Martin, Andreas

Working Paper

Small ball asymptotics for the stochastic wave equation

Discussion paper // Sonderforschungsbereich 386 der Ludwig-Maximilians-Universität München, No. 360

Provided in Cooperation with:
Collaborative Research Center (SFB) 386: Statistical Analysis of discrete structures - Applications in Biometrics and Econometrics, University of Munich (LMU)

Suggested Citation: Martin, Andreas (2003) : Small ball asymptotics for the stochastic wave equation, Discussion paper // Sonderforschungsbereich 386 der Ludwig-Maximilians-Universität München, No. 360, http://nbn-resolving.de/urn:nbn:de:bvb:19-epub-1735-7

This Version is available at:
http://hdl.handle.net/10419/31153

Terms of use:
Documents in EconStor may be saved and copied for your personal and scholarly purposes.
You are not to copy documents for public or commercial purposes, to exhibit the documents publicly, to make them publicly available on the internet, or to distribute or otherwise use the documents in public.
If the documents have been made available under an Open Content Licence (especially Creative Commons Licences), you may exercise further usage rights as specified in the indicated licence.
Small Ball Asymptotics for the Stochastic Wave Equation *

Andreas Martin†

January 21, 2003

Abstract

We examine the small ball asymptotics for the weak solution X of the stochastic wave equation

$$\frac{\partial^2 X}{\partial t^2}(t, x) - \frac{\partial^2 X}{\partial x^2}(t, x) = g(X(t, x)) + f(t, x)dW(t, x)$$

on the real line with deterministic initial conditions.

Key words: small ball, stochastic wave equation, Brownian sheet.

1 Introduction

Let X be a random variable on a probability space $(\Omega, \mathcal{F}, \mathbb{P})$ taking values in a real Banach space. The small ball asymptotics is the order of the probability $\mathbb{P} \{||X|| < \varepsilon\} \to 0^+$. We examine the small ball asymptotics for the weak solution $X = \{X(t, x); (t, x) \in \mathbb{R}_+ \times \mathbb{R}\}$ of the stochastic wave equation

$$\frac{\partial^2 X}{\partial t^2}(t, x) - \frac{\partial^2 X}{\partial x^2}(t, x) = g(X(t, x)) + f(t, x)dW(t, x) \quad (1)$$

on the real line with deterministic initial conditions (F, μ). The random field X is almost surely continuous and for each compact set $A \subset \mathbb{R}_+ \times \mathbb{R}$, $X_{|A}$ can be considered as a random variable with values in the Banach space of continuous functions on A endowed with the supremum norm. In the case $g = 0$ and $f = 1$ the solution of (1) is very similar to a Brownian

AMS Subject Classification. Primary 60H15; Secondary 60G60.

†Institute of Biomathematics and Biometry, GSF-National Research Centre for Environment and Health, Ingolstädter Landstraße 1, 85764 Neuherberg/München, Germany. E-mail: martin@gsf.de
1 INTRODUCTION

M. Talagrand derived in [12] precise small ball asymptotics for this random field. This is our point of depart, and as a matter of fact, the small ball asymptotics for the solution of (1) is of the same order: Let \(f \) be a square integrable function which is continuous and does not vanish at least one point. Furthermore, let \(g \) be Lipschitz continuous and \(u \) be the solution of the deterministic partial differential equation

\[
\frac{\partial^2 u}{\partial t^2}(t, x) - \frac{\partial^2 u}{\partial x^2}(t, x) = g(u(t, x))
\]

with initial conditions \((F, \mu)\). Theorem 2.11 below states in terms of Landau symbols that the upper small ball asymptotics reads

\[
\mathbb{P}\left\{ \sup_{\Delta(r, 0)} |X(t, x) - u(t, x)| < \varepsilon \right\} \leq O\left(\exp\left(-\left(\log(1/\varepsilon)\right)^3/\varepsilon^2\right) \right)
\]

with \(\Delta(r, 0) = \{(s, y) : 0 \leq s \leq r, |y| \leq r - s\} \). Moreover, Theorem 3.4 states that the lower asymptotics is of the same order.

