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Abstract 

This study studies nudging information as a strategy that can complement or substitute 

externality pricing, by influencing commuter behavior through awareness of the health 

and environmental impacts of their choices. We develop a bi-modal model with road 

and metro commuters, with bottleneck congestion on the road and dynamic crowding 

congestion in the metro. The model further incorporates health costs and environmental 

externalities, particularly for road commuters. When commuters are homogeneous, our 

findings indicate that nudging information generates positive welfare effects except in 

scenarios with extremely high crowding effects in the metro system. Moreover, nudging 

information can consistently complement flat road tolls by integrating information and 

toll schemes to enhance the system’s social welfare impact. By adding heterogeneity in 

environmental preferences, car types, and income, the study further highlights that the 

effectiveness of such strategies depends on the varied behavioral responses from 

diverse individuals. Even when the crowding effect is relatively small with 

heterogeneity, nudging information may result in negative welfare effects by causing 

welfare-reducing swaps in road commuters’ departure patterns; in such cases, it fails to 

complement flat tolls effectively. 

Keywords: Congestion; Emissions; Nudging information; Bi-modal; Heterogeneity  
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1. Introduction 

Urban areas worldwide are increasingly grappling with air pollution, which 

negatively impacts human health by causing respiratory and cardiovascular diseases, 

aggravating existing health conditions, and reducing life expectancy. Road traffic 

emissions have been identified as a significant contributor to urban air pollution, 

particularly in densely populated megacities with high vehicle concentrations (Vosough 

et al., 2022). In response, transportation authorities and policymakers have 

implemented various strategies to reduce traffic emissions and their associated 

externalities. One widely researched approach involves pricing schemes, such as 

congestion pricing and emission tolls, designed to encourage road users to reduce their 

travel during peak hours or switch to greener modes of transport, like public transit or 

cycling (de Palma and Lindsey, 2011). These schemes work by internalizing traffic 

emissions' external costs, making driving more expensive under certain conditions or 

in specific areas. The economic principle is straightforward: by increasing the cost of 

driving, these measures aim to reduce road demand and, consequently, overall emission 

levels. 

While monetary incentives like road pricing have proven effective in altering 

travel behavior, they are with limitations. For instance, such measures can be perceived 

as punitive, disproportionately affecting lower-income individuals who may rely on 

private vehicles for commuting and lack viable alternatives (Van den Berg and Verhoef, 

2011). They can also be hard to implement politically and expensive to operate. 

As such, there is growing interest in exploring alternative approaches that can 

complement or replace traditional pricing mechanisms. Research has shown that 

nudging information can influence individuals’ behavior effectively, particularly when 

encouraging sustainable practices (Sudarshan, 2017; Myers & Souza, 2020). Unlike 

temporary monetary incentives, under multiple rounds of intervention, nudging can 

instill long-lasting habits by fostering a deeper understanding of the consequences of 

one’s actions (Guerassimoff and Thomas, 2015; Marchiori et al., 2017). For example, 
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informing drivers about the exact amounts of emissions their vehicle produces per trip 

can motivate them to consider alternative modes of transportation, especially if they are 

environmentally conscious. 

However, the effectiveness of nudging strategies may not be uniform across all 

individuals. Studies have found that people’s responses to nudging information vary 

based on personal values, environmental awareness, and social norms (Erlei, 2008; 

Kamas & Preston, 2012; Lucas et al., 2014). While some individuals may be highly 

motivated by environmental concerns and readily alter their behavior in response to 

nudging, others may be less affected or even indifferent to such information. This 

variation in responses highlights the need to consider the diversity of commuters’ 

environmental preferences when designing and implementing nudging interventions. 

Against this background, this study examines the efficiency and distributional 

impacts of nudging information in a bi-modal setting with dynamic congestion, 

allowing for heterogeneity in commuters’ environmental preferences. This 

heterogeneity can include cases where some drivers completely ignore the information. 

We address the following research questions: 

1) How does nudging information affect individuals’ mode and departure time 

choices with homogeneous and heterogeneous commuters? 

2) What is the relationship between commuters’ heterogeneity in environmental 

preferences, income, car type, and the distributional impacts of nudging 

information?  

3) Is nudging information always a welfare-improving strategy when considering 

different types of commuters’ heterogeneities? Can it be considered a complement 

to tolling schemes? 

To accomplish this, we establish a bi-mode traffic model, including road and metro 

commuters, by incorporating the road bottleneck model proposed by Vickrey (1969) 

and the dynamic metro model proposed by de Palma et al. (2017). Various two-mode 

traffic models are proposed in the literature for investigating travelers’ behavior and 
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regulators’ optimal pricing strategy for internalizing the externalities during traveling 

(e.g., Mirabel and Reymond, 2011; Li et al., 2012; Van den Berg and Verhoef, 2014; Li 

and Zhang, 2020). Different from studies focused solely on the auto-only system, the 

interaction and substitution effects between different modes (notably auto and metro) 

directly and indirectly affect the cost of travel by a particular mode and thus, the mode 

choices of travelers in the two-mode travel system, which should not be ignored when 

designing an optimal pricing scheme (Li and Zhang, 2020). Regarding methodology, 

static and dynamic models of congestion have been developed. Compared to static 

congestion model work, the dynamic congestion model (e.g., the classic bottleneck 

model) has an advantage in investigating commuters’ departure time choices. In light 

of the above discussion, this paper develops a two-mode model considering dynamic 

congestion in both modes (auto and metro). We can thus consider not only mode choice 

but also measure both the departure time choice for both modes, under queuing for cars 

and in-vehicle passenger crowding externality in the metro system, and account for all 

these factors in welfare assessment.  

A large body of literature on road congestion also suggests the need to consider 

emission externalities during travel. Most studies focus on optimizing emission pricing 

strategies, identifying these as effective solutions for addressing environmental 

problems caused by car emissions in most cases. According to the modeling approaches 

in these studies, different emission cost functions for road commuters have been 

adopted. For a general static road model, emission cost is usually assumed to vary with 

the distance and the travel time through the link (Ma et al., 2017). By further treating 

commuters’ departure time endogenously, drivers’ emission cost has also been related 

to the queuing time at the bottleneck in earlier dynamic congestion models (e.g., Liu et 

al., 2015; Xiao et al., 2016; Coria and Zhang, 2017). Furthermore, a series of studies 

consider more complex emission cost functions. In these analyses, the vehicle's speed, 

wind speed, wind direction and more can be included in the emission cost function. The 

pricing of these emissions has also been studied (e.g., Vosough et al., 2022). We will 
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assume that the emission rate varies under different driving conditions during travel, 

distinguishing cruising on the freeway versus queuing at the bottleneck. The metro 

system is assumed to be a relatively greener travel mode, which we assume does not 

generate any emission costs in this paper. This assumption is commonly used when 

comparing road and public transport travel modes (e.g., Carroll et al., 2019; Thomas 

and Serrenho, 2024). 

Previous studies have considered information schemes aimed at reducing the 

welfare losses caused by travel time uncertainty (e.g., Emmerink et al., 1996; Verhoef 

et al., 1996a; de Palma and Lindsey, 1998; Liu et al.,2020; Yu et al., 2021; Yu et al., 

2023). Unlike information about varying conditions on the roads caused by, for example, 

traffic accidents in the above studies, this paper concerns the emission and health costs 

generated during driving. We assume these are initially not fully perceived by drivers. 

The associated informational incentives are called nudging information in 

the behavioral economics literature (Bhargava and Loewenstein, 2015). Based on 

behavioral theory, we allow nudging information to change individuals’ behavior. We 

assume this happens systematically as the nudging information fills an initial 

knowledge deficit. Our extended model also allows for heterogeneity in responses to 

nudging and in preferences. To the best of our knowledge, we are the first to explore 

the impact of nudging information on the internalization of emissions and congestion 

in traffic modeling. 

Our primary methodological contribution lies in studying nudging information 

aimed at internalizing the emission externalities and analyzing it in a dynamic user 

equilibrium model with road and metro travel with congestion, crowding and 

environmental externalities. Our approach considers the heterogeneity of commuters 

and imperfect substitutability between car and metro travel modes. These are 

complicating factors that are, however, crucial to consider in establishing the welfare 

impacts of nudging information. By capturing these intricacies, our model can 

investigate the complementary and substitutive relationships between nudging 
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information and tolling. 

The remainder of the paper is organized as follows. Section 2 introduces the 

benchmark model, and Section 3 analyzes its results. Section 4 adds heterogeneity. 

Section 5 presents a numerical model that illustrates the effects. As there is substantial 

uncertainty in empirical values for the parameters, Section 6 does extensive sensitivity 

checks. Finally, Section 7 concludes. 

2. Benchmark model 

2.1 Setting the stage 

Consider a continuous flow of commuters traveling from home to work each 

morning. For now, assume that everyone has identical preferences on the timing and 

cost of their trips. Two modes can be used: a road and a metro link, where the road 

experiences bottleneck congestion, while the metro system encounters dynamic 

crowding. The choice between modes depends on the travel costs of each option. Let 

𝑁𝐴 and 𝑁𝑀 represent the number of auto and metro commuters, respectively. 

Solo-driving auto commuters travel through a bottleneck at the end of the road, 

with a deterministic capacity of 𝑠 (passenger cars per unit of time). A queue develops 

when the arrival rate of auto commuters exceeds the road capacity. For conventional 

linear schedule delay costs, the resulting cost function of auto commuters is shown 

below: 

 𝐶𝐴(𝑡𝑑) = 𝛼 (𝑇𝐴𝑓 + 𝑞𝐴(𝑡𝑑)) + 

 {
𝛽 (𝑡∗ − 𝑇𝐴𝑓 − 𝑡𝑑 − 𝑞𝐴(𝑡𝑑))         𝑡∗ ≥ 𝑇𝐴𝑓 + 𝑡𝑑 + 𝑞𝐴(𝑡𝑑)

𝛾(𝑇𝐴𝑓 + 𝑡𝑑 + 𝑞𝐴(𝑡𝑑) − 𝑡∗)        𝑡∗ ≤ 𝑇𝐴𝑓 + 𝑡𝑑 + 𝑞𝐴(𝑡𝑑)
  (1) 

where 𝐶𝐴(𝑡𝑑) and 𝑞𝐴(𝑡𝑑) denotes the auto commuters’ travel cost and the travel time 

through the bottleneck who depart from home at time 𝑡𝑑, respectively; 𝑇𝐴𝑓 denotes the 

fixed in-vehicle time from home to the bottleneck; 𝑡∗ denotes the official starting time, 

𝛼 denotes the value of travel time; and 𝛽 and 𝛾 denotes the values of schedule delay 
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early and late, respectively.  

Based on the existing literature on road bottlenecks (e.g., Arnott et al., 1990), it is 

straightforward to derive the generalized travel cost for auto commuters without any 

incentive policies, as follows: 

 𝐶𝐴 = 𝛼𝑇𝐴𝑓 +
𝛽𝛾

𝛽+𝛾

𝑁𝐴

𝑠
 (2) 

Metro commuters travel from a subway station; for simplicity, the travel time from 

home to the subway station is disregarded. There are 𝑀 service runs in total, departing 

from the subway station each ℎ  minutes and with a capacity of c. The travel cost 

function of metro commuters is: 

 𝐶𝑀(𝑡𝑘) = 𝛼𝑇𝑀𝑓 + 𝑔(𝑛𝑘) + 𝜎𝑘  (3) 

 𝜎𝑘 = {
𝛽(𝑡∗ − 𝑇𝑀𝑓 − 𝑡𝑘 − 𝑞𝑀(𝑡𝑘))          𝑡∗ ≥ 𝑇𝑀𝑓 + 𝑡𝑘 + 𝑞𝑀(𝑡𝑘)  

𝛾(𝑇𝑀𝑓 + 𝑡𝑘 + 𝑞𝑀(𝑡𝑘) − 𝑡∗)         𝑡∗ ≤ 𝑇𝑀𝑓 + 𝑡𝑘 + 𝑞𝑀(𝑡𝑘)
 (4) 

where 𝐶𝑀(𝑡𝑘) and 𝜎𝑘 denotes the metro commuters’ travel cost and schedule delay cost 

who take the service run 𝑘 departs at time 𝑡𝑘, respectively, 𝑇𝑀𝑓 denotes the fixed in-

vehicle time in metro mode, and 𝑔(𝑛𝑘) denotes crowding or body congestion cost. The 

latter is a monotonically increasing function of the number of passengers 𝑛𝑘 in service 

run 𝑘.  

