seller’s valuation for the good. The intermediary’s expected profit is the payment by the buyer minus the payment to the seller in expectations.

The buyer’s virtual valuation $\Phi(v)$ can be interpreted as the marginal revenue of increasing the probability of trade, the seller’s virtual cost as marginal cost.\footnote{The reasoning is similar to \cite{BulowRoberts1989}'s for optimal auctions: interpret the probability that $V \geq v$ and $C \leq c$ as quantity demanded and supplied, i.e. $q := 1 - F(v)$ and $q := G(c)$. Thus the inverse demand and supply function are $v = F^{-1}(1 - q)$ and $c = G^{-1}(q)$, yielding $R(q) = qF^{-1}(1 - q)$ and $C(q) = qG^{-1}(q)$ as revenue and cost functions. Taking derivative w.r.t. q and substituting back in yields $R'(q) = \Phi(v)$ and $C'(q) = \Gamma(c)$.} Therefore, the intermediary wants the seller and the buyer to trade if and only if marginal revenue exceeds marginal cost, i.e. whenever $\Phi(v) \geq \Gamma(c)$.

As \cite{MyersonSatterthwaite1983} show formally, this is indeed the optimal allo-
Due to payoff equivalence (a notion well known from the auction and mechanism design literature, see e.g. Krishna (2002)), once the allocation rule is determined the equilibrium payoffs for all types of all players are determined up to an additive constant. It is in the intermediary’s interest to minimize this constant under the constraint that all types of buyers and sellers are willing to participate in the mechanism (individual rationality constraint). Therefore, under the intermediary optimal mechanism the worst off agents are just indifferent between participating and not, i.e. the lowest valuation buyer v and the least efficient seller c get expected payoffs of zero. See Lemma 2 in the Appendix for a summary and formalization of these results.

2.2 Optimality of Fee Setting Mechanisms

We now show that fee setting is an intermediary optimal mechanism. For notational ease, let us denote $P(c) := \Phi^{-1}(\Gamma(c))$, which will turn out to be the price the seller sets in equilibrium, and denote its inverse as P^{-1}. To simplify the analysis we also maintain the following assumption throughout the rest of the paper:

Assumption 1. $\Phi(\bar{v}) \leq \Gamma(\bar{c})$ and $\Phi(\underline{v}) \leq \Gamma(\underline{c})$.

Intuitively, this assumption means that under an optimal mechanism, there are sellers who are unwilling to sell for sure and there are buyers that are unwilling to buy for sure. This seems plausible for many markets, e.g. most home owners do not offer their house for sale every year. Assumption 1 simplifies the exposition, because it ensures that we do not have to deal with corner solutions and $\Phi^{-1}(\Gamma(c))$ and $\Gamma^{-1}(\Phi(v))$ are defined on the supports of G and F, respectively.

21Myerson and Satterthwaite (1983) are almost exclusively cited for their impossibility results. A notable exception is Spulber (1999, Ch.7). However, he merely compares the optimal direct mechanism of Myerson and Satterthwaite with price posting by the intermediary.

22Formally, the assumption ensures that a mechanism satisfying (i) of Lemma 2 in the Appendix also satisfies (ii). Dropping this assumption would make the equations unnecessarily complicated without adding any substantial insights. $\Phi(\underline{v}) > \Gamma(\underline{c})$ is not difficult to accommodate for. A seller would never set a price less than \underline{v} and therefore (ii) holds. For $\Phi(\bar{v}) > \Gamma(\bar{c})$ the intermediary should be able to solve the problem by imposing a price cap: the seller is not allowed to set a price satisfying $\Phi(p) > \Gamma(\bar{c})$. Therefore, the highest cost seller would get zero profits. Formally, we will show that the intermediary induces the seller to set the price $\arg\min_{v} \{\Phi(v) \geq \Gamma(c)\}$, under Assumption 1 notation simplifies to $\Phi^{-1}(\Gamma(c))$.

An intuitive derivation of the optimal fee setting mechanism can be obtained by taking a brief detour through a dominant strategy direct mechanism implementation. The dominant strategy implementation is that the intermediary asks agents to report their types and allows trade iff \(v \geq P(c) \) (or equivalently \(c \leq P^{-1}(v) \)) and in case of trade the buyer pays \(P(c) \) and the seller gets \(P^{-1}(v) \). In case of trade the seller gets \(E_v[P^{-1}(v) | v \geq P(c)] \) in expectations over \(v \). Since the seller cares only about what he gets in expectation rather than individual realizations of \(v \) (payoff equivalence), the intermediary could just as well pay the seller the expected value as the net price \(P(c) - \omega(P(c)) \). Equating the net price \(P(c) - \omega(P(c)) \) with the seller’s expected payoff and replacing \(P(c) \) with \(p \) gives the optimal fee as stated in Proposition 1. Alternatively, one can equate the seller’s utility under fee setting \([P(c) - \omega(P(c)) - c][1 - F(P(c))] \) with his information rent and solve first for \(\omega(P(c)) \) and then for \(\omega(p) \) (see the formal proof in the Appendix).

Proposition 1. Fee setting with

\[
\omega(p) = p - E_v[P^{-1}(v) | v \geq p]
\]

is an intermediary optimal mechanism, where the seller with cost \(c \) sets the price \(p = P(c) \).

A few remarks are in order. First, the derivative of \(\omega(p) \) in (1) is

\[
\omega'(p) = 1 - \frac{f(p)}{1 - F(p)} \int_p^\infty \frac{1 - F(x)}{1 - F(p)} [P^{-1}(x)]' \, dx.
\]

Therefore the marginal fee can never be higher than 100 percent, since by Myerson’s regularity assumption \([P^{-1}]’\) is positive, just as the other terms, and hence \(\omega'(p) < 1 \). This is of course what one would expect from incentive compatibility. One can also see

\(^{23}\) A direct mechanism requires participants to report their valuations to the mechanism designer who will take actions for them rather than taking actions themselves. The idea of a dominant strategy implementation goes back to [Vickrey (1961)]’s analysis of second price auctions. It basically means that it is a dominant strategy (i.e. optimal independently of the other agent’s actions) for every participant to report their types truthfully.

\(^{24}\) The buyer gets a take-it-or-leave-it offer at price \(P(c) \). It is clearly a dominant strategy to accept the offer iff \(v \geq P(c) \). The same applies to the seller. This dominant strategy implementation is already mentioned in [Myerson and Satterthwaite (1983)] after Theorem 4.

\(^{25}\) A similar observation in the context of income taxation is made by [Mirrlees (1971), p.178].
that a decrease of $[\Gamma^{-1}(x)]'$ at every point x (in the image of Φ) leads to an increase of the overall fee $\omega(p)$ and the marginal fee $\omega'(p)$ for all prices p. The reason is that $\omega(p)$ and $\omega'(p)$ decrease with $[P^{-1}(x)]' = [\Gamma^{-1}(\Phi(x))]'$. Second, Proposition 1 implies that the intermediary can achieve his maximal expected profit without knowing or making use of the buyer’s valuation when determining payments in case of trade. The buyer’s valuation is only needed to determine whether the good is traded. However, the optimal mechanism depends in general on the distribution of the buyer’s valuation F. It is therefore rather striking that for a certain family of distributions of seller’s types, namely all those that exhibit virtual costs that are linear in c, the optimal fee charged by the intermediary is independent of F and linear.

2.3 Optimality of Linear Fee Mechanisms

Let us start with a uniform distribution G on $[0, 1]$ implying $\Gamma(c) = 2c$. The fee is hence

$$\omega(p) = p - E_v[\Phi(v)/2|v \geq p] = p/2$$

and independent of F. There is actually a more general principle behind this, which we will show in the following.

Proposition 2. The following are equivalent statements:

(i) a linear fee mechanism is optimal, i.e. $\omega(p) = \xi p + \zeta$ is intermediary optimal,

(ii) c is drawn from a generalized power distribution $G(c) = \left(\frac{c-c_0}{c_bar-c_0}\right)^\beta$ with $\beta > 0$,

where $\xi = 1/(\beta + 1)$ and $\zeta = -c/ (1 + \beta)$ holds.

As the optimal linear fee is fully determined by the two parameters (β, c) of the distribution of the seller’s cost G, Corollary 1 follows directly from Proposition 2.

Corollary 1 (Invariance of Linear Fees). If a linear fee is intermediary optimal for some distributions (G, F), then it will also be optimal for (G, \hat{F}), where \hat{F} is an arbitrary regular distribution.

It can also be shown that the reverse implication – in some sense – of Corollary 1 holds.

Proposition 3. If a fee function $\omega(p)$ is optimal for a given G and for an arbitrary regular F, then the fee has to be linear and G has to be a generalized power distribution.
As optimality of linear fees implies invariance of the fees with respect to the buyer’s distribution, the empirical prediction of Proposition 2 is that whenever profit maximizing intermediaries choose linear fee setting as a mechanism, these fees will be invariant. Clearly, this prediction is consistent with available empirical evidence, provided that the seller’s distributions are the same across time and regions.

Of course, this raises the question whether the seller’s distribution should vary if the buyer’s varies as well. There are two answers. First, the upper part of the seller’s cost distribution \([P^{-1}(\bar{v}), \bar{c}]\), i.e. those sellers who for sure cannot sell, is irrelevant for the intermediation problem at hand. Therefore, Proposition 2 means that a linear fee only implies a generalized power distribution in the relevant range \([c, P^{-1}(\bar{v})]\). Above this range, \(G\) can have any shape, provided its virtual cost function is increasing.\(^{26}\)

Note further that the relevant range \([c, P^{-1}(\bar{v})]\) can be said \([0; 100,000]\) in the countryside and \([0; 1,000,000]\) in a big city, but they both lead to the same fee if they have the same shape in this range.

Corollary 1 and the empirical prediction thus hold not only when the cost distribution is the same over time and across regions, but even if it has only the same shape in the relevant range. This is illustrated in Fig. 1 that shows two different distributions of the seller’s cost that lead to the same fee.

The second answer relies on how the distributions of steady state dynamic types are related to the distributions of entrant static types in the dynamic game with random matching. Therefore, we defer it to the end of Section 3.4.

The widespread use of linear fees raises the question whether linear fees may perform well even when the seller’s distribution does not exhibit linear virtual costs. Though a complete analysis of the performance of linear fees in such environments is beyond the scope of the present paper, we provide some numerical examples in Appendix A that suggest that linear fees are close to optimal for other distributions than power distributions. Here we restrict ourself to the example \(g(c) = 6c(1-c)\) and \(f(v) = 1\) as depicted in Fig. 2. Even though \(g\) is far from a power distribution, choosing a linear

\(^{26}\)For many markets, it is reasonable to assume that most sellers are above the relevant range, so that the sellers with a positive probability of trade are just the “tip of the iceberg”. E.g. most house owners prefer staying in their houses rather than offer them for sale.
fee (equivalent to acting as if though having a power distribution $G(c) = c^{(1-\xi)/\xi}$ with $\xi = 0.4$) gives the intermediary 99.8 percent of the profits he would get with the optimal mechanism. Similar results were found for other distributions in Appendix A. This gives rise to the conjecture that power distributions are a useful approximation in many cases, even if the seller’s distribution is of a different kind.\footnote{One may further conjecture that the distributions for which linear fees are closer to optimality are also the ones that are more invariant to changes of the buyer’s distribution. But these conjectures, of course, remain to be shown.}

It is also worth mentioning that analogous results can be obtained for mechanisms where the buyer sets the price and the fee is conditioned on this price. It is for instance optimal for the intermediary to let the buyer set the price and charge the fee $\omega_B(p) = E_c[P(c)|c \leq p] - p$, which induces the buyer to set the price $p = P^{-1}(v)$. For $F(v) = 1 - [(v - \hat{v})/(\bar{v} - \hat{v})]^\beta_B$ the fee will be linear and independent of the seller’s distribution.
2 STATIC MONOPOLY

Figure 2: Optimal and linear fee for $g(c) = 6c(1-c)$ and $f(v) = 1$.
2.4 Static Monopoly with Many Buyers

The results obtained so far can be extended to a setup with one intermediary, one seller, and many buyers. As a preliminary, we first derive the intermediary optimal mechanism with many buyers and possibly many sellers. Since this is a generalization of the Myerson-Satterthwaite results on intermediary optimal mechanisms summarized in Lemma 2 in the Appendix, it is of some interest on its own.28

Let N_B and N_S, respectively, be the number of buyers and sellers, whose valuations v_b and costs c_s are independent draws from distributions F_b with densities f_b and supports $[v_b, \overline{v}_b]$ and distributions G_s with densities g_s and supports $[c_s, \overline{c}_s]$. As before, we consider cases where virtual valuations $\Phi_b(v_b)$ and the virtual costs $\Gamma_s(c_s)$ are strictly increasing and we use b (s) exclusively to indicate a buyer (seller). Order and relabel the realized virtual valuations in decreasing and virtual costs in increasing order, i.e. $\Phi_1 > \Phi_2 > ... > \Phi_{N_B}$ and $\Gamma_1 < \Gamma_2 < ... < \Gamma_{N_S}$. Pair buyers and sellers with equal index. The case where $N_B \neq N_S$ can be easily dealt with by adding fictitious traders.29 We define the Virtual-Walrasian allocation rule such that all pairs with $\Phi_k \geq \Gamma_k$ trade and all others do not. The Virtual-Walrasian quantity is the number of trading pairs, formally $K := \max\{k|\Phi_k \geq \Gamma_k\}$.

Lemma 1. The intermediary optimal mechanism that respects individual rationality and incentive compatibility of buyers and sellers has a Virtual-Walrasian allocation rule and gives zero expected utility to buyers with $v_b = \overline{v}_b$ and sellers with $c_s = \overline{c}_s$.

A sketch of the proof is in the appendix. For $N_B = N_S = 1$ the Virtual-Walrasian allocation rule reduces to the intermediary optimal allocation rule of Myerson and Satterthwaite (1983).

We now assume that there is one seller (i.e. $N_S = 1$) and that the $N_B > 1$ buyers’ valuations are independently drawn from the identical distribution F with support $[v, \overline{v}]$. It is well known from the auction literature that the reservation price is the same irre-

28See also Baliga and Vohra (2003).

29If there are less buyers than sellers, fill up the ranks of buyers with fictitious buyers who do not trade for sure (i.e. $\Phi_k = -\infty$ for $N_B < k \leq N_S$). If there are less sellers, use fictitious sellers with $\Gamma_k = \infty$ for $N_S < k \leq N_B$.

spective of the number of buyers. Hence one would suspect that results for price setting with one buyer carry over to an auction with a reservation price equal to the price one would set for one buyer. Prop. 4 shows that this is the case indeed.

Proposition 4. Assume the intermediary faces \(N_B \) buyers whose valuations are i.i.d. draws from \(F \) and one seller whose cost is drawn from \(G \). Then the following is an intermediary optimal mechanism. The intermediary sets the fee function \(\omega(p_S) = p_S - E_v[P^{-1}(v) | v \geq p_S] \), where \(p_S \) is the final sale price. Then the seller sets the reserve price \(p = P(c) \), and a standard auction ensues.

Observe that the intermediary need not know the number of buyers \(N_B \) when determining the optimal mechanism. Of course, this is not surprising given that the optimal reserve price only depends on \(F \) and not on \(N_B \).