The rate of the asymptotics is given in terms of Landau symbols. Let \(u \) and \(v \) be real valued functions. We write \(u(x) = O(v(x)) \), if there is a constant \(C \) such that \(|u(x)|/|v(x)| < C \) for \(x \to x_0 \) or \(x \to \infty \). Furthermore, let \(w \) be a real valued function. If there are functions \(u \) and \(v \) with \(w(x) \leq u(x) \) for \(x \to x_0 \) or \(x \to \infty \) and \(u(x) = O(v(x)) \), then we write \(w(x) \leq O(v(x)) \). Vice versa, if there are functions \(u \) and \(v \) with \(w(x) \geq u(x) \) for \(x \to x_0 \) or \(x \to \infty \) and \(u(x) = O(v(x)) \), then we write \(w(x) \geq O(v(x)) \).

J. Kuelbs, W.V. Li and W. Linde showed that evaluating small ball asymptotics are in general equivalent to solving a demanding metric entropy problem in functional analysis, see [6] and [9]. This explains why relatively little is known about small ball asymptotics, except for special examples. The oldest examples concern Brownian motions and Brownian bridges. Let \(BM \) denote a standard Brownian motion and \(BB \) a Brownian bridge. Then

\[
\mathbb{P}\left\{ \sup_{t \in [0, 1]} |BM(t)| < \varepsilon \right\} \sim \frac{4}{\pi} \exp\left\{ -\frac{\pi^2}{8\varepsilon^2} \right\}
\]

and the probability

\[
\mathbb{P}\left\{ \sup_{t \in [0, 1]} |BB(t)| < \varepsilon \right\} \sim \frac{\sqrt{2\pi}}{\varepsilon} \exp\left\{ -\frac{\pi^2}{8\varepsilon^2} \right\}
\]

for \(\varepsilon \to 0^+ \), respectively. For the proof of these and many more interesting results and topics related to small ball asymptotics we refer to the surveys J.P.R. Christensen [3], M. Ledoux [7], M.A. Lifshits [11] and W.V. Li and Q-M. Shao [10].

J.B. Walsh introduced in the eighties an integration theory with respect to martingale measures in order to establish a framework for stochastic partial differential equations similar to Itô’s theory, see for example [13]. It was
used by R.A. CARMONA and D. NUALART in 1988 to examine the vibrating string in \([1]\) and its companion article \([2]\). Different approaches to stochastic partial differential equations are treated in the textbooks \([4]\) of G. DA PRATO and J. ZABCZYK in 1992 and \([5]\) of H. HOLDEN, B. ØKSENDAL, J. UBOE and T. ZHANG in 1996.

This article is organised as follows. The upper asymptotics are derived in Section 2 and the lower ones are obtained in Section 3. The underlying ideas are similar. We transfer the small ball asymptotics for the Brownian sheet to the solution \(X\) of (1) in the case \(g = 0\) and \(f = 1\) by a clockwise rotation of 45°. Then we use the partial differential equation to derive the asymptotics for the general case. In each section we discuss as a special example the KLEIN-GORDON equation on the real line

\[
\frac{\partial^2 X}{\partial t^2}(t, x) - \frac{\partial^2 X}{\partial x^2}(t, x) - \alpha X(t, x) = dW(t, x)
\]

perturbed by space-time white noise.

2 Upper Asymptotics

We start with preparations for the proofs of Proposition 2.6 and its Corollary 2.7. The underlying ideas are similar to the ones used in the proof of the upper asymptotics in Theorem 1.1 \([12]\). A central tool is TALAGRAND’s combinatorial inequality stated in Proposition 2.5.

Proposition 2.1

Let \(C \in (0, 1]\) and let \(M, N \in \mathbb{N}\) with \(CM \leq N \leq M\). Then for a sequence \((\xi_i)_{i \leq N}\) of independent standard normal random variables one has

\[
P\left\{ \sum_{i \leq N} |\xi_i| \leq \frac{M}{C_0} \right\} \leq \exp \left(-\frac{M}{C_0} \right),
\]

where \(C_0 = -2/(C \ln \mathbb{E}\{\exp(-|\xi_1|)\})\).

