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Variable Selection and Discrimination in Gene
Expression Data by Genetic Algorithms

Riidiger Krause' and Gerhard Tutz

Department of Statistics,
Ludwig-Maximilians University, Akademiestr.1, 80799 Miinchen, Germany

Summary. Gene expression datasets usually have thousends of explanatory variables
which are observed on only few samples. Generally most variables of a dataset have no
effect and one is interested in eliminating these irrelevant variables. In order to obtain a
subset of relevant variables an appropriate selection procedure is necessary. In this paper we
propose the selection of variables by use of genetic algorithms with the logistic regression as
underlying modelling procedure. The selection procedure aims at minimizing information
criteria like AIC or BIC. It is demonstrated that selection of variables by genetic algorithms
yields models which compete well with the best available classification procedures in terms
of test misclassification error.
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1 Introduction

The problem of variable selection (or subset selection) arises when the relationship
between a response variable and a subset of potential explanatory variables is to be
modelled, but there is substantial uncertainty about the relevance of the variables.
Most datasets contain explanatory variables which are redundant or irrelevant and
the objective is to identify the relevant ones.

A demanding challange for algorithms for variable selection is the analysis of gene
expression data. Usually such studies consist of many thousends of genes but only
of few samples. For a detailed presentation of microarray technology as well as
approaches to the extraction of gene expression data we refer e.g. to Hamadeh &
Afshari (2000). In the literature several algorithms for variable selection have been
proposed (see e.g. Miller (2002)). In this paper we propose variable selection in gene
expression data by application of genetic algorithms.

The paper is organized as follows: in the next section we describe the logistic re-
gression procedure and some information criteria for model selection. In section 3
we present, the genetic algorithm used for variable selection. Finally section 4 com-
pares our approach with other methods proposed in the literature by two microarray
datasets.

! krause@stat.uni-muenchen.de
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2 Logistic Discrimination and Information Criteria for
Model Selection

Let the observations be given by (y;,%;),i = 1,...,n, where x! = (2;1,..., %) is
a vector of explanatory variables and y; € {0,1} is a binary observation indicating
membership of class. The most wickly used binary regression model is the logistic
model (or logit model)

7 (xi)

1—7(x;) -

where x; = P(y; = 1]x;) denotes the conditional probability of observing y; =
1. The use of the logistic model for predicting y; is often referred to as logistic
discrimination.

log x; B,

Maximum likelihood estimates for the logistic model are obtained by maximizing
the log-likelihood function

= Zyz log(m;) Z(l —y;)log(1 — m;)

i=1
For further details of the algorithm see e.g. Fahrmeir & Tutz (2001).

When using the logit model on gene expression data, it is impossible to include
thousands of explanatory variables. Maximum likelihood estimates asymptotically
(n — o0) exist under weak conditions. But if the number of explanatory variables
p is large as compared to the sample size n maximum likelihood estimates do not
longer exist because of total separation. A criterion for the existence of the maximum
likelihood estimates is the lack of overlap between observations with y; = 0 and
y; = 1 (compare Albert & Anderson (1984), Santner & Duffy (1986), Christmann
& Rousseeuw (2001)). Thus the used limit for the existence of maximum likelihood
estimates is needed if p equals n.

The problem becomes even harder if interactions are included in the model. Since
one knows that only four of the variables corresponding to the thousands of genes
are relevant, drastic variable selection is necessary. In the following we will consider
the linear logistic model for a subset of covariates

(i)

SRSV
1— ﬂ_(xi) Xz,sﬁ)

log
where x; s is a vector of variables from subset S C {1,...,p}, i.e. x;, contains
the selection z;;,j € S from the total vector xF' = (zi,...,7ip). In addition we
consider models that allow the form

l Xl S
og7———~ § Tij + § Tisit,
1—7(x;)

jES (s,t)eT

where J C S x S denotes the index set for interactions between variables from S.
Usually J is much smaller than S x S.

To assess the appropriateness of a chosen set of variables information criteria are
used. These criteria compare the error of a model with the model complexity (i.e.
the number of parameters used). An additional parameter should be integrated into
a model only if the value of the information criterion decreases. If we have several
competing models (sets of variables and interactions), we choose that one with the
lowest value of the information criterion. Two common used criteria are the Akaike
information criterion (AIC) proposed by Akaike (1973)
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AIC = -21+2q ,
and the Bayesian information criterion (BIC) of Schwarz (1978)
BIC = =21+ qlog(n)

where [ is the log-likelihood function and ¢ denotes the number of paramters in the
model which have to be estimated. Usually BIC leads to a stronger penalization of
more complex models than AIC.