3 Dynamic Competition with Random Matching

Two salient features of real world markets where exchange occurs predominantly via intermediaries are that agents can typically postpone trade to the future if it fails in the present and that intermediaries usually compete with one another. To account for these features that were absent in the static model of Section 2, we now extend the model as described next.

3.1 Setup

Consider a market in an infinite horizon setup as illustrated in Fig. 3. Each period mass 1 buyers and mass 1 sellers enter the market. A buyer’s valuation of the good \(\tilde{v} \) is drawn from the distribution \(\tilde{F}_0 \) with strictly positive density \(\tilde{f}_0 \) on the support \([\tilde{v}_0, \tilde{v}_0]\). A seller’s cost \(\tilde{c} \) is drawn from \(\tilde{G}_0 \) with \(\tilde{g}_0 > 0 \) on \([\tilde{c}_0, \tilde{c}_0]\). We refer to \(\tilde{v} \) and \(\tilde{c} \) as a buyer’s and seller’s static type (i.e. static valuation and cost, respectively). We will describe the distinction between static and dynamic types later. Buyers enter a pool of buyers with mass \(\sigma \) with a distribution of their valuations \(\tilde{v} \sim \tilde{F} \). Sellers enter a pool of mass \(\sigma \) with \(\tilde{c} \sim \tilde{G} \). We assume that the market is in steady state, i.e. the traders entering the market (pool) have the same mass and distribution of valuations as those who leave. \(\tilde{G} \)
and \tilde{F} are hence the steady state cumulative distribution functions. Their densities are denoted with \tilde{f} and \tilde{g}. There is an unlimited supply of intermediaries standing ready to offer their services. For the moment we abstract away from the entry decision of intermediaries, but will return to this in Section 4.3.2. In each period each buyer, each seller, and each intermediary is uniform randomly matched in a triple consisting of one member each of the three groups.

As in the one-shot game, the intermediary offers the following mechanism to the two traders. He first announces a fee ω that is a function of the price the seller will set. Then the seller sets a price p. If the buyer accepts, he pays p, the seller gets the net price $p - \omega(p)$, and the intermediary the fee $\omega(p)$. If there is trade, the net utility of the seller with cost \tilde{c} is $p - \omega(p) - \tilde{c}$, the buyer’s net utility is $\tilde{v} - p$, and both traders leave the market. Intermediaries stay in the market forever. Traders who do not trade stay in the market with the exogenous probability $e^{-\eta \tau}$ until the next period, where τ represents the length of a period and η a parameter of the hazard rate. With probability $1 - e^{-\eta \tau}$ a trader drops out of the market and has utility 0. Future utility is discounted with a factor $e^{-r \tau}$. As for most of the analysis only the product of these two factors matters, we define $\delta := e^{-(\eta + r) \tau}$ as the total discount factor, where τ can be interpreted as a parameter of the degree of competition: the shorter the time of a new match after a failed trade, the more competition intermediaries face.

Since in the dynamic setup agents are always given positive probability of trading in the future if trade fails in the presence, a buyer whose static type is \tilde{v} will have a dynamic type $v < \tilde{v}$. The difference between the static and the dynamic valuation of a buyer can be described as follows. If a buyer were (hypothetically) given the choice between buying a house now or never, the maximal amount he would be willing to pay would be his static valuation \tilde{v}. If he were, however, given the choice between buying a house now or searching for an opportunity to buy in the future, his maximal willingness to pay would be his static valuation \tilde{v}. If he were, however, given the choice between buying a house now or searching for an opportunity to buy in the future, his maximal willingness to pay would be his static valuation \tilde{v}. If he were, however, given the choice between buying a house now or searching for an opportunity to buy in the future, his maximal willingness to pay would be his static valuation \tilde{v}. If he were, however, given the choice between buying a house now or searching for an opportunity to buy in the future, his maximal willingness to pay would be his static valuation \tilde{v}.

\footnote{This matching technology is essentially the same as in Atakan (2006a,b). It differs from Satterthwaite and Shneyerov (2007, 2008) who assume a seller who is matched with zero, one, or many buyers.}

\footnote{This actually does not matter since they are all identical. We could just as well have intermediaries arriving each period and others dropping out.}
be lowered by the value of his outside option. We call this lowered willingness to pay his dynamic valuation. Similarly, a seller with static type \tilde{c} will have a dynamic cost $c > \tilde{c}$. The crucial point of our analysis is that there is monotonic relation between static and dynamic types. Therefore, we can use the dynamic valuation of the buyer $v = B(\tilde{v})$ and the dynamic cost of the seller $c = S(\tilde{c})$ (which of course remain to be determined) to derive the endogenous distributions $F(v) = \tilde{F}(B^{-1}(v))$ and $G(c) = \tilde{G}(S^{-1}(c))$. A typical intermediary will simply use the dynamic types, or their distributions, rather than the static types and distributions to design the exchange mechanism described in the previous section. Note that from the point of view of an intermediary this is equivalent to a one-shot game, since the probability that he will meet the same buyer or the same seller in a subsequent period is 0 and he takes the mechanisms offered by other intermediaries in subsequent periods as given.

3.2 Dynamic Types

The analysis in Section 5.3 can be reinterpreted as the best response mechanism of an intermediary given a mechanism prevalent in the market, which induces distributions F and G. As a next step we derive the distributions F and G that would arise if all intermediaries were to choose the best response mechanism. In an equilibrium these have to be the same distributions we started with. In the following we will determine the relation of dynamic types and static types for a given mechanism. From now on we will assume in accordance with the literature that buyers and sellers who cannot trade do not enter the market in steady state. This is equivalent to the inequalities in Assumption 1 being binding in steady state.

First, fix the mechanism used by the intermediaries. Following a similar logic as Satterthwaite and Shneyerov (2007) we first consider the discounted utility of a buyer with static valuation \tilde{v} who cannot commit to reject an offer below his dynamic valuation.

32Put differently, the fact that there is a future drives a positive (negative) wedge between a buyer’s (seller’s) static type and his dynamic type.
Figure 3: Market in steady state. Each period mass 1 of traders with distributions \(\tilde{F}_0 \) and \(\tilde{G}_0 \) enter the market and join pools with distributions \(\tilde{F} \) and \(\tilde{G} \). Traders have dynamic type distributions \(F \) and \(G \). With probabilities \(\rho_B(v) \) and \(\rho_S(c) \) they leave the market because they trade, with probability \(1 - e^{-\eta \tau} \) they leave the market for exogenous reasons.

\[
W_B(\tilde{v}, v) = \rho_B(v)(\tilde{v} - D_B(v)) + (1 - \rho_B(v))\delta W_B(\tilde{v}, v),
\]

where \(\rho_B(v) \) is the probability of trade implied by the mechanism chosen by the intermediaries and \(D_B(v) := E_c[P(c) | P(c) \leq v] \) is the buyer’s expected payment. Rearranging yields

\[
W_B(\tilde{v}, v) = (\tilde{v} - D_B(v))P_B(v),
\]

where

\[
P_B(v) := \frac{\rho_B(v)}{1 - (1 - \rho_B(v))\delta}
\]

is “the discounted ultimate probability of trade” in Satterthwaite and Shneyerov (2007)’s terminology.
3 DYNAMIC COMPETITION WITH RANDOM MATCHING

Assuming that the buyer plays a steady state strategy (i.e. the maximal price v that he is willing to accept is the same in each period), his “interim utility” is

$$W_B(\tilde{v}) = \sup_v (\tilde{v} - D_B(v))P_B(v) = (\tilde{v} - D_B(B(\tilde{v})))P_B(B(\tilde{v})).$$

By the same logic as Satterthwaite and Shneyerov (2007)’s Lemma 3 (i.e. using Milgrom and Segal (2002)’s generalized versions of the envelope theorem)

$$W_B(\tilde{v}) = W_B(\tilde{v}) + \int_{\tilde{v}}^{\tilde{v}} P_B(B(x))dx.$$

$W_B(\tilde{v})$ turns out to be zero, since the lowest valuation buyer is just indifferent between participating and not. A buyer will accept an offer if the price is below his dynamic valuation

$$v = B(\tilde{v}) = \tilde{v} - \delta W_B(\tilde{v}).$$

Combining this with the previous result we get

$$B(\tilde{v}) = \tilde{v} - \delta \int_{\tilde{v}}^{\tilde{v}} P_B(B(x))dx,$$ \hspace{1cm} (4)

and the differential equation

$$B'(\tilde{v}) = 1 - \delta P_B(B(\tilde{v})).$$ \hspace{1cm} (5)

One can easily check that for infinitely long waiting times between trading opportunities $\tau \to \infty$ (and hence $\delta = e^{-\eta + r}\tau \to 0$, this basically means a single shot game) the dynamic valuation approaches the static valuation, i.e. $B(\tilde{v}) \to \tilde{v}$. Observe also that $B'(\tilde{v}) = (1 - \delta)/(1 - (1 - \rho_B(v))\delta) \in [1 - \delta, 1]$.

A similar analysis can be carried out for the seller. For expositional clarity assume for the moment that the intermediary uses the dominant strategy implementation described in Myerson and Satterthwaite (1983) (there is trade iff $\Phi(v) \geq \Gamma(c)$, in case of trade the buyer pays $\Phi^{-1}(\Gamma(c))$ and the seller gets $\Gamma^{-1}(\Phi(v))$). For this mechanism clearly the same logic applies for the seller as for the buyer: he accepts any offer that is above his dynamic costs. By the same procedure we get

$$S(\tilde{c}) = \tilde{c} + \delta \int_{\tilde{c}}^{\tilde{c}} P_S(S(x))dx,$$ \hspace{1cm} (6)
and
\[S'(\tilde{c}) = 1 - \delta P_S(S(\tilde{c})), \]
where the ultimate discounted probability of trade is analogous for the seller, i.e. \(P_S(v) := \rho_S(v)/(1 - (1 - \rho_S(v))\delta) \)

The probabilities of trade are given by the optimal allocation rule (applied to the dynamic types):
\[\rho_B(v) = G(\Gamma^{-1}(\Phi(v))), \]
\[\rho_S(c) = 1 - F(\Phi^{-1}(\Gamma(c))). \]

Equations (5), (7), (8), (9), \(F(v) = \tilde{F}(B^{-1}(v)), \) and \(G(c) = \tilde{G}(S^{-1}(c)) \) characterize the dynamic types \(v = B(\tilde{v}), c = S(\tilde{c}) \) and their distributions \(F \) and \(G \) for any given steady state distributions \(\tilde{F} \) and \(\tilde{G} \). We will determine the relation of these distributions to the distributions of the entrants \(\tilde{F}_0 \) and \(\tilde{G}_0 \) below.

In principle, this already allows us to derive the optimal fee function \(\omega \), by obtaining \(F \) and \(G \) from the underlying steady state static distributions and substituting into (1). This allows us to state the following corollary to Proposition 1:

Corollary 2. If the distributions \((F, G)\) are regular, then fee setting with \(\omega(p) \) given by Proposition 1 is an optimal mechanism for every intermediary in every period. Consequently, it is an equilibrium mechanism.

Of course, the distributions \((F, G)\) are endogenous, so the condition in the above statement is rather stringent. However, deriving the properties of \(F \) and \(G \) from the fundamentals of the model is very hard in general. Below we present examples where \((F, G)\) are indeed regular. One approach is solving the problem numerically. Another approach is to solve the problem backward, starting with dynamic type distributions \(F \) and \(G \) and finding the corresponding static distributions \(\tilde{F} \) and \(\tilde{G} \). The second approach resembles more how one would proceed empirically since the distribution of the dynamic types is closer to what one observes empirically: if a buyer rejects a price \(p \) we know that it is above his dynamic valuation \(v \), while his static valuation has to be inferred from the estimate of his dynamic valuation. We will use this second approach in the following.
3.3 The Relation Between Static and Dynamic Valuations

For the sake of analytical tractability we will choose dynamic distributions with support \([0, 1]\) such that the virtual valuation/cost functions are linear \(G(c) = c^\beta\) and \(F(v) = 1 - (1 - v)^\alpha\) is the most straightforward choice. However, we need to truncate the distributions to get rid of buyers and sellers who do not trade for sure \((\Gamma(c) > \Phi(1)\) and \(\Phi(v) < \Gamma(0))\). This gives us

\[
F(v) = 1 - \left(\frac{\alpha + 1}{\alpha}\right)^\alpha (1 - v)^\alpha \quad \text{and} \quad G(c) = \left(\frac{\beta + 1}{\beta}\right)^\beta ,
\]
on supports \([1/(\alpha + 1), 1]\) and \([0, \beta/(\beta + 1)]\), respectively. Note that truncation does not change \(\Phi\) and \(\Gamma\). From (8) and (9) we get with some algebra the probabilities of trade

\[
\rho_B(v) = \left(\frac{\alpha + 1}{\alpha}v - \frac{1}{\alpha}\right)^\beta \quad \text{and} \quad \rho_S(c) = \left(1 - \frac{\beta + 1}{\beta}c\right)^\alpha .
\]

The solutions for the differential equations (5) and (7) for \(B(\bar{v})\) and \(S(\bar{c})\) are given implicitly by

\[
v = B(\bar{v}) + \frac{\delta}{1 - \delta} \frac{\alpha}{\alpha + 1} \frac{1}{\beta + 1} \left(\frac{(\alpha + 1)B(\bar{v})}{\alpha}\right)^{\beta + 1} + \text{const},
\]
\[
c = S(\bar{c}) - \frac{\delta}{1 - \delta} \frac{\beta}{\beta + 1} \frac{1}{\alpha + 1} \left(1 - \frac{(\beta + 1)S(\bar{c})}{\beta}\right)^{\alpha + 1} + \text{const},
\]

where the constants are such that \(B(\bar{v}) = \bar{v}\) and \(S(\bar{c}) = \bar{c}\). To obtain the functions \(B\) and \(S\) one needs to solve \((\beta + 1)\)th and \((\alpha + 1)\)th degree polynomials.\(^{33}\) For the uniform-uniform case \((\alpha = \beta = 1)\) we can obtain the closed form solutions

\[
B(\bar{v}) = \frac{1}{2\delta} \left(2\delta - 1 + \sqrt{(1 - \delta)(1 - 3\delta + 4\bar{v}\delta)}\right), \quad (10)
\]
\[
S(\bar{c}) = \frac{1}{2\delta} \left(1 - \sqrt{(1 - \delta)(1 + \delta - 4\bar{c}\delta)}\right). \quad (11)
\]

\(S(\bar{c})\) is plotted for in Fig. 4. Fig. 4 illustrates that especially low cost sellers have a higher dynamic type: if they cannot sell in the current period for a high price, they are willing to wait further. Fig. 5 shows how \(\bar{g}(c)\) relates to \(g(c)\). For \(\delta = \epsilon = 0\), \(\bar{g}\) and \(g\) coincide.

\(^{33}\)Obtaining the inverse functions \(B^{-1}\) and \(S^{-1}\) is fairly simple. Unfortunately, since we started from the dynamic types, we need \(B\) and \(S\) for our exercise to find the distributions \(\bar{F}\) and \(\bar{G}\).
Figure 4: $S(\tilde{c})$ for $\eta = r = 0.1$ and $\tau = 1$. For $\tau = \infty$, $S(\tilde{c})$ is equal to the 45 degree line (dashed line).