Proof. Chebyshev’s exponential inequality yields

\[
P\left\{ \sum_{i \leq N} |\xi_i| \leq \frac{M}{C_0} \right\} \leq \exp \left(-\frac{M}{C_0} \right) \mathbb{E}\left\{ \exp \left(-\sum_{i \leq N} |\xi_i| \right) \right\}.
\]

Since the random variables \(\xi_i\) are independent and identically distributed the right hand side of (2) is equal to

\[
\exp \left(-\frac{CM \ln \mathbb{E}\{\exp(-|\xi_1|)\}}{2} \right) \mathbb{E}\{\exp(-|\xi_1|)\}^N = \mathbb{E}\{\exp(-|\xi_1|)\}^{N-CM/2}.
\]
Moreover, $\mathbb{E}\{\exp(-|\xi_1|)\} < 1$ and $N \geq CM$, thus one has

$$
\mathbb{E}\{\exp(-|\xi_1|)\}^{N-CM/2} \leq \mathbb{E}\{\exp(-|\xi_1|)\}^{CM/2} = \exp\left(-\frac{M}{C_0}\right)
$$

which completes the proof. \hfill \Box

Let $H = L^2([0,1]^2, \mathcal{B}[0,1]^2, \lambda^2)$ and let (b_m) be a complete orthonormal system of (the separable Hilbert space) H. Let further (ξ_m) be a sequence of independent standard normal random variables. An isonormal process $W = \{W(h); h \in H\}$ can be constructed by

$$
W(h) = \sum_m \xi_m(h, b_m),
$$

where the brackets are the canonical inner product of H; see for example [4]. This construction is independent of the choice of the complete orthonormal system, because the process is determined by its finite dimensional distributions. On the other hand, the proof of Talagrand’s combinatorial inequality (5) depends heavily on the choice of a special complete orthonormal system which will be introduced now.

Definition 2.2 Set $h_{-1,0} \equiv 1$,

$$
h(u) = \begin{cases}
1 & \text{if } u \in [0,1/4) \cup (3/4,1] \\
-1 & \text{if } u \in [1/4,3/4)
\end{cases}
$$

and fix an integer $q \geq 1$. Define for integers $m \geq 0$ and $0 \leq k < 2^{mn}$

$$
h_{m,k}(u) = 2^{mn/2}h(2^{mn}(u - k2^{-qn})).
$$

Furthermore, set

$$
\mathcal{I} = \{(m,k); m \geq 0, \ 0 \leq k < 2^{mn}\} \cup \{(-1,0)\}
$$

and

$$
\mathcal{O}\mathcal{S}(\mathcal{I}) = \{h_{m,k} \otimes h_{n,l}; (m,k),(n,l)) \in \mathcal{I} \times \mathcal{I}\}.
$$

The family $\mathcal{O}\mathcal{S}(\mathcal{I})$ is for each $q \geq 1$ a complete orthonormal system in H.

We need the following two sets of indices for the further discussion. Notice that $A^o = \overline{A} \setminus \partial A$ denotes the open interior of a set A and $\text{supp}(f)$ denotes the support of a function f.

Definition 2.3 For a set $A \subset [0,1]^2$ define

$$
\mathcal{I}(A) = \{((m,k),(n,l)) \in \mathcal{I} \times \mathcal{I}; \text{supp}(h_{m,k} \otimes h_{n,l})^o \subset A\}.
$$

For an integer $N \in \mathbb{N}$ define

$$
\mathcal{T}(N) = \{((m,k),(n,l)) \in \mathcal{I} \times \mathcal{I} ; \ m \geq 0, n \geq 1, m + n = N,\ 0 \leq k < 2^{mn}, 0 \leq l < 2^{mn}\}.$$
The set $I(A)$ is that set of indices in $I \times I$ for which the corresponding functions in $\mathcal{OS}(I)$ have their supports essentially in A. The set $T(N)$ consists of those indices such that the corresponding functions in $\mathcal{OS}(I)$ have supports with given and fixed length of the edges. In the next example the relation between $I(A)$ and $T(N)$ is exploited.

Example 2.4 Let $A = \text{supp}(h_{m,k} \otimes h_{n,l})$ for fixed integers $m \geq 0$, $n \geq 1$, $0 \leq k < 2^m$ and $0 \leq l < 2^n$. If $N < m + n$ then the sets $I(A)$ and $T(N)$ are disjoint, because the edges of the supports of functions associated to $T(N)$ are too long. If $N \geq m + n$, however, then $I(A) \cap T(N)$ is not empty and the number of elements $|I(A) \cap T(N)| = (N - (m + n) + 1)2^{q(N-(m+n))}$. It is related to $|T(N)|$ by

$$\frac{|I(A) \cap T(N)|}{|T(N)|} = \frac{(N - (m + n) + 1)2^{q(N-(m+n))}}{N2^qN} = \left(1 - \frac{m + n}{N} + \frac{1}{N}\right)2^{-q(m+n)} \geq \frac{2^{-q(m+n)}}{m + n} =: C > 0.$$

Thus for all $N \geq m + n$ there is a constant $C > 0$ independent of N such that

$$|T(N)| \geq |I(A) \cap T(N)| \geq C|T(N)|.$$

The next proposition is the key to the proof of Proposition 2.6. Define for $(m,k) \in I$

$$g_{m,k}(x) = \int_0^x h_{m,k}(u) du. \quad (4)$$

Proposition 2.5 ([12], Proposition 2.4) For $q = 9$, $N \in \mathbb{N}$, and for each family of numbers $(a_{((m,k),(n,l))})_{T(N)}$ one has

$$\sup_{x,y \in [0,1]} \sum_{T(N)} a_{((m,k),(n,l))} g_{m,k}(x) g_{n,l}(y) \geq 2^{-3qN/2-7} \sum_{T(N)} |a_{((m,k),(n,l))}|. \quad (5)$$

One idea of the proof of this proposition is that the $g_{m,k} \otimes g_{n,l}$ have positive and negative values and therefore can compensate the sign of the numbers $a_{((m,k),(n,l))}$. Another ingredient is the fact that for fixed m and n and different pairs (k,l) and (k',l') the supports of $g_{m,k} \otimes g_{n,l}$ and $g_{m,k'} \otimes g_{n,l'}$ have disjoint interiors.

Define for $x, y \in [0,1]$ the set $R(x,y) = [0,x] \times [0,y]$.

Proposition 2.6 Suppose that $f \in L^2[0,1]^2$ satisfies the decomposition

$$f = f_\epsilon \cdot 1_{\text{supp}(h_{\epsilon,\epsilon} \otimes h_{\epsilon,\epsilon})} + f_\nu \cdot 1_{\text{supp}(h_{\nu,\nu} \otimes h_{\nu,\nu})},$$
where $f_c \in \mathbb{R}\{0\}$, $f_c \in L^2[0,1]^2$ and $h_{m', k} \otimes h_{n', l'} \in OS(I)$. Moreover, let
\begin{align*}
\{W(h); \ h \in L^2[0,1]^2\}
\end{align*}
be an isonormal process. Then for $\varepsilon \to 0+$
\begin{align*}
\mathbb{P}\left\{\sup_{x,y \in [0,1]} |W(1_{R(x,y)}f)| < \varepsilon \right\} \leq O\left(\exp\left(-\frac{|f_c|^2(\log(1/\varepsilon))^3}{C^6\varepsilon^2}\right)\right),
\end{align*}
where C is a positive constant depending only on $m' + n'$.

Notice that the asymptotics depend only on a constant part of f.

Before we begin to prove Proposition 2.6 we need another fact. Let $f \in L^2[0,1]^2$ and let $(b_m)_{m \in \mathbb{N}}$ and $(\xi_m)_{m \in \mathbb{N}}$ be like in the remarks to equation (3). Furthermore, let $\mathcal{K}, \mathcal{L} \subset \mathbb{N}$ with $\mathcal{K} \cap \mathcal{L} = \emptyset$. Then two stochastic processes $W_{\mathcal{K}}$ and $W_{\mathcal{L}}$ are given by
\begin{align*}
W_{\mathcal{K}} = \left\{W_{\mathcal{K}}(1_{R(x,y)}f) = \sum_{m \in \mathcal{K}} \xi_m(1_{R(x,y)}f, b_m); (x,y) \in [0,1]^2\right\}
\end{align*}
and
\begin{align*}
W_{\mathcal{L}} = \left\{W_{\mathcal{L}}(1_{R(x,y)}f) = \sum_{m \in \mathcal{L}} \xi_m(1_{R(x,y)}f, b_m); (x,y) \in [0,1]^2\right\}.
\end{align*}
Recall that a regular random variable X with values in a Banach space B is Gaussian, if for each continuous linear functional l on B the random variable $l(X)$ is a real Gaussian random variable; see [8], p. 55. Therefore $W_{\mathcal{K}}$ and $W_{\mathcal{L}}$ can be considered as centred Gaussian random variables with values in $(C[0,1]^2, ||\cdot||_\infty)$. Moreover they are independent and Lemma 2.1, [12] implies that
\begin{align}
\mathbb{P}\{||W_{\mathcal{K}} + W_{\mathcal{L}}||_\infty < \varepsilon\} \leq \mathbb{P}\{||W_{\mathcal{K}}||_\infty < \varepsilon\}
\end{align}
for any $\varepsilon > 0$.

Proof of Proposition 2.6. We construct the stochastic process $W = \{W(h); \ h \in L^2[0,1]^2\}$ explicitly. Consider the complete orthonormal system $OS(I)$, a sequence $(\xi_{m,k,n,l})$ of independent standard normal random variables and let W be given by
\begin{align*}
W(h) = \sum_{I \times I} \xi_{m,k,n,l}(h, h_{m,k} \otimes h_{n,l}).
\end{align*}
Set $A = \text{supp}(h_{m', k'} \otimes h_{n', l'})$. Then by construction of W and the assumption on f one has
\begin{align*}
\mathbb{P}\left\{\sup_{x,y \in [0,1]} |W(1_{R(x,y)}f)| < \varepsilon \right\}
&= \mathbb{P}\left\{\sup_{x,y \in [0,1]} \left|\sum_{I \times I} \xi_{m,k,n,l}(1_{R(x,y)}(f_c1_A + f_c1_{A^c}), h_{m,k} \otimes h_{n,l})\right| < \varepsilon \right\}
\end{align*}
\[\begin{align*}
\text{2 \textit{Upper Asymptotics}}
\end{align*}\]

\[
= \mathbb{P}\left\{ \sup_{x,y \in [0,1]} \left| \sum_{I \in \mathcal{I}} \xi_{m,k,n,l} \left(f_c \langle 1_{R(x,y)}1_A, h_{m,k} \otimes h_{n,l} \rangle + \langle f_v 1_{R(x,y)}1_A, h_{m,k} \otimes h_{n,l} \rangle \right) \right| < \varepsilon \right\}.
\]

Only linearity of the inner product was used. Set \(K = \mathcal{I}(A) \) and \(L = \mathcal{I} \times \mathcal{I} \setminus \mathcal{I}(A) \). Then by inequality (6) the probability in (7) is less or equal to

\[
\mathbb{P}\left\{ \sup_{x,y \in [0,1]} \left| \sum_{I \in \mathcal{I}(A)} \xi_{m,k,n,l} \left(f_c \langle 1_{R(x,y)}1_A, h_{m,k} \otimes h_{n,l} \rangle + \langle f_v 1_{R(x,y)}1_A, h_{m,k} \otimes h_{n,l} \rangle \right) \right| < \varepsilon \right\}.
\]

The indices in \(\mathcal{I}(A) \) refer only to functions in \(\mathcal{O}(\mathcal{I}) \) with support essentially in \(A \). Hence for \(g_{m,k} \) defined like in (4) by \(g_{m,k}(x) = \int_0^x h_{m,k}(u) \, du \), the probability in (8) is equal to

\[
\mathbb{P}\left\{ \sup_{x,y \in [0,1]} \left| \sum_{I \in \mathcal{I}(A)} \xi_{m,k,n,l} f_c g_{m,k}(x) g_{n,l}(y) \right| < \varepsilon \right\}.
\]

The indices are further reduced from \(\mathcal{I}(A) \) to \(\mathcal{I}(A) \cap \mathcal{T}(N) \). Inequality (6) yields that the expression above is less or equal to

\[
\mathbb{P}\left\{ \sup_{x,y \in [0,1]} \left| \sum_{I \in \mathcal{I}(A) \cap \mathcal{T}(N)} \xi_{m,k,n,l} f_c g_{m,k}(x) g_{n,l}(y) \right| < \varepsilon \right\}.
\]

and by Talagrand’s inequality (5) this is bounded from above by

\[
\mathbb{P}\left\{ \sum_{I \in \mathcal{I}(A) \cap \mathcal{T}(N)} |\xi_{m,k,n,l} f_c| < 2^{qN/2+7} \varepsilon \right\} = \mathbb{P}\left\{ \sum_{I \in \mathcal{I}(A) \cap \mathcal{T}(N)} |\xi_{m,k,n,l}| < |f_c|^{-1} 2^{qN/2+7} \varepsilon \right\},
\]

The final part follows from Proposition 2.1. To this end recall that by Example 2.4 there is a constant \(C > 0 \) which is independent of \(N \) such that

\[|\mathcal{T}(N)| \geq |\mathcal{I}(A) \cap \mathcal{T}(N)| \geq C|\mathcal{T}(N)|.
\]

Moreover, let \(\xi \) be standard normal and set \(C_0 = -2/(C \ln \mathbb{E}\{\exp(-|\xi|)\}) \). Let \(\varepsilon \) be sufficiently small such that for at least one \(N \geq m' + n' \),

\[
|f_v|^{-1} \varepsilon \leq \frac{N2^{qN}}{C_0 2^{qN/2+7}} = \frac{N2^{qN}}{C_0 2^{qN/2+7}}.
\]

Choose \(N \) maximal; \(N \) is of order \(\log(1/\varepsilon) \). Then (9) is less or equal to

\[
\mathbb{P}\left\{ \sum_{I \in \mathcal{I}(A) \cap \mathcal{T}(N)} |\xi_{m,k,n,l}| < \frac{N2^{qN}}{C_0} \right\}.
\]
and by Proposition 2.1 this probability can be bounded from above by

\[
\exp \left(- \frac{N2q^N}{C_0} \right) = \exp \left(- \frac{N^{3q^{2-14}}}{C_0} \left(\frac{N^{2-q/2^{q-1}}}{c_0} \right)^2 \right).
\]

This bound is of order

\[
\exp \left(- \frac{|f_c|^2(\log(1/\varepsilon))^3}{C_0^3\varepsilon^2} \right).
\]

In summary, for \(\varepsilon \to 0^+ \),

\[
\mathbb{P}\left\{ \sup_{x,y \in [0,1]} |W(1_{R(x,y)}f)| < \varepsilon \right\} \leq \mathcal{O} \left(\exp \left(- \frac{|f_c|^2(\log(1/\varepsilon))^3}{C_0^3\varepsilon^2} \right) \right).
\]

This completes the proof. \(\square \)

Proposition 2.6 can be generalized.

Corollary 2.7 Let \(f \in L^2[0,1]^2 \) and suppose that there are indices \((m', k')\), \((n', k') \in \mathcal{I}\) and a real number \(f_c > 0 \) such that

\[
(f^2 - f_c)_{\text{supp}(h_{m', k'} \otimes h_{n', k'})} > 0
\]

almost everywhere, where \(h_{m', k'} \otimes h_{n', k'} \in \mathcal{O}(\mathcal{I}) \). Let \(\{W(h); h \in L^2[0,1]^2\} \) be an isonormal process, then for \(\varepsilon \to 0^+ \)

\[
\mathbb{P}\left\{ \sup_{x,y \in [0,1]} |W(1_{R(x,y)}f)| < \varepsilon \right\} \leq \mathcal{O} \left(\exp \left(- \frac{|f_c|^2(\log(1/\varepsilon))^3}{C_0^3\varepsilon^2} \right) \right),
\]

where \(C \) is a positive constant depending only on \(m' + n' \).

For the proof let \(\nu \) denote a positive measure on \([0,1]^2\). Let further be \(W^\nu \) a centred Gaussian process with

\[
\mathbb{E}\{W^\nu(x,y)W^\nu(x',y')\} = \nu \left(\left[0, \min(x, x') \right] \times \left[0, \min(y, y') \right] \right). \quad (10)
\]

Proof of Corollary 2.7. Set \(A = \text{supp}(h_{m', k'} \otimes h_{n', k'}) \), then

\[
f^2 = \left((f^2 - f_c) \cdot 1_A + f^2 \cdot 1_{A^c} \right) + f_c \cdot 1_A.
\]

Moreover, set \(u = ((f^2 - f_c) \cdot 1_A + f^2 \cdot 1_{A^c})^{1/2} \) and \(v = (f_c \cdot 1_A)^{1/2} \); the function \(v \) satisfies the assumption of Proposition 2.6. Define for an arbitrary function \(w \in L^2[0,1]^2 \) the measure \(\nu_w \) on \(\mathcal{B}[0,1]^2 \) by \(\nu_w(B) = \int_B w(x)^2 \, dx \). Then the two measures \(\nu_u \) and \(\nu_v \) are positive and \(\nu_u + \nu_v = \nu_f \) by definition.
Consider the three centred Gaussian processes W^{x}, W^{y} and W^{z} and assume that the last two are independent. One has

$$
law(W^{x}) = law(W^{y} + W^{z}) = law(W^{x} + W^{y}).$$

and W^{x} and W^{y} can be considered as centred Gaussian random variables with values in $(C[0,1]^2, ||\cdot||_\infty)$. They are assumed to be independent and thus Lemma 2.1, [12] yields

$$\mathbb{P} \{|W^{x} + W^{y}|_\infty < \varepsilon\} \leq \mathbb{P} \{|W^{x}|_\infty < \varepsilon\}$$

for $\varepsilon > 0$. Furthermore, the processes W^{x} and $\{W(1_{R(x,y)})f); (x,y) \in [0,1]^2\}$ are equal in law. Similarly, the processes W^{y} and $\{W(1_{R(x,y)})v); (x,y) \in [0,1]^2\}$ have the same law. Thus we can conclude

$$\mathbb{P} \left\{ \sup_{x,y \in [0,1]} |W(1_{R(x,y)})f)| < \varepsilon \right\} \leq \mathbb{P} \left\{ \sup_{x,y \in [0,1]} |W(1_{R(x,y)})v)| < \varepsilon \right\}$$

for $\varepsilon > 0$. The assertion follows by application of Proposition 2.6. \hfill \Box

Corollary 2.7 holds for each $f \in L^2[0,1]^2$ such that f^2 is bounded away from zero at least on a rectangle. For example, this is satisfied, if f is continuous and does not vanish at at least one point. Hence, the important case of continuous functions which do not vanish identically is covered.

Definition 2.8 Let $B \subset \mathbb{R}^2$. Let $\mathcal{CR}(B)$ denote the set

$$\{f \in L^2(B); \exists Q = [a,b] \times [c,d] \subset B, f_{c} > 0 \text{ with } (f^2 - f_{c})|_{Q} > 0 \text{ a.e.}.\}$$

Corollary 2.7 can still be improved.

Remark 2.9 Let ν be a positive and non singular measure on $[0,1]^2$ and let W^{ν} be a centred Gaussian process as in (10) before. Then Theorem 4.2, [12] yields for $\varepsilon \to 0+$

$$\mathbb{P} \left\{ \sup_{x,y \in [0,1]} |W^{\nu}(x,y)| < \varepsilon C(\nu) \right\} \leq \mathcal{O} \left(\exp \left(- \frac{(\log(1/\varepsilon))^3}{C(\nu)\varepsilon^2} \right) \right),$$

where $C(\nu)$ is a positive constant depending only on ν. Let $f \in L^2[0,1]^2$ and define $\nu(A) = \int_{A} f(z)^2 \, dz$ for $A \in \mathcal{B}[0,1]^2$. It is straightforward that ν is a positive and non singular measure on $[0,1]^2$. Moreover, $\{W(1_{R(x,y)})f); (x,y) \in [0,1]^2\}$ is a centred Gaussian process with

$$\mathbb{E}[W(1_{R(x,y)})f)W(1_{R(x',y')})f)] = \nu \left([0, \min(x,x')] \times [0, \min(y,y')] \right).$$

Thus Talagrand’s theorem yields

$$\mathbb{P} \left\{ \sup_{x,y \in [0,1]} |W(1_{R(x,y)})f)| < \varepsilon \right\} \leq \mathcal{O} \left(\exp \left(- \frac{C(f)(\log(1/\varepsilon))^3}{\varepsilon^2} \right) \right),$$

as $\varepsilon \to 0+$, where $C(f)$ depends only on f. Notice that the only restriction on f is its square integrability.
Our aim is to derive small ball asymptotics for solutions of a certain class of stochastic wave equations. The simplest stochastic wave equation on a real line is

$$ \frac{\partial^2 X}{\partial t^2}(t, x) - \frac{\partial^2 X}{\partial x^2}(t, x) = dW(t, x) \tag{11} $$

with zero initial conditions. We define

$$ \Delta(t, x) = \{(s, y) \in \mathbb{R}_+ \times \mathbb{R} : 0 \leq s \leq t, |x - y| \leq t - s\} $$

and let

$$ G(t, x, s, y) = 1_{\Delta(t,x)}(s, y)/2 \tag{12} $$

be Green’s function for the wave equation on the real line. The solution of (11) can be written as \{W(G(t, x)); (t, x) \in \mathbