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Abstract: 
This study addresses the economic rationale behind algorithmic trading in the 
Electric Vehicle (EV) sector, enhancing the interpretability of Q-learning agents. By 
integrating EV-specific data, such as Tesla’s stock fundamentals and key supply 
chain players such as Albemarle and Panasonic Holdings Corporation, this paper 
uses a Q-Reinforcement Learning (Q-RL) framework to generate a profitable trading 
agent. The agent’s decisions are analyzed and interpreted using a decision tree to 
reveal the influence of supply chain dynamics. Tested on a holdout period, the agent 
achieves monthly profitability above a 2% threshold. The agent shows sensitivity to 
supply chain instability and identifies potential disruptions impacting Tesla by 
treating supplier stock movements as proxies for broader economic and market 
conditions. Indirectly, this approach improves understanding and trust in Q-RL-
based algorithmic trading within the EV market. 
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1. Introduction

The current state of knowledge in the supply chain of the Electric Vehicle

(EV) sector presents an interesting opportunity for the development of informed

and profitable algorithmic trading strategies. This paper therefore advances the

fields of financial and energy economics by addressing critical gaps in the inter-

pretability and transparency of algorithmic trading agents within the electric

vehicle (EV) sector. It focuses on interpreting the economic rationale underlying

the actions of profitable algorithmic trading agents, providing insights into the

intricate factors driving EV market movements for researchers and investors.

Indirectly and in addition, this paper enhances transparency by identifying key

features driving algorithmic trading Q-Reinforcement Learning (Q-RL) agents

decisions. This transparency improves investor’s trust. Rather than striving to

create the most profitable agent, this study aims to produce an agent whose

decisions can be understood by the financial analyst familiar with Q-RL and

EV market fundamentals.

Reinforcement Learning (RL) as a formalized concept has roots that date

back to the 1950s and 1960s (Bellman and Kalaba, 1957; Howard, 1960; Min-

sky, 1961; Sutton and Barto, 2018). The foundational ideas can be traced to

the works of researchers such as Richard Sutton and Andrew G. Barto, who

popularized RL in the 1980s and 1990s (Barto et al., 1983; Sutton, 1984; Sutton

and Barto, 2018). While Reinforcement Learning (RL) estimators, particularly

Q-Reinforcement Learning (Q-RL) and its Deep Learning counterparts, have

demonstrated significant success in generating trading signals, their inherent

lack of interpretability remains a critical limitation (Mnih et al., 2015; Fischer

and Krauss, 2018). Interpreting the economic rationale behind the Q-RL trad-

ing agent’s actions would provide insights into the EV market. In addition,

transparency is crucial in financial markets, particularly in high-stakes trading

situations where stakeholders need to trust and comprehend the systems guiding

their trading decisions.

The literature on Explainable AI (XAI) and Deep Reinforcement Learning
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(DRL) in finance reflects a rising interest in interpretability to address challenges

in algorithmic trading, especially in high-stakes financial environments such

as EV stocks. While recent reviews (Weber et al., 2024) highlight a trend

toward post-hoc explainability, other studies note significant trust issues with

current Explainable Reinforcement Learning (XRL) methods, which remain a

barrier to widespread adoption (Puiutta and Veith, 2020; Hickling et al., 2023).

Interpretability frameworks, such as the one proposed by Zhang et al. (2021),

provide taxonomies for neural network interpretability. Although progress has

been made with rule-based algorithms such as SIRUS (Bénard et al., 2021), the

field still lacks transparent, interpretable frameworks that combine profitability

with clear decision-making logic in trading contexts.

Most studies exploring XRL in financial trading apply general machine

learning techniques rather than domain-specific approaches, as seen in work on

fuzzy reinforcement learning and associative classifiers that boost profitability

(Bekiros, 2010; Attanasio et al., 2020). Notably, DRL-based systems are recog-

nized for their adaptability in uncertain market conditions (Mosavi et al., 2020;

Sahu et al., 2023), but refining these systems to enhance interpretability with-

out sacrificing performance remains an open issue. Despite efforts to enhance

profitability by optimizing policy functions and action space in DRL (Corazza,

2021), interpretability remains a secondary consideration in these studies, often

leaving stakeholders in the dark about decision rationales.

Research into the EV and lithium markets emphasizes unique drivers, such as

market and tech factors, as well as supply chain dynamics. While studies such as

Plante (2023) identify co-movement drivers in EV stocks, and others highlight

links between EV demand and lithium price dynamics (Sun et al., 2022; Mo

and Jeon, 2018), few integrate these insights into trading algorithms. This gap

underlines the need for frameworks that leverage EV-specific fundamentals to

enhance trading algorithms’ interpretability, a focus of the present study. By

tailoring Q-RL with domain-specific data, this research aims to bridge gaps

in interpretability and economic rationale, advancing the use of explainable

frameworks in EV stock trading.
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The remainder of this paper is organized as follows. The second section offers

a brief review of XAI in Finance and the Electric Vehicle supply chain. The

third section outlines the methodology employed in this research. In the fourth

section, the data sources and results are presented. The last section concludes.