Figure 5: $\tilde{g}_0(c)$, $\tilde{g}(c)$, and $g(c)$ for $\eta = r = 0.1$ and $\tau = 1$.
3.4 Entrant Types

Let us turn to the types of the entrants. Again, solving the problem backward turns out to be simpler than forward. Assume we already know the dynamic distributions F and G and the static steady state distributions of the types in the market \bar{F} and \bar{G}. Now we want to derive the distributions \bar{F}_0 and \bar{G}_0 entrants must have for the market to remain in steady state.

The probability that a seller remains in the market is $(1 - \rho_S(c))e^{-\eta \tau}$. Note that here the distinction between the total discount rate $\delta = e^{-(\eta + r)\tau}$ and the probability of remaining in the market $e^{-\eta \tau}$ matters again. The mass of sellers of dynamic type c leaving the market is the probability that such sellers do not remain in the market times the mass of all sellers σ. To obtain steady state we equate this with the mass of entrants of type c:

$$\sigma(1 - (1 - \rho_S(c))e^{-\eta \tau})g(c) = g_0(c),$$

where g_0 is the distribution of entrants’ dynamic types and where σ has to be such that $\int g_0(c) dc = 1$, i.e. the total mass of entrants is equal to the total mass of sellers leaving the market. Eq. (12) shows that for every seller with dynamic type c there are

$$[\sigma(1 - (1 - \rho_S(c))e^{-\eta \tau})]^{-1}$$

sellers with the same c in the market. Since this is increasing with c, this means that sellers with high dynamic costs cumulate more in the market. This is intuitive, after all they have to wait longer until they can sell their good for the high price they charge.

We are now able to formulate the second answer to the question raised in Section 2 whether the seller’s distribution should vary in different markets if the buyer’s does. Even if the distributions of the entering buyers and sellers are the same, since high cost sellers and low valuation buyers wait longer in the market, the steady state probability density functions become steeper compared to the entrant densities with higher costs and lower valuations. This explains why buyers’ dynamic distributions are different from sellers’.

It seems plausible (even though it has yet to be shown formally) that even if entering sellers’ distributions have a somewhat different shape\(^{34}\) in different geographical regions,

\(^{34}\)Note that the first answer to this question pointed out that if the sellers’ distributions in different
the cumulation of high cost sellers transforms the distributions to similar distributions close to a power distribution.

So far the argument concerned distributions of dynamic types. As Eqs. (11) and (12) (and graphically Fig. 5) illustrate, the transformation from static type distributions to dynamic type distributions has an opposing effect to the cumulation of high cost sellers: since the value of continuing is higher for low cost sellers, the distribution of dynamic types is flatter than the static type distribution. In the following we illustrate in a simple example that cumulation can be a stronger effect than the dynamic valuation effect. Whether this is true in general is yet to be shown.

To get the static type distribution of entrants, one has to substitute \(S(\tilde{c}) \) for \(c \) in (12):

\[
\sigma (1 - (1 - \rho_S(S(\tilde{c})))e^{-\eta \tau}) \tilde{g}(\tilde{c}) = \tilde{g}_0(\tilde{c}).
\]

We will do this procedure for \(c, v \) uniform explicitly. Eq. (12) simplifies to

\[
2\sigma (1 - 2ce^{-\eta \tau}) = g_0(c).
\]

Using \(\tilde{g}_0(\tilde{c}) = g_0(S(\tilde{c}))(S'\tilde{c}) \) one gets

\[
2 \sigma \frac{1 - e^{-\eta \tau}}{\delta e^{-\eta \tau}} \left(1 - \frac{1 - e^{-\eta \tau}}{\sqrt{(1 - \delta)(1 + \delta - 4c\delta)}} \right)
\]

\(\tilde{g}_0(c) \) is shown in Fig. 5.

This analysis should already provide a basic idea of this relation. It shows that high cost sellers (and analogously low valuation buyers) cumulate more in the market. This turns the density of the sellers to a “more convex” one that is closer to a power distribution and possibly makes differences in entrant distributions in different regions less important. This is a possible explanation for the small variance in real estate brokerage fees. The fact that the dynamics of such markets turns densities “more convex” also helps to explain the steep increase in the shape of the distribution of the sellers’ dynamic types which corresponds to a fee of 6 percent: \(G(c) \approx c^{16} \).

geographical regions are different, but have the same shape after truncation, the argument about invariance of fees still holds. Here we are only dealing with the issue of distributions having different shapes after truncation.
Preliminary results from numerical simulations with \tilde{F}_0 and \tilde{G}_0 uniform on $[0, 1]$ are provided in Fig. 6.

$$\delta \delta = 0.537289, \quad \epsilon \epsilon = 0.733$$

![Graph showing the relation between static entrant, static steady-state, and dynamic steady state distributions for buyers and sellers.](image)

Figure 6: Relation between static entrant, static steady-state, and dynamic steady state distributions for buyers and sellers. $\delta = e^{-\eta r} = 0.54$ and $\epsilon = e^{-\eta t} = 0.73$.

3.5 First Order Effects – Perturbation Analysis

Even though an analytical solution cannot be found in general, we can describe the effects of infinitesimally small perturbations of an analytically tractable solution.

We will start out with a case where we have an analytical solution: the static model. If traders discount the future with factor $\delta = e^{-(r+\eta)\tau} \to 0$ (equivalent to $r \to \infty$) and their probability of staying in the market $\epsilon := e^{-\eta \tau} \to 0$ (equivalent to $\eta \to \infty$), the solution of the dynamic game trivially coincides with the static game, we have $c = S(\tilde{c}) = \tilde{c}$ and $g = \tilde{g} = \tilde{g}_0$. As a next step we increase the probability of staying in the market ϵ infinitesimally, but keep the discount rate δ constant. This has the effect that static types and dynamic types still coincide, but entrant and steady state distributions become different since sellers accumulate. We will also assume that the change of ϵ only affects
G and not F, because only the drop out rate of sellers changes. Another possible reason is that we are close to a power distribution, so that a change of F hardly has any effect.

The following analysis uses perturbation analysis to perturb a function infinitesimally and look at the first order effect of this perturbation on the system of differential equations. As long as second order effects are sufficiently small, this is a good approximation of the exact solution.

To simplify the exposition, we will denote in this subsection the entrant static type distributions \(F \) and \(G \) instead of \(\tilde{F}_0 \) and \(\tilde{G}_0 \); the distributions of the steady state dynamic types (which coincide with the static types) will be denoted by \(\hat{F} \) and \(\hat{G} \).

Now recall from (12)
\[
\sigma(1 - (1 - \rho_S(c))\epsilon)\hat{g}(c) = g(c),
\]
where \(\rho_S(c) = 1 - F(\Phi^{-1}(\Gamma(c))) \) and \(\sigma \) is a constant such that the density function \(\hat{g} \) adds up to one. In the following, we want to have a function \(\gamma \) that infinitesimally perturbs \(\hat{g} \)
\[
\hat{g}(c) = (1 + \epsilon\gamma(c))g(c)
\]
and ensures that \(\hat{g} \) adds up to one, i.e. \(\int_{\mathbb{R}} \gamma g = 0 \).

Increasing \(\epsilon \) infinitesimally has the following first order effects.

Proposition 5. The first-order effects of an increase of \(\epsilon \) from \(\epsilon = 0 \) are the following:

(i) \(\ln \hat{G} \)' increases,

(ii) \(\hat{\Gamma} \) decreases and \(\hat{\Gamma}^{-1} \) increases,

(iii) the sign of the change of \((\hat{\Gamma}^{-1})' \) is ambiguous.

Since \(\hat{G} \) enters \(\hat{\omega} \) only through \(\hat{\Gamma}^{-1} \) and \(\hat{\omega}' \) only through \((\hat{\Gamma}^{-1})' \) (see equations (1) and (2)), this leads us immediately to the following Corollary.

Corollary 3. As the waiting time between rematches decreases (starting from an infinite waiting time and considering first-order effects)

(i) the overall fee \(\omega(p) \) becomes lower,
(ii) the sign of the change of the marginal fee $\omega'(p)$ is ambiguous.

That the overall fee is lower with more frequent rematching could be suspected by intuition for two reasons. First, a more frequent rematching resembles more competition and should therefore drive down fees. Second, we have seen for the case of uniform dynamic cost distributions that more frequent rematching makes the seller’s cost distribution more convex, which corresponds for a power distribution to β increasing. A higher β means a lower fee. But a formal derivation of the first order effects shows that the intuition does not carry over further. An increase of β for a power distribution also means a lower marginal fee. However, the first order effect for the marginal fee is ambiguous.

The role private information plays in our model is also worth a brief discussion in this context. If buyers and sellers did not have price information, then each intermediary would optimally leave zero net utility to each of them. Therefore, as in Diamond (1971), reducing the search friction, which in our setup corresponds to shortening the period length, would have no effect on equilibrium fees unless the search friction can be abolished completely. With private information, however, shortening the period length does have a discernible effect on the equilibrium fee structure.

4 Applications

We now discuss how our analysis relates to various important applications such as stock brokerage, auction houses and sites, and real estate brokerage.

35 A simple illustration of the logic of the so called Diamond paradox (see e.g. Anderson and Renault, 1999) is to assume that, say, a buyer searches sequentially and discounts future payoffs with the factor $\delta \in (0, 1)$. Let $U_B(\tilde{v})$ be the payoff he gets when buying from the intermediary he is currently matched to. Since he has the option of continuing search, $U_B(\tilde{v}) = \delta U_B(\tilde{v})$ has to hold. But since $\delta < 1$ this implies $U_B(\tilde{v}) = 0$. With incomplete information, the buyer enjoys an informational rent of $\tilde{v} - D_B(v)$ as given in (3). Notice in particular that if it were the case that $\tilde{v} - D_B(v) = 0$, then $W_B(\tilde{v}, v) = 0$ would follow for exactly the same reason as in Diamond (1971). See also Satterthwaite and Shneyerov (2007, 2008), Lauermann (2007) and Lauermann and Wolinsky (2008) for comparisons of effects arising in incomplete and complete information models with dynamic matching.

36 Notice also that initial condition for the comparative statics exercise of Proposition 5 and Corollary 8, $\epsilon = 0$, corresponds to a prohibitively high search cost in Diamond (1971). So at this point the Diamond model is continuous (though, obviously, invariant) in the search cost.
4.1 Stock Brokers

Linear fees are widely used in stock brokerage. The empirical finance literature describes two kinds of fees used: flat fees and percentage fees (see Conrad, Johnson, and Wahal, 2001).

An important reason why stock brokers may prefer percentage fees to (bid and ask) price posting (see Section 5.3) may be the highly volatile nature of the value of the goods (i.e., stocks) in the exchange of which they are engaged. This feature is arguably well captured by our model, where the buyer’s and seller’s valuations \(v \) and \(c \) are stochastic. Consequently, the market price exhibits substantial variability and price posting is not optimal for the intermediary, as shown in Proposition 9 below, whereas percentage fee setting is. Interestingly, the literature on market microstructure and intermediation mainly focuses on price posting by brokers. For example, Gehrig (1993) studies a static model with a monopolistic broker who quotes bid and ask prices. Similarly, Duffie, Garleau, and Peddersen (2005) analyze market making by price setting intermediaries in a dynamic setup, where the intermediaries’ search intensity is determined endogenously and price posting is the exogenously given mechanism. An exception is the paper by Duffie and Strulovici (2008), who provide a model with intermediaries in capital markets that charge percentage fees. Another paper that departs from the assumption of price posting is Parlour and Rajan (2003) who study an infinite horizon model with market makers who quote bid-ask spreads rather than post bid and ask prices. This is obviously related yet distinct from the percentage fees used in practice and the ones studied in the present paper.

4.2 Auction Houses and Auction Sites

Auction houses like Sotheby’s and Christie’s and auction internet sites like eBay set percentage fees and the seller then sets a reservation price rather than a take-it-or-
Applications

leave-it price. Our dynamic model sheds some light on the determinants of these fees. In a market where it takes a long time until participants are rematched, i.e. where \(\tau \) is large, there is less cumulation of high cost sellers.\(^{39}\) Therefore, the probability density function is less steep. The lower \(\beta \) in a power distribution \(G(c) = c^\beta \) implies a higher fee \(\xi = 1/(1 + \beta) \). By the same logic a short period \(\tau \) implies a lower fee. For example, a fee of 6 percent as used by real estate agents corresponds to a distribution \(G(c) = c^\beta \) with \(\beta \approx 16 \). The 5 percent formerly charged by eBay to \(\beta \approx 19 \), and the 20 percent previously charged by Sotheby’s and Christie’s to \(\beta = 4 \). This result seems intuitive: a shorter time between consecutive matches is similar to more competition between intermediaries and hence leads to lower fees.

Of course, whereas for real estate brokerage a large number of intermediaries is arguably a good approximation, for Sotheby’s, Christie’s and eBay it is not. Having few competitors has the effect that every intermediary will take into account that agents not trading today will be matched with him in the future with a positive probability. Hence he will choose a mechanism that leads to no trade occurring more often. For auction houses, however, there are two (partially) offsetting effects. First, since in an auction the probability that no buyer bids more than the reserve price is smaller, it is less likely that the seller will return to the intermediary. Second, goods auctioned off are likely to be further away from the assumption of homogeneity we have made. Hence, a buyer not buying the good now is less likely to bid for a sufficiently similar good in the next period.

Collusion

Another issue we have abstracted from is collusion. The U.S. Department of Justice uncovered commission fixing between Sotheby’s and Christie’s in the 1990s and is currently investigating whether real estate agents are colluding (DOJ, 2007). Analyzing how collusion would look like in our dynamic setup is therefore of particular interest and relevance. For the two extreme cases where \(\tau \) is either zero or infinite, the answer is simple. For \(\tau \to \infty \) the probability of being rematched is zero. Therefore, the optimal collusive mechanism, i.e. the mechanism that maximizes joint profits, is given by the

\[^{39}\text{For example, as } \tau \to \infty \text{ there is no cumulation at all since all sellers leave the market with probability } 1 - e^{-\eta \tau} \to 1.\]
optimal mechanism in the static model derived in Section 2. For $\tau \to 0$ all the bilateral matchings essentially become one multilateral, simultaneous matching of all buyers and all sellers. An optimal mechanism for a monopolist, or equivalently for colluding firms, in this setup is to post bid and ask prices at which sellers are allowed to sell and buyers are allowed to buy, as we show in Proposition 10 below. Determining the optimal collusive mechanism for intermediate values of τ requires solving a rather complicated dynamic mechanism design problem, where the feasibility constraint is that only matched buyers and sellers can trade in any given period. This is left for future research.

4.3 Real Estate Brokers

An important assumption that we maintain throughout the paper is that the intermediary has all the bargaining power. In the context of the real estate brokerage literature, which has almost exclusively stayed within principal-agent models, where the seller or occasionally the buyer is the principal, this is a novel perspective. As we outline next, we think there are good reasons to look at real estate brokerage from this new angle.

First, in the case where a broker represents a buyer, the broker typically charges 3 percent of the price paid by the buyer. This percentage fee cannot be explained in a principal agent framework where the buyer incentivizes the broker to find an advantageous price for him, since their interests are diametrically opposed under such a contract.

Second, even in the cases where the broker represents the seller, it is not clear why the broker typically gets 6 percent of the total price. If it were the seller who proposes the contract to the broker, incentive compatibility implies that he would give a much higher percentage to the broker for the marginal increase of price he achieves. Making the individual rationality constraint binding should lead to a lower fee on the inframarginal price.

Third, many observations suggest that bargaining rests with the broker rather than the buyer or the seller: the almost complete invariance of commission fees, the concerns about collusion by real estate brokers, and the fact that brokers are long-term players.