3 A Genetic Algorithm for Variable Selection

Genetic Algorithms (Holland (1975), Goldberg (1989)) are originally based on Dar-
win’s theory of evolution which refers to the principle that better adapted (fitter)
individuals win against their competitors under equal external conditions. As in
the biological model, genetic algorithms use operators like selection, crossover, or
mutation to model the natural phenomenon of genetic inheritance and Darwinian
strife of survival. For some background on the biological processes of genetics and
the origin of the terminology see Haupt and Haupt (1998) and Mitchell (1996).

The smallest units linked to relevant information of a genetic algorithm are called
genes. The genes are either single units or short blocks of adjacent units and the in-
formation is coded in form of numbers, characters, or other symbols. Usually several
genes are arranged in a linear succession which is called string (also chromosome,
individual). The genetic algorithm always uses several strings as a potential solu-
tion of an optimization problem. This collection of strings is called population. If
we apply operators to strings we generate a population with new different strings.
This new population of strings is called offspring. We denote the particular popula-
tions as generations, or more precisely as parent- respectively offspring generation.
The function to be optimized (e.g. AIC, BIC, see section 2) is denoted as fitness
function.

The basis of the genetic algorithm for variable selection is an 0 —1 coding of strings.
Suppose we have p metrical variables x;,...,x,. Then the coding of the inclusion
of metrical variables is given by

5% — 1 i f variable x; is included -1
7710 else T P
Interactions 6;”,? are coded in the same way by
e |1 if the interaction between x; and xy, is included
k00 else ’

where j,k=1,...,p,j # k.

For better interpretability we only consider hierarchical models, for which interac-
tions are included only if the corresponding main effects are included. The restriction

5 < §70 (1)

implies that an interaction can be only included if main effects of both variables
x; and xj are included. This relation has always to be checked after application
of crossover- and mutation operators to interaction indicators. The indicators are
collected into one string
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Dependence of g(t) and P, ona random number r
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Figure 1. Function g(¢) is shown subject to a uniformly distributed random number r
for two sizes of the generation number ¢ and crossover probabilities p., = 1 respectively
pev = 0.5. The user-dependent system parameter b is chosen as 1.

6 = ({07}, {95’ })
which has values 0 or 1 as components.

For the design of a powerful genetic algorithm operators like crossover and mutation
are important. Many authors (e.g. Oliveira, Benahmed, Sabourin, Bortolozzi & Suen
(2001); Wallet, Marchette, Solka & Wegman (1996); Yang & Honavar (1997)) use
operators which are constant during the whole process of the genetic algorithm.
However, better results are obtained if different aspects of the search are differently
weighted at various times: first we are generally interested in exploring the search
space and aquire information about the nature of the space. Later we try to obtain
information near the global optimum by local search. Therefore we propose adaptive
and non-uniform operators:

(i) Adaptive binary crossover (ABC) operator: suppose we have two 0 — 1 strings
with indicator variables 6 = (01 ...6;...0;) and 6 = (61...0;...0). A pair of
bits (d;,0;) of the parent strings swap their places if we have a random number

ri € [0,1] with
ri < pen(l —r1= )", (2)

=g(t)

Here r € [0,1] is a uniform random number equal for all bits of a string, pey
is the crossover probability (of the variables), ¢ is the number of the current
generation, 7' is the maximum number of generations and b is a user-dependent
system parameter which determines the degree of non-uniformity. Which strings
are selected for crossover process is controlled by a similar expression as (2).