The body congestion cost function 𝑔(𝑛𝑘) is assumed to be linear: 

 𝑔(𝑛𝑘) = 𝑔
𝑛𝑘

𝑐
 (5) 

Hence, the equilibrium generalized travel cost for a metro commuter can be 

obtained: 

 𝐶𝑀 = 𝜎 + 𝛼𝑇𝑀𝑓 +
𝑔𝑁𝑀

𝑀𝑐
 (6) 

 𝜎 =
1

𝑀
∑ 𝜎𝑘𝑀

𝑘=1  (7) 

where 𝜎 denotes the unweighted average schedule delay cost for metro users. 1 

 

1 As previously noted, this analytical model focuses on road and metro systems. However, the metro component 

can be extended to represent any transit mode that operates independently of road traffic, such as fully separated 

BRT systems, monorails, or urban trains, but not buses or trams when being part of the congested road system. 
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2.2 The emission cost of private cars 

As the emission rate varies over driving conditions (Liu et al., 2015), the car 

emissions in this paper are categorized into two aggregate conditions: cruising on the 

freeway (at a rate 𝜆𝑓 per unit of time) and queuing at the bottleneck (at a rate 𝜆𝑞 per 

unit of time). Given that emissions in a queuing state are higher than in a free-flow state, 

it is assumed that 𝜆𝑞 > 𝜆𝑓. 

The emission of a car departing at time 𝑡𝑑 is: 

 𝑒𝐴(𝑡𝑑) = 𝜆𝑓𝑇𝐴𝑓 + 𝜆𝑞𝑞𝐴(𝑡𝑑)  (8) 

We assume this emission cost of car use is a pure externality and thus would be 

fully ignored by drivers when they do not receive any further information during 

traveling.  

2.3 The health cost of occupying vehicles 

Prolonged time spent in cars can lead to obesity (Frank et al., 2004; Sugiyama et 

al., 2016) and mental health issues (Wang et al., 2019). We therefore assume that there 

is a health cost associated with being stuck in a car, which we assume is linearly related 

to both free-flow travel time and queuing time. This relationship can be expressed as 

follows: 

 𝐻𝐴(𝑡𝑑) = 𝜆ℎ(𝑇𝐴𝑓 + 𝑞𝐴(𝑡𝑑)) (9) 

where 𝜆ℎ denotes the constant shadow cost of health related to the travel time by car. 

In general, drivers may already regard part of this health cost as a relevant 

component of travel price without information incentives. We assume that this concerns 

a fraction 𝜇ℎ(0 ≤ 𝜇ℎ ≤ 1). The perceived health price during “uninformed” driving can 

be then expressed as follows: 

 𝐻𝐴𝑃(𝑡𝑑) = 𝜇ℎ𝐻𝐴(𝑡𝑑)  (10) 

The departure rate of auto commuters and the start and end of departure time 

without information incentives can then be derived as: 
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 𝑟(𝑡𝑑) = {
𝑠 +

𝛽𝑠

𝛼−𝛽+𝜇ℎ𝜆ℎ
           𝑡∗ ≥ 𝑇𝑀𝑓 + 𝑡𝑘 + 𝑞𝑀(𝑡𝑘)

𝑠 −
𝛾𝑠

𝛼+𝛾+𝜇ℎ𝜆ℎ
            𝑡∗ ≤ 𝑇𝑀𝑓 + 𝑡𝑘 + 𝑞𝑀(𝑡𝑘)

 (11) 

 {
𝑡𝑠 = 𝑡∗ − 𝑇𝐴𝑓 −

𝛾

𝛽+𝛾

𝑁𝐴

𝑠

𝑡𝑒 = 𝑡∗ −  𝑇𝐴𝑓 +
𝛽

𝛽+𝛾

𝑁𝐴

𝑠

 (12) 

Hence, the generalized travel price in the road bottleneck without information 

incentives can be derived as follow: 

 𝑃𝐴 = (𝛼 + 𝜇ℎ𝜆ℎ)𝑇𝐴𝑓 +
𝛽𝛾

𝛽+𝛾

𝑁𝐴

𝑠
 (13) 

2.4 Nudging information for auto commuters 

We assume that the regulator can provide two types of information to encourage 

drivers to internalize emission costs. 

The first concerns the actual health cost when being stuck in the vehicle. We 

assume that all travelers care about their health, and we assume that under information 

incentives, drivers consider the full, actual health costs communicated to them, and treat 

these entirely as private costs. We thus ignore that part of health costs that people may 

ignore in the face of health insurance, and we also ignore the possibility that information 

may be only partly successful.  

The second type of information pertains to the emission cost generated during the 

car trip. In contrast, when informed about emissions, drivers might recognize this latent 

cost 𝑒𝐴(𝑡𝑑), and incorporate it only partly into their perceived travel cost, as follows: 

 𝑒𝐴𝑃(𝑡𝑑) = 𝜇𝑒𝑒𝐴(𝑡𝑑). (14) 

Here, 𝑒𝐴𝑃(𝑡𝑑)  denotes the emission price perceived and accounted for by drivers. , and 

𝜇𝑒  represents the fraction that is considered, which is a parameter related to the 

individual’s environmental preferences (0 ≤ 𝜇𝑒 ≤ 1). 

    With nudging information, road commuters thus perceive the full actual health and 

part of the emission costs of their travel. As a result, they choose their departure time 

while considering not only their travel time and schedule delays but also the health and 

internalized emission costs. The travel cost for an auto commuter departing at time 𝑡𝑑 
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can then be represented as follows: 

 𝐶𝐴(𝑡𝑑) = (𝛼 + 𝜆ℎ) (𝑇𝐴𝑓 + 𝑞𝐴(𝑡𝑑)) + 𝜇𝑒𝑒𝐴(𝑡𝑑)  + 

 {
𝛽(𝑡∗ − 𝑇𝐴𝑓 − 𝑡𝑑 − 𝑞𝐴(𝑡𝑑))          𝑡∗ ≥ 𝑇𝐴𝑓 + 𝑡𝑑 + 𝑞𝐴(𝑡𝑑) 

𝛾(𝑇𝐴𝑓 + 𝑡𝑑 + 𝑞𝐴(𝑡𝑑) − 𝑡∗)         𝑡∗ ≤ 𝑇𝐴𝑓 + 𝑡𝑑 + 𝑞𝐴(𝑡𝑑)
 (15) 

Similar to the equilibrium derived from the basic bottleneck model without 

nudging information, the departure rate of auto commuters, as well as the start and end 

times of departure in user equilibrium, can now be derived as follows: 

 𝑟(𝑡𝑑) = {
𝑠 +

𝛽𝑠

𝛼−𝛽+𝜆ℎ+𝜇𝑒𝜆𝑞
           𝑡∗ ≥ 𝑇𝐴𝑓 + 𝑡𝑑 + 𝑞𝐴(𝑡𝑑)

𝑠 −
𝛾𝑠

𝛼+𝛾+𝜆ℎ+𝜇𝑒𝜆𝑞
            𝑡∗ ≤ 𝑇𝐴𝑓 + 𝑡𝑑 + 𝑞𝐴(𝑡𝑑)

 (16) 

 {
𝑡𝑠 = 𝑡∗ − 𝑇𝐴𝑓 −

𝛾

𝛽+𝛾

𝑁𝐴

𝑠

𝑡𝑒 = 𝑡∗ −  𝑇𝐴𝑓 +
𝛽

𝛽+𝛾

𝑁𝐴

𝑠

 (17) 

The generalized travel price on the road under nudging information can now be 

shown to be: 

 𝑃𝐴
𝐼 = (𝛼 + 𝜆ℎ + 𝜇𝑒𝜆𝑓)𝑇𝐴𝑓 +

𝛽𝛾

𝛽+𝛾

𝑁𝐴

𝑠
 (18) 

The cost components covered by information vary in proportion with travel delays. 

In the basic bottleneck model, 𝛼 does not affect peak duration nor peak start and ending 

times. Similarly, in our model, the introduction of the nudging information also leaves 

these unaltered. The intuition is that queuing delays through departure time adjustments 

will respond inversely proportional to changes in 𝛼. 

2.5 Demand side 

Finally, we consider the price sensitivity of commuters, for both auto and metro, 

by applying a quadratic total travel benefit function: 

 𝑈(𝑁𝐴, 𝑁𝑀) = 𝑎𝐴𝑁𝐴 +
1

2
𝑏𝐴𝑁𝐴

2 + 𝑎𝑀𝑁𝑀 +
1

2
𝑏𝑀𝑁𝑀

2 + 𝜂𝑁𝐴𝑁𝑀 (19) 

This functional form leads to the following linear inverse demand functions as 

follows: 

 𝐷𝐴 = 𝑎𝐴 + 𝑏𝐴𝑁𝐴 + 𝜂𝑁𝑀 (20) 

 𝐷𝑀 = 𝑎𝑀 + 𝑏𝑀𝑁𝑀 + 𝜂𝑁𝐴 (21) 
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where 𝐷𝐴  and 𝐷𝑀 represent the inverse demand functions for auto and metro users, 

respectively, thus indicating the marginal willingness to pay for the 𝑁𝐴th auto user and 

the 𝑁𝑀th metro user. The parameters 𝑎𝐴  and 𝑎𝑀 are the intercepts, representing 

maximum willingness-to-pay. For both modes, the coefficients 𝜂 measure by how much 

the inverse demand decreases as the number of users on the other mode increases and 

thus captures mode substitution. For metro users, the coefficients 𝑏𝑀 measure the extent 

to which 𝐷𝑀 decreases as more users choose the metro, and similarly, for 𝑏𝐴 for auto 

users. 

3. Basic equilibria under different incentives 

We are now ready to characterize equilibrium under different incentive settings. 

3.1 No incentives 

First, we discuss user equilibrium without any intervention to metro and auto mode 

commuters. Hence, the user mode choice equilibrium condition can be written as: 

 𝑃𝐴 = 𝐷𝐴(𝑁𝐴, 𝑁𝑀)  (22) 

 𝐶𝑀 = 𝐷𝑀(𝑁𝑀, 𝑁𝐴)  (23) 

The number of auto and metro commuters in user equilibrium  𝑁𝐴
𝑁 and 𝑁𝑀

𝑁 can 

then be derived analytically (see Appendix A). Note that equation (23) shows that we 

assume average cost pricing for metro which, give our assumptions, implies a zero fare 

for public transport. A simultaneous introduction of a fare equal to average supplier cost, 

and an equivalent upward shift of 𝑎𝑀 would leave the analysis unaffected. 

3.2 Nudging information 

Next, we discuss the equilibrium under nudging information to drivers. The 

equilibrium condition can be written as: 

 𝑃𝐴
𝐼 = 𝐷𝐴(𝑁𝐴, 𝑁𝑀)  (24) 

 𝐶𝑀 = 𝐷𝑀(𝑁𝑀, 𝑁𝐴)  (25) 
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The number of auto and metro commuters under nudging information 𝑁𝐴
𝐼 and 𝑁𝑀

𝐼  

can again be derived analytically (see Appendix A). 

3.3 Second-best flat road toll   

As a useful second-best benchmark, we now consider the case where the 

government can implement uniform external toll for auto commuters, to maximize in a 

second-best fashion social welfare in this bi-modal system. We use social surplus as our 

measure for social welfare, which can be written as: 

 𝑆𝑊 = ∫ 𝑈(𝑁𝐴, 𝑁𝑀)
(𝑁𝐴,𝑁𝑀)

(0,0)
− 𝑇𝑃𝐴 − 𝑇𝐶𝑀 − 𝑇𝐸𝐴 − (1 − 𝜇ℎ)𝑇𝐻𝐴 (26) 

where 𝑇𝐶𝐴  ,𝑇𝐸𝐴  and 𝑇𝐻𝐴  denotes the total travel cost, total emission cost and total 

health cost for drivers, respectively.  

The equilibrium conditions for optimal road toll can be written as: 

 𝑃𝐴
𝑇 = 𝑃𝐴 + 𝜏𝐴 = 𝐷𝐴(𝑁𝐴, 𝑁𝑀)  (27) 

 𝐶𝑀 = 𝐷𝑀(𝑁𝑀, 𝑁𝐴)  (28) 

Hence, the number of auto and metro commuters under second-best optimal 

uniform road pricing 𝑁𝐴
𝑂  and 𝑁𝑀

𝑂  can be derived based on the above equilibrium 

conditions (see Appendix A). 

The second-best flat road toll can then be derived as: 

 𝜏𝐴
𝑂 = 𝑁𝐴

𝜕𝑃𝐴

𝜕𝑁𝐴
+

𝜕𝑇𝐸𝐴

𝜕𝑁𝐴
+ (1 − 𝜇ℎ)

𝜕𝑇𝐻𝐴

𝜕𝑁𝐴
−

𝜕𝐷𝑀

𝜕𝑁𝐴
∗ (

𝐷𝑀−𝐶𝑀−
𝜕𝐶𝑀
𝜕𝑁𝑀

𝑁𝑀

𝜕𝐷𝑀
𝜕𝑁𝑀

−
𝜕𝐶𝑀
𝜕𝑁𝑀

)  (29) 

The second-best flat road toll includes, besides the conventional marginal external 

cost of congestion and emissions, a term reflecting the otherwise ignored health 

cost and a final term that will be negative when the metro is priced below marginal 

social cost. The weight is a generalization of the term appearing in the second-best toll 

for the classic two-route problem (Verhoef et al., 1996b), where the weight reflects the 

substitutability between modes; see also Small et al. (2024, Section 4.5.1). 
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3.4 Second-best flat road toll with nudging information 

Next, we consider a mixed second-best policy design aimed at maximizing social 

welfare, where the government can implement a uniform external road toll while also 

providing nudging information to each auto commuter. We use social surplus as the 

measure of social welfare, which can be represented as follows:  

 𝑆𝑊 = ∫ 𝑈(𝑁𝐴, 𝑁𝑀)
(𝑁𝐴,𝑁𝑀)

(0,0)
− 𝑇𝑃𝐴

𝐼 − 𝑇𝐶𝑀 − (1 − 𝜇𝑒)𝑇𝐸𝐴 (30) 

The equilibrium conditions become: 

 𝑃𝐴
𝐼𝑇 = 𝑃𝐴

𝐼 + 𝜏𝐴 = 𝐷𝐴(𝑁𝐴, 𝑁𝑀)  (31) 

 𝐶𝑀 = 𝐷𝑀(𝑁𝑀, 𝑁𝐴)  (32) 

Based on the equilibrium conditions, we can determine the number of commuters 

in each mode 𝑁𝐴
∗ and 𝑁𝑀

∗ in equilibrium (see Appendix A).  

With nudging information, the second-best flat road toll can be written as: 

 𝜏𝐴
∗ = 𝑁𝐴

𝜕𝑃𝐴
𝐼

𝜕𝑁𝐴
+ (1 − 𝜇𝑒)

𝜕𝑇𝐸𝐴

𝜕𝑁𝐴
−

𝜕𝐷𝑀

𝜕𝑁𝐴
∗ (

𝐷𝑀−𝐶𝑀−
𝜕𝐶𝑀
𝜕𝑁𝑀

𝑁𝑀

𝜕𝐷𝑀
𝜕𝑁𝑀

−
𝜕𝐶𝑀
𝜕𝑁𝑀

)  (33) 

The interpretation is similar to that of the toll in eq. (30), with the key differences 

being that no longer a toll component for private health cost is needed; and, a smaller 

toll component is needed for the environmental externality due to partial “self-

internalization”. 

Proposition 1. When commuters are homogeneous, nudging information can generate 

positive welfare effects provided crowding externalities in public transport are not 

excessive. 

Proof. The proof of Proposition 1 is in Appendix B. 

Proposition 1 highlights that while nudging information can encourage drivers to 

internalize health and emission costs associated with driving, it does not inherently 

guarantee a welfare improvement. The effect of nudging in part depends on the balance 

between the reduced congestion and emissions on the road and the potential increase in 

crowding within the metro system. As nudging shifts a larger portion of commuters 
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from roads to metro, a trade-off emerges: while road congestion and emissions decrease, 

the metro experiences increased crowding costs. Therefore, the welfare outcome of 

nudging in part relies on the relative magnitude of these externalities in both modes, 

indicating that nudging information is most effective in scenarios where the metro's 

crowding externalities are smaller. 

We can derive a sufficient but not necessary condition under which the nudging 

information always generates positive welfare effects:  

Proposition 2. In situations where a naive Pigouvian flat road toll consistently 

generates positive welfare effects, nudging information will always enhance overall 

social surplus under homogeneous preferences. 

Proof. The proof of Proposition 2 is in Appendix C. 

We define the naive Pigouvian flat road toll for drivers can be written as: 

 𝜏𝐴
𝑛𝑝 = 𝑁𝐴

𝜕𝑃𝐴

𝜕𝑁𝐴
+

𝜕𝑇𝐸𝐴

𝜕𝑁𝐴
+ (1 − 𝜇ℎ)

𝜕𝑇𝐻𝐴

𝜕𝑁𝐴
 (34) 

It is naive in the sense that it ignores crowding congestion in the metro system and 

only seeks to price uninternalized externalities on the road. Proposition 2 implies that 

when such a naive Pigouvian flat road toll improves welfare, it also becomes inherently 

welfare-enhancing for the government to encourage a shift of drivers to the metro 

system through nudging information. 

Proposition 3. Nudging information will be complementary to the second-best flat road 

toll: the two instruments can jointly reach a higher social welfare level than the second-

best flat alone when commuters are homogeneous. 

Proof. See Appendix D. 

Proposition 3 suggests that nudging information complements the second-best flat 

road toll, enabling the system to attain a higher social welfare level than would be 

possible through the flat toll alone. This result is consistent with earlier findings on 

comparing between information and pricing in the literature, such as Verhoef et al. 

(1996b) who demonstrate that providing targeted information can complement second-
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best pricing strategies, under travel time uncertainty. 

4. Heterogenous commuters 

4.1 Heterogenous environmental preference 

In reality, not all commuters are equally concerned about the emission costs from 

driving. Notably when commuters are heterogeneous in their environmental 

preferences, there can be varying responses to the emission information provided by 

the government. 

To capture the impacts of such heterogeneity in a basic way, we will assume the 

existence of two groups of commuters, with high and low environmental preferences, 

respectively. The equilibrium numbers of car commuters in these two groups will be 

denoted as 𝑁𝐴𝐻 and 𝑁𝐴𝐿(𝑁𝐴𝐻 + 𝑁𝐴𝐿 = 𝑁𝐴). Given the information provided, the travel 

prices for these two groups can be represented as follows: 

 𝑃𝐴𝐻(𝑡𝑑) = 𝜇𝑒𝐻𝑒𝐴(𝑡𝑑) + (𝛼 + 𝜆ℎ) (𝑇𝐴𝑓 + 𝑞𝐴(𝑡𝑑)) + 

  {
𝛽(𝑡∗ − 𝑇𝐴𝑓 − 𝑡𝑑 − 𝑞𝐴(𝑡𝑑))          𝑡∗ ≥ 𝑇𝐴𝑓 + 𝑡𝑑 + 𝑞𝐴(𝑡𝑑) 

𝛾(𝑇𝐴𝑓 + 𝑡𝑑 + 𝑞𝐴(𝑡𝑑) − 𝑡∗)         𝑡∗ ≤ 𝑇𝐴𝑓 + 𝑡𝑑 + 𝑞𝐴(𝑡𝑑)
 (35) 

 𝑃𝐴𝐿(𝑡𝑑) = 𝜇𝑒𝐿𝑒𝐴(𝑡𝑑) + (𝛼 + 𝜆ℎ) (𝑇𝐴𝑓 + 𝑞𝐴(𝑡𝑑)) + 

 {
𝛽(𝑡∗ − 𝑇𝐴𝑓 − 𝑡𝑑 − 𝑞𝐴(𝑡𝑑))          𝑡∗ ≥ 𝑇𝐴𝑓 + 𝑡𝑑 + 𝑞𝐴(𝑡𝑑) 

𝛾(𝑇𝐴𝑓 + 𝑡𝑑 + 𝑞𝐴(𝑡𝑑) − 𝑡∗)         𝑡∗ ≤ 𝑇𝐴𝑓 + 𝑡𝑑 + 𝑞𝐴(𝑡𝑑)
 (36) 

where 𝜇𝑒𝐻 and 𝜇𝑒𝐿 denote the information perception parameters for commuters with 

high and low environmental preferences, respectively ( 0 ≤ 𝜇𝑒𝐿 ≤ 𝜇𝑒𝐻 ≤ 1 ). For 

transparency of exposition, we for now assume all other time preference are equal 

between the two groups. 

The generalized travel price on the road under information can now be derived: 

 𝑃𝐴𝐿
𝐼 = (𝛼 + 𝜆ℎ + 𝜇𝑒𝐿𝜆𝑓)𝑇𝐴𝑓 +

𝛽𝛾

𝛽+𝛾

𝑁𝐴𝐿+
𝛼+𝜇𝑒𝐿𝜆𝑞+ 𝜆ℎ
𝛼+𝜇𝑒𝐻𝜆𝑞+ 𝜆ℎ

𝑁𝐴𝐻

𝑠
 (37) 

 𝑃𝐴𝐻
𝐼 = (𝛼 + 𝜆ℎ + 𝜇𝑒𝐻𝜆𝑓)𝑇𝐴𝑓 +

𝛽𝛾

𝛽+𝛾

𝑁𝐴𝐿+𝑁𝐴𝐻

𝑠
 (38) 

The user equilibrium for the two groups in the road bottleneck is illustrated in 
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Figure 1, where 𝑡𝑎 temporally denotes the road commuters’ arrival time. Due to the 

difference in the environmental preference parameter 𝜇𝑒 between the two groups, auto 

commuters are now separated under information incentives. This result mimics insights 

from previous bottleneck studies with heterogeneity in 𝛼  (e.g., Van den Berg and 

Verhoef, 2011).  

 

Figure 1. Travel delay for auto commuters with heterogenous environmental preferences under 

nudging information.  

 Similar to the homogeneous case, the equilibrium travel price without any 

incentives is: 

 𝑃𝐴𝐿 = (𝛼 + 𝜇ℎ𝜆ℎ)𝑇𝐴𝑓 +
𝛽𝛾

𝛽+𝛾

𝑁𝐴𝐿+𝑁𝐴𝐻

𝑠
  (39) 

 𝑃𝐴𝐻 = (𝛼 + 𝜇ℎ𝜆ℎ)𝑇𝐴𝑓 +
𝛽𝛾

𝛽+𝛾

𝑁𝐴𝐿+𝑁𝐴𝐻

𝑠
  (40) 

With two groups of users, we apply the following four linear demands: 

 𝐷𝐴𝐿 = 𝑎𝐴𝐿 + 𝑏𝐴𝐿𝑁𝐴𝐿 + 𝜂𝐿𝑁𝑀𝐿 (41) 

 𝐷𝐴𝐻 = 𝑎𝐴𝐻 + 𝑏𝐴𝐻𝑁𝐴𝐻 + 𝜂𝐻𝑁𝑀𝐻 (42) 

 𝐷𝑀𝐿 = 𝑎𝑀𝐿 + 𝑏𝑀𝐿𝑁𝑀𝐿 + 𝜂𝐿𝑁𝐴𝐿 (43) 

 𝐷𝑀𝐻 = 𝑎𝑀𝐻 + 𝑏𝑀𝐻𝑁𝑀𝐻 + 𝜂𝐻𝑁𝐴𝐻 (44) 

4.2 Heterogenous environmental preferences and car types 

In this subsection, we further explore the links between commuters’ environmental 

preferences and the types of cars. Similar to section 3.2, two discrete commuter groups 

with high and low environmental preferences are considered, while the equilibrium 

numbers of commuters in these two groups are denoted by 𝑁𝐴𝐻 and 𝑁𝐴𝐿(𝑁𝐴𝐻 + 𝑁𝐴𝐿 =
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𝑁𝐴), where 𝐻 denotes the group with higher environmental preference. We assume in 

this section that commuters with higher environmental preferences travel in cleaner cars 

with a lower value of emission parameters ( 𝜆𝑓𝐻 and 𝜆𝑞𝐻 ) than group L has 

(𝜆𝑓𝐿 and 𝜆𝑞𝐿).   