As Hsieh and Moretti (2003) point out in their empirical analysis, a 6 percent fee seems to be far above the costs incurred by a broker for a house selling for say USD 500,000, especially so as 6 percent is sufficient to cover the broker’s costs for a house selling for USD 100,000.
with substantial benefits from reputation, whereas individual buyers and sellers trade with very low frequency with brokers. It is also not clear why as a consequence of competition between brokers sellers, or buyers, should propose the contract since in most other industries competing firms like e.g. retailers, car manufacturers or gas stations make take-it-or-leave-it (price) offers to their clients. Competition merely constrains these firms in what they can optimally offer.

Fourth, empirical observations of price dispersion of houses with the same quality and the relation of the price and the time on market are difficult to explain in a principal agent framework.

Stylized Facts in Real Estate Brokerage
We have abstracted from many details of individual markets so as to develop a fairly general model of intermediation. It is therefore remarkable, that our baseline model, and straightforward extensions of it, already match many of the stylized facts observed in real estate brokerage. Extending the model to the specificities of real estate brokerage should lead to a better match of facts.\(^{41}\)

First, real estate brokers charge 6 percent of the transaction price, a commission rate that shows very little variance over time and across regions. Second, sellers with a higher loan-to-value ratio ask higher prices (Genesove and Mayer, 1997). Third, sellers who had bought their houses when average real estate prices were high, ask for higher prices than those who had bought when prices were low (Genesove and Mayer, 2001). Fourth, quality adjusted prices and time on market of a house are positively correlated in cross sectional and negatively correlated in longitudinal data. Fifth, broker fees are the same irrespective of the number of intermediaries and house prices. Sixth, while industry profits doubled, the number of brokers doubled as well (Hsieh and Moretti, 2003). Seventh, brokers sell their own houses at higher prices than those of others (see Levitt and Syverson, 2008; Rutherford, Springer, and Yavas, 2005).

We have dealt with the first stylized fact in the previous sections. The second and the third are relatively easy to explain, the others will be dealt with later on. The second

\(^{41}\)One extension we are currently working on is having a different rematching frequency for sellers than buyers.
fact can be interpreted as the loan-to-value ratio being a proxy for the seller’s cost. Note that in a Walrasian equilibrium, by the law of one price, the price of a house must only depend on its characteristics and not on the seller’s preferences. Therefore, this fact is inconsistent with the law of one price. However, it is consistent with a setup with search frictions and incomplete information, since this leads to price dispersion.

The third fact can, again, be explained by price dispersion of houses of the same quality. During a boom only buyers from the upper quantiles of the valuation distribution buy, for low valuation buyers prices are too high. When average prices are low, also buyers from the lower quantiles buy. Assuming that individuals that were high valuation buyers when they bought their houses are more likely to be high cost sellers when they sell later, we would expect the effect described in Genesove and Mayer (2001): buyers who bought during a boom ask for higher prices.

In the following, besides giving explanations for the other stylized facts, we will show the empirical implications of our model. Of course, an empirical analysis would have to incorporate the specificities of the housing market.

4.3.1 Quality Adjusted Price and Time On Market

There is a large empirical literature dealing with the relation between the quality adjusted listing price and the time on market. For example, Rutherford, Springer, and Yavas (2005) consider the degree of overpricing (DOP) which is similar to a quality adjusted price. Assuming that everyone agrees that the objective value of a certain house is θ, an individual trader’s valuation for the house is the product of θ and the trader’s subjective valuation, i.e. θv and θc for the buyer and the seller, respectively. The observed price \hat{P} is given by $\hat{P}(c) = \theta P(c)$, where $P(c)$ is the quality adjusted price. The degree of overpricing is the percentage which the listing price of the house is above the objective value of the house, $\text{DOP} = (\hat{P}(c) - \theta)/\theta$. The quality adjusted price would hence be $P(c) = \text{DOP} + 1$. The price $P(c)$ in our model can be interpreted as a quality adjusted

Therefore, our model can be interpreted e.g. as consisting of several separate submarkets that differ only in their $θ$, which is publicly observable, the distributions of v and c being the same. If the submarkets were not separate, it would be an issue that a trader’s dynamic valuation depends on the distribution of $θ$ he expects to get matched with in the next period.

A very relevant issue in practice in real estate brokerage is the time an object is on the market. We now derive predictions on the relation between the quality adjusted price and the time a house is on the market before being taken off the list, which happens either because it is sold or because the seller leaves the market without selling. Interestingly, the baseline model predicts that the average time on market is the same for sold and unsold houses.

Homogeneous Market First, consider a market with only one homogeneous good. Consider only the subsample of houses offered for a certain price p. Then in each period a constant fraction $1 - F(p)$ of houses leaves the market because they are sold and a constant fraction $νF(p) = e^{-ητ}F(p)$ drops out for exogenous reasons. Since in every period the ratio of those selling and of those dropping out is constant, the distribution of the time on market is the same (geometric) distribution for sold houses and for houses that drop out for exogenous reasons. The continuous time approximation of the discrete time geometric distribution is described in Prop. 6.

Proposition 6. For homogeneous houses the time on market of sold and unsold houses has the same distribution. The continuous time approximation of this distribution is exponential with the cumulative distribution function $\frac{1}{1 - \exp(-\phi(p) + η)t}$ and mean

$$T(p) = \frac{1}{\phi(p) + η},$$

where ϕ is defined as $e^{-\phi(p)} := F(p)$. For a price p the ratio of houses ever sold, denoted

43 Since Rutherford, Springer, and Yavas (2005) estimate DOP as the average listing price a house with certain characteristics has, this means that DOP has mean 0. This corresponds to a quality adjusted price normalized to have mean 1.

44 We provide the continuous time version of the distribution since it is more convenient for empirical purposes. The discrete time version is derived in the formal proof in the Appendix.
$1 - F_\infty(p)$, is

$$1 - F_\infty(p) = \frac{\phi(p)}{\phi(p) + \eta}. \quad (15)$$

Consistent with our model the empirical literature (see e.g. Hendel, Nevo, and Ortalo-Magne forthcoming) finds that the quality adjusted listing price and the time on market are positively correlated in cross-sectional data. One can also easily find an explanation in our framework for the negative correlation observed in longitudinal data.

In theory, observing the relation between listing price p and the time on market $T(p)$ on the one hand and the ratio of houses sold, $1 - F_\infty(p)$, on the other hand would be sufficient to estimate the steady state dynamic distribution F. The most straightforward approach is solving (14) and (15) for $\phi(p)$ and η which results in $\phi(p) = (1 - F_\infty(p))/T(p)$ and $\eta = F_\infty(p)/T(p)$.

An empirical analysis would of course have to overcome further issues not present in our theoretical framework. Some could be dealt with by straightforward extensions of our framework or standard econometric tools, such as seasonal differences, the fact that it takes some (random) time until advertisements for a house appear and potential buyers first view the house, or truncation of data. Others will require further thought.

To illustrate, we provide a numerical example of the prediction our model would give for dynamic type distributions $F(v) = v$ and $G(c) = c^{16}$ in Fig. 7. Note that the two subfigures on the left are our assumptions on F and G, the other four subfigures represent our predictions of the empirically observable functions.

Our results concerning the average time on market of sold and unsold houses can be used in two ways. If one does have data on the time on market of unsold houses, a comparison of these two variables can be used as an indicator of how well one has corrected for heterogeneity of house characteristics (see next paragraph). If one does not

\footnote{I.e. during a boom period houses are sold faster and at higher prices than during a recession. In our framework this means that F and G change in booms such that both the average price $\int_{P}^{P^{-1}(v)} P(c) dG(c)$ increases and the overall average time on market $\int_{P}^{P^{-1}(v)} T(P(c)) dG(c)$ decreases.}

\footnote{This leads to the time on market not being exponentially distributed, but having a peak for some $t > 0$.}
Figure 7: Predicted fee $\omega(p)$, density of prices, time on market, and probability of ever selling for $F(v) = v$ and $G(c) = c^{16}$.
have this data for unsold houses, using the time on market of sold houses is enough for the analysis so far.

Heterogeneous Submarkets Typically a data set includes heterogeneous submarkets. Difficulties arise when drawing borders between submarkets, some of which are similar to the well-known difficulties in antitrust economics of defining the relevant market. A simple approach to the heterogeneity of submarkets is to assume that they differ only by a constant multiplier θ, e.g. the distributions of valuations and costs of one bedroom apartments and mansions have the same shape, but mansions are worth, say, four times more to everyone. Our previous results carry over without any change to such forms of heterogeneity.

However, for other kinds of heterogeneity, observations from several submarkets with different shapes of distributions showing up in the data would lead to average times on market that are lower for sold than for unsold houses. Intuitively, houses that have a higher probability of selling at the same price have a shorter time on market and are also relatively overrepresented in the set of sold houses. This is formally shown in Prop. 7.

Proposition 7. If heterogeneous submarkets are in the observed sample, the time on market is lower for sold than unsold houses.

This result is consistent with Larsen and Park (1989)’s remark in their empirical analysis that failing to include unsold houses may lead to a bias in the estimation of time on market. The analysis above suggests that such a bias stems from heterogeneity. Results in Prop. 7 naturally carry over to the case where times on market are estimated as averages over all prices rather than for a specific price.

4.3.2 Inefficient Free Entry

Inefficient free entry of real estate agents is studied by Hsieh and Moretti (2003). Their empirical analysis also includes a reduced form model of inefficient free entry, similar
in spirit to Salop's (1979) and Mankiw and Whinston's (1986) theoretical work. Their model takes fees as exogenously given and hence independent of the number of intermediaries. Our framework can be easily extended to allow for endogenous entry of intermediaries. We can show that, under a condition we maintained in the dynamic model above and that seems empirically warranted, the mass of active intermediaries does not affect the equilibrium mechanism. Our model can hence also serve as a microfoundation for Hsieh and Moretti’s assumption of exogenously given fees.

Homogeneous Intermediaries Assume first that intermediaries are homogeneous and have the per period opportunity cost K of participating in the market. Denote an intermediary’s expected profit during a match as $\Pi := \int_0^v \int_c^\max \{0, \Phi(v) - \Gamma(c)\} f(v)g(c)dc\,dv$ and the mass of intermediaries in the market as ι.

First, consider the case where there are more intermediaries than traders in the market ($\iota > \sigma$). A trader will always be matched and his probability of trade will be independent of ι. Therefore, his dynamic valuation and the equilibrium mechanism intermediaries use will be independent of ι and so will, therefore, be Π. An intermediary, on the other hand, is matched with probability σ/ι. If entry is free, intermediaries will enter until expected profits equal opportunity costs, i.e. $(\sigma/\iota^*)\Pi = K$, which gives us the equilibrium mass ι^* of active intermediaries in the market.

For $\Pi < K$ excess supply of intermediaries ($\iota > \sigma$) is not possible. In this case there is a scarcity of intermediaries, therefore, buyers and sellers will have to take into account that their matching probability ι/σ is less than 1. Hence ι will determine traders’ dynamic valuations, an intermediary’s equilibrium mechanism, and his profit per transaction Π. The equilibrium number of intermediaries is then given by $\tilde{\Pi}(\iota) = K$, where $\tilde{\Pi}(\iota)$ is some (decreasing) function that determines equilibrium per transaction profits depending on the number of intermediaries in the market.

Which of the two scenarios ($\iota > \sigma$ or $\iota < \sigma$) is relevant is, of course, an empirical question. Hsieh and Moretti find that the number of transactions per year per intermediary decreased over the time horizon where real estate was booming and attracted a lot of entry. This means that after the increase in housing prices and the wave of entry
associated with it there was an excess supply of intermediaries ($\iota > \sigma$). Further, the number of intermediaries ι has increased proportionally to the overall profits made in real estate brokerage ($\sigma \Pi$). This means that there was an excess supply of intermediaries already before new intermediaries entered. Therefore, the empirically relevant case seems indeed to be the one with $\iota > \sigma$ we focus on.

Heterogeneous Intermediaries Let us now assume that intermediaries are heterogeneous with respect to their opportunity costs and their productivity. This is more in line with the empirical observation of a small number of “star brokers” who account for a large fraction of profits in the industry. Index intermediaries by $\iota \geq 0$ with ι increasing with their costs $K(\iota)$ (hence $K'(\iota) > 0$). We model an intermediary’s productivity by his relative probability of being matched $r(\iota)$. This means that if the set I of intermediaries is active, an intermediary’s matching probability is $r(\iota)/R(I)$ with $R(I) := \int_{\iota \in I} r(\iota) d\iota$ and his expected profit $(\sigma r(\iota)/R(I))\Pi$ in case of excess entry.

Consider the simple case with $r'(\iota) \leq 0$, i.e. agents with higher opportunity costs are (weakly) less talented as brokers. This means the lower ι the more willing to participate a broker is. Hence brokers in $I^* = [0, \iota^*]$ participate in equilibrium for some marginal broker ι^*. I^* and ι^* are given by $(\sigma r(\iota^*)/R(I^*))\Pi = K(\iota^*)$. Since r is decreasing and K increasing, an increase of Π will clearly increase per year profits of the marginal intermediary ι^*. Hence, average industry profits will increase even more.

For other slopes of r we can get e.g. the case described in Hsieh and Moretti’s Appendix A: brokers in $I^* = [\iota^*_{\min}, \iota^*_{\max}] \subset (0, \infty)$ participate, where ι^*_{\min} and ι^*_{\max} are the marginal indifferent brokers. This is Hsieh and Moretti’s story of the “middle class” doing real estate brokerage: people with very low skills would not earn enough as brokers, people with very high skills earn more in other jobs. If r is strongly increasing in the upper part

48 Besides, the number of transactions (only including sales, not rentals) changed from 6 to 3 per year in the region investigated by Hsieh and Moretti. It is unlikely that intermediaries had to turn away potential traders because they did not have capacity to take care of them.

49 This relates to Hsieh and Moretti’s Appendix A, where they study differently talented brokers with heterogeneous participation costs.

50 If entry is not excessive, i.e. the mass of intermediaries $\int_{\iota \in I} d\iota$ is less than σ, profits per transaction will be some $\hat{\Pi}(I)$.
of the interval I^* of active brokers, we have the case of a few “star brokers” that get a large share of the transactions and the profits in the industry.

The shapes of r and K determine whether the active set of intermediaries may consist of multiple non-connected intervals, whether there is multiplicity of equilibria, the sign of the effect of an increase of per transaction profits Π on average industry profits $(\sigma/\int_{\iota \in I} d\iota)\Pi$ and the welfare effect of entry tests for brokers. Empirical observations of the distribution of per year profits among intermediaries should allow to make inferences about the slopes of r and K.

4.3.3 Vertically Integrated Intermediary-Seller

Levitt and Syverson (2008) and Rutherford, Springer, and Yavas (2005) observe that houses owned by brokers yield on average a higher price than comparable houses of independent sellers. Our dynamic model can be used to investigate the selling behavior of intermediaries who are also owners. Suppose the intermediary owns the good (i.e. the seller and the intermediary can be considered as a vertically integrated firm), so that he knows his cost \tilde{c}. Then price posting will be optimal for this vertically integrated seller. Not surprisingly, the profit of the vertically integrated seller will exceed the joint profits of the stand alone seller and stand alone intermediary.

51That average industry profits can increase with per transaction profits has been already shown for r weakly decreasing and K increasing. That they can decrease can be illustrated with the following example. Let initial per transaction profits be Π_0. Assume $r(i) = 1$ for $i < 1$ and $r(i) = 2$ for $i \geq 1$. Assume $K(i) = \sigma \Pi_0/2 + \epsilon$ for $i < 2$ with some small ϵ and $K(i) = \infty$ else. Initially, only agents in the interval $I^* = [1, 2]$ participate. Per year profits are $\sigma \Pi_0$. An increase to $\Pi_1 = (3/2)\Pi_0 - \epsilon$ results in the entry of low ability agents with $i \in [0, 1]$. Average per year per intermediary profits fall to $\sigma(3/4)\Pi_0$.

52The National Realtor Association and individual states require candidates to pass an exam to be licensed as a broker. Besides the slopes of r and K the effect would also depend on the details of the test. E.g. for r weakly decreasing a test that excludes brokers with the highest opportunity costs would be clearly welfare enhancing, a test that excludes the lowest opportunity cost intermediaries welfare reducing. Otherwise the effect is ambiguous.

53If the cumulative distribution function H of per year profits among intermediaries is observable, the following reasoning applies. Under the assumption that r is weakly increasing and $I^* = [\iota_{\min}^*, \iota_{\max}^*]$, the inverse of the cumulative distribution function is equal to $H^{-1}(x) = \sigma r((\iota_{\max}^* - \iota_{\min}^*)x + \iota_{\min}^*)/R(I^*)\Pi$, which should allow to recover r for the domain I^*. For the opportunity cost K one can only infer that it is weakly less than per year profits in I^* and equal at the boundaries of the interval, ι_{\min}^* and ι_{\max}^*. A change of I^* over time (e.g. because of a change of Π) would allow for further estimates.

54If the intermediary and the seller are independent agents, then the intermediary will offer $p^S = c$ to the seller and the seller’s profit is zero. Whether the intermediary and the seller are vertically integrated or not, the optimal price charged to the buyer will be $p_B = \Phi^{-1}(c)$. That price posting is optimal with one buyer follows from the theory of optimal selling mechanisms; see e.g. Myerson (1981).
However, because the fee setting mechanism that is optimal for the non-integrated intermediary imposes an upward distortion in the seller’s effective cost, the price set by the non-integrated seller should be larger than the price set by the integrated intermediary-seller in a static setup. Formally, \(\Phi^{-1}(\Gamma(c)) = P(c) > P_I(c) := \Phi^{-1}(c) \), since \(\Gamma(c) > c \) and \(\Phi \) is increasing, where \(P_I \) is the price set by the intermediary-seller. Accordingly, the welfare of the buyer with an integrated intermediary-seller should be larger than when the seller and the intermediary are independent. This prediction of lower prices under vertical integration contrasts with the empirical findings of Levitt and Syverson (2008) and Rutherford, Springer, and Yavas (2005).

Quite interestingly, dynamics may reverse this result, as we show next. The dynamic costs satisfy \(S_I(\tilde{c}) > S(\tilde{c}) \), where \(S_I \) is the dynamic cost of the intermediary-seller. So the intermediary-sellers with static cost \(\tilde{c} \), having a higher dynamic cost than the independent seller, will optimally set a higher price than the independent seller would, absent the fee charged by an intermediary. Therefore, dynamics tend to mitigate and in some cases overturn the price difference between vertically integrated and stand alone sellers. To see this, consider the following example where dynamic valuations are uniformly distributed with \(F(v) = 2v - 1 \) for \(v \in [1/2, 1] \) and \(G(c) = 2c \) for \(c \in [0, 1/2] \). Consequently in equilibrium the independent seller with dynamic cost \(c \) sets the price \(P(c) = c + 1/2 \). Since \(c = S(\tilde{c}) \) as given in (11), the seller with the static cost \(\tilde{c} \) sets the price \(P(\tilde{c}) = S(\tilde{c}) + \frac{1}{2} = \frac{1}{12} \left(1 + \delta - \sqrt{(1 - \delta)(1 + \delta - 4\tilde{c}\delta)} \right) \).

A simple way of introducing integrated sellers is to assume that there are few of them (i.e., they are of measure zero) so that their behavior does not affect the distribution of dynamic valuations. Assume also that an integrated seller leaves the market after successful sale just like stand alone sellers do and are matched to a buyer with probability one in every period. Then, we have the following:

Proposition 8. An integrated seller with static cost \(\tilde{c} \) may set a higher price in equilibrium than a stand alone seller with the same static cost.

An analysis yet to be done is to assume that intermediary-sellers have the same entrant static cost distribution as other sellers and see whether the average price set by
intermediaries is higher.

5 Extensions

5.1 Per Transaction Costs of Intermediation

Instead of or in addition to assuming a fixed cost of intermediation, let us now briefly consider now the case where intermediation services involve a variable (as well). We show that under the assumption of a power distribution with $c > 0$ of the seller’s cost, all the previous results go through rather nicely.

Recall first that a power distribution G with $c > 0$ implies a negative fee $\xi < 0$, i.e. a subsidy from the intermediary to the seller which we typically do not observe. However, intermediaries also provide services (advertising, showing the house to potential buyers, legal advice) we do not account and that are costly. Thus, the free of charge provision of these services can be interpreted as a subsidy from the intermediary to the seller paid in resources.

This is also consistent with the following observation. In the U.K. real estate brokers typically charge a lower fee (2.5 percent) than in the U.S. but they do also provide less services. Recall that for a power distribution a larger β implies a lower percentage fee ... but also a smaller subsidy. Thus, assuming that the seller side both in the U.S. and the UK are characterized by power distributions, this is consistent with $\beta_{UK} > \beta_{US}$ which in turn implies $\xi_{US} < \xi_{UK} < 0$, which is consistent with the difference in service levels provided by brokers.

5.2 Many Buyers in the Dynamic Game

“Non-Discriminating Mechanisms” One can also consider a market with more buyers than sellers in the pool of current potential traders55, where a seller and an intermediary are matched with a predetermined number of buyers in each period. Our results relatively easily generalize to such a setup if we assume that the intermediary is restricted to a certain class of mechanisms. Define “non-discriminating mechanisms”

55This can be the case because the mass of entering buyers is larger than that of entering sellers or because the exit rates of sellers are higher.
as mechanisms that cannot distinguish between buyers. An intermediary restricted to non-discriminating mechanisms basically treats all buyers as one “representative buyer” whose valuation is drawn from a distribution F, F being the distribution of the highest order statistic of the buyers. Our results carry over to such a setup if we adapt the dynamic valuations of the buyers adequately. This implies in particular that whenever linear fees are an optimal non-discriminating mechanism, they are independent of the distributions of the buyers’ valuations and, therefore, also of the number of buyers.

An advantage of looking at non-discriminating mechanisms is that they are a superset of mechanisms that do not condition transfers on the buyers’ valuations and, therefore, our optimality results carry over a fortiori to these mechanisms. Not conditioning transfers on buyers’ valuations reduces communication costs: imagine a real estate agent posting prices of houses on sale outside of his office. Passers-by see the prices and only walk into the office if they are willing to buy at the posted price.

This allows us to interpret our model as equivalent to a model that takes into account a feature of real estate brokerage markets: buyers are rematched more frequently with an intermediary than sellers, a seller typically has a real estate agent show his house to several buyers before he looks for another real estate agent. Consider the following alternative description of what happens in a period in which a seller and an intermediary stay together. n buyers with dynamic distributions F_1, F_2, \ldots, F_n arrive sequentially in a random order. Assume that time 0 passes between their arrivals, so that discounting and exogenous exit do not matter. Then the intermediary and the seller can choose the fee and the price as if though there were only one buyer with distribution F equal to the highest order statistic of the distributions $\{F_i\}_{i=1}^n$. The first buyer who is willing to accept the price gets the house.

Auctions An alternative view of many buyers being matched with one intermediary in each period is that all buyers arrive at the same time. Then, as argued in Section 2.4,

56 One can interpret $F(p)$ as the probability that no buyer is willing to buy at price p.

57 This will clearly be optimal in the class of non-discriminating mechanisms. We should compare this setup to Riley and Zeckhauser [1983] to have a clearer view of optimality in a general class of mechanisms under the assumption that a buyer who didn’t get the house when he arrived will never return.
the optimal mechanism for the intermediary is – provided the seller’s cost is drawn from a power distribution – to charge a percentage fee and let the seller auction off the good. Even though this part of the analysis is yet to be formally investigated, results from the static problem with many buyers should carry over.

5.3 Price Posting

Static Setup Consider now an alternative mechanism, called price posting, which is widely used e.g. by stock markets, used car dealers, and currency exchange offices: the intermediary sets an ask (or buyer) price \(p^B \) and a bid (or seller) price \(p^S \). If both seller and buyer are willing to trade at these prices, then the intermediary earns the bid-ask spread. Otherwise, there is no trade. The following proposition characterizes the optimal bid and ask price and shows under somewhat stricter regularity conditions that price posting is never optimal for the intermediary in a static setup.

This is puzzling at first sight since we observe price posting in many real world examples. We will show later on how this puzzle is resolved in a dynamic setup.

Proposition 9. Assume the inverse hazard rate \((1 - F(v))/f(v)\) is decreasing and \(G(c)/g(c)\) is increasing and that there is one buyer and one seller. Then the optimal ask price \(p^B\) and bid price \(p^S\) are given by the equations \(p^B = \Gamma(p^S)\) and \(p^S = \Phi(p^B)\). Further, price posting is never optimal for the intermediary.

This rather general non-optimality result of price posting hinges critically on Assumption 1. If one assumes instead that distributions do not overlap and that there is a sufficiently large gap between the two distributions (more precisely \(\Phi(\underline{v}) > \Gamma(\bar{c})\)). Then by Lemma 2 the intermediary always allows trade to occur and sets prices \(p^B = \underline{v}\) and \(p^S = \bar{c}\).

\[58\] One has to take into account that a buyer’s dynamic value changes for two reasons. First, the probability that he will trade in a period is lower. Second, the price he pays will be higher.

\[59\] These conditions ensure global concavity of the profit function and one can hence work with a unique solution of the first order conditions. However, without these assumptions, most of the analysis should carry over since our non-optimality result does not rely on uniqueness.
Dynamic Setup Proposition 9 stands in contrast with the empirical observation that many intermediaries do use price posting mechanisms and trade does not occur each time a potential buyer or seller meets an intermediary. However, a closer look reveals that in all of the examples of price posting intermediaries there is a crucial difference to real estate brokers: an intermediary has the possibility of storing the good. Hence demand and supply need not equal in every point in time, but only on average. A possible explanation of why real estate agents cannot do this are liquidity constraints and other costs of storage. Interestingly, as we show next, if storing the good is possible, price posting becomes optimal.\footnote{Riley and Zeckhauser (1983) and Peck (1996) also look at the optimality of price posting mechanisms, but in different setups and without intermediaries. The former relies on buyers’ ability to wait without costs for a cheaper offer by the same seller, the latter assumes buyers with identical valuations choosing simultaneously between offers from multiple sellers.}

For simplicity, let us model the ability to store the good in the following way. An intermediary can store the good between subsequent rematchings. Assume he has no liquidity constraints, no storage constraints, his discount factor is 1, he can have short positions of the good, and storage costs are zero. His only constraint is that he has to buy and sell with the same probability\footnote{Our assumption is essentially the same as Garman’s (1976) assumption of an intermediary with an infinite inventory of cash and stock and Glosten and Milgrom’s (1983) assumption of “zero costs associated with all short positions in cash and stock”. Both papers look at intermediaries facing sequentially arriving traders (in stock markets), but in a very different setup and with a very different focus: both assume the price posting mechanism as exogenously given, the former considers non-strategic traders arriving in continuous time, the latter the bid-ask spread set by zero profit intermediaries in the presence of insider trading. In Garman (1976) an intermediary also faces the constraint that his probability of buying and selling must equal. We could depart from our assumptions and the equal probability constraint by using a more complicated setup where the intermediary has a limited storage capacity and no possibility of short positions. In the long run, he would still have to buy and sell with the same probability on average, but in the short run the probabilities would be different. E.g. if the intermediary is about to run out of stocks, he will increase prices to have a higher probability of trading with a seller than with a buyer. However, one would conjecture that as storage capacity approaches infinity, the mechanism used in such a setup should approach our mechanism.} Therefore we can just as well consider a mechanism design problem where all buyers and sellers that will be matched with the intermediary at any point in time arrive at once. In the following we will solve this mechanism design problem.

Assume that there are N buyers and N sellers with i.i.d. draws $v_i \sim F$ and $c_i \sim G$. In a static setup where all buyers and sellers arrive at the same time, v_i and c_i are
valuations and costs. For the dynamic setup, v_i and c_i are interpreted as steady state dynamic valuations and costs. Our analysis relies on N converging to infinity. To simplify exposition index the realized valuations in decreasing and costs in increasing order. To avoid dealing separately with the special case where all buyers and sellers trade, add a fictitious buyer who will never trade with $v_{N+1} = -\infty$ and a fictitious seller with $c_{N+1} = \infty$. Denote the Virtual-Walrasian quantity as defined before Lemma 1 as $K := \max\{i | \Phi(v_i) \geq \Gamma(c_i)\}$. The following Proposition shows that posting two prices maximizes the intermediary’s profits as the number of buyers and sellers goes to infinity. The basic idea is that for an infinite number of traders the intermediary knows the distribution of the realized types. Hence he knows the Virtual-Walrasian quantity without any reports by the traders, he only has to make sure that traders within the Virtual-Walrasian quantity trade.

Proposition 10. Consider a price posting mechanism with N buyers and sellers, where prices are given by the equation system $\Phi(p^B) = \Gamma(p^S)$ and $1 - F(p^B) = G(p^S)$. As N converges to infinity

(i) the optimal mechanism converges to a price posting mechanism with these prices,

(ii) the price posting mechanism with these prices converges to optimality.

By the argument at the beginning of this subsection, this leads us to the following corollary.

Corollary 4. If the good is storable, price posting is the optimal mechanism.

The intuition for why for non-storable goods fee setting is the optimal mechanism and for storable goods price posting is fairly clear. The intermediary is more likely to make the payments contingent on the seller’s (or the buyer’s) report for non-storable than for storable goods, since for non-storable goods the type of an individual trader is more important. For storable goods, the intermediary’s problem of simultaneously trading with a buyer and a seller can be separated to two separate problem, that of selling a good and that of buying a good.

62The number of buyers and sellers being unequal could be dealt with in a similar fashion. If there are e.g. less sellers than buyers, the missing sellers can be filled up with fictitious sellers.
One seller – infinite number of buyers Another result concerns the equivalence between, and optimality of, price posting by the intermediary and linear fee setting when the number of buyers N_B approaches infinity while the number of sellers N_S is kept fixed at one. For simplicity, assume that buyers’ valuations are identically and, as before, independently distributed according to the distribution F on $[v, \bar{v}]$. The seller’s cost is distributed according to G on $[c, \bar{c}]$ with $c < \bar{c}$ and as in Proposition 9, we assume that $G(c)/g(c)$ is increasing. Moreover, as in the rest of the paper, we assume that F and G satisfy Assumption 1.

Proposition 11. As N_B approaches infinity, intermediary price posting and fee setting are equivalent. Moreover, both mechanisms are intermediary optimal if F is regular.

Note that for an infinite number of buyers and fee setting any ω satisfying $\omega(\bar{v}) = \bar{v} - \Gamma^{-1}(\bar{v})$ and incentive compatibility is profit maximizing for the intermediary. For instance the intermediary could just as well charge a fixed fee $\bar{v} - \Gamma^{-1}(\bar{v})$.

5.4 Slotting Allowances

Real world retailers often require upfront payments by sellers to allocate scarce shelf space and then charge a percentage fee on the revenue generated by the seller.\footnote{See e.g. Sullivan (1997) or Marx and Schaffer (2007).} We now briefly argue that this type of mechanism arises naturally as the intermediary optimal mechanism when the intermediary faces several competing sellers but cannot sell more than one unit. The latter may occur either because he only attracts one buyer or because he is capacity constrained. So consider a static model with one buyer whose valuation is drawn independently from the distribution F and several sellers whose costs are independent draws from the distribution G, where both F and G are regular.

Proposition 12. The following two-stage mechanism is intermediary optimal:

Stage 1: The intermediary runs a second price auction among the sellers for the right to participate in the second stage.

Stage 2: The winner of stage 1 sets the price $p = P(c)$, facing the fee function $\omega(p)$ given in Proposition 1.
The intuition is simple. The intermediary optimal allocation rule is to have the good change hands, from the seller with the lowest cost to the buyer, if and only if this seller’s virtual cost is less than the buyer’s virtual valuation (see Lemma 1). The Vickrey auction in stage 1 picks the lowest cost seller, who due to regularity is also the seller with the smallest virtual valuation. The fee structure used in stage 2 makes sure that this seller sets a price such that the buyer accepts if and only if her virtual valuation exceeds his virtual cost.

Two further remarks are in order. First, any efficient allocation mechanism in stage 1 will achieve the same result. So the result goes through if the bidding process by sellers is more appropriately described as a first price sealed bid auction. A Vickrey auction just simplifies the proof because of dominant bidding strategies. Second, if the intermediary attracts several buyers whose valuations are i.i.d. draws but is constrained by his physical capacity not to sell more than one unit, then the mechanism in Proposition 12 is still intermediary optimal, provided the price set by the seller in stage 2 is a reserve price in an optimal auction.

5.5 Ad Value vs. Per Unit Taxation

The present analysis also sheds new light on the relative performance of ad value and per unit taxes under imperfect competition, which so far have been mainly analyzed in complete information setups and which are widely used in practice. As ad value taxes imposed by governments work like percentage fees set by intermediaries, a corollary to Proposition 1 follows immediately:

Corollary 5. The maximal expected revenue under an ad value tax is weakly larger than under a per unit tax.

Under a per unit tax t, the seller nets the price $p - t$ when setting p. So the problem of the seller with cost c is to maximize $(1 - F(p))(p - c - t)$, yielding $p(c, t) = \Phi^{-1}(c + t)$ as solution. To simplify, let us assume that F and G are uniform on $[0,1]$. Then the maximal expected revenue under a per unit tax is $1/27$, which is achieved with $t^* =$

64See e.g. Anderson, De Palma, and Kreider (2001b,a) or the survey by Keen (1998).
1/3. Consequently, only revenue targets $R \leq 1/27$ are feasible under per unit taxation. Interestingly, this is the same revenue that the intermediary can maximally achieve by price posting, where the optimal buyer and seller prices are $p^B^* = 2/3$ and $p^S^* = 1/3$, respectively. Moreover, the spread $p^B^* - p^S^*$ equals t^*.

On the other hand, under an ad value tax the maximal expected revenue is $1/24$, which is achieved with a tax of 50 percent. When talking about price posting in the following proposition, we assume that prices are set so as to maximize expected welfare subject to the constraint of achieving the revenue target in expectation. Not surprisingly, given that both F and G are uniform, these prices are symmetric around $1/2$ so that $p^B = 1/2 + z$ and $p^S = 1/2 - z$ for $z \in [0, 1/6]$. Clearly, there is a monotone relationship $R(z)$ between the revenue target R and z satisfying $R(0) = 0$ and $R(1/6) = 1/27$.

Proposition 13. First, a per unit tax and price posting are welfare equivalent for a given feasible revenue target R, and the per unit tax satisfies $t = 2z$, where $R(z) = R$. Second, for any given feasible revenue target R the buyer’s and the seller’s expected surplus is larger under an ad value tax than under a per unit tax. Third, the incidence of the per unit tax is borne evenly by the buyer and the seller, whereas the ad value tax hits the seller relatively harder.

Clearly, it would be interesting to see which of these results generalize. It seems quite likely that the welfare superiority of the ad value tax carries over whereas the equivalence between price posting and a per unit tax does not. However, a formal analysis, that possibly adapts the arguments of Anderson, De Palma, and Kreider (2001b) to a setup with incomplete information and which would be well in line with the spirit of Mirrlees (1971)’s seminal analysis, remains to be done.

6 Conclusions

In this paper we study intermediation from an applied Bayesian mechanism design perspective, under the assumption that the intermediary has the bargaining power. We find

65 This analogy between price posting and a per unit tax is even stronger, as Proposition 13 shows, in that expected welfare is the same for any target revenue R when prices are set in a welfare maximizing way subject to achieving the target revenue in expectation.
that fee setting mechanisms, which are widely used in practice, but so far little understood in economics, are optimal for intermediaries in a wide array of settings, i.e. they maximize the intermediaries’ expected profits subject to buyers’ and sellers’ incentive and individual rationality constraints. We show that these mechanisms are optimal in a static model where one or more buyer(s) and one seller are matched to an intermediary, and they are optimal for intermediaries in a dynamic model where in every period a buyer, a seller and an intermediary are randomly matched, and where the valuations of buyers and sellers are endogenously determined. We show also that the dynamic model with random matching, in which each intermediary chooses an optimal mechanism, permits an analytical solution. Perturbation analysis reveals that the equilibrium fees become smaller when the rematching probability increases, which contrasts with models with complete information. Our baseline model can be applied to different industries with intermediaries. In particular, we show that our model can explain several stylized facts observed in real estate brokerage. The dynamic model also provides a parsimonious explanation for why vertically integrated sellers, e.g. intermediaries who sell houses they own, may set higher prices than independent sellers, which is consistent with empirical evidence (see e.g. Levitt and Syverson, 2008). Further research on the optimal collusive mechanism in the dynamic model with random matching seems particularly fruitful given the widespread suspicion that intermediaries like real estate brokers set their fees collusively.

Appendix

A Robustness of Linear Fees

In the following, we will make a semi-formal argument in favor of the robustness of linear fees, i.e. that they perform well even if the seller’s cost is not drawn from a power distribution. Alternatively, this can be interpreted as arguing in favor of using a power distribution as an approximation of another distribution \(G \). For analytical convenience, we assume that the buyer’s valuation is drawn from the uniform on \([0,1]\), so that given the linear fee \(\xi \) the seller’s optimal price is \(p(\xi, c) = 1/2 + c/(2\xi) \) independently of the
distribution G_k. We consider the following four different distributions of c on $[0,1]$:

(i) $G_H(c) = c^2(3 - 2c)$ with $g_H(c) = 6c(1 - c)$ and $\Gamma_H(c) = \frac{c^2 - 8c}{1 - c}$

(ii) $G_T(c) = 2c - c^2$ with $g_T(c) = 2(1 - c)$ and $\Gamma_T(c) = \frac{c^4 - 2c^2}{1 - c^2}$

(iii) $G_C(c) = 3(c - c^3/3)^2$ with $g_C(c) = 3(1 - c^2)/2$ and $\Gamma_C(c) = \frac{2c^3 - 2c^2}{1 - c^2}$

(iv) $G_O(c) = 2c^{3/2}/3 - 2c^{5/2}/5$ with $g_O(c) = 15c^{1/2}(1 - c)/4$ and $\Gamma_O(c) = \frac{c^{25/2} - 21c^{25}}{15}$.

Observe that all of these satisfy increasing virtual costs. Denote by $\Pi^*_G := E_{v,c}[\Phi - \Gamma_k | \Phi - \Gamma_k > 0]$ the intermediary’s expected profit under the optimal mechanism when the distribution is G_k and by $\Pi^L_{G_k} = \max_{\xi} (1 - \xi) \int_0^\xi p(\xi,c)(1 - p(\xi,c))g_k(c)dc$ the intermediary’s expected profit under the same distribution when using the linear fee ξ optimally with $k \in \{H,T,C,O\}$. Quite interestingly, for all examples $\Pi^L_{G_k} > 0.9979 \Pi^*_G$.

For these examples, and it seems reasonable to conjecture also for others, even if the intermediary merely uses an optimal linear mechanism he only loses very little of the profit he could achieve using an optimal mechanism. Though farther analysis is certainly warranted, we find this result quite remarkable.

B Proofs

Since we will refer to the properties of intermediary optimal mechanisms often, we summarize Myerson and Satterthwaite (1983)’s Theorems 3 and 4 on intermediation in the following lemma.

Lemma 2 (Myerson-Satterthwaite). An incentive compatible, interim individually rational mechanism is intermediary optimal if and only if it is such that (i) the good is transferred iff $\Phi(v) \geq \Gamma(c)$ and (ii) the seller with the highest cost \bar{c} and the buyer with the lowest valuation \underline{v} both have zero expected utility.

Proposition 1. Optimal fee.

Proof of Proposition 1. Even though a shorter proof can be obtained by first considering the dominant strategy implementation, we will derive our results through the incentive compatibility constraint because other proofs rely on the intermediate steps of this proof. Note that an indirect mechanism that lets the seller set the price corresponds to a direct
mechanism with the properties that there are no payments if the good is not exchanged and payments in case of exchange can only be conditioned on the seller’s report but not on the buyer’s. Therefore, by the revelation principle we can focus our attention to direct mechanisms with these properties. We will first derive the optimal direct mechanism. Denote the probability that the good is exchanged depending on reported cost \(c \) and reported valuation \(v \) as \(Q(c,v) \). For the class of mechanisms we consider it is clearly a weakly dominant strategy for the buyer to accept whenever the price is less than or equal to his valuation. Therefore, the seller’s expected probability of exchange is \(q(c) := \mathbb{E}_v[Q(c,v)] = 1 - F(P(c)) \) and consequently, trade occurs iff the buyer accepts the offer, i.e. iff \(v \geq P(c) \). Combining this with the optimality condition (i) of Lemma 2 and the monotone increasingness of \(\Phi \), we get that for an optimal mechanism trade occurs iff \(\Phi(v) \geq \Phi(P(c)) = \Gamma(c) \). This gives us \(p = P(c) \). Because of Assumption 1 property (i) of Lemma 2 implies (ii).

Denote a truthfully reporting seller’s utility as \(U(c) := (P(c) - \omega(P(c)) - c)q(c) \). By standard arguments (see e.g. the argument leading up to equation (4) in the proof of Theorem 1 in Myerson and Satterthwaite (1983)) incentive compatibility implies

\[
U(c) = U(\bar{v}) + \int_{c}^{\bar{v}} q(t)dt.
\]

(16)

This expression for \(U(c) \) can be interpreted as the seller’s information rent. We already know that the highest cost seller is not going to sell and hence \(U(\bar{v}) = 0 \). This is also true for other sellers with sufficiently high cost, namely \(P(c) \geq \bar{v} \) or \(c \geq P^{-1}(\bar{v}) := \Gamma^{-1}(\Phi(\bar{v})) \). Therefore, the upper limit of the integral can be written as \(P^{-1}(\bar{v}) \). Equating (16) with \(U(c) = (P(c) - \omega(P(c)) - c)q(c) \) from its definition and rearranging yields

\[
\omega(P(c)) = P(c) - c - \int_{c}^{P^{-1}(\bar{v})} \frac{q(t)}{q(c)} dt = P(c) - c - \int_{c}^{P^{-1}(\bar{v})} \frac{1 - F(P(t))}{1 - F(P(c))} dt.
\]

(17)

This function gives the fee the intermediary earns when the seller with cost \(c \) sets the price \(p = P(c) \). Ultimately, however, we want to know the intermediary’s fee as a function of the seller’s price \(p \) since this is the empirically relevant concept. To that end, substitute \(p = P(c) \) into (17) and integrate using this substitution to get

\[
\omega(p) = p - P^{-1}(p) - \int_{p}^{P^{-1}(\bar{v})} \frac{(1 - F(v))[P^{-1}(v)]'}{1 - F(p)} dv.
\]

(18)
Integrating by parts and simplifying reveals that the righthand side in (18) equals $p - E_v[P^{-1}(v) \mid v \geq p] = p - (\int_p^\infty f(v)P^{-1}(v)dv)/(1 - F(p))$, where the second term is the expectation of $P^{-1}(v)$ taken with respect to the distribution F conditional on v being larger than p.

Proposition 2: Linear fee.

Proof of Proposition 2. By the same standard arguments leading to (16) we also get

$$U'(c) = -q(c) \text{ almost everywhere because of incentive compatibility.}$$

Equating this with the derivative obtained from the definition $U'(c) = [(P(c) - \omega(P(c)) - c)q(c)]'$ and rearranging yields

$$\Phi(P(c)) = P(c) - \frac{P(c) - \omega(P(c)) - c}{1 - \omega'(P(c))}.$$ \hspace{1cm} (19)

(i) implies (ii) Take $\omega(p) = \xi p + \zeta$. Then the right hand side of (19) becomes $(c + \zeta)/(1 - \xi)$. Equating this with $\Gamma(c)$ in order to achieve optimality according to Lemma 2(i) gives the differential equation $g(c) = G(c)(1 - \xi)/(\xi c + \zeta)$. With the condition $G(c) = 0$ one obtains the expression in part (ii) of the proposition with $\beta = (1 - \xi)/\xi$ and $\xi = -\zeta/\xi$. The upper bound of the support \bar{c} remains arbitrary.

(ii) implies (i) Observe that with the distribution G specified in part (ii) one has $\Gamma^{-1}(p) = (1 - \hat{\xi})p - \hat{\zeta}$ with $\hat{\xi} := 1/(\beta + 1)$ and $\hat{\zeta} := -\xi/(\beta + 1)$ and, therefore, $P^{-1}(p) = \Gamma^{-1}(\Phi(p)) = (1 - \hat{\xi})\Phi(p) - \hat{\zeta}$. Take (19) and replace $P(c)$ with p, c with $P^{-1}(p)$, and Φ by its definition. Rearranging leads to

$$\left(1 - F(p)\right)(\kappa'(p) - (1 - \hat{\xi})) - f(p)(p - \omega(p) - ((1 - \hat{\xi})p - \hat{\zeta})) = 0.$$ \hspace{1cm} (20)

Defining $l(p) := p - \omega(p) - ((1 - \hat{\xi})p - \hat{\zeta})$ equation (20) leads to $[l(p)(1 - F(p))]' = 0$. From part (ii) of Proposition 2 it follows that $p - \omega(p)$ is not singular at $p = \bar{v}$ (actually $\omega(\bar{v}) = \bar{v} - P^{-1}(\bar{v})$). Since $1 - F(\bar{v}) = 0$ it follows that $l(p) \equiv 0$, i.e. $\omega(p) = \xi p + \zeta$ as in part (i) Proposition 2 is satisfied with $\xi = \hat{\xi}$ and $\zeta = \hat{\zeta}$.

Proposition 3: Invariance and linearity of fees.

Proof of Proposition 3. The optimality condition (i) of Lemma 2 implies $\Phi(P(c)) = \Gamma(c)$. If we want optimality to hold for arbitrary distributions F, and hence for arbitrary
functions $P(c)$, equating the right hand side of (15) and $\Gamma(c)$ yields $\Gamma(c) = p - (p - \omega(p) - c)/(1 - \omega'(p))$ for arbitrary p. This differential equation in ω has the solution

$$\omega(p) = p - (1 - \xi)(p - \Gamma(c)) - c$$

(21)
defined up to a constant $1 - \xi$. If we want this to hold for any c we need $c - (1 - \xi)\Gamma(c) = -\zeta$ for some constant ζ, and hence $\Gamma(c) = (c + \zeta)/(1 - \xi)$. Substituting this back to (21) results in $\omega(p) = \xi p + \zeta$, i.e. a linear fee. This also implies a generalized power distribution G by Proposition 2.

Lemma 1: Optimal mechanism with many buyers and sellers.

Sketch of the Proof of Lemma 1. A direct mechanism asks buyers and sellers to report their valuations and costs. Denoting by (v, c) a collection of such reports with $v = (v_1, ..., v_{NB})$ and $c = (c_1, ..., c_{NS})$, the direct mechanism is then characterized by the probability $Q_b(v, c)$ that b gets a unit of the good and $Q_s(c, v)$ that s produces a unit of the good for $b = 1, ..., N_B$ and $s = 1, ..., N_S$ and by the payments $M_b(v, c)$ it asks from buyers and the payments $M_s(c, v)$ it makes to sellers. Clearly, a mechanism is only feasible if for all (v, c), $\sum_{b=1}^{N_B} Q_b(v, c) \leq \sum_{s=1}^{N_S} Q_s(c, v)$. Let Q be the collection of these probabilities. We refer to Q as the allocation rule of the mechanism.

We only sketch the proof, a fully detailed version of which is available upon request. Lengthy, though completely standard arguments (see e.g. Krishna, 2002) can be applied to show that a revenue (or payoff) equivalence theorem holds. Formally, $m_b(v_b) = m_b(\bar{w}_b) + q_b(v_b)v_b - \int_{x_b}^{q_b} q_b(t)dt$ and $m_s(c_s) = m_s(\bar{c}_s) + q_s(c_s)c_s - \int_{c_s}^{\bar{c}_s} q_s(t)dt$ for all c, v, lower case functions standing for expectations about all others’ valuations and costs (e.g. $m_b(v_b) := E_{v \neq b}[M_b(v, c)]$). Again, by standard arguments, this implies $E[m_b(v_b)] = m_b(\bar{w}_b) + E[\Phi_b(v_b)q_b(v_b)]$ and $E[m_s(c_s)] = m_s(\bar{c}_s) + E[\Gamma_s(c_s)q_s(c_s)]$. A profit maximizing intermediary will make the individual rationality constraint just binding, therefore, his expected profit $\sum_{b=1}^{N_B} E[m_b(v_b)] - \sum_{s=1}^{N_S} E[m_s(c_s)]$ is

$$\int_X \left\{ \sum_{b=1}^{N_B} \Phi_b(v_b)Q_b(v, c) - \sum_{s=1}^{N_S} \Gamma_s(c_s)Q_s(c, v) \right\} f(v)g(c)dvd\,dc,$$

(22)
where \(f(v) \) and \(g(c) \) are the joint densities of all buyers and sellers, respectively, and \(X \) is the product set containing all \((v,c)\). Inspection of the term in curly brackets reveals that the profit can be maximized point by point by implementing the Virtual-Walrasian allocation for each realization \((v,c)\).

Proposition 4: Intermediary optimal auction.

Proof of Proposition 4. It is sufficient to prove our statement for a second price auction, since by the revenue equivalence theorem it then also holds for any standard auction. So consider a second price auction where the seller faces the fee function \(\omega(p_S) \) levied on the sale price \(p_S \). The seller reports his cost as \(\hat{c} \) and the intermediary sets the reservation price \(P(\hat{c}) \). This seller’s expected profit is

\[
NB \left\{ (P(\hat{c}) - \omega(P(\hat{c}))(1 - F(P(\hat{c})))F(P(\hat{c}))^{NB-1} \\
+ \int_{P(\hat{c})}^{\pi} (y - \omega(y))(1 - F(y))(NB - 1)F(y)^{NB-2}f(y)dy \right\} + cF(P(\hat{c}))^{NB}
\]

because if the reserve price \(P(\hat{c}) \) is binding, the sale price is \(p_S = P(\hat{c}) \), which explains the first \(\omega(.) \) term. If the reserve is not binding, the sale price is the second highest bid \(y \), and this explains the second \(\omega(.) \); see also Krishna (2002, p.25). Note that the good is sold to the buyer with the largest virtual valuation, provided this is larger than the reserve \(p \).

For truth telling to be an equilibrium, the first order condition with respect to \(\hat{c} \) has to be satisfied at \(\hat{c} = c \). With some algebra, the first order condition can be rearranged to

\[
(1 - \omega'(P(c))(1 - F(P(c))) - (P(c) - \omega(P(c)) - c)f(P(c)) = 0.
\]

As (17) is the solution to this differential equation, it follows from the proof of Proposition 1 that the fee structure with the fee function \(\omega(p_S) = p - Ev[P^{-1}(v) \mid v \geq p_S] \) induces the seller to set the intermediary the reserve in the intermediary optimal way.

\(66\) It follows from Lemma 3 in Myerson (1981) that all standard auction formats will have the same expected revenue and indeed the same reserve price. See also Milgrom (2004, Ch.3) and Jehle and Reny (2001, Th.9.9 and Ex.9.20).
Thus, the mechanism described in Proposition 4 is the intermediary optimal allocation rule.

Proposition 5: Effect of an infinitesimal perturbation.

Proof of Proposition 5. Since we only care about first-order effects, \(\hat{g}(c) = (1 - \epsilon \gamma(c))g(c) \) can be rewritten as

\[
g = \frac{1}{1 + \epsilon \gamma} \hat{g} = (1 - \epsilon + O(\epsilon^2))\hat{g},
\]

where \(O(\epsilon^2) \) stands for the second order effect. Taking a constant \(\alpha \) with \(1 + \alpha \epsilon = \sigma \), this has to be equal to

\[
(1 + \alpha \epsilon)(1 - \epsilon(1 - \rho_S(c)))\hat{g}(c) = (1 - \epsilon[(1 - \rho_S(c)) - \alpha] + O(\epsilon^2))\hat{g}(c).
\]

\(\alpha \) has to be chosen as \(\alpha = \int (1 - \rho_S) \hat{g} \) so that the density functions add up to one. Hence equating the right hand sides of (23) and (24) results in

\[
\gamma(c) = F(\Phi^{-1}(\Gamma(c))) - \int_{\xi}^{\pi} F(\Phi^{-1}(\Gamma(t)))g(t)dt.
\]

We know that \(\gamma \) is increasing, \(\gamma \) and \(g \) are orthogonal (\(\int \gamma g = 0 \), \(\gamma(\xi) < 0 \), and \(\gamma(\pi) > 0 \).

(i) We will first show that \((\ln G(c))'\) increases if \(\epsilon \) increases:

\[
\frac{\partial^2}{\partial \epsilon \partial c} \ln \hat{G} > 0.
\]

Using

\[
\frac{\partial}{\partial \epsilon} \ln \hat{G} = \frac{\partial}{\partial \epsilon} \int (1 + \epsilon \gamma)g = \int \gamma g,
\]

we get

\[
\frac{\partial}{\partial \epsilon} \ln \hat{G} \bigg|_{\epsilon=0} = \frac{1}{G} \int_{\xi}^{c} g(c')\gamma(c')dc'.
\]

Taking the derivative with respect to \(c \) yields

\[
\frac{\partial}{\partial c} \frac{\partial}{\partial \epsilon} \ln \hat{G} \bigg|_{\epsilon=0} = \frac{g}{G^2} \int_{\xi}^{c} g(c')\gamma(c')dc' + \frac{1}{G}g(c)\gamma(c),
\]

the sign of which is to be determined. Multiplying by the positive expression \(G^2/g \) we get

\[
G(c)\gamma(c) - \int_{\xi}^{c} g(c')\gamma(c')dc' = \int_{\xi}^{c} g(c')[\gamma(c) - \gamma(c')]dc'.
\]
B PROOFS

The expression in the brackets is positive since $\gamma'(c) > 0$ and $c > c'$, therefore, the whole expression is positive, which proves the statement

$$\frac{\partial^2}{\partial \epsilon \partial c} \ln G > 0.$$ \hfill (30)

(ii) As next we will prove that Γ is decreasing and Γ^{-1} increasing with ϵ. The following analysis can be simplified by defining a further function ψ, such that

$$\hat{G}(c) = (1 - \epsilon \psi(c))G(c),$$ \hfill (31)

The relation between ψ and γ is the following

$$g\gamma = -(G\psi)'$$ \hfill (32)

or

$$\psi = -\frac{1}{G} \int g\gamma$$ \hfill (33)

which is equal to the negative of the right hand side of (28). Therefore, $\psi' < 0$ by the argument in the previous section. We also know $\psi(\bar{c}) = 0$, $\psi \geq 0$.

The derivative is

$$\hat{g} = g - \epsilon (g\psi + G\psi')$$ \hfill (34)

By definition

$$\hat{\Gamma} \overset{\text{def}}{=} c + \frac{\hat{G}}{\hat{g}} = c + \frac{[1 - \epsilon \psi]G}{[(1 - \epsilon \psi) - \epsilon (G/g)\psi']g} = c + \frac{(G/g)[1 - \epsilon \psi]}{g - \epsilon (\psi + (G/g)\psi')}.$$ \hfill (35)

The Taylor expansion is

$$c + \frac{G}{g} [1 - \epsilon \psi] \left[1 + \epsilon (\psi + \frac{G}{g} \psi') \right] + O(\epsilon^2) = c + \frac{G}{g} \left[1 + \epsilon \frac{G}{g} \psi' \right] + O(\epsilon^2)$$ \hfill (36)

Using the definition of $\hat{\Gamma}$ this gives us

$$\hat{\Gamma} = \Gamma + \epsilon \left(\frac{G}{g} \right)^2 \psi' + O(\epsilon^2).$$ \hfill (37)

Since ψ' is negative $\hat{\Gamma}$ is decreasing with ϵ. The inverse of $\hat{\Gamma}$ is

$$\hat{\Gamma}^{-1} = \Gamma^{-1} - \epsilon \frac{(G/g)^2 \psi'}{\Gamma} + O(\epsilon^2).$$ \hfill (38)
The fraction is negative since $\psi' < 0$ and Γ is increasing by Myerson’s regularity assumption. Therefore, for a perturbation with $\epsilon > 0$ we have $\hat{\Gamma}^{-1} > \Gamma^{-1}$.

(iii) Next, we will look at the change of $[\Gamma^{-1}]'$. Taking the derivative of (38) gives us

$$
(\hat{\Gamma}^{-1})' = (\Gamma^{-1})' - \epsilon \left[\frac{(G/g)^{2} \psi' \psi'}{\Gamma''} \Gamma'' + O(\epsilon^2) \right] + O(\epsilon^2)
$$

The sign of the multiplier of ϵ is ambiguous. For instance, since $\psi' < 0$, for Γ'' sufficiently negative, $(\hat{\Gamma}^{-1})'$ is increasing with ϵ. However, for Γ'' sufficiently large, we have the opposite effect.

We can also make the analysis for $\Gamma'' = 0$ (or close to zero), which means that we have a power distribution and linear fees (or are close to it). After some algebra the expression in brackets in (40) can be transformed to

$$
-3G\gamma(g^2 - Gg') + 3g \int g\gamma - 2\frac{Gg'}{g} \int g\gamma + G^2 g\gamma^2 - Gg\gamma.
$$

If this is negative then $[\Gamma^{-1}]'$ will be larger if ϵ increases, that is we have a flatter fee.

However, one can find examples of power distributions where this condition is not satisfied. Take $G = c^\beta$, $F = 1 - (1 - v)^\alpha$, which results in linear virtual valuation functions Γ and Φ. E.g. for $\alpha = 3$ and $\beta = 3$, the condition is not satisfied for certain values of c, the sign of

$$
\frac{1}{4860} - 225 + 1280c^4 - 3840c^3 - 363c^2 + 1920c
$$

is different for different values of c as depicted in Fig. 8.

Figure 8: For $\alpha = 2$ and $\beta = 3$ the expression in Eq. (41) has different signs for different values of c.

 Proposition 6: Time on market with one homogeneous good.

Proof of Proposition 6. Discrete Time. Consider first a cohort of sellers, who entered the market at some point t, normalized to $t = 0$, and offered their houses for some
price p. Label the number of rematchings since $t = 0$ with $k := t/\tau$ and the expected number of sellers in the cohort staying in the market at the beginning with N_0 and in subsequent periods with N_k. The probability that a seller stays in the market until the next rematching is the probability that he cannot sell times the probability that he does not drop out for exogenous reasons, i.e. $\epsilon F(p)$ with $\epsilon := e^{-\eta \tau}$. The number of sellers in period k is hence $N_k = (\epsilon F(p))^k N_0$. Time on market for the total population of both sold and unsold houses follows hence a geometric distribution with the cumulative distribution function $1 - (\epsilon F(p))^t/\tau$ and mean $T(p) = \tau / (1 - \epsilon F(p))$. Denote the number of sellers who leave the market in period k because they sell as N_s^k and those who leave with unsold houses as N_u^k. Clearly, $N_s^k = (1 - F(p))N_k$ and $N_u^k = \epsilon N_k$. Therefore, the ratio of sellers able to sell is $(1 - F(p))/(1 - \epsilon F(p))$. Now consider only the subsample of sellers who managed to sell their houses. Since N_s^k is just a constant factor smaller than N_k, the distribution of time on market of this subsample is the same as for the total population. Hence the cumulative distribution function is also $1 - (\epsilon F(p))^k$ and the mean time on market for sold houses is $T_s(p) = 1/(1 - \epsilon F(p))$. The same reasoning applies for sellers who did not sell their houses, so that $T_u(p) = 1/(1 - \epsilon F(p))$ is the mean time on market for unsold houses as well. Since we are looking at a market in a stationary equilibrium, in every period the same number of N_0 sellers enters and the previous argument carries over to a setup where cohorts of sellers enter every period rather than only one cohort entering at $t = 0$.

Continuous Time. The same logic applies to the continuous time approximation of the distribution. Denote the mass of sellers in the cohort at period $t = 0$ as $N(0)$. The number of sellers remaining in the market in period t is $N(t) = N(0)e^{-(\phi + \eta)t}$ dropping the argument p in $\phi(p)$. In each period $dN^s(t) = N(t)\phi dt$ houses are sold and $dN^u(t) = N(t)\eta dt$ drop out unsold. Cumulatively, we have $N^s(t) = \int_0^t dN^s(t') = (\phi/(\phi + \eta)) [N(0) - N(t)]$ and $N^u(t) = \int_0^t dN^u(t') = (\eta/(\phi + \eta)) [N(0) - N(t)]$. After infinitely many periods, fraction $1 - F_{\infty} := N^s(\infty)/N(0) = \phi/(\phi + \eta)$ of houses have been sold. The average time on market for sold houses is

$$T^s = \frac{\int_0^\infty dN^s(t)}{\int_0^\infty dN^s(t)} = -\frac{\partial}{\partial \phi} \ln \int_0^\infty e^{-(\phi + \eta)t} dt = -\frac{\partial}{\partial \phi} \ln \frac{1}{\phi + \eta} = \frac{1}{\phi + \eta}.$$
By the same logic, the average time on market of unsold houses is $T^u = 1/(\phi + \eta)$.

\[T^u = \frac{1}{\phi + \eta},\]

Proposition 7: Time on market in heterogeneous submarkets.

Proof of Proposition 7. Consider multiple submarkets, indexed by i, with different probabilities of sale $\phi_i(p)$. Houses of each submarket are represented with weight w_i in the total sample. Taking averages over submarkets, the mean time on market for sold $T^s(p)$ and unsold $T^u(p)$ houses is

\[T^s = \left(\sum_i w_i \frac{\phi_i}{\phi_i + \eta} \right) \left(\sum_i w_i \frac{1}{\phi_i + \eta} \right)^{-1},\]

\[T^u = \left(\sum_i w_i \frac{\eta}{\phi_i + \eta} \right) \left(\sum_i w_i \frac{1}{\phi_i + \eta} \right)^{-1},\]

the parameter p being dropped. The ratio of the two means is

\[\frac{T^u}{T^s} = \frac{\sum_i w_i \frac{\eta}{(\phi_i + \eta)^2} \sum_j w_j \frac{\phi_j}{(\phi_i + \eta)^2}}{\sum_i w_i \frac{\phi_i}{(\phi_i + \eta)^2} \sum_j w_j \frac{\phi_j + \eta}{(\phi_i + \eta)^2}} = \frac{N}{D}.\]

The difference between the numerator N and the denominator D is

\[N - D = \eta \sum_{ij} w_i w_j \frac{\phi_j - \phi_i}{(\phi_i + \eta)^2(\phi_j + \eta)},\]

\[= -\eta \sum_{ij} w_i w_j \frac{\phi_j - \phi_i}{(\phi_i + \eta)(\phi_j + \eta)^2},\]

where the second equation comes from interchanging the summation variables. Adding the two expressions for $N - D$ one gets

\[2(N - D) = \eta \sum_{ij} w_i w_j \frac{(\phi_j - \phi_i)^2}{(\phi_i + \eta)^2(\phi_j + \eta)^2} \geq 0,\]

hence $T^u \geq T^s$. The inequality is strict for heterogeneous submarkets.

Proposition 8: Integrated Seller.

Proof of Proposition 8. The value function for an integrated seller is
\[V(\tilde{c}) = \max_p \{(1 - F(p))(p - \tilde{c}) + F(p)\delta V(\tilde{c})\}, \]

where the first (second) term on the right hand side is the payoff in case of a sale (no sale). Rearranging yields
\[V(\tilde{c}) = \max_p \left\{ \frac{1 - F(p)}{1 - \delta F(p)} (p - \tilde{c}) \right\}. \]

Observe that for \(\delta = 0 \) this reduces, of course, to the static problem. For \(F \) uniform, we get
\[V(\tilde{c}) = \max_p \left\{ \frac{2(1 - p)}{1 + \delta - 2\delta p} (p - \tilde{c}) \right\}, \]

which is maximized at
\[P_I(\tilde{c}) = \frac{1 + \delta - \sqrt{(1 - \delta)(1 + \delta - 2\delta \tilde{c})}}{2\delta}. \]

Therefore, the equilibrium price difference between an independent and an integrated seller who both have the same static cost \(\tilde{c} \) is
\[P(\tilde{c}) - P_I(\tilde{c}) = \frac{\sqrt{(1 - \delta)(1 + \delta - 2\tilde{c}\delta)} - \sqrt{(1 - \delta)(1 + \delta - 4\tilde{c}\delta)}}{2\delta}, \tag{43} \]

which is negative for \(\tilde{c} < 0 \). This means that an intermediary-seller may charge a higher price than an independent seller, even if their static costs \(\tilde{c} \) are equal.

Proposition 9: Non-optimality of price posting mechanisms.

Proof of Proposition 9. The intermediary’s expected profit with price posting is
\[(p^B - p^S)(1 - F(p^B))G(p^S). \]

The assumptions about the inverse hazard rates ensure concavity of the profit function. Therefore, the unique maximum is given by the first order conditions. Taking derivatives with respect to \(p^B \) and \(p^S \) yields \(p^S = \Phi(p^B) \) and \(p^B = \Gamma(p^S) \).

We complete the proof by showing that trade with price posting neither implies nor is implied by trade in the intermediary optimal mechanism of Myerson and Satterthwaite for arbitrary distributions \(F \) and \(G \).

Trade with price posting, no trade with the intermediary optimal mechanism. Take a buyer and a seller for whom trade just occurs with price setting, i.e. valuation \(p^B \) and cost \(p^S \). We know that a profit maximizing intermediary will always set \(p^B > p^S \). Combining this with the first order conditions we get \(\Phi(p^B) = p^S < p^B = \Gamma(p^S) \). This implies by Lemma 2 (i) that no trade occurs with the optimal mechanism for valuation \(p^B \) and cost \(p^S \).

Trade with the intermediary optimal mechanism, no trade with price posting. Take the lowest cost seller with cost \(c \) and a buyer with valuation \(v' \) such that trade just

\[v' \leq 1 - \frac{\sqrt{(1 - \delta)(1 + \delta - 4\tilde{c}\delta)}}{2\delta} - \frac{\sqrt{(1 - \delta)(1 + \delta - 2\tilde{c}\delta)}}{2\delta}, \]

which is negative for \(\tilde{c} < 0 \). This means that an intermediary-seller may charge a higher price than an independent seller, even if their static costs \(\tilde{c} \) are equal.

\[The \ static \ cost \ \tilde{c} \ is \ negative \ for \ some \ sellers. \ This \ can \ be \ seen \ from \ the \ fact \ that \ for \ dynamic \ cost \ c = 0 \ the \ seller \ needs \ to \ have \ a \ negative \ static \ cost \ \tilde{c}, \ since \ c \ is \ the \ sum \ of \ \tilde{c} \ and \ the \ net \ present \ value \ of \ future \ trade. \]
occurs with the optimal mechanism, i.e. \(\Phi(v') = \Gamma(c) \). As \(p^S > c \) must hold for positive probabilities of trade with price posting, we have \(\Phi(v') = \Gamma(c) = c < p^S = \Phi(p^B) \). This implies \(v' < p^B \) and hence no trade with price posting. \(\blacksquare \)

Proposition 10: Optimality of price posting with infinite number of buyers and sellers.

Proof of Proposition 10. (i) We consider the case where \(\lim_{N \to \infty} K/N < 1 \), i.e. not all buyers and sellers trade in the limit. For \(\lim_{N \to \infty} K/N = 1 \) the proof is similar and therefore omitted.

It can be easily shown that for a finite number of buyers and sellers a dominant strategy implementation of the Virtual-Walrasian allocation rule is optimal: everyone reports their valuations/costs, a buyer pays the minimal valuation which would have been sufficient for him to get the good, the seller gets analogously the maximal cost. Formally, a buyer pays \(\max\{v_{K+1}, \Phi^{-1}(\Gamma(c_K))\} \) and a seller gets \(\min\{c_{K+1}, \Gamma^{-1}(\Phi(v_K))\} \).

The valuation of the marginal trading and non-trading buyers and the marginal seller’s cost plus the spread charged by the intermediary converge in probability to the same value, which we denote as \(p^B \):

\[
\lim_{N \to \infty} v_K = \lim_{N \to \infty} v_{K+1} = \lim_{N \to \infty} \Phi^{-1}(\Gamma(c_K)) =: p^B. \tag{44}
\]

Similarly,

\[
\lim_{N \to \infty} c_K = \lim_{N \to \infty} c_{K+1} = \lim_{N \to \infty} \Gamma^{-1}(\Phi(v_K)) =: p^S. \tag{45}
\]

For the fraction of buyers and sellers who trade we have

\[
\lim_{N \to \infty} \frac{K}{N} = \lim_{N \to \infty} \frac{\max\{i|v_i \geq p^B\}}{N} = 1 - F(p^B), \tag{46}
\]

\[
\lim_{N \to \infty} \frac{K}{N} = \lim_{N \to \infty} \frac{\max\{i|c_i \geq p^S\}}{N} = G(p^S). \tag{47}
\]

(44), (45), (46), and (47) imply that the optimal mechanism converges to price posting with \(p^B \) and \(p^S \) that satisfy \(\Phi(p^B) = \Gamma(p^S) \) and \(1 - F(p^B) = G(p^S) \).

(ii) Define the number of buyers willing to trade as \(k_b := \max\{i|v_i \geq p^B\} \), and for the sellers \(k_s := \max\{i|c_i \leq p^S\} \). By \(\Phi(p^B) = \Gamma(p^S) \)

\[
\lim_{N \to \infty} \frac{k_b}{N} = 1 - F(p^B) = G(p^S) = \lim_{N \to \infty} \frac{k_s}{N}.
\]
By $1 - F(p^B) = G(p^S)$ we have $\Phi(v_{k_b}) \geq \Phi(p^B) = \Gamma(p^S) \geq \Gamma(c_{k_s})$ and by analogy $\Phi(v_{k_b+1}) < \Gamma(c_{k_s+1})$. Therefore, the fraction of traded quantity is in the limit

$$\lim_{N \to \infty} \frac{\min\{k_b, k_s\}}{N} = \frac{\max\{i | \Phi(v_i) \geq \Gamma(c_i)\}}{N} \overset{\text{def}}{=} K,$$

which is the fraction of the Virtual-Walrasian quantity. Further, it is easy to show that this mechanism is incentive compatible and gives zero utility to the most inefficient agents. Therefore, by Lemma 1 it maximizes the intermediary’s profit.

Proposition 11: Fee setting and price posting mechanism for one seller and infinite number of buyers.

Proof of Proposition 11. As N_B converges to infinity, the highest bid almost surely converges to \bar{v}. Hence we are back to the one sided incomplete information problem. By Myerson (1981) the optimal mechanism is $p^B = \bar{v}$ and $p^S = \Gamma^{-1}(\bar{v})$ when considering price posting mechanisms. This can also be represented as a fee setting mechanism with $\omega(p) = p[1 - \Gamma^{-1}(\bar{v})/\bar{v}]$, which induces the seller to set $P(c) = \bar{v}$.

Proposition 12: Slotting Allowances.

Proof of Proposition 12. The intermediary optimal allocation rule is to have the good change hands, from the seller with the lowest cost to the buyer, if and only if this seller’s virtual cost is less than the buyer’s virtual valuation (see Lemma 1). The fee $\omega(p)$ of Proposition 1 makes sure that the seller active in stage 2 sets the price in exactly such a way that the buyer buys if and only if $\Phi(v) \geq \Gamma(c)$. Denote by $U_S(c)$ the expected payoff to a seller with cost c of participating in stage 2 (under the fee ω). Notice that $U_S(c)$ is what a seller with cost c will bid in stage 1 and that whenever $U_S(c) > 0$, $U_S(c)$ is strictly decreasing in c. Therefore, the Vickrey auction in stage 1 allocates the right to set the price efficiently. That is, it selects the seller with the lowest virtual valuation. (Notice that all those types of sellers for whom $U_S(c) = 0$ will set such a high price in stage 2.

\[\text{Any other } \omega \text{ that induces the seller to set } P(c) = \bar{v} \text{ would do, e.g. } \omega(p) = \bar{v} - \Gamma^{-1}(\bar{v}) \text{ for } p = \bar{v} \text{ and } \omega(p) = \infty \text{ else.}\]
that they will never sell. Therefore, it is immaterial whether a winner is determined or not if every seller bids zero in stage 1.) Consequently, the mechanism implements the intermediary optimal allocation rule. Moreover, the expected payoffs of sellers with costs \(\bar{c} \) and the buyer with valuation \(\bar{v} \) is zero. \(\square \)

Proposition 13: Ad Value and Per Unit Taxes.

Proof of Proposition 13. *Equivalence.* We first show the welfare maximizing prices subject to \((p^B - p^S)p^S(1 - p^B) = R\) are symmetric. With prices \((p^B, p^S)\) expected welfare is \(W(p^B, p^S) = p^S(1 - p^B)(p^B - p^S + 1)/2\). The unique maximizers of the Lagrangean \(L = W(p^B, p^S) + \lambda[R - (p^B - p^S)p^S(1 - p^B)]\) with multiplier \(\lambda\) are \(p^B = (4\lambda - 1)/(3(2\lambda - 1))\) and \(p^S = 2(\lambda - 1)/(3(2\lambda - 1))\), implying \(p^B = 1 - p^S\). Therefore, under welfare maximizing price posting the expected revenue is \((2p^B - 1)(1 - p^B)^2\). Second, under the per unit tax \(t\) the equilibrium price set by the seller with cost \(c\) is \(p(c, t) = (1 + c + t)/2\).

Thus, the expected revenue is \(t/2 \int_0^{1-t}(1 - c - t)dc = t(1 - t)^2/4\), which is identical to the revenue under price posting for \(p^B = 1/2 + t/2\) (and hence \(p^S = 1/2 - t/2\)). So to complete the proof of the first part of the proposition, we only need to show that for \(p^B = 1/2 + t/2\) welfare is the same under price posting and a per unit tax. But welfare under price posting is \(W(p^B, 1 - p^B) = p^B(1 - p^B)^2 \mid_{p^B=1/2+t/2} = (1 - t)^2(1 + t)/8\), which is identical to welfare under a per unit tax: \(\int_1^{1/2+t} \int_0^{2e-1-t}(u - c)dcdv = (1 - t)^2(1 + t)/8\).

Incidence. The buyer’s (ex ante) expected utility under a per unit tax \(t\) is \(EU_B^U(t) = (1 - t)^2/24\) and the seller’s (ex ante) expected utility is \(EU_S^U(t) = (1 - t)^2/12\). Defining the tax borne by agent \(i\) for \(i = B, S\) as \(EU_i^U(t)/EU_i^U(0)\) we get \(EU_B^U(t)/EU_B^U(0) = (1 - t)^3 = EU_S^U(t)/EU_S^U(0)\). So the per unit tax is borne evenly by the buyer and the seller. On the other hand, under an ad value tax \(\mu\) the buyer’s and seller’s expected utilities are \(EU_B^V(\mu) = (1 - \mu)/24\) and \(EU_S^V(\mu) = (1 - \mu)^2/12\), respectively. So \(EU_S^V(\mu)/EU_S^V(0) = (1 - \mu)^2 < 1 - \mu = EU_B^V(\mu)/EU_B^V(0)\) for all \(\mu \leq 1/2\).

Surplus. The surplus comparison would be trivial if revenue \(R^V(\mu) = \mu(1 - \mu)/6\) under an ad value tax exceeded revenue under a per unit tax \(R^U(t) = t(1 - t)^2/4\) for \(\mu = t\). However, since this is not the case, we solve \(EU_S^V(\mu) = EU_S^U(t)\) to get \(\mu = 1 - (1 - t)^{3/2}\). Inspection of the expected utilities of the buyer reveals immediately that the buyer will
strictly prefer the ad value tax if the seller is indifferent. Moreover, it is readily checked that for $\mu = 1 - (1 - t)^{3/2}$, we have $R^V(\mu) > R^U(t)$. Thus, the revenue $R^U(t)$ can be achieved with an ad value tax below $1 - (1 - t)^{3/2}$, making the seller strictly prefer the ad value tax as well.

\[
\]

References

REFERENCES

REFERENCES