In contrast to the conventional crossover operators the ABC operator considers
the diverse objectives which have different relevance during the application of
the genetic algorithm. We can distinguish between two extreme cases (compare
also Figure 1): if ¢ is small the exponent of g(¢) is close to zero and hence g(t)
is primarily influenced by a suitable choice of the random number r. Figure 1
illustrates this behaviour: for generation number ¢ = 5 one obtains approxima-
tively a straight line with slope —1. For p., = 1, many strings show swaps of
corresponding bits (if r is small) during the crossover process. By suitable choice
of pey the number of swaps between corrsponding bits can be varified. A small



Variable Selection and Discrimination in Gene Expression Data by Genetic Alg. 5

Population P(t) |

Step 1

Deletion
of the worst u percent

strings of P(t)

St’ep/ Wg

Selection of r strings ‘ ‘ Selection of s strings
Step 4 Step 4
Mutation of Mutation of

identical strings identical strings
Step 5 Step 5

‘ Check of restriction ‘ ‘ Check of restriction
Step 6

‘ Crossover ‘
Step 7 Step 8

‘ Check of restriction ‘
Step 8

Population P(t + 1)
has r offsprings and s parents

Figure 2. Structure of the modified selection procedure (modSP) given as a flowchart.
Details in the text.

value of p., also decreases the number of swaps between two strings (e.g. a de-
crease of 0.5 reduces the number of swaps by a half during crossover process). If
the generation number ¢ is large, the exponent of g(t) is close to zero and hence
g(t) also yields values close to zero for a wide range of random numbers r. This
is illustrated in Figure 1 for ¢ = 95. At the end of the genetic algorithm there
are only few swaps between corresponding bits. In addition a small value of pe,
increases the effect.

(i1) Adaptive binary mutation (ABM) operator: for each bit of a string we generate
a random number r; and if

ri < pmo(l — r1=1)%), (3)

holds the bits mutate, i.e. 0 is changed to 1 and vice versa. Here p,,, is the mu-
tation probability (of the variables). The idea and functionality of this operator
are the same as described for the ABC operator.

The genetic algorithm for variable selection also uses the modified selection procedure
(modSP) as introduced in Krause & Tutz (2003). The only difference is the check
of available interactions after each crossover respectively mutation step. Hence the
selection procedure consists of eight steps (compare Figure 2):

Step 1: Suppose that a population P(t) is generated in iteration step t. Then
delete the worst u percent strings of P(t).
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Step 2: From the remaining strings of step 1 randomly select r strings, which
do not necessarily have to be distinct.

Step 3: From the remaining strings of step 1 randomly select s parent strings.
These have not to be distinct from the r selected strings in step 2.

Step 4: If a string has one or more further identical strings in the population
(i.e. all genes of the strings are identical) the copies will be mutated.
How many genes of a string are randomly selected and mutated is
controlled by a random number (at least one gene is mutated). After
mutation, there are r respectively s different strings. This operation
will also be executed for the s parent strings.

Step 5: Check of the restriction 077 < 070y and deletion of illegal interactions.

Step 6: Controlled by the crossover probability p.,, apply a crossover operator
to the set of the r (distinct) strings and generate i,2 < i < r new
strings.

Step 7: Check of the restriction 677 < 670y and deletion of illegal interactions.

Step 8: Let r offspring and s parent strings form the new population P(t+1).

4 Application to Gene Expression Data

In this paper we analyse two microarray datasets:

e The colon dataset contains expression levels of 2000 genes z;;,7 = 1,...,2000,
and 62 observations y;,i = 1,...,62. Here 40 observations descend from patients
with tumor tissue and 20 observations descend from patients with normal tissue.
The dataset is divided into a training dataset with 41 observations and a test
dataset with 21 observations. We use 200 splits into training dataset and test
dataset with randomly chosen observations. The remaining samples form the
test datasets. For further details on the dataset see Alon, Barkai, Notterman,
Gish, Ybarra, Mack & Levine (1999). The dataset can be downloaded from
http://microarray.princeton.edu/oncology.

e The prostate dataset originally contains expression levels of 12600 genes and
102 observations (further informations and the dataset can be downloaded from
http://www-genome.wi.mit.edu/MPR /Prostate). Hence 52 observations descend
from patients with cancer tissue and 50 observations descend from patients with
normal tissue. By a filtering step based on the Wilcoxon test (implemented in
the software package R) the 2000 genes with the smallest p-values were chosen
and used for subsequent analysis. The dataset is divided into a training dataset
with 68 observations and a test dataset with 34 observations. We use 200 splits
into training dataset and test dataset with randomly chosen observations.

The genetic algorithm proposed in section 3 is applied in two different versions:

(i) Genetic algorithm without interaction: Variable selection is executed on the 2000
genes z;;,j = 1,...,2000, only. The initial population of the genetic algorithm
is generated by calculating the fitness values for all subsets containing only one
gene (hence we have 2000 fitness values). In the initial population we use the
popsize = 48 strings with the best fitness values. Because of the small number
of samples as well as the large number of genes in the dataset used, selection of
too many genes leads to numerical instabilities during estimation. To prevent
these problems we restrict the number of selected genes to maximal 10 genes
(i.e. each string contains 10 genes at maximum).
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(ii) Genetic algorithm with interaction: First calculate the fitness values for all sub-
sets containing only one gene. Then we choose a default number shrink = 40 of
the variables which yield the best fitness values. Hence the original number of
2000 genes is shrinked to shrink genes which yield the pool for the subsequent
variable selection. Furthermore the genetic algorithm can select interactions be-
tween any two genes of the pool (e.g. in case of shrink = 40 genes we have
780 interactions). The initial population is generated at random. Because of nu-
merical instabilities during estimation the number of selected genes respectively
interactions is restricted to maximal 10.

As default parameters of the genetic algorithm are used: population size (popsize)
= 48 strings, crossover probability p., = 1, mutation probability p,,, = 1, deletion
of u = 60 percent of the worst strings, selection of r = 38 and s = 10 strings,
v =20.5,7 =1000 and b = 1.

With prediction in mind the results of the genetic algorithms are compared to
alternative approaches of classification which are known to perform well in high
dimensional settings. These methods are:

(1) Discrete AdaBoost: The motivation for the discrete AdaBoost procedure (Fried-
man, Hastie & Tibshirani (2000)) was to combine the outputs of many “weak”
classifiers to produce a powerful “committee”. The algorithm works in the fol-
lowing way:

e Each observation of the training dataset has an initial weight w; = 1/m,i =
1,...,m.

e Fort=1:M

—  Use a classifier G¢(z) (e.g. CART, see below) and fit the classifier to the
training data which use the weights w;. The classifier G¢(z) produces a
prediction taking one of the two variables {—1,+1}, i.e. each element of
the training sample is assigned a prediction € {—1,+1}.

— The resulting weighted error rate is computed by

Yoy wil (yi # Gi(zi))

erry = )

Doy Wi
i.e. in case that the true observation y; and the prediction (produced by
the classifier G¢(z)) are different, the error rate increases by a weighted
amount.

— Compute oy = log((1 — erry)/erry) which weights the influence of the
used classifier.

— Set
w; = w; - e TWiFG (i) yi=1,....m

The individual weight of each observation is updated for the next itera-
tion. It is seen that the misclassified observations obtain larger weights
that the correctly classified observations. The objective is that the next
classifier G+ () focusses on observations with larger weights.

e The predictions from all classifiers Gy(x),t = 1,...,M, are combined
through a weighted sum

M
G(z) = sign [Z ath(a:)]
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Average misclassi-[Standard

Software program fication rate deviation
Genetic algorithm without interaction (AIC) 0.2317 0.0894
Genetic algorithm without interaction (BIC) 0.2224 0.0888
Genetic algorithm with interaction (AIC) 0.1776 0.0909
Genetic algorithm with interaction (BIC) 0.1700 0.0975
Discrete AdaBoost 0.1920 0.0720
CART 0.2930 0.0890
1-Nearest neighbour 0.2520 0.0860
5-Nearest neighbour 0.2140 0.0890

Table 1. Average misclassification rate and standard deviation of the misclassification
rates for 200 replications of the test dataset (colon dataset) are shown.

In the colon dataset we have chosen the CART procedure (see below) as classi-
fier. The number M of iterations is 50.

Nearest-Neighbour Method: This method requires no model to be fit and works
in the following way: given a point x},¢ = 1,...,n, in the training dataset we
choose the k£ nearest neighbour by the Euclidian distance

di = ||x; — x|

An estimator g; can be received by

" 1
Yi=17 Z Yi
xi ENk(x])

where Np(xF

*¥) is the neighbourhood of x} defined by the k closest points x;
in the training sample. If the estimator g; takes a value > 0.5 we assign y;
the value 1 (i.e. the patient has tumor). Otherwise (g; < 0.5) the estimator is
assigned the value 1 (i.e. the patient has no tumor). By comparison with the
true observations y; the number of errors can be determined. And this error
rate has to be minimized. For application of the k-nearest-neighbour method to

the colon dataset we choose k =1 and k = 5.

CART: Classification and regression trees (CART) have been developed by
Breiman, Friedman, Olshen & Stone (1984). The idea is that the predictor
space is successively divided and the resulting splits have to be heterogeneous
as much as possible in respect of variable y. Otherwise the values have to be
homogeneous within a split. For example let only one metrical variable x be
given; thus we search for a cutting point ¢ with the property: the split in sets
Ay ={z: z < ¢} respective Ay = {z : > ¢} lead to similar values within the
sets but different values between A; and As (i.e. y =01in A; and y = 1 in A,
or vice versa). In case of the colon dataset in each iteration the optimal split is
searched for each variable. The variable which yields the best split is selected.
As maximal number of splits we choose 4, i.e. at most 5 variables were selected.

First the colon dataset is considered. Table 1 shows the average misclassification rate
respectively the standard deviation of the misclassification rate for 200 replications
of the test dataset. The average misclassification rate is defined as
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Portion and number of test datasets with 0,1,2,...
incorrectly classified observations
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Figure 3. Number of test datasets with 0,1,2,... incorrectly classified observations for

the considered classification approaches.

where N is the number of replications of the test dataset (here N = 200), m is the
number of samples in the test dataset (m = 21) and

. 0 ¢ Ui = Vi

It is seen from Table 1 that the misclassification rate takes the smallest value when
the genetic algorithm with interaction is used. All other methods show distinctly
worse results. While the nearest neighbour approach with £ = 5 and the genetic
algorithm without interaction (with BIC) yield similar results for the misclassifica-
tion rate, AdaBoost approach performs better by approximately 10 — 14%. Higher
misclassification rates are found by the nearest neighbour method with £ = 1 and
the CART approach. Except for discrete AdaBoost all methods show comparable
standard deviations: the values differ between 0.0860 and 0.0975.

With respect to the different information criteria we detect smaller average misclas-
sification rates for genetic algorithms with BIC. However, the differences are rela-
tively slight: e.g. the average misclassification rate for the two genetic algorithms
with interaction differ from each other by approximately 4%.

In addition Figure 3 shows the number of datasets with 0, 1,2, ... incorrectly clas-
sified observations. Here the number of errors has been divided into four classes,
in fact 0 — 2,3 — 5, 6 — 8, and 9 — 11 misclassified observations per test dataset.
In accordance with Table 1 also Figure 3 shows that the genetic algorithms with
interaction has conspicuously fewer incorrectly classified observations in the test
datasets compared to all other approaches. For example the genetic algorithm with
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Frequency of occurrence in dependence on the gene number
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Figure 4. Frequency of occurrence of genes for the genetic algorithms without (panels in
the first row) respectively with (panels in the second row) interaction. The panels at the
bottom show the interactions which occur in the genetic algorithm with interactions.

interaction yields in approximately 30% of the test datasets 0 — 2 incorrectly clas-
sified observations. The best competitor (discrete AdaBoost) has 0 — 2 incorrectly
classified observations in only 15% of the test datasets.

An important question in the analysis of gene expression data is the relevance of
genes. One indicator for the relevance of genes is the predictive power of genes
(in combination with other genes). Thus it is useful to investigate which variables
(genes) have been used in prediction across the various splits into learning and test

data.

Figure 4 yields the frequency of occurrence of genes for the genetic algorithms
without and with interaction. The left panel of Figure 4 shows the results for the
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Average misclassi-[Standard

Software program fication rate deviation
Genetic algorithm without interaction (AIC) 0.0994 0.0538
Genetic algorithm without interaction (BIC) 0.0962 0.0564
Genetic algorithm with interaction (AIC) 0.0946 0.0442
Genetic algorithm with interaction (BIC) 0.0877 0.0396
Discrete AdaBoost 0.0703 0.0370
CART 0.1551 0.0560
1-Nearest neighbour 0.1587 0.0539
5-Nearest neighbour 0.1387 0.0537

Table 2. Average misclassification rate and standard deviation of the misclassification
rate for 200 replications of the test dataset (prostata data).

genetic algorithm with AIC and the right panel shows the results for the genetic
algorithm with BIC.

If no interaction is allowed it is seen that there is not much difference between AIC or
BIC based approaches. There is a small number of genes which are chosen in many of
the splits. The pictures changes slightly if interactions are included. Although most
of the genes which are used in the higher approach are chosen again, the relevance
has changed for some genes. For example gene 377 is no longer a favourite while
the relevance of gene 625 has strongly increased. It should be noted that because of
the stronger penalization of the BIC usually a smaller number of relevant genes is
chosen from the 200 training datasets (i.e. for example many genes chosen by the
genetic algorithm are not included in case of BIC).

The two panels at the bottom of Figure 4 show the interactions between two genes
which were used in the genetic algorithm with interaction. For better illustration
genes participating in interactions of at least 3 datasets are marked by a dotted
line. It is seen the selection of genes by the genetic algorithm based on BIC shows
lower variability. Several combinations of genes have been chosen in more than one
split of the observations (e.g. gene with the number 513 or 1635). For the genetic
algorithm based on AIC only interactions with gene number 1635 have been used
more often than once.

The analysis of the second dataset (prostate data) yields similar results. However
the differences between genetic algorithm with and without interaction is not as
distinct as in the colon dataset. Table 2 shows the average misclassification rates
and standard deviations for N = 200 replications of the test dataset. The number of
samples in the test dataset is m = 34. Now the best performer is discrete AdaBoost.
The genetic algorithms have slightly increased error rates but distinctly outperform
all other approaches. Figure 5 shows that with the exception of discrete AdaBoost
the genetic algorithm with interaction has conspicuously fewer incorrectly classified
observations compared with all other approaches.

In the same way as for the colon dataset the frequency of the occurrence of genes
and interactions is investigated. Here we restrict the presentation to the AIC. The
top panels of Figure 6 show the frequency of occurrence of genes for the genetic
algorithms without and with interaction. However one has to keep in mind that for
this dataset the 2000 genes have been sorted: genes with low p-values (based on
the Wilcoxon test) have low gene number and vice versa. The panels demonstrate
that the genetic algorithm, without and with interaction, prefer genes with samll p-
values. Especially the first gene (lowest p-value) is contained in almost every dataset.
Therefore the exact frequency of occurance is omitted in the plots because of scaling
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Figure 5. Number of test datasets (prostate dataset) with 0,1,2,... incorrectly classified
observations. The number of errors has been divided into four classes: 0 —2,3 —5, 6 —8,
and 9 — 11 misclassified observations per test dataset.

effects. For this dataset many genes occur in only one dataset. The number of genes
contained in one dataset is conspicuously lower when the genetic algorithm with
interaction is used.

The panel at the bottom of Figure 6 shows the frequency of interactions between
two genes. It is seen that many datasets use genes with low p-values for interactions
(e.g. the gene number of the first gene differs between a gene number of 1 and 150).
It should be noticed that application of BIC leads to only 6 interactions. That is the
reason why the genetic algorithm with interaction leads to little improvements in
the misclassification rate (compare Table 2). Application of the genetic algorithm
with interaction to the full prostate dataset (i.e. with 12600 genes) certainly would
yield much more interactions.

5 Conclusions

In this paper variable selection in gene expression datasets by genetic algorithms
has been investigated. In addition to a genetic algorithm which only chooses main
effects (i.e. genetic algorithm without interaction) we have also presented a genetic
algorithm for the selection of main effects and their respective interactions. It has
been shown that the resulting subsets yield classification procedures that perform
very well. The error rates are well comparable with the error rates of discrete Ada-
Boost which is one of the best classifiers around. Alternative procedures have been
outperformed.
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Figure 6. Frequency of occurrence of genes for the genetic algorithms based on AIC
without (top left panel) respectively with (top right panel) interaction. The lower panel
shows the interactions which occur in the genetic algorithm with interactions.

The success in prediction may be seen as a strong indication that the selection of
variables by genetic algorithms identifies relevant variables. Otherwise performance
would be worse. The stability of selected variables across the spits into learning and
test dataset supports that the selection procedure works well.

Here classification error is mainly considered as a criterion for the successful selection
of variables. From a different point of view one might also consider it as a way of
constructing a classifier. If classification is the main purpose logistic discrimination
with variables selected by genetic algorithms seems to compete well with other
classifiers.
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