Under nudging information, the perceived travel prices of these two groups are: 

 𝑃𝐴𝐻(𝑡𝑑) = 𝜇𝑒𝐻𝑒𝐴𝐻(𝑡𝑑) + (𝛼 + 𝜆ℎ) (𝑇𝐴𝑓 + 𝑞𝐴(𝑡𝑑)) + 

 {
𝛽(𝑡∗ − 𝑇𝐴𝑓 − 𝑡𝑑 − 𝑞𝐴(𝑡𝑑))          𝑡∗ ≥ 𝑇𝐴𝑓 + 𝑡𝑑 + 𝑞𝐴(𝑡𝑑) 

𝛾(𝑇𝐴𝑓 + 𝑡𝑑 + 𝑞𝐴(𝑡𝑑) − 𝑡∗)         𝑡∗ ≤ 𝑇𝐴𝑓 + 𝑡𝑑 + 𝑞𝐴(𝑡𝑑)
 (45) 

 𝑃𝐴𝐿(𝑡𝑑) = 𝜇𝑒𝐿𝑒𝐴𝐿(𝑡𝑑) + (𝛼 + 𝜆ℎ) (𝑇𝐴𝑓 + 𝑞𝐴(𝑡𝑑)) + 

 {
𝛽(𝑡∗ − 𝑇𝐴𝑓 − 𝑡𝑑 − 𝑞𝐴(𝑡𝑑))          𝑡∗ ≥ 𝑇𝐴𝑓 + 𝑡𝑑 + 𝑞𝐴(𝑡𝑑) 

𝛾(𝑇𝐴𝑓 + 𝑡𝑑 + 𝑞𝐴(𝑡𝑑) − 𝑡∗)         𝑡∗ ≤ 𝑇𝐴𝑓 + 𝑡𝑑 + 𝑞𝐴(𝑡𝑑)
 (46) 

where 𝑃𝐴𝐻(𝑡𝑑) denotes the travel price of road commuters with higher environmental 

preferences and 𝑃𝐴𝐿(𝑡𝑑) for the lower environmental preference group.  

Based on the generalized travel prices in Section 4.1, we find that the relative 

values of 𝜇𝑒𝐻𝜆𝑞𝐻 and 𝜇𝑒𝐿𝜆𝑞𝐿 determine whether these two groups travel together, and 

if not in which order they arrive. Since the relative sizes can go either way, the travel 

pattern is not generally predetermined in this case. When  𝜇𝑒𝐻𝜆𝑞𝐻 > 𝜇𝑒𝐿𝜆𝑞𝐿, the group 

with the higher environmental preferences and cleaner cars will travel at the shoulder 

of the peak, while the lower group will travel at the center of the peak. When 𝜇𝑒𝐻𝜆𝑞𝐻 <

𝜇𝑒𝐿𝜆𝑞𝐿, the opposite occurs. Note that in the former case, the more polluting cars will 

drive at moments where their emissions per trip are higher.  

4.3 Heterogenous income and car types 

One may also expect the type of car to be related to the driver’s income. Hence, in 

this subsection, we further explore the case of heterogeneous commuters with different 

incomes and car types. We again consider two discrete groups now, with different 

incomes. Assuming otherwise identical preferences, but income to affect the marginal 

utility of income, this means that 𝛼, 𝛽, 𝛾, 𝜆ℎ and 𝑔 vary proportionally between the two 
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groups of travelers, so that the ratios 
𝛼

𝛽
 ,

𝛼

𝛾
 , 

𝛼

𝜆ℎ
 and  

𝛼

𝑔
  are constants.2  The equilibrium 

numbers of commuters in these two groups are again denoted by 𝑁𝐴𝐻 and 𝑁𝐴𝐿(𝑁𝐴𝐻 +

𝑁𝐴𝐿 = 𝑁𝐴), where 𝐻 now denotes the group with higher income.  

Since cleaner energy vehicles are generally more expensive than diesel vehicles, 

we could assume that commuters with higher income are more likely to buy cleaner 

cars with relatively lower emission parameters (𝜆𝑓𝐻 and 𝜆𝑞𝐻) than the lower income 

groups. This leads to: 

Assumption a: Commuters with higher income travel in relatively cleaner cars than 

the lower income group.  

When there are no incentives, two groups will travel jointly since they have the 

same equilibrium travel time development over time (
𝛽𝐿

𝛼𝐿 + 𝜇ℎ𝜆ℎ𝐿
=

𝛽𝐻

𝛼𝐻+𝜇ℎ𝜆ℎ𝐻
 ). The 

generalized travel price in user equilibrium can then be derived as: 

 𝑃𝐴𝐿 = (𝛼𝐿 +𝜇ℎ𝜆ℎ𝐿 + 𝜇𝑒𝜆𝑓𝐿)𝑇𝐴𝑓 +
𝛽𝐿𝛾𝐻

𝛽𝐿+𝛾𝐿

𝑁𝐴𝐿+𝑁𝐴𝐻

𝑠
  (47) 

 𝑃𝐴𝐻 = (𝛼𝐻 + 𝜇ℎ𝜆ℎ𝐻 + 𝜇𝑒𝜆𝑓𝐻)𝑇𝐴𝑓 +
𝛽𝐻𝛾𝐻

𝛽𝐻+𝛾𝐻

𝑁𝐴𝐿+𝑁𝐴𝐻

𝑠
  (48) 

where 𝑃𝐴𝐿 is the travel price of auto commuters with lower income, and 𝑃𝐴𝐻 denotes 

the travel price of auto commuters with higher income. 

Since we can derive that 
𝛽𝐿

𝛼𝐿 + 𝜆ℎ𝐿+𝜇𝑒𝜆𝑞𝐿
<

𝛽𝐻

𝛼𝐻+𝜆ℎ𝐻+𝜇𝑒𝜆𝑞𝐻
 , there will be sorting 

under nudging information: the group with the higher income and cleaner cars will 

travel during the center of the peak, while the group with lower income and more 

polluting car will travel during the shoulder. The generalized travel price under nudging 

information can then be derived as: 

 𝑃𝐴𝐿
𝑇 = (𝛼𝐿 + 𝜆ℎ𝐿 + 𝜇𝑒𝜆𝑓𝐿)𝑇𝐴𝑓 +

𝛽𝐿𝛾𝐿

𝛽𝐿+𝛾𝐿

𝑁𝐴𝐿+𝑁𝐴𝐻

𝑠
  (49) 

 

2 We assume that income effects are uniform across travelers' value of time, schedule delays, crowding, and 

health considerations. 
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 𝑃𝐴𝐻
𝑇 = (𝛼𝐻 + 𝜆ℎ𝐻 + 𝜇𝑒𝜆𝑓𝐻)𝑇𝐴𝑓 +

𝛽𝐻𝛾𝐻

𝛽𝐻+𝛾𝐻

𝛽𝐿(𝛼𝐻+𝜇𝑒𝜆𝑞𝐻+𝜆ℎ𝐻)

𝛽𝐻(𝛼𝐿+𝜇𝑒𝜆𝑞𝐿+𝜆ℎ𝐿)
𝑁𝐴𝐿+𝑁𝐴𝐻

𝑠
 (50) 

However, an alternative to Assumption 𝑎 may also be plausible, namely when we 

consider the case where the car’s emission parameter depends primarily on the size of 

car. Higher-income group can then be expected to have bigger cars with higher emission 

parameters (𝜆𝑓𝐻 and 𝜆𝑞𝐻), than the lower-income. Then, an alternative Assumption 𝑏 

can be made: 

Assumption b: Commuters with higher income travel in relatively more polluting than 

the lower income group.  

The generalized travel cost and departure pattern in the base equilibrium without 

nudging is then the same under Assumption b as under Assumption a. 

However, different from the situation under Assumption a, the relative sizes of   

𝛽𝐿

𝛼𝐿 + 𝜆ℎ𝐿+𝜇𝑒𝜆𝑞𝐿
   and  

𝛽𝐻

𝛼𝐻+𝜆ℎ𝐻+𝜇𝑒𝜆𝑞𝐻
  are ambiguous under Assumption b. The departure 

pattern of road commuters under nudging information can characterized as: 

when
𝛽𝐿

𝛼𝐿 + 𝜆ℎ𝐿+𝜇𝑒𝜆𝑞𝐿
<

𝛽𝐻

𝛼𝐻+𝜆ℎ𝐻+𝜇𝑒𝜆𝑞𝐻
, the group with the higher income travels during 

the center of the peak, and the other group in the shoulder of the peak. When 

𝛽𝐿

𝛼𝐿 + 𝜆ℎ𝐿+𝜇𝑒𝜆𝑞𝐿
>

𝛽𝐻

𝛼𝐻+𝜆ℎ𝐻+𝜇𝑒𝜆𝑞𝐻
, the opposite occurs. 

4.4 Heterogenous income and environmental preferences 

A next potentially relevant relationship may exist between auto commuters’ 

income and environmental preferences. For simplicity, again two discrete groups are 

considered, and commuters with higher income are now assumed to be more concerned 

with the environment, thus having a stronger environmental preference.  

Without incentives, there is proportional heterogeneity, and the two groups will 

travel together. The generalized travel prices in user equilibrium then are obtained to: 

 𝑃𝐴𝐿 = (𝛼𝐿 + 𝜇ℎ𝜆ℎ𝐿)𝑇𝐴𝑓 +
𝛽𝐿𝛾𝐻

𝛽𝐿+𝛾𝐿

𝑁𝐴𝐿+𝑁𝐴𝐻

𝑠
  (51) 
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 𝑃𝐴𝐻 = (𝛼𝐻 + 𝜇ℎ𝜆ℎ𝐻)𝑇𝐴𝑓 +
𝛽𝐻𝛾𝐻

𝛽𝐻+𝛾𝐻

𝑁𝐴𝐿+𝑁𝐴𝐻

𝑠
  (52) 

where 𝑃𝐴𝐿 gives the travel price for auto commuters with the lower income, and 𝑃𝐴𝐻 

for the others. 

Under nudging information incentives, since the relative values of 

𝛽𝐿

𝛼𝐿+𝜆ℎ𝐿+𝜇𝑒𝐿𝜆𝑞
 and 

𝛽𝐻

𝛼𝐻+𝜆ℎ𝐻+𝜇𝑒𝐻𝜆𝑞
 can go either way, we again distinguish between two 

cases. When 
𝛽𝐿

𝛼𝐿+𝜆ℎ𝐿+𝜇𝑒𝐿𝜆𝑞
<

𝛽𝐻

𝛼𝐻+𝜆ℎ𝐻+𝜇𝑒𝐻𝜆𝑞
 , the group with higher income and 

environmental preferences travels during the center of the peak, and the other group 

travels during the shoulder. When 
𝛽𝐿

𝛼𝐿+𝜆ℎ𝐿+𝜇𝑒𝐿𝜆𝑞
>

𝛽𝐻

𝛼𝐻+𝜆ℎ𝐻+𝜇𝑒𝐻𝜆𝑞
, the opposite departure 

order applies. 

Under the above different assumptions on commuter heterogeneity, the effect of 

nudging information is summarized in Proposition 4. We will use numerical analysis to 

further explore the effects of nudging information.  

Proposition 4. Nudging information is more likely to produces a negative effect on 

social surplus especially in two scenarios: 

(a) when crowding effects in the metro system are larger  

(b)when welfare-reducing departure time swaps occur between heterogenous road 

travel groups, due to nudging information.  

Proof. Proof of Proposition 4 is provided in Appendix E. 

Proposition 4 suggests that, also when crowding effects in the metro system are 

smaller, the nudging information can still possibly harm the social welfare by causing 

welfare-reducing swaps in arrival patterns, notably when shifting more polluting cars 

to the center of peak, where emissions per trip are higher due to longer travel delays. 
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5. Numerical Analyzes  

5.1 Calibration of the numerical models 

We use numerical analysis to illustrate the effects of nudging information for 

heterogeneous commuters. The values of the parameters used in the numerical analysis 

are in Table 1.  

Table 1. Parameters used in the numerical analysis 

Parameter Definition Value 

𝑎𝐴𝐿 Intercept of inverse demand for auto commuters in lower group 55.06 

𝑎𝐴𝐻 Intercept of inverse demand for auto commuters in higher group 55.06 

𝑎𝑀𝐿 Intercept of inverse demand for metro commuters in lower group 36.98 

𝑎𝑀𝐻 Intercept of inverse demand for metro commuters in higher group 36.98 

𝑏𝐴𝐿 Slope of inverse demand for auto commuters in lower group -0.007 

𝑏𝐴𝐻 Slope of inverse demand for auto commuters in higher group -0.007 

𝑏𝑀𝐿 Slope of inverse demand for metro commuters in lower group -0.004 

𝑏𝑀𝐻 Slope of inverse demand for metro commuters in higher group -0.004 

𝜂𝐿 The cross-price effect in lower group -0.001 

𝜂𝐻 The cross-price effect in higher group -0.001 

𝛼 Value of travel time 10 

𝛽 Value of early arrival 6.09 

𝛾 Value of late arrival 23.77 

ℎ Time interval between successive trains 0.05 

𝜆𝑓 Emission cost per unit time spent on cruising  0.796 

𝜆𝑞 Emission cost per unit time spent on queuing  1.282 

𝑇𝑀𝑓 Fixed travel time for a metro commuter 1/5 

𝑇𝐴𝑓 Uncongested travel time for a road commuter 1/6 

𝑔 Value of body congestion 4 

𝜆ℎ Extra value of in-vehicle travel time respect to health 2 

𝜇𝑒𝐿 Environmental preference for lower group  0.2 

𝜇𝑒𝐻 Environmental preference for higher group 0.5 

𝜇ℎ Perceived health cost parameter without information 0.8 

𝑀 Number of total service run 60 

𝑀∗ Desired service run with no schedule cost 40 

𝑐 Capacity of a train 500 

𝑠 Capacity of road bottleneck 3000 

𝜎 Unweighted average scheduling cost for trains 8.12 

Following Yu et al. (2023), we set the value of time, the value of schedule delay 

early, and the value of schedule delay late, as 𝛼 =  10 , 𝛽 = 6.09 , and 𝛾 =  23.77 , 

respectively. The currency considered is the Euro. And, based on the value of emission 

parameters used in Liu et al. (2015) and the value of the crowding congestion parameter 

used in de Palma et al. (2017), we set 𝜆𝑞and 𝜆𝑓 at 1.392 and 0.864 per hour, and 𝑔  at 4. 

In addition, as health-related costs are usually ignored due to their lesser significance 
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compared to travel time costs, to ensure the ratio of these two types of costs remains 

within a reasonable range (namely: 0 <
𝜆ℎ

𝛼
< 1), the health parameter 𝜆ℎ is assumed to 

be 2. In the base case, we set the supply-side parameters 𝑀, 𝑀∗, and ℎ as 60, 40, 0.05 

hour, respectively. The uncongested travel time in the road and metro system is 

considered as 1/5 hour (12 minutes), 1/6 hour (10 minutes), respectively. The capacity 

of the road bottleneck is set at 3,000 cars per hour in the road bottleneck, and the 

capacity of each service run in the metro system is 500, indicating that the same 3-hour 

travel period are considered in both road and metro systems. The base equilibrium 

numbers of travelers with high and low environmental preferences in road commuting 

group is set at 4,500 each, while metro commuting is chosen by 6000 travelers in each 

group. To accomplish the above goals, 𝑎𝐴𝐿 =55.06, 𝑎𝐴𝐻 =55.06, 𝑎𝑀𝐻 =36.98, 𝑎𝑀𝐿 =

36.98 , 𝑏𝐴𝐿 = −0.007 , 𝑏𝐴𝐻 = −0.007 , 𝑏𝑀𝐿 = −0.004 , 𝑏𝑀𝐻 = −0.004 , 𝜂𝐿 =

−0.001 ,𝜂𝐻 = −0.001  are calibrated (Note that these are the rounded values of the 

above parameter in the inverse demand function). Scenario (a) in Proposition 4 will not 

occur in the following numerical analysis, since the crowding effect is sufficiently small 

in our base calibration and sensitivity analyses. 

Table 2. Basic equilibrium 

Number of car commuters in each group 4500 

Number of metro commuters in each group 6000 

Mode share-auto 42.86% 

Mode share-metro 57.14% 

Demand elasticity-auto with respect to generalized price (each group） -0.50 

Demand elasticity-metro with respect to generalized price (each group） -0.50 

Cross demand elasticity-metro to car (each group） 0.10 

We begin by examining the effects of nudging information when commuters are 

heterogeneous and how these impacts change with the degree of heterogeneity between 

the two groups. To that end, we vary 𝜇𝑒𝐻 and 𝜇𝑒𝐿 such that the average remains 0.5. Let 

𝑆𝑊  and 𝑆𝑊𝐼  denote the equilibrium social welfare without and with nudging 

information, respectively. 𝑆𝑊𝑇 and 𝑆𝑊𝐼𝑇 denote the social welfare under second-best 

flat road toll without and with nudging information. Furthermore, 𝑆𝑊𝐹𝐵 represents the 

equilibrium under first-best pricing. Note that first-best pricing includes dynamic tolls 
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in both metro and road bottlenecks to optimize departure time patterns; and this ensures 

that perfectly informed commuters’ generalized travel costs equal the marginal travel 

costs. We define the index 𝑊𝐼 =
𝑆𝑊𝐼−𝑆𝑊

𝑆𝑊𝐹𝐵−𝑆𝑊
   to represent the relative welfare 

improvement produced by nudging information, compared to that achieved under first-

best pricing, using the equilibrium without incentives as the benchmark. Similarly, 

𝑊𝑇 = 
𝑆𝑊𝑇−𝑆𝑊

𝑆𝑊𝐹𝐵−𝑆𝑊
 and 𝑊𝐼𝑇 = 

𝑆𝑊𝑇−𝑆𝑊

𝑆𝑊𝐹𝐵−𝑆𝑊
  denote the relative social welfare improvements 

generated by the second-best flat road toll and the combination of nudging information 

and the second-best flat road toll, respectively, again compared to the social welfare 

improvement achieved under first-best pricing. 

5.2 Cases without welfare-reducing swaps of departure time due to nudging 

information 

First, we consider cases where nudging information does not lead departure time 

swaps between the two groups, under different assumptions of heterogenous commuters. 

5.2.1 Case I:  𝜇𝑒 varies between groups 

We initially discuss the relatively simple case where commuters are heterogenous 

in environmental preferences, while the commuters with higher environmental 

preference travel during the center while the lower group travel during the shoulder.  

 

Figure 2. Relative welfare improvement by different policies under varying 𝜇𝑒𝐻(
𝜇𝑒𝐻+𝜇𝑒𝐿

2
= 0.5) 

Figure 2 mainly shows the relative performance of three different policies 
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compared to first-best tolling and the sum of relative welfare gain from nudging 

information and flat tolling. Initially, as 𝑊𝐼 > 0  , nudging information can enhance 

social welfare by encouraging road commuters to internalize health and emission costs 

during travel, and more so when heterogeneity in environmental preferences between 

these two groups becomes more pronounced. The positive effects of internalizing 

emission and health costs within the two groups in this case outweigh the negative 

impacts of shifting commuters with relatively higher uninternalized emission 

externalities to the central period. Consequently, total social welfare improvement 

increases, albeit mildly, when the divergence in environmental preferences between the 

two groups grows (Similar results can be found in Figure F.1 and F.2). Note that the 

benefits from nudging information are modest around 5% of benefits from optimal 

pricing, while the second-best flat road toll can generate a relatively higher welfare 

improvement of around 14%.  Since  𝑊𝐼𝑇 > 𝑊𝑇  , nudging information serves as a 

complement to the second-best flat road toll.  As 𝑊𝐼𝑇 < 𝑊𝐼 + 𝑊𝑇 , the benefits of 

information and flat tolling are subaddtive. Finally, Figure 2 shows that the 

heterogeneity in environmental preferences has a small impact on the relative 

performance of the instruments: the cures are remarkably flat. Results are thus robust 

with respect to the ratio of 𝜇𝑒𝐻 to 𝜇𝑒𝐿. 

5.2.2 Case II: 𝜆𝑓 and 𝜆𝑞 vary with 𝜇𝑒 between groups 

We now incorporate additional commuter heterogeneity in car types into the 

previous analysis. When road commuters with higher environmental preferences drive 

cleaner vehicles (recall the discussion in Section 4.2), 𝜆𝑓 and 𝜆𝑞 decrease with 𝜇𝑒 . We 

let 𝜆𝑓 and 𝜆𝑞 increase at a decreasing rate when 𝜇𝑒 falls, by setting it in proportion with 

(1 − 𝜇𝑒)2. It then holds that  𝜆𝑞𝐿𝜇𝑒𝐿 > 𝜆𝑞𝐻𝜇𝑒𝐻 . As a result, with nudging information, 

commuters with higher environmental preferences travel during the central peak period, 

while those with lower environmental preferences travel during the shoulder. 
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Figure 3. Relative welfare improvement by different policies under varying 𝜇𝑒𝐻(
𝜇𝑒𝐻+𝜇𝑒𝐿

2
= 0.5) 

The order of four types of relative welfare gains in Figure 2 remains consistent in 

Figure 3. As shown in Figure 3, since information can shift cleaner cars to the central 

peak period, the welfare improvement can increase when the differences in perceived 

emission costs between the two groups become more pronounced. In this scenario, 

information still serves as a complement to the second-best flat road toll, thus boosting 

the overall welfare effect (𝑊𝐼𝑇 > 𝑊𝑇) . When raising 𝜇𝑒𝐻 , the social welfare gained 

from information, and from the combination of information and the second-best flat 

road toll, both first increases and then decreases, while it remains positive. This occurs 

because the difference in the ratio of perceived emission costs 𝜇e𝜆𝑞  between two 

groups due to nudging becomes more pronounced at first and then diminishes when 

𝜇𝑒𝐻  increases, particularly when 𝜆𝑓  and 𝜆𝑞  both vary in proportion (1 − 𝜇𝑒)2  as 

assumed. Since 𝑊𝐼𝑇 < 𝑊𝐼 + 𝑊𝑇, the combined benefits of nudging information and 

flat tolling remain subadditive in this scenario. Again, the relative efficiency scores 

remain rathe constant in Figure 3. 

5.2.3 Case III: 𝜆𝑓 and 𝜆𝑞  vary with 𝛼 between groups 

Different patterns of relatively welfare improvements emerge when considering 

commuter incomes. We now extend the analysis to incorporate heterogeneity in both 

commuter income and car types. To consider where the case 
𝛽𝐿

𝛼𝐿 + 𝜆ℎ𝐿+𝜇𝑒𝜆𝑞𝐿
>

𝛽𝐻

𝛼𝐻+𝜆ℎ𝐻+𝜇𝑒𝜆𝑞𝐻
, so that the higher-income group travels during the shoulder of the peak 
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with information, we assume that 𝜆𝑓

1

2  and 𝜆𝑞

1

2   both vary in proportion with 𝛼 . This 

implies the 𝜆𝑓 and 𝜆𝑞 vary stronger than proportionally with 𝛼. 

 

Figure 4. Relative welfare improvement by different policies under varying 𝛼𝐻(
𝛼𝐿+𝛼𝐻

2
= 10) 

The order of relative welfare improvement remains the same in Figure 4. Higher-

income groups with more polluting cars now travel during the shoulder of the peak, 

while lower-income groups with cleaner cars travel during the central peak period with 

nudging information. Information incentives again enhance welfare levels and serve as 

a complement to the second-best flat road toll (𝑊𝐼𝑇 > 𝑊𝑇); however, we also see that 

the impacts of information alone are more modest, and peak around 𝛼𝐻 = 15. The 

reduction in gains for further increase of 𝛼𝐻 occurs because of the negative effect of 

moving the higher-scheduling group, with higher schedule delay cost, to the shoulder 

of the peak, this then outweighs the positive effect of shifting the cleaner cars to the 

central peak and further lead to the U shape of 𝑊𝐼 , 𝑊𝐼𝑇. 𝑊𝑇 decreases monotonically 

with 𝛼𝐻. This pattern arises because the efficiency of undifferentiated tolling 

diminishes when heterogeneity between commuter groups become more significant. 

The combined benefits of nudging information and flat tolling remain subadditive in 

this scenario. A similar case is provided in Appendix F (Figure F.3). 

5.3 Cases with welfare-reducing swaps of departure time by nudging information 

In this subsection, we focus on the cases where nudging information may lead to 

welfare-reducing swaps of departure times between two groups.   
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5.3.1 Case IV- 𝜆𝑓 and 𝜆𝑞 vary with 𝜇𝑒 between groups 

Recall the relationship between commuters’ environmental preferences and car 

types we have discussed in section 4.2. For example, when 𝜆𝑓  and 𝜆𝑞  both vary in 

proportion (1 − 𝜇𝑒)
1

2  reflecting that a higher environmental preference is associated 

with cleaner cars, we can obtain a case where  𝜆𝑞𝐿𝜇𝑒𝐿 < 𝜆𝑞𝐻𝜇𝑒𝐻 . With nudging 

information, in the equilibrium, commuters with lower environmental preferences and 

more polluting cars may then travel during the central peak period, while those with 

higher environmental preferences and cleaner cars travel during the shoulder, while 

without nudging information, the two commuting groups were traveling together.  

 

Figure 5. Relative welfare improvement by different policies under varying 𝜇𝑒𝐻 (
𝜇𝑒𝐻+𝜇𝑒𝐿

2
= 0.5) 

Information then shifts more polluting cars to the central peak period, while 

cleaner cars are pushed to the shoulder of the peak. This could still be a welfare-

improving change when the unit cost of emission externality is not too different 

between the two groups, while scheduling and travel delay costs support this shift. 

However, as shown in Figure 5, when the difference in unit emission cost between the 

two groups becomes large enough (with 𝜇𝑒𝐻 approaching 1), nudging information may 

eventually have a negative effect on social welfare as it increases total emissions. It is 

important to note that when nudging information generates a negative effect, it also no 

longer complements the second-best flat road toll (𝑊𝐼𝑇  becomes smaller than 𝑊𝑇) . 

Furthermore, in such cases, the combined benefits of nudging information and flat 

tolling become superadditive (𝑊𝐼𝑇 > 𝑊𝐼 + 𝑊𝑇). This outcome aligns with the intuition 
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behind second-best paradoxes, where measures that are beneficial under optimal 

conditions—such as providing perfect information—may produce adverse effects in 

second-best scenarios, such as when no road pricing is implemented. Again, similar 

cases may occur for information provision on uncertain travel time (Verhoef et al., 

1996a). 

5.3.2 Case V- 𝜆𝑓 and 𝜆𝑞  vary with 𝛼 between groups 

Next, we consider the case when 𝜆𝑓
2
 and 𝜆𝑞

2
 both vary in proportion 𝛼. Recall 

that Assumption 𝑏  in Section 4.3 stipulates that high-income travelers drive more 

polluting cars. From this, we can derive that 
𝛽𝐿

𝛼𝐿 + 𝜆ℎ𝐿+𝜇𝑒𝜆𝑞𝐿
<

𝛽𝐻

𝛼𝐻+𝜆ℎ𝐻+𝜇𝑒𝜆𝑞𝐻
 , which 

indicates that with information provision the higher-income group would travel during 

the central peak period, while the lower-income group would travel during the shoulder 

of the peak. 

 

Figure 6. Relative welfare improvement by different policies under varying 𝛼𝐻(
𝛼𝐿+𝛼𝐻

2
= 10) 

In Figure 6, higher-income groups with more polluting cars travel during the 

central peak period, while lower-income groups with cleaner cars travel during the 

shoulder of the peak when nudging information is applied. This may still increase 

welfare and also complement to the second-best flat road toll when it encourages 

individuals to internalize emission externalities and unperceived health costs during 

driving, on top of shifting commuters with higher schedule costs to the central peak 

period. However, welfare gains are relatively smaller than in the other cases because 
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more polluting cars are being shifted to the central peak. No super additivity between 

nudging information and flat tolling arises in this case. Note that information leads to 

progressively high relative efficiency when 𝛼  increases. This occurs because the 

temporal separation brings larger benefits to the high-income drivers. Also, their 

schedule delay cost parameters are high. When information pushes low income to the 

shoulders, high income drivers have higher schedule delay cost advantages. 

A further key difference with the previous scenario is that the welfare 

improvement from nudging information surpasses that of the second-best flat toll when 

𝛼𝐻  approaches 20. This indicates that the flat road toll scheme may become less 

efficient compared to nudging information when the heterogeneity in commuters’ 

income becomes significant (similar results are shown in Figures F.1 and F.2). 

6. Robustness check of relative welfare improvement 

In the previous section, implementing nudging information has been shown to 

effectively enhance social welfare in most instances under the majority of parameter 

values considered. Furthermore, in these scenarios, the order of relative welfare 

improvements considered ( 𝑊𝐼 , 𝑊𝑇 , 𝑊𝐼𝑇  and 𝑊𝐼 + 𝑊𝑇 ) remains stable when no 

welfare-reducing swap occur. However, only when a welfare-reducing swap in arrival 

times occurs, nudging information lowers welfare.  

To further test the sensitivity of our results, we change some other key parameters. 

Specifically, we review the cases discussed in the last section to test the robustness with 

respect to the emission and health parameters.  

We first investigate the robustness of positive effect produced by nudging 

information (𝑊𝐼 > 0) when no welfare-reducing swap occurs. We select two typical 

positive scenarios where the relative welfare improvement is either the highest (around 

10%) or the lowest (around 6%) among all positive cases, as illustrated in Figures 7(a) 

and 7(b), respectively. (The remaining positive cases are listed in Appendix G.) 
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(a) 𝜇𝑒 varies between groups                  (b) 𝜆𝑓

1

2 and 𝜆𝑞

1

2 both vary in proportion 𝛼  

Figure 7.  Relative welfare improvement by nudging information under varying 𝜇𝑒 and 𝜇ℎ(𝜇𝑒𝐻 =

3𝜇𝑒𝐿) 

Since the order 𝑊𝐼 < 𝑊𝑇 < 𝑊𝐼𝑇  < 𝑊𝐼 + 𝑊𝑇  is relatively stable for cases 

without welfare-reducing swaps, we focus exclusively on cases where 𝑊𝐼 > 𝑊𝑇 arises. 

As illustrated in Figures 8(a) and 8(b), by considering the heterogeneity in income, the 

effect of nudging information can surpass the impact of second-best flat tolls, 

particularly when commuters exhibit a higher degree of environmental consciousness 

(higher 𝜇𝑒). In such scenarios, nudging can exert a relatively greater impact by causing 

positive departure time swaps, thereby enhancing relatively higher welfare outcomes 

than flat tolling. Note that in the following figures, the black segments represent 

negative values. 

           

(a) 
1

𝜆𝑞
 and 

1

𝜆𝑓
 vary in proportion 𝛼                 (b)  𝜇𝑒

2 varies in proportion 𝛼 

Figure 8. Relative welfare improvement by nudging under varying 𝜇𝑒 and 𝜇ℎ(𝜇𝑒𝐻 = 3𝜇𝑒𝐿) 

We next explore the specific circumstances under which the negative effects of 

nudging information arise, and examine the impact on the relative order of  
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𝑊𝐼 , 𝑊𝑇 , 𝑊𝐼𝑇 and 𝑊𝐼 + 𝑊𝑇.  

Figures 9(a) and 9(b) show that a negative welfare effect of nudging information 

is more likely to happen when the two groups exhibit near indifference toward the 

environment and internalize most of the health costs associated with travel in the 

absence of information. In such scenarios, the more polluting group can impose 

additional emission costs, ultimately dominating the overall welfare impacts and 

compromising the entire outcome. 

 

                

(a) 𝜆𝑓 and 𝜆𝑞 vary in proportion (1 − 𝜇𝑒)
1

2                    (b) 𝜆𝑓
2
 and 𝜆𝑞

2
  vary in proportion 𝛼 

Figure 9. Relative welfare improvement by nudging under varying 𝜇𝑒 and 𝜇ℎ(𝜇𝑒𝐻 = 3𝜇𝑒𝐿) 

In such cases, where nudging information leads to negative welfare effects, we can 

also find a different order of  𝑊𝐼 , 𝑊𝑇 , 𝑊𝐼𝑇  and 𝑊𝐼 + 𝑊𝑇 , as shown in  more detail 

Appendix G(Figure G.2(b), Figure G.3(a) and 3(b), Figure G.4(a) and 4(b)). These 

negative effects arise primarily due to welfare-reducing swaps of arrival times, which 

prevent nudging information from consistently serving as a complement to the second-

best flat road toll(𝑊𝑇 < 𝑊𝐼𝑇). In these scenarios, the combined benefits of nudging 

information and flat tolling typically exhibit super additivity: 𝑊𝐼𝑇 > 𝑊𝐼 + 𝑊𝑇 . 

Examining the relationship between 𝑊𝐼   and  𝑊𝑇, it becomes obvious that welfare-

reducing swaps are not the primary cause of 𝑊𝐼 > 𝑊𝑇, as illustrated in Figures 

Appendix G (Figure G.2(a) and 2(b)). Instead, the direct factors contributing to the 

relatively higher welfare improvement from nudging information are the heterogeneity 

in commuters’ income and their environmental preferences, which is consistent to the 
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discussion around Figure 8(a) and 8(b). 

7. Conclusion  

We investigated the impacts of providing “nudging” information on managing 

congestion and emissions in a bi-modal road and metro network. By incorporating 

information about health and emission costs, commuters can be encouraged to 

internalize these externalities, leading to different travel patterns, and potentially 

improving social welfare. 

The research highlights the potential effectiveness of nudging information as a 

policy tool. By making individuals aware of the health risks and environmental impact 

of their travel choices, it is possible to encourage more sustainable and health-conscious 

decisions. This awareness can reduce the negative externalities associated with 

congestion and emissions. For instance, when commuters are informed about the 

adverse health effects for others of exposure to vehicle emissions, and the own 

increased risk of respiratory and cardiovascular diseases, they may opt for cleaner and 

more sustainable travel modes. In our numerical examples, we typically find modest 

positive welfare effects that amount to less than 10% of the welfare gains from optimal 

pricing. Higher gains occur when all impacts are positive: information guides lower 

income groups with the more polluting cars to times where they emit less (i.e., the 

shoulders of the peak), and impacts on scheduling and travel delay costs are positive. 

Negative effects may arise in opposite cases, in particular when the costs of emissions 

are high but (largely) ignored by drivers who are pushed towards the central peak when 

they are informed. 

Under the assumption that commuters are homogeneous, meaning they have the 

same preferences and respond identically to information, we find that providing 

nudging information uniformly generally improves social welfare except when the 

crowding externalities are excessively large in the metro system. When all commuters 

consider the health and emission costs of their trips, they are more likely to avoid 
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congested routes or peak travel times, reducing overall congestion and associated 

emissions. This shift not only alleviates traffic bottlenecks but also promotes a more 

even distribution of traffic across periods and modes, enhancing the efficiency of the 

transportation network. We further prove that in the cases where a naive flat Pigouvian 

road toll improves total social welfare, nudging information always serves as a welfare-

improving strategy by effectively reducing the negative externalities of congestion and 

emissions. Moreover, regardless of the extreme crowding externalities in the metro 

system, nudging information always serves as a complement to the second-best flat 

road toll in allowing an increase in welfare gains. 

The study also explores the more complex scenario where commuters are 

heterogeneous, meaning they have diverse preferences, behaviors, and sensitivities to 

nudging information. In this case, the effectiveness of nudging information may vary 

significantly and in complex ways with patterns of heterogeneity. Commuters with 

different environmental preferences, car types, and income levels respond differently 

to the provided information. For example, high-income commuters with a strong 

environmental preference may readily shift to less polluting travel options when 

informed about emission costs, while low-income commuters with less concern for 

environmental issues may be less responsive to the same information. But higher 

incomes may have cars that are more, or less, polluting than lower incomes, further 

complicating the overall effects of nudging information on emissions and social welfare.  

When commuters are heterogeneous, the implementation of nudging leads to 

varied travel patterns, potentially reducing congestion and emissions in most cases. 

Also without excessively large crowding externalities in the metro system, there may 

be other scenarios where nudging may inadvertently lead to negative welfare outcomes. 

For instance, if commuters are largely indifferent to environmental issues, the 

information may have little to no effect. Furthermore, if the nudging leads to more 

polluting vehicles traveling during peak periods, it could exacerbate congestion and 

emissions, resulting in even more severe externality problems. In these cases, nudging 
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information cannot always serve as a complement to the second-best flat road toll. This 

highlights the importance of understanding the specific characteristics of the commuter 

population when designing and implementing nudging strategies. 

The findings of this study have significant policy implications for urban planners 

and policymakers. They suggest that a nuanced approach to information dissemination, 

which accounts for the diverse characteristics of commuters, can be more effective in 

achieving the desired outcomes. For instance, targeted campaigns that address specific 

concerns of different commuter groups, such as health risks for those more sensitive to 

pollution or cost savings for those with tighter budgets, can enhance the effectiveness 

of nudging information. 

While the study provides valuable insights into the potential benefits of nudging 

information, we also acknowledge several challenges and limitations. One significant 

challenge is accurately predicting and measuring the behavioral responses of 

commuters to nudging information, especially in a heterogeneous population. 

Differences in cultural, social, and economic contexts can influence how commuters 

perceive and react to information, making it difficult to generalize findings across 

different settings. It would be interesting to empirically test the predictions and 

assumptions of the paper and to test if the effect differs between the short run and long 

run. This uncertainty in parameter values is also one of the reasons we did extensive 

sensitivity checks. 

Another limitation is the potential for unintended consequences. As the study 

suggests, nudging information may not always lead to positive outcomes, especially if 

it encourages behavior that increases congestion or emissions. Policymakers must 

carefully design and monitor nudging strategies to mitigate such risks, and ensure that 

the overall impact is positive. 

Future research could explore the role of technology in enhancing the effectiveness 

of nudging information. With the increasing availability of real-time data and advanced 

analytics, there are opportunities to develop more personalized and dynamic nudging 



 

 35 

strategies that adapt to the changing needs and preferences of commuters. Exploring 

these possibilities can help policymakers leverage technology to create more responsive 

and efficient transportation systems. 

In conclusion, this study demonstrates the potential of nudging information as a 

valuable tool for managing congestion and emissions in urban transportation networks 

while showing that the overall impacts will most likely fall short of those of price 

policies. However, it may be much easier politically to implement nudging than pricing, 

and it is also a much cheaper option. The effectiveness of nudging strategies depends 

on a deep understanding of the heterogeneity among commuters and careful 

consideration of the potential for unintended consequences. As urban populations 

continue to grow, and environmental concerns become ever more pressing, innovative 

approaches like nudging can play an ever-important role in urban mobility. 
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Appendix  

Appendix A. Number of commuters in each mode under different incentives 

A.1 No incentives  

 𝑁𝐴
𝑁 =

𝑠(𝑐𝑀𝜂(𝜎−𝑎𝑀)+𝑎𝐴(−𝑔+𝑐𝑀𝑏𝑀)+𝑐𝑀𝛼𝜂𝑇𝑀𝑓+(𝑔−𝑐𝑀𝑏𝑀)𝑇𝐴𝑓(𝛼+𝜆ℎ𝜇ℎ))

−𝑔𝛿+𝑐𝑀𝑠𝜂2+𝑔𝑠𝑏𝐴+𝑐𝑀(𝛿−𝑠𝑏𝐴)𝑏𝑀
  (A.1) 

 𝑁𝑀
𝑁 =

𝑐𝑀(−𝑠𝜂𝑎𝐴+𝛿(𝜎−𝑎𝑀)+𝑠𝛼𝜂𝑇𝐴𝑓+𝛼𝛿𝑇𝑀𝑓−𝑠𝑏𝐴(𝜎−𝑎𝑀+𝛼𝑇𝑀𝑓)+𝑠𝜂𝑇𝐴𝑓𝜆ℎ𝜇ℎ)

−𝑔𝛿+𝑐𝑀𝑠𝜂2+𝑔𝑠𝑏𝐴+𝑐𝑀(𝛿−𝑠𝑏𝐴)𝑏𝑀
 (A.2) 

A.2 Nudging information 

 𝑁𝐴
𝐼 =

𝑠(𝑐𝑀𝜂(𝜎−𝑎𝑀)+𝑎𝐴(−𝑔+𝑐𝑀𝑏𝑀)+𝑐𝑀𝛼𝜂𝑇𝑀𝑓+(𝑔−𝑐𝑀𝑏𝑀)𝑇𝐴𝑓(𝛼+𝜆ℎ+𝜆𝑓𝜇𝑒))

−𝑔𝛿+𝑐𝑀𝑠𝜂2+𝑔𝑠𝑏𝐴+𝑐𝑀(𝛿−𝑠𝑏𝐴)𝑏𝑀
 (A.3) 

 𝑁𝑀
𝐼 =

𝑐𝑀(−𝑠𝜂𝑎𝐴+𝛿(𝜎−𝑎𝑀)+𝑠𝛼𝜂𝑇𝐴𝑓+𝛼𝛿𝑇𝑀𝑓−𝑠𝑏𝐴(𝜎−𝑎𝑀+𝛼𝑇𝑀𝑓)+𝑠𝜂𝑇𝐴𝑓𝜆ℎ+𝑠𝜂𝑇𝐴𝑓𝜆𝑓𝜇𝑒)

−𝑔𝛿+𝑐𝑀𝑠𝜂2+𝑔𝑠𝑏𝐴+𝑐𝑀(𝛿−𝑠𝑏𝐴)𝑏𝑀

 (A.4) 

A.3 Optimal uniform toll 

𝑁𝐴
𝑂 = (𝑠(−𝑎𝐴(𝑔 − 𝑐𝑀𝑏𝑀)2 + 𝑔2𝑇𝐴𝑓(𝛼 + 𝜆𝑓 + 𝜆ℎ) + 𝑐2𝑀2𝑏𝑀

2 𝑇𝐴𝑓(𝛼 + 𝜆𝑓 +

𝜆ℎ) − 𝑐𝑀𝑏𝑀(−𝑐𝑀𝜂𝑎𝑀 + 𝑐𝑀𝜂(𝜎 + 𝛼𝑇𝑀𝑓) + 2𝑔𝑇𝐴𝑓(𝛼 + 𝜆𝑓 + 𝜆ℎ)))(𝛼 + 𝜆ℎ𝜇ℎ))/

(𝑠𝑏𝐴(𝑔 − 𝑐𝑀𝑏𝑀)2(𝛼 + 𝜆ℎ𝜇ℎ) + 𝑐𝑀𝑏𝑀(𝛼(4𝑔𝛿 − 𝑐𝑀𝑠𝜂2) + 2𝑔𝛿(𝜆ℎ + 𝜆𝑞) + (2𝑔𝛿 −

𝑐𝑀𝑠𝜂2)𝜆ℎ𝜇ℎ) − 𝑔2𝛿(2𝛼 + 𝜆𝑞 + 𝜆ℎ(1 + 𝜇ℎ)) − 𝑐2𝑀2𝛿𝑏𝑀
2 (2𝛼 + 𝜆𝑞 + 𝜆ℎ(1 + 𝜇ℎ)))

  (A.5) 

𝑁𝑀
𝑂 = (𝑐𝑀(−𝑔 + 𝑐𝑀𝑏𝑀)(2𝛼𝛿𝜎 − 𝑠𝛼𝜎𝑏𝐴 + 𝑠𝛼2𝜂𝑇𝐴𝑓 + 2𝛼2𝛿𝑇𝑀𝑓 − 𝑠𝛼2𝑏𝐴𝑇𝑀𝑓 +

𝑠𝛼𝜂𝑇𝐴𝑓𝜆𝑓 + 𝛿𝜎𝜆ℎ + 𝑠𝛼𝜂𝑇𝐴𝑓𝜆ℎ + 𝛼𝛿𝑇𝑀𝑓𝜆ℎ + 𝛿𝜎𝜆𝑞 + 𝛼𝛿𝑇𝑀𝑓𝜆𝑞 + 𝜆ℎ(𝛿(𝜎 +

𝛼𝑇𝑀𝑓) − 𝑠𝑏𝐴(𝜎 + 𝛼𝑇𝑀𝑓) + 𝑠𝜂𝑇𝐴𝑓(𝛼 + 𝜆𝑓 + 𝜆ℎ))𝜇ℎ − 𝑠𝜂𝑎𝐴(𝛼 + 𝜆ℎ𝜇ℎ) +

𝑠𝑎𝑀𝑏𝐴(𝛼 + 𝜆ℎ𝜇ℎ) − 𝛿𝑎𝑀(2𝛼 + 𝜆𝑞 + 𝜆ℎ(1 + 𝜇ℎ))))/(−𝑠𝑏𝐴(𝑔 − 𝑐𝑀𝑏𝑀)2(𝛼 +

𝜆ℎ𝜇ℎ) + 𝑐𝑀𝑏𝑀(−4𝑔𝛼𝛿 + 𝑐𝑀𝑠𝛼𝜂2 − 2𝑔𝛿(𝜆ℎ + 𝜆𝑞) + (−2𝑔𝛿 + 𝑐𝑀𝑠𝜂2)𝜆ℎ𝜇ℎ) +

𝑔2𝛿(2𝛼 + 𝜆𝑞 + 𝜆ℎ(1 + 𝜇ℎ)) + 𝑐2𝑀2𝛿𝑏𝑀
2 (2𝛼 + 𝜆𝑞 + 𝜆ℎ(1 + 𝜇ℎ)))  (A.6) 

A.4 Optimal uniform toll with nudging information 

𝑁𝐴
∗ = −((𝑠(−𝑎𝐴(𝑔 − 𝑐𝑀𝑏𝑀)2 + 𝑔2𝑇𝐴𝑓(𝛼 + 𝜆𝑓 + 𝜆ℎ) + 𝑐2𝑀2𝑏𝑀

2 𝑇𝐴𝑓(𝛼 + 𝜆𝑓 +
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𝜆ℎ) − 𝑐𝑀𝑏𝑀(−𝑐𝑀𝜂𝑎𝑀 + 𝑐𝑀𝜂(𝜎 + 𝛼𝑇𝑀𝑓) + 2𝑔𝑇𝐴𝑓(𝛼 + 𝜆𝑓 + 𝜆ℎ)))(𝛼 + 𝜆ℎ +

𝜆𝑞𝜇𝑒))/ (−𝑠𝑏𝐴(𝑔 − 𝑐𝑀𝑏𝑀)2(𝛼 + 𝜆ℎ + 𝜆𝑞𝜇𝑒) + 𝑔2𝛿(2𝛼 + 2𝜆ℎ + 𝜆𝑞(1 + 𝜇𝑒)) +

𝑐2𝑀2𝛿𝑏𝑀
2 (2𝛼 + 2𝜆ℎ + 𝜆𝑞(1 + 𝜇𝑒)) + 𝑐𝑀𝑏𝑀(−4𝑔𝛼𝛿 + 𝑐𝑀𝑠𝛼𝜂2 + (−4𝑔𝛿 +

𝑐𝑀𝑠𝜂2)𝜆ℎ + 𝜆𝑞(−2𝑔𝛿 + (−2𝑔𝛿 + 𝑐𝑀𝑠𝜂2)𝜇𝑒))))  (A.7) 

𝑁𝑀
∗ = −((𝑐𝑀(𝑔 − 𝑐𝑀𝑏𝑀)(2𝛼𝛿𝜎 − 𝑠𝛼𝜎𝑏𝐴 + 𝑠𝛼2𝜂𝑇𝐴𝑓 + 2𝛼2𝛿𝑇𝑀𝑓 −

𝑠𝛼2𝑏𝐴𝑇𝑀𝑓 + 𝑠𝛼𝜂𝑇𝐴𝑓𝜆𝑓 + 2𝛿𝜎𝜆ℎ − 𝑠𝜎𝑏𝐴𝜆ℎ + 2𝑠𝛼𝜂𝑇𝐴𝑓𝜆ℎ + 2𝛼𝛿𝑇𝑀𝑓𝜆ℎ −

𝑠𝛼𝑏𝐴𝑇𝑀𝑓𝜆ℎ + 𝑠𝜂𝑇𝐴𝑓𝜆𝑓𝜆ℎ + 𝑠𝜂𝑇𝐴𝑓𝜆ℎ
2 + 𝛿𝜎𝜆𝑞 + 𝛼𝛿𝑇𝑀𝑓𝜆𝑞 + (𝛿(𝜎 + 𝛼𝑇𝑀𝑓) −

𝑠𝑏𝐴(𝜎 + 𝛼𝑇𝑀𝑓) + 𝑠𝜂𝑇𝐴𝑓(𝛼 + 𝜆𝑓 + 𝜆ℎ))𝜆𝑞𝜇𝑒 − 𝑠𝜂𝑎𝐴(𝛼 + 𝜆ℎ + 𝜆𝑞𝜇𝑒) + 𝑎𝑀(𝑠𝑏𝐴(𝛼 +

𝜆ℎ + 𝜆𝑞𝜇𝑒) − 𝛿(2𝛼 + 2𝜆ℎ + 𝜆𝑞(1 + 𝜇𝑒)))))/(−𝑠𝑏𝐴(𝑔 − 𝑐𝑀𝑏𝑀)2(𝛼 + 𝜆ℎ +

𝜆𝑞𝜇𝑒) + 𝑔2𝛿(2𝛼 + 2𝜆ℎ + 𝜆𝑞(1 + 𝜇𝑒)) + 𝑐2𝑀2𝛿𝑏𝑀
2 (2𝛼 + 2𝜆ℎ + 𝜆𝑞(1 + 𝜇𝑒)) +

𝑐𝑀𝑏𝑀(−4𝑔𝛼𝛿 + 𝑐𝑀𝑠𝛼𝜂2 + (−4𝑔𝛿 + 𝑐𝑀𝑠𝜂2)𝜆ℎ + 𝜆𝑞(−2𝑔𝛿 + (−2𝑔𝛿 +

𝑐𝑀𝑠𝜂2)𝜇𝑒))))   (A.8) 

Appendix B. Proof of Proposition 1 

 The effects of nudging information can be divided into two distinct components 

based on the generalized road travel price function 𝑃𝐴
𝐼 under nudging information:   

First, a flat road toll 𝜏𝐴
𝐼  , which is equal to the difference between the fixed travel 

price with and without nudging information, represented as: 

 𝜏𝐴
𝐼 = (𝛼 + 𝜆ℎ + 𝜇𝑒𝜆𝑓)𝑇𝐴𝑓 − (𝛼 +𝜇ℎ 𝜆ℎ)𝑇𝐴𝑓 = ((1 − 𝜇ℎ)𝜆ℎ + 𝜇𝑒𝜆𝑓)𝑇𝐴𝑓 (B.1) 

Second, a zero value of dynamic road toll, which changes drivers’ departure time 

to internalize the congestion, health and emission cost during queuing at the bottleneck, 

the internalized external cost 𝑇𝐸𝐶𝐴
𝐼  by this type of toll can be written as: 

 𝑇𝐸𝐶𝐴
𝐼 = 𝜇𝑒(𝜆𝑓𝑇𝐴𝑓 +

𝜆𝑞𝛿𝑁𝐴𝐼

2(𝛼+𝜇𝑒𝜆𝑞+𝜆ℎ)𝑠
)𝑁𝐴𝐼 (B.2) 

Since the metro serves as an imperfect substitution for driving, the flat road toll 𝜏𝐴
𝐼  

cannot always generate positive welfare effects due to the crowding in the metro. 

Specifically, when the marginal cost of shifting drivers to the metro mode is too large 

(e.g., the value of crowding parameter g is sufficiently big), 𝜏𝐴
𝐼  can generate negative 

effects. 

While the zero-value dynamic toll consistently enhances welfare in the bi-modal 
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system, this positive effect mainly depends on the value of 𝜇𝑒  which is related to 

environmental preferences. Hence, the possible negative effect of the flat toll 𝜏𝐴
𝐼  is not 

related to 𝜇𝑒  and is unbounded, and thus it will harm welfare if crowding effects are 

high enough. 

On the contrary, when crowding effects in the metro are relatively minor, the fixed 

toll 𝜏𝐴
𝐼  is more likely to generate positive welfare effects. In such cases, the zero-value 

dynamic toll remains welfare-improving, and thus the combined effect of nudging 

information on total welfare is positive. 

This completes the proof. 

Appendix C. Proof of Proposition 2 

The optimal flat external toll for drivers can be formulated as: 

 𝜏𝐴
𝑂𝐸 = 𝑁𝐴

𝜕𝑃𝐴

𝜕𝑁𝐴
+

𝜕𝑇𝐸𝐴

𝜕𝑁𝐴
+ (1 − 𝜇ℎ)

𝜕𝑇𝐻𝐴

𝜕𝑁𝐴
= 𝛿

𝑁𝐴

𝑠
+ (𝜆𝑓 + (1 − 𝜇ℎ)𝜆ℎ)𝑇𝐴𝑓 + (𝜆𝑞 +

(1 − 𝜇ℎ)𝜆ℎ)
𝛿𝑁𝐴

(𝛼+𝜇ℎ𝜆ℎ)𝑠
  (C.1) 

The second derivative of total social welfare respect to 𝜏𝐴  can be derived as: 

 
𝜕2𝑆𝑊

𝜕𝜏𝐴
2 =

−(𝛼+𝜇ℎ𝜆ℎ)(𝑐2𝑀2𝑠2𝜂2𝑏𝑀+𝑠((𝛿−𝑠𝑏𝐴)(𝑔−𝑐𝑀𝑏𝑀)2))−𝑠𝛿(𝑔−𝑐𝑀𝑏𝑀)2((𝛼+𝜆ℎ)+𝜆𝑞)

(−𝑔𝛿+𝑐𝑀𝑠𝜂2+𝑔𝑠𝑏𝐴+𝑐𝑀(𝛿−𝑠𝑏𝐴)𝑏𝑀)2(𝛼+𝜆ℎ𝜇ℎ)
< 0

  (C.2) 

When 𝜏𝐴 = −∞  , the number of road commuters is almost equal to +∞  which 

indicates that it is beneficial to move commuters from auto to metro. Hence, at this 

extreme point, we can derive that  
𝜕𝑆𝑊

𝜕𝜏𝐴
> 0. 

When 𝜏𝐴 = +∞ , the number of metro commuters is almost equal to +∞ which 

shows that it is beneficial to move commuters from metro to auto. Hence, at this 

extreme point, we can derive that  
𝜕𝑆𝑊

𝜕𝜏𝐴
< 0. 

Then, we can derive that the welfare first increases and then decreases with flat 

toll 𝜏𝐴. 

 𝜏𝐴
𝐼 = ((1 − 𝜇ℎ)𝜆ℎ + 𝜇𝑒𝜆𝑓)𝑇𝐴𝑓 < 𝜏𝐴

𝑂𝐸 (C.3) 

As discussed in Appendix B, the effect of nudging information can be divided into 
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a fixed toll 𝜏𝐴
𝐼  and zero-value dynamic toll, we can prove that it can always generate 

welfare improvements in this scenario: as  𝜏𝐴
𝑂𝐸   is assumed to always generate positive 

welfare effects, 𝜏𝐴
𝐼  with a lower value than 𝜏𝐴

𝑂𝐸 can also always be a welfare-improving 

strategy. Moreover, since the change of departure time by a zero value of dynamic toll 

is always beneficial, we can summarize the total welfare effect of the nudging 

information is positive. 

This completes the proof.  

Appendix D. Proof of Proposition 3 

The generalized travel price of drivers under a fixed road toll is written as: 

 𝑃𝐴
𝑇 = 𝑃𝐴 + 𝜏𝐴 = (𝛼 + 𝜇ℎ𝜆ℎ)𝑇Af + 𝛿 (

𝑁𝐴

𝑠
) + 𝜏𝐴 (D.1) 

The generalized travel price of drivers under both a fixed road toll is written as: 

 𝑃𝐴
𝐼𝑇 = 𝑃𝐴

𝐼 + 𝜏𝐴
𝐼 = (𝛼 + 𝜆ℎ + 𝜇𝑒𝜆𝑓)𝑇𝐴𝑓 + 𝛿 (

𝑁𝐴

𝑠
) + 𝜏𝐴

𝐼  (D.2) 

It is obvious to find that since 𝑃𝐴
𝑇 and 𝑃𝐴

𝐼𝑇 only differs in the intercepts, a fixed 

road toll with nudging information and the generalized travel cost function of metro 

users is the same, a fixed road toll with nudging information can always reach the same 

number of commuters in each mode at equilibrium. And under nudging information, 

the uninternalized external cost is lower than without information when the number of 

road travelers is the same in the two cases. Hence, to maximize social welfare, the 

combination of nudging information and a fixed road toll can always reach a higher 

maximum social welfare than only a fixed road toll, which can be summarized as: 

 𝑆𝑊𝑇 < 𝑆𝑊𝐼𝑇 (D.3) 

This completes the proof.  

Appendix E. Proof of Proposition 4 

       Similar to the proof of Proposition 1, since the metro serves as an imperfect 

substitution for driving, the nudging information will increase the crowding effects in 

the metro system. In some extreme cases where shifting road commuters to the metro 



 

 42 

system is sufficiently expensive, the nudging information can finally produce negative 

effects. 

        This completes the proof of condition (a) in Proposition 4. 

        To proof the condition (b) in Proposition 4, it is necessary to avoid the potential 

negative effects of nudging information that are addressed in condition (a). Therefore, 

the following analysis is restricted to the impact of nudging information on the road 

mode, achieved by setting 𝜂 = 0, which excludes the possible negative effects related 

to the metro system. 

Specifically, we use the case discussed in Section 4.2 where commuters are 

heterogenous in environmental preferences and car types to prove Proposition 4. 

When 𝜇𝑒𝐻𝜆𝑞𝐻 > 𝜇𝑒𝐿𝜆𝑞𝐿, an intended swap occurs where the more polluting cars 

travel during center of peak while the cleaner cars travel during shoulder of peak. 

Specifically, the polluting cars endure a relatively longer queuing time than the cleaner 

cars under nudging information. And the difference of emission cost between the two 

group are unbounded since the value of  𝜆𝑞𝐻  can be significantly larger than 𝜆𝑞𝐿 

holding 𝜇𝑒𝐻𝜆𝑞𝐻 > 𝜇𝑒𝐿𝜆𝑞𝐿.  

In the case where all the commuters are inelastic, the change of emission cost 

under nudging information can be derived as: 

 Δ𝐸𝐶 =
𝛿

2𝑠
(𝑁𝐴𝐻

2 𝜆𝑞𝐻(
1

𝛼+𝜆ℎ+𝜆𝑞𝐻𝜇𝑒𝐻
−

1

𝛼+𝜆ℎ𝜇ℎ
) + 𝑁𝐴𝐿

2 𝜆𝑞𝐿(
1

𝛼+𝜆ℎ+𝜆𝑞𝐿𝜇𝑒𝐿
−

1

𝛼+𝜆ℎ𝜇ℎ
) +

𝑁𝐴𝐻𝑁𝐴𝐿(
2𝜆𝑞𝐻

𝛼+𝜆ℎ+𝜆𝑞𝐿𝜇𝑒𝐿
−

𝜆𝑞𝐻+𝜆𝑞𝐿

𝛼+𝜆ℎ𝜇ℎ
))   (E.1) 

When all the commuters are nearly indifferent to the environment (𝜇𝑒𝐻 → 0 , 

𝜇𝑒𝐿 → 0)  and already know the exact health cost caused by driving without information 

(𝜇ℎ = 1),  Δ𝐸𝐶 can be further simplified as: 

 Δ𝐸𝐶 = 𝑁𝐴𝐻𝑁𝐴𝐿 (
𝜆𝑞𝐻−𝜆𝑞𝐿

𝛼+𝜆ℎ
) > 0 (E.2) 

Hence, by changing the value of 𝜆𝑞𝐻 and 𝜆𝑞𝐿,  the extra emission cost brought by 

nudging information is unbounded in this case which can finally hurt the whole system. 

This completes proof of the condition (b) in Proposition 4.  
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Appendix F.  

Additional case I- 
1

𝜆𝑞
 and 

1

𝜆𝑓
 vary in proportion 𝛼 

 

Figure F.1. Relative welfare improvement by information incentives under varying 𝛼𝐻(
𝛼𝐿+𝛼𝐻

2
=

10) 

Additional case II- 𝜇𝑒
2 varies in proportion 𝛼 

 

Figure F.2. Relative welfare improvement by information incentives under varying 𝜇𝑒𝐻 (
𝜇𝑒𝐻+𝜇𝑒𝐿

2
=

0.5) 

Additional case III- 𝜇𝑒

1

2 varies in proportion 𝛼 
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Figure F.3. Relative welfare improvement by information incentives under varying 𝜇𝑒𝐻 (
𝜇𝑒𝐻+𝜇𝑒𝐿

2
=

0.5) 

Appendix G.  

             

     (a) 𝜆𝑓 and 𝜆𝑞 vary in proportion (1 − 𝜇𝑒)2                       (b)
1

𝜆𝑞
 and 

1

𝜆𝑓
 vary in proportion 𝛼 

 

(c) 𝜇𝑒
2 varies in proportion 𝛼                       (d) 𝜇𝑒

1

2 varies in proportion 𝛼 
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Figure G.1. Relative welfare improvement by nudging information under varying 𝜇𝑒, and 

𝜇ℎ(𝜇𝑒𝐻 = 3𝜇𝑒𝐿) 

          

(a) 𝜆𝑓 and 𝜆𝑞 vary in proportion (1 − 𝜇𝑒)
1

2                        (b) 𝜆𝑓
2
 and 𝜆𝑞

2
  vary in proportion 𝛼 

Figure G.2. Comparison between 𝑊𝐼  and 𝑊𝑇 under varying 𝜇𝑒 and 𝜇ℎ(𝜇𝑒𝐻 = 3𝜇𝑒𝐿) 

             

(a) 𝜆𝑓 and 𝜆𝑞 vary in proportion (1 − 𝜇𝑒)
1

2                        (b) 𝜆𝑓
2
 and 𝜆𝑞

2
  vary in proportion 𝛼 

Figure G.3. Comparison between 𝑊𝐼𝑇  and 𝑊𝑇 under varying 𝜇𝑒 and 𝜇ℎ(𝜇𝑒𝐻 = 3𝜇𝑒𝐿) 

                

(a) 𝜆𝑓 and 𝜆𝑞 vary in proportion (1 − 𝜇𝑒)
1

2                        (b) 𝜆𝑓
2
 and 𝜆𝑞

2
  vary in proportion 𝛼 

Figure G.4. Comparison between 𝑊𝐼 + 𝑊𝑇 and 𝑊𝐼𝑇  under varying 𝜇𝑒 and 𝜇ℎ(𝜇𝑒𝐻 = 3𝜇𝑒𝐿) 