2. Interpretable Reinforcement Learning in Finance and Market Dy-
namics of the EV Supply Chain

2.1. XAI and DRL in Finance: Interpretability

Weber et al. (2024) did a systematic review of XAI in Finance, highlighting a

recent preference for post-hoc explainability methods. Puiutta and Veith (2020),

Alharin et al. (2020), Glanois et al. (2024), Wells and Bednarz (2021), and Hick-

ling et al. (2023) show that most XRL methods still faces challenges such as the

lack of trust. Trust can be enhanced through the application of interpretabil-

ity methods, which can be approached from various perspectives. However,

the diversity of interpretability approaches can lead to confusion and a lack of

clarity, creating challenges in navigating this field. Zhang et al. (2021) pro-

pose a novel taxonomy for neural network interpretability, organizing research

into three dimensions—engagement type, explanation type, and interpretability

focus. Various studies aimed at developing methodologies to improve trans-

parency of such estimators. Sequeira and Gervasio (2020) found that using

visual summaries of an agent’s behavior improved humans’ assessment of the

DRL agent’s strengths and limitations. Bénard et al. (2021) introduce SIRUS,

an interpretable rule-based algorithm, demonstrating comparable accuracy to

competitors with a higher stability.

Among studies focusing on the adoption of Interpretable Machine Learn-

ing methods to develop trading algorithms, Bekiros (2010), Attanasio et al.

(2020), and Wang et al. (2020) demonstrate that integrating fuzzy reinforce-

ment learning or associative classifiers, enhances stock market profitability and

interpretability. Although momentum-based models work satisfactorily for spe-

cific stocks (Nguyen et al., 2021), several notable studies have focused on the use
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of DRL for profitable algorithmic trading. Mosavi et al. (2020) and Sahu et al.

(2023) highlight that DRL excels in performance under market uncertainty.

Numerous studies including Corazza (2021), Yang et al. (2021), Kong and

So (2023), Zhang et al. (2020), Duan et al. (2022) have aimed to enhance the

profitability on a wide range of financial products of DRL agents by refining

policy functions and the action space search, or adjusting the estimator struc-

ture. Other studies, such as Liu et al. (2022), focused on improving profitability

by synthetic Data Augmentation.

2.2. Explaining Agent Actions in Financial Trading: A Comparison of XRL
Methods

Similar to our research objectives, Kumar et al. (2022) introduces an XRL

method using SHAP on a Deep Q Network (DQN) to explain agent actions in

financial stock trading, tested on SENSEX and DJIA datasets. According to

the interpretability taxonomy proposed by Zhang et al. (2021), this approach is

passive, offering explanations through examples to achieve Global Interpretabil-

ity.

According to this taxonomy our proposed approach is also passive for Global

Interpretability but it provides explanations by rules. The focus has been more

on refining techniques than input data, but our approach tailors EV market-

specific data for the Q-RL agent to optimize trading decisions.

2.3. Market Dynamics and Drivers in the Electric Vehicle and Lithium Indus-
tries

Recent overviews of the Electric Vehicle (EV) and EV batteries markets are

provided by Mohammadi and Saif (2023) and Rapson and Muehlegger (2023).

Plante (2023) decomposed EV and battery supply chain stock returns, iden-

tifying three main drivers of EV stock co-movement: the market factor, the

tech factor, and a risk factor from latent factors on S&P 500 and Nasdaq 100

stocks. Other studies, such as Mu et al. (2023), identified hidden risks in the

EV Lithium-Ion Battery (LIB) supply chain, dominated by manufacturers in

China, Japan, and South Korea.
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Research also focused on the relationship between the EV and lithium mar-

kets. Sun et al. (2022) noted that optimistic EV sales forecasts triggered over-

production across the supply chain, contributing to the 2022 lithium price spike.

Mo and Jeon (2018) linked EV demand to short-term lithium price dynamics,

while Burney and Killins (2023) found no robust evidence for significant effects

of battery material prices on automobile manufacturers’ equity prices. Addi-

tionally, Baur and Todorova (2018) highlighted that Tesla’s equity exhibits a

positive sensitivity to oil prices, contrasting with negative oil price sensitivity

observed for traditional automobile manufacturers, likely reflecting substitution

effects between electric and combustion-engine vehicles. Baur and Gan (2018)

identified an “EV-demand effect” for Chinese manufacturers and a “production-

cost effect” for a German manufacturer. Alekseev et al. (2024) provided evidence

of return spillovers between the EV and lithium markets. These studies suggest

that stock market indexes, the tech sector, battery manufacturers, and lithium

producers may be key drivers of the EV market.

3. Methodology

3.1. Overview

In this paper, our primary objective is to develop a Q-learning reinforcement

learning (Q-RL) trading agent for Tesla’s stock that achieves a baseline level

of profitability and to provide interpretable insights into its trading decisions.

Rather than striving to create the most profitable agent, we aim to produce an

agent whose decisions can be understood using one of the most interpretable

machine learning estimators. To achieve this, we utilize a decision tree to analyze

the agent’s actions, with a focus on the role of Tesla’s supply chain in its price

movements. As this study centers on interpretability rather than maximizing

profitability, we do not employ a walk-forward validation approach, which is

commonly used in trading agent research to better estimate performance over

time. Instead, we use a single holdout period to test the agent, training it on past

data and evaluating it on a future period. Given the substantial computational

cost (24 hours per training session on a standard CPU), a walk-forward approach
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or extensive hyperparameter tuning would be prohibitive. Instead, we rely on

hyperparameters that have shown promising performance in related literature

(Mnih, 2013; Heaton et al., 2018; Li et al., 2018).

The Q-learning framework used here is a model-free reinforcement learning

algorithm designed for decision-making in environments with delayed rewards.

We implement an exploration-exploitation strategy through an epsilon-greedy

policy, which enables the agent to alternate between exploring new actions and

exploiting known profitable strategies. Specifically, the agent’s objective is to

optimize cumulative rewards, represented as profits in this trading context, over

the test period. Given this, Q-RL updates its action-value function Q(s, a),

where each Q-value represents the expected future reward of taking action a in

state s. This function is updated iteratively based on the Bellman equation:

Q(s, a) = Q(s, a) + α (r + γ maxa′ Q(s′, a′)−Q(s, a)), where α is the learning

rate, r the reward, and γ the discount factor for future rewards. In our case,

the agent is trained to leverage price action, Tesla’s stock fundamentals, and

key supply chain data to take long, hold, or short actions.

After training, the agent’s performance is evaluated with profitability de-

fined as achieving a return above 2% for the test month. If this threshold is

met, the agent is deemed sufficiently profitable for further interpretation. A de-

cision tree is then used to analyze the agent’s actions, providing an interpretable

estimator to trace how supply chain-related factors may influence Tesla’s price

movements. This approach allows us to examine the economic rationale driving

its decisions. Following the interpretability taxonomy proposed by Zhang et al.

(2021), our approach to interpretability is considered “passive” because it pro-

vides insights based on analyzing already-generated examples from the system

rather than intervening in or actively probing the model’s decision-making pro-

cesses. Furthermore, our methodology aims for Global Interpretability, focusing

on offering a broad, overarching understanding of how the system operates and

makes decisions, as opposed to justifying specific, individual predictions.
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3.2. Training a profitable Q-RL agent

3.2.1. Trading Environment

We choose the gym-trading-env Python package for its simplicity of usage.

The gym-trading-env package offers a customizable reinforcement learning en-

vironment tailored for training agents on financial trading tasks. Key features

include flexibility in defining positions, importing data, and setting up market

parameters such as trading fees and borrow interest rates, all of which enhance

its use for training a Double Deep Q-Network (DDQN) or other trading algo-

rithms.

The environment is designed around a position-based action space, where

the agent’s actions determine its allocation in Tesla’s stock. We rule that there

are only three possible actions, namely long, hold, and short. Although actions

could technically range from 1 (full investment) to -1 (full short), including

fractional positions that allow mixed allocations (e.g., 0.5 for 50% invested), we

opted for a simpler action space. By restricting our action space to just long,

hold, and short, we aim to streamline decision-making and focus on fundamental

trading strategies, rather than risk and portfolio management.

The environment requires a dataset that includes at least the close price and

optionally open, high, low, and volume columns. Custom features, such as price

differentials or volume indicators, can be created to enrich observations and

tailor them to the agent’s strategy needs. These features are static or dynamic

and can include rolling calculations that provide context over time.

The environment calculates rewards based on the performance of the agent’s

portfolio relative to market returns. Typically, the reward r at each time step

corresponds to the change in portfolio value pv due to the agent’s position,

calculated as

rt = ln

(
pvt

pvt−1

)
.

The portfolio valuation includes penalties for trading costs, such as fees and

borrow interest for short positions, which add realism and incentivize the agent

to consider trade-offs between returns and costs. We refer the reader to the
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gym-trading-env GitHub repository1 for further details.

3.2.2. Agent Architecture

The Tesla trading agent is built using a DDQN architecture that approxi-

mates the Q-values of the three trading actions, i.e., long, hold, and short. This

agent consists of two identical neural networks: the Online Network, used to

select actions based on Q-value estimates, and the Target Network, providing

more stable Q-value targets during training. Each network has two hidden lay-

ers penalized with L2-penalization, each with n1 = n2 = 256 neurons, with

Rectified Linear Unit (ReLU) activation, a dropout layer at rate p = 0.1, and

a final output layer for Q-values, where each neuron represents the expected

return of taking a specific action. Figure 1 represents the estimator architecture

of the DDQN agent.

Figure 1: DDQN Architecture for Tesla Trading Agent.

3.2.3. Q-Learning Objective

The core of the DDQN estimator is to approximate the Q-values, which

represent the expected return of taking a specific action a from a state s. The

1Available here.
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Q-value update equation for a DDQN agent is

Q(s, a) = r + γQtarget(s
′, arg max

a′
Qonline(s

′, a′)), (1)

where r is the reward received for taking action a in state s, s′ is the next state

after taking action a, γ is the discount factor, and Qonline and Qtarget represent

the Q-values from the online and target networks, respectively.

3.2.4. Experience Replay Mechanism

To stabilize learning, the agent uses an experience replay buffer, storing

experiences in the form (s, a, r′, not done). At each step, the agent samples

a random minibatch from this buffer and trains the online network on past

experiences. The Experience Replay Loss function is

L =
1

N

N∑
i=1

(yi −Q(si, ai; θ))2 + λ

L∑
l=1

nl∑
k=1

nl−1∑
j=1

(wl
jk)2, (2)

where N is the batch size, yi = ri + γQtarget(s
′, arg maxa′ Qonline(s

′, a′)), θ are

the parameters of the online network, λ is the L2-regularization parameter, L

is the number of hidden layers, nl is the number of units in hidden layer l ≥ 1

(with this notation, the input layer index is 0), and wl
jk is the weight of unit

ul−1
j in unit ul

k of layer l. (We denote by ul
k the kth unit of layer l.)

3.2.5. Target Network Update

The target network’s weights θtarget are periodically updated to match the

online network’s weights θ. This mechanism helps avoid instability in Q-value

updates. We introduce an integer τ that controls the rate of updating the target

network towards the online network. We define τ as the number of trading days

between two updates of the target network’s weights.

3.2.6. Epsilon-Greedy Action Selection Policy

To balance exploration and exploitation, the agent follows an ϵ-greedy policy,

where the probability of choosing a random action (exploration), ϵ, decays over

time. ϵ is updated as follows. For the first ϵdecaysteps episodes,

ϵ← ϵ− ϵdecay,
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and for the remaining episodes,

ϵ← ϵ× ϵexpdecay,

where

ϵdecay =
ϵstart − ϵend
ϵdecaysteps

,

ϵstart and ϵend are the initial and final values of epsilon, and ϵexpdecay is a

constant between 0 and 1.

Figure 2 shows epsilon decays over the episodes, using the constants we

choose to train the DDQN, i.e., ϵstart = 1.0, ϵend = 0.01, ϵdecaysteps = 250, and

ϵexpdecay = 0.99.

Figure 2: Epsilon Decay Over Episodes.

3.2.7. Training Process Flow

Algorithm 1 outlines the structured steps for training the DDQN, including

parameter initialization, action selection via an epsilon-greedy policy, reward

calculation, experience replay for Q-value updates, and periodic target network

synchronization.
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Algorithm 1 Q-Learning Training Process

Initialize Parameters: Set initial Q-values, ϵ, and experience buffer.
for each episode do

Environment Reset: Start from a random point in the training data.
while episode not done do

Action Selection: Use ϵ-greedy policy to choose action at for state
st.

Reward Calculation: Observe reward rt and next state st+1 based
on action taken.

Store Transition: Save (st, at, rt, st+1) in experience buffer.
Experience Replay: Sample mini-batch from experience buffer.
Q-value Update: Update Q-values based on target network esti-

mates:
Q(st, at)← rt + γ max

a′
Qtarget(st+1, a

′) (3)

if episodes ≡ τ = 0 then
Target Network Update: Sync target network with online net-

work.
end if

end while
end for

3.2.8. Parameters and DDQN’s hyperparameters

We specify the number of trading days for each episode at 252, reflecting

the typical number of trading days in a year. We set γ = 0.99 which determines

the importance of future rewards, indicating that future rewards are nearly as

significant as immediate rewards. ϵ is evolving using ϵstart = 1.0, ϵend = 0.01,

ϵdecaysteps = 250, and ϵexponentialdecay = 0.99. We set τ = 100 which controls

the frequency of updates to the target network, ensuring stable learning.

The following hyperparameters were configured for training the DDQN,

aligning with established literature that suggests these settings contribute to

the development of profitable Q-RL trading agents using the DDQN architec-

ture. In the order of their importance, we set the learning rate constant at 10−4,

the momentum term β = 0.99 to smooth the gradient descent, the mini-batch

size at 4096, the number of units in hidden layers at 256, and the number of

layers at 2. We are penalizing large weights in the network by applying exclu-

sively to the hidden layers a L2-regularization and we include a dropout layer

at rate p = 0.1 between the last hidden layer and the output layer to reduce
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overfitting and improve generalization. Due to the limited scope of this paper,

we direct the reader to Goodfellow et al. (2016) for additional insights regarding

these hyperparameters and their intended purpose.

3.3. Interpreting its decisions

3.3.1. Overview

Input data from the testing period was used to generate the agent’s actions,

resulting in a dataset that compiles both the input features and corresponding

actions taken by the agent for the next trading day. Using this dataset, we

trained a decision tree with a maximum depth of 3 to capture simplified rules

that reveal the economic rationale behind the agent’s decision-making process.

This approach allows us to distill the factors driving the agent’s long, hold, or

short decisions in a transparent and interpretable manner.

3.3.2. Decision Tree Classifier Overview

Leo Breiman, along with Jerome Friedman, Richard Olshen, and Charles

Stone, formally introduced decision trees as a systematic method for classifi-

cation and regression in their 1984 book Classification and Regression Trees

(often referred to as “CART”) (Breiman et al., 1984). This seminal work es-

tablished the foundational algorithms and concepts for decision tree estimators,

including recursive binary splitting, pruning, and handling both categorical and

continuous data. The CART framework has since become a cornerstone in

machine learning, inspiring further developments such as bootstrap aggregat-

ing (in short, “bagging”), introduced by Breiman (1996) to reduce variance,

and random forests, introduced by Breiman (2001), which extend bagging by

incorporating random feature selection.

In a decision tree classifier, decisions are modeled in a hierarchical structure

that branches based on specific conditions on the input features. For a trading

agent with three potential actions (long, hold, short), each path through the

tree represents a logical sequence that leads to one of these actions.

A decision tree begins at the root node, which contains the entire dataset.

Each node splits based on a feature threshold, dividing the data into two subsets
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that lead to subsequent branches. This splitting continues, creating a tree struc-

ture until reaching a “leaf” node, where each path represents a class prediction

(long, hold, short).

The splits are chosen to maximize the “purity” of each node, measured using

the Gini impurity,

G(t) = 1−
n∑

i=1

p2i , (4)

where pi is the proportion of samples belonging to class i (long, hold, short) in

node t.

Limiting the decision tree’s maximum depth is a common technique for re-

ducing overfitting and enhancing generalization. In our study, we set the max-

imum depth to 3, prioritizing interpretability. This choice strikes a balance

between achieving simple, clear decision rules and retaining sufficient depth to

meaningfully capture the agent’s trading logic.

To train the classifier, the input data fed to the trading agent (e.g., stock

prices, supply chain variables) is used alongside the agent’s actions for each time

point. The classifier learns decision rules that map specific patterns in the input

data to actions such as long, hold, or short, aiming to approximate the agent’s

decision-making.

Figure 3 is an example of what a decision tree might look like when inter-

preting trading agent actions. Each split indicates a condition on a feature,

leading to a final class prediction (long, hold, short) at each leaf.

Each branch in the decision tree represents a rule that contributes to the

trading agent’s decision. For example, the far-left branch of the decision tree

indicates that when Feature 2 has a value below 0.051 and Feature 1 is less than

0.803, the agent is likely to take a short position for the following trading day.

By tracing paths that lead to specific actions, one can derive economic insights

into how variables —such as stock prices or supply chain factors— impact the

agent’s behavior.

Interpreting a Q-learning agent using a decision tree provides a transparent
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Figure 3: Example decision tree representation using random input data.

framework that improves stakeholder trust. By translating complex decision

logic into simple rules, one can better understand how market and supply chain

dynamics impact the EV stock trading strategy, bridging the gap between in-

terpretability and profitable decision-making in high-stakes environments.

4. Data and Empirical Results

4.1. Available Data and Transformations

First, we hypothesize a significant influence of Tesla’ stock (NASDAQ: TSLA)

fundamentals on its close price. Therefore, we utilize a dataset that includes

stock fundamentals for Tesla as control variables. To investigate this, we uti-

lize a detailed dataset that includes key stock fundamentals for Tesla as control

variables. Specifically, we focus on Tesla’s market capitalization and price-to-

earnings ratio. We also explored additional stock fundamentals—debt-to-equity

ratio, market beta, dividend yield, earnings before interest and taxes, and free

cash flow—but their limited data availability led to their exclusion. We provide
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D/E Beta EBIT FCF Market Cap. P/E

count 56 144 61 46 3638 1101
mean 152.2 2.3 1.9× 1009 3.0× 1008 2.4× 1011 322.7
std 134.0 0.02 4.3× 1009 1.2× 1009 3.3× 1011 408.1
min 4.6 2.27 −2.2× 1009 −2.5× 1009 1.5× 1009 33.0
25% 33.8 2.28 −3.8× 1008 −5.4× 1008 2.2× 1010 61.1
50% 136.9 2.3 −1.3× 1008 1.1× 1008 4.5× 1010 89.0
75% 243.2 2.31 2.0× 1009 9.6× 1008 5.6× 1011 396.6
max 705.6 2.36 1.4× 1010 3.3× 1009 1.2× 1012 1722.5

Table 1: The descriptive statistics of Tesla’s stock daily fundamentals. EBIT, FCF, and
Market Cap. are reported in US Dollar (USD). Note: D/E = Debt-to-Equity Ratio; Beta
= Beta Coefficient; EBIT = Earnings Before Interest and Taxes; FCF = Free Cash Flow;
Market Cap. = Market Capitalization; P/E = Price-to-Earnings Ratio.

descriptive statistics for each of these stock fundamental variables in Table 1 to

support our decision.

In addition, we include Tesla’s daily open, high, low, and close prices in

our dataset. The close price is obviously essential as it is used to compute

the agent’s returns and is included among the features that guide the agent’s

trading decisions for the following day. The inclusion of open, high, and low

prices enables us to construct informative price action features, enhancing the

agent’s decision-making framework. Figure 4 provides a comprehensive overview

of these price points.

Figure 4: Time series of Tesla’s daily stock prices, illustrating the open, high, low, and close
prices. The chart highlights the availability of price data.

As a central aspect of this study, we expand our dataset to include the

broader electric vehicle supply chain by incorporating the close stock prices of

two major lithium producers, namely Albemarle Corporation (NYSE: ALB)

16



ALB SQM CATL Panasonic Samsung SDI LG

count 7708 7426 1560 9997 10678 685
mean 58.22 24.69 166.61 1582.92 129352 454972
std 61.07 23.17 94.07 528.66 166322 76602
min 6.19 1.49 20.11 385.0 4301 321000
25% 12.31 3.86 63.53 1209.52 23832 398500
50% 40.87 18.48 184.94 1485.0 66400 436500
75% 73.04 40.94 231.51 1926.0 147500 525000
max 325.38 113.52 382.22 3230.0 817000 624000

Table 2: The descriptive statistics for the close prices of the major lithium and lithium-ion
battery manufacturers. ALB and SQM are reported in US Dollar (USD), CATL and Panasonic
are reported in Japenese Yen (JPY), and Samsung SDI and LG are reported in South Korean
Won (KRW). Note: ALB = Albemarle Corporation; SQM = Sociedad Qúımica y Minera de
Chile; CATL = Contemporary Amperex Technology Co Ltd; Panasonic = Panasonic Holdings
Corp; Samsung SDI = Samsung SDI Co Ltd; LG = LG Energy Solution Ltd.

and Sociedad Qúımica y Minera de Chile (NYSE: SQM), alongside leading bat-

tery manufacturers, specifically Contemporary Amperex Technology Co Ltd

(CATL) (Shenzhen SE: 300750), Panasonic Holdings Corp (Tokyo SE: 6752),

and Samsung SDI Co Ltd (Korea SE: 006400). Due to limited data availability,

we exclude LG Energy Solution Ltd. (Korea SE: 373220), another prominent

lithium-ion battery manufacturer. We provide descriptive statistics for the close

prices of these stocks in Table 2 to support our decision.

The dataset, sourced through the Refinitiv Eikon API for Python, spans

from July 29, 2020, to November 13, 2024. The training period lies from July

29, 2020 to September 30, 2024. The testing period lies from October 1, 2024

to November 13, 2024. Table 3 presents descriptive statistics of the training

and test sets combined. The dataset is the intersection of the fundamentals,

the Tesla’s stock prices, and the close prices of the previously introduced stocks

of the electric vehicle supply chain. We introduced three additional intraday-

specific features: the Open-to-Close (O/C), High-to-Close (H/C), and Low-

to-Close (L/C) ratios, which provide some insights into Tesla stock’s intraday

price action. For instance, a high H/C ratio on trading day d indicates that

the highest trade price recorded on that day exceeded the closing price at the

session’s end. This indicates that Tesla’s stock price peaked significantly above

17



the closing price during the trading session, suggesting high intraday volatility.

This could reflect heightened investor enthusiasm or speculation, leading to

temporary surges in the price. However, the fact that the price closed lower

than the high may indicate that, despite the strong buying interest earlier in

the day, sellers gained control by the end of the session, causing the price to

fall back. In practice, this pattern could signal potential price resistance or

profit-taking.

18



P
/E

M
ar

ke
t

C
ap

.
A

L
B

S
Q

M
S

a
m

su
n

g
S

D
I

C
A

T
L

P
a
n

a
so

n
ic

T
S

L
A

O
/
C

H
/
C

L
/
C

co
u

n
t

10
76

10
76

10
7
6

1
0
7
6

1
0
7
6

1
0
7
6

1
0
7
6

1
0
7
6

1
0
7
6

1
0
7
6

1
0
7
6

m
ea

n
32

5.
5

7
.1
×

10
1
1

17
9
.6

5
6
0
.4

6
5
7
3
0
7
9

2
2
3
.6

7
1
2
8
3
.8

4
2
2
9
.4

9
1
.0

1
.0

2
0
.9

8
st

d
40

9.
4

1.
8
×

10
1
1

60
.8

7
2
0
.3

2
1
3
5
1
8
5

5
7
.8

4
1
8
6
.3

5
5
8
.7

4
0
.0

3
0
.0

2
0
.0

2
m

in
33

.0
2.

6
×

10
1
1

72
.8

5
2
7
.8

8
2
5
5
5
0
0

1
0
2
.4

8
6
2
.9

9
1
.6

3
0
.8

7
1
.0

0
.8

7
25

%
60

.3
5
.8
×

10
1
1

12
5
.3

4
4
6
.0

2
4
4
6
3
7
5

1
8
5
.3

8
1
1
5
3
.5

1
8
8
.8

7
0
.9

8
1
.0

1
0
.9

7
50

%
91

.6
7
.0
×

10
1
1

18
1
.9

8
5
3
.2

5
9
1
0
0
0

2
2
2
.3

1
2
7
3
.5

2
2
7
.0

6
1
.0

1
.0

2
0
.9

8
75

%
40

5.
0

8
.1
×

10
1
1

22
8
.0

7
6
.3

1
6
9
0
0
0
0

2
5
7
.3

8
1
3
9
5
.1

2
2
6
1
.2

3
1
.0

2
1
.0

3
0
.9

9
m

ax
17

22
.5

1.
2
×

10
1
2

32
5
.3

8
1
1
3
.5

2
8
1
7
0
0
0

3
8
2
.2

2
1
7
9
4
.5

4
0
9
.9

7
1
.1

5
1
.1

5
1
.0

T
a
b
le

3
:
T
h
e
d
es
cr
ip
ti
v
e
st
a
ti
st
ic
s
o
f
th

e
tr
a
in
in
g
a
n
d
te
st

se
ts

co
m
b
in
ed

.
M
a
rk
et

C
a
p
.,
A
L
B
,
S
Q
M
,
a
n
d
T
S
L
A

a
re

re
p
o
rt
ed

in
U
S
D
o
ll
a
r
(U

S
D
),

S
a
m
su

n
g
S
D
I
is

re
p
o
rt
ed

in
S
o
u
th

K
o
re
a
n

W
o
n

(K
R
W

),
a
n
d

C
A
T
L

a
n
d

P
a
n
a
so
n
ic

a
re

re
p
o
rt
ed

in
J
a
p
en

es
e
Y
en

(J
P
Y
).

N
o
te
:
P
/
E

=
P
ri
ce
-t
o
-

E
a
rn

in
g
s
R
a
ti
o
;
M
a
rk
et

C
a
p
.
=

M
a
rk
et

C
a
p
it
a
li
za

ti
o
n
;
A
L
B

=
A
lb
em

a
rl
e
C
o
rp

o
ra
ti
o
n
;
S
Q
M

=
S
o
ci
ed

a
d
Q
ú
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To facilitate convergence towards a local optimum of the trained parameters

in the Multi-Layer Perceptron, we apply two standard data transformations,

namely differentiation followed by a power transformation. The former centers

data around zero and improves stationarity and the later promotes a near-

normal distribution of features. Additionally, we introduce four lagged features

of Tesla’s stock daily transformed close price at lags 2, 5, 10, and 21. It offers

the trading agent a broader context on historical price movements, which can

improve its ability to predict the stock’s next-day performance. Descriptive

statistics, unit root and normality tests of the transformed data are provided in

Tables 4 and 5.
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4.2. Empirical Results

4.2.1. Agent’s returns

Figure 5 shows the monthly returns of a DDQN trained on the period from

July 29, 2020, to September 30, 2024. In this plot, light-colored bars represent

monthly returns during the training phase, while darker-colored bars indicate

performance in the testing period. Throughout the training period, the agent

achieved significant positive returns, with all months reaching over 10%, indicat-

ing successful learning of profitable trading strategies during the training period.

However, the returns show variability, with some months yielding low returns

and others reaching over 80%, suggesting that market conditions during certain

periods posed more challenges for the agent. The authors hypothesize that this

variability is largely driven by Tesla’s stock price volatility, which significantly

impacts the agent’s performance in both positive and negative directions.

Figure 5: Monthly Returns of the DDQN: Light-colored bars represent returns during the
training period (July 2020 - September 2024), while darker bars indicate returns in the testing
period, highlighting system performance in both familiar and unseen market conditions.

In the testing period, represented by darker bars toward the end of the

timeline, the agent’s returns for October fall within the typical range of returns

observed during the training period, indicating that the system performed as

expected in the absence of significant market disruptions. However, the Novem-

ber monthly return was notably impacted by the U.S. presidential election. The

election results were announced by the end of November 5th, leading to a sig-

nificant market response. Between November 4th and 11th, Tesla’s stock price

surged by 44%, a sharp increase that the agent could not anticipate, as it was

not trained to recognize the impact of such political events. This unexpected
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event is one element of explanation of the agent’s low performance for November

compared to other months, as it lacked information on the election’s influence

on the market.

4.2.2. Interpretation of the agent’s actions

Figure 6 presents a trained classifier which is used to interpret the actions

of the DDQN. The target variable is the agent’s actions (long, hold, or short)

on trading day d for trading day d + 1, and the features are identical to those

used in training the agent, except without Power transformation to enhance

interpretability. The features include: feature open, defined as the difference

between the Tesla’s open/close (O/C) ratio for trading day d and that of day

d− 1; feature low, defined as the difference between the Tesla’s low/close (L/C)

ratio for trading day d and that of day d − 1; feature close, the difference in

Tesla’s close prices between days d and d − 1; feature close 5, the difference in

Tesla’s close prices between days d − 5 and d − 6; feature low, the difference

between the Tesla’s low/close (L/C) ratio for day d and that of day d− 1; fea-

ture 006400 close, the difference in Samsung SDI’s stock close prices between

days d and d − 1; feature 300750 close, the difference in CATL’s stock close

prices between days d and d − 1; and feature market capitalization, the differ-

ence in Tesla’s market capitalization between days d and d − 1. To prioritize

interpretability, the tree’s maximum depth is set to 3, highlighting the most

significant decision rules. Each node shows a feature threshold used to split the

data, along with the Gini index and sample distribution, revealing the primary

factors influencing the agent’s trading decisions. This structure provides insight

into the agent’s strategy, showing how specific market and company features

drive its actions.

The authors arbitrarily focus on the interpretation of two scenarios: (1)

described by the total left branch and (2) described by the shortest branch

of the fitted decision tree. The agent’s trading strategy, as described in the

two scenarios, reflects a nuanced approach to interpreting price movements of

key players in the EV supply chain, specifically Samsung SDI and CATL, and
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Figure 6: Decision tree illustrating the agent’s actions, trained on the same features as the
agent (without Power transformation) with a maximum depth of 3 for interpretability. Each
node represents a decision rule, showing key features influencing the agent’s ’long’ or ’short’
trading decisions.

using them as indicators for Tesla’s stock movements. These decisions highlight

the agent’s attempt to capture supply chain dynamics, market sentiment, and

potential future demand for Tesla’s products.

This paragraph focuses on the interpretation of scenario (1). Samsung SDI,

as a major lithium-battery manufacturer, is a key supplier in Tesla’s supply

chain. A decline in Samsung SDI’s stock price might suggest a perceived short-

term weakness in the EV battery supply chain, either due to supply constraints,

decreased demand, or external pressures affecting the sector. The agent’s initial

check of Samsung SDI’s price reflects a reliance on upstream suppliers as an

early indicator of potential downstream impacts on Tesla. After observing a

decline in Samsung SDI’s price, the agent looks at Tesla’s own price movement.

If Tesla’s stock is also declining, this may reinforce the indication of broader

negative sentiment or challenges facing Tesla, perhaps due to sector-wide issues

or anticipated lower demand. The agent uses this as a filter to validate whether
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the perceived weakness in the supply chain might also be impacting Tesla. If,

however, the agent observes that Tesla had an extreme price increase five days

ago, it takes a long position for tomorrow. This suggests that the agent views

such a large recent price increase as an indicator of underlying strength or de-

mand resilience that might counteract the current short-term weakness. By

going long, the agent expresses confidence that the price dip may be temporary

and that the stock could rebound, driven by prior momentum or demand funda-

mentals. Conversely, if Tesla did not exhibit an extreme increase five days ago,

the agent takes a short position. This conservative approach suggests that the

agent interprets the lack of recent strong momentum as an indicator that Tesla

might lack the resilience to withstand the current downward pressures, perhaps

due to concerns about demand or profitability. In this case, the agent views

Tesla’s near-term outlook as negative, given the combined signals of weakness

from both the supplier (Samsung SDI) and Tesla’s current price trend. This de-

cision rule reflects a nuanced view of the EV market’s interconnectedness. The

agent considers upstream supply chain signals (Samsung SDI) as initial indica-

tors of possible future impacts on Tesla, then seeks confirmation through Tesla’s

price trend and momentum. The need for an “extreme increase” five days ago

for a long position implies the agent’s reliance on strong historical price mo-

mentum as a counterweight to recent supply chain weakness. This shows the

agent’s preference for conservative, momentum-driven entries and exits, aiming

to minimize exposure to Tesla during periods of perceived sector-wide instability

unless strong prior gains indicate possible resilience.

This paragraph focuses on the interpretation of scenario (2). When Sam-

sung SDI’s stock price increases, the agent sees this as an initial positive signal

for the EV supply chain. An increase in Samsung SDI’s stock suggests investor

confidence in the battery supplier, possibly due to positive market conditions,

demand forecasts, or operational strength. This could signal improved supply

chain conditions or optimism about future EV demand, indirectly benefiting

Tesla. Despite Samsung SDI’s positive movement, the agent checks CATL’s

price movement for a counter-signal. If CATL’s price is declining, the agent
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interprets this as a potential market anomaly, where two major suppliers are

moving in opposite directions. This divergence might indicate that CATL’s

decline is temporary or specific to CATL, rather than an indicator of broader

EV market weakness. The agent’s decision to go long on Tesla when Samsung

SDI is up and CATL is down suggests that it perceives the overall supply chain

environment as favorable or stabilizing. The decline in CATL, juxtaposed with

Samsung SDI’s increase, could be seen as an opportunity, where CATL’s price

decline does not necessarily impact Tesla directly. The agent’s long position in

this scenario shows confidence that Tesla may benefit from improved supply con-

ditions or sector sentiment, with CATL’s decline being viewed as a non-critical

or temporary setback within the supply chain. The agent’s trading rule in this

scenario reflects a contrarian view, where it capitalizes on perceived misalign-

ments within the EV supply chain. By going long on Tesla when Samsung SDI is

up and CATL is down, the agent demonstrates an understanding of the hetero-

geneity among suppliers and a willingness to interpret one supplier’s weakness

(CATL) as a potential opportunity rather than a risk factor. This suggests the

agent’s belief that diverging movements among suppliers might provide favor-

able entry points for Tesla, as it sees the broader market sentiment (reflected

in Samsung SDI’s increase) as more influential for Tesla’s outlook than isolated

declines among specific suppliers.

In the first scenario, the agent uses supply chain weakness (Samsung SDI’s

decline) as a cautionary signal but is willing to take a long position if there was

recent positive momentum in Tesla’s stock. This suggests that the agent inter-

prets supply chain signals as potentially temporary, using recent price increases

to indicate resilience. Without this momentum, it takes a cautious stance and

shorts Tesla, indicating sensitivity to supply chain instability. In the second sce-

nario, the agent takes a contrarian approach, interpreting divergence between

Samsung SDI’s increase and CATL’s decline as a possible opportunity to go

long on Tesla. This reflects the agent’s perception that not all supply chain

signals are equally influential and that a mixed signal may still offer a favor-

able outlook for Tesla, especially if broader supply chain sentiment is positive
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(Samsung SDI up). Both decision rules reveal the agent’s sophisticated use of

supply chain stock prices to gauge market sentiment and future demand. By

treating supplier stock movements as proxies for broader economic and market

conditions, the agent aims to identify potential demand or supply disruptions

impacting Tesla. This highlights the agent’s understanding of the interdepen-

dency between Tesla and its suppliers and the use of this knowledge to make

informed trading decisions.

5. Conclusion

This study addresses gaps in the economic rationale of algorithmic trading

agents’ decisions within the EV sector. RL, especially Q-RL and DRL, has

shown promise for trading, but often lacks transparency, limiting trust among

stakeholders. XAI in finance emphasizes the need for interpretability, yet many

methods fail to provide a clear economic rationale for trading decisions. Previous

research has examined EV market dynamics, such as co-movement drivers and

the relationship between EV and lithium stock prices, but few studies integrate

these insights into trading algorithms. By customizing Q-RL with EV-specific

data, this research aims to enhance both interpretability and economic rationale,

providing investors and researchers with insights into the factors driving trading

decisions and fostering greater transparency in the EV market.

Our study uses a dataset focusing on Tesla’s stock fundamentals, including

market capitalization and price-to-earnings ratio, alongside daily open, high,

low, and close prices. We extended the dataset to encompass the close prices

of key players in the EV supply chain, such as Albemarle, SQM, CATL, Pana-

sonic, and Samsung SDI. Additionally, we created intraday price action fea-

tures (O/C, H/C, L/C ratios) to enhance the agent’s decision-making frame-

work. Data transformations (differentiation and power transformation) and

four lagged Tesla close prices provide context on historical price movements,

improving predictability for the trading agent.

Our study develops a Q-learning agent for Tesla’s stock, prioritizing in-

terpretability over profitability. Using a decision tree, we analyze the agent’s
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actions to reveal supply chain influences. The system is tested on a holdout

period, optimizing cumulative rewards, and evaluated for monthly profitability

above a 2% threshold.

The agent’s approach shows a keen awareness of EV supply chain dynamics

and an ability to distinguish between short-term volatility and fundamental

shifts in market sentiment. By balancing caution with contrarian strategies,

it seeks to capture upside opportunities in Tesla while hedging against supply

chain risks, using nuanced price patterns from both Tesla and its key suppliers

to guide its decisions.

To enhance this study, future research could explore several improvements:

adjusting the training and testing split to 50%/50% rather than allocating most

of the historical data for training, training at least 30 distinct DDQRL agents

to increase robustness in profitability estimation and interpretability, expanding

features to include market sentiment, macroeconomic indicators such as inter-

est rates, and market news, and broadening the analysis to encompass all EV

manufacturers, beyond just Tesla.
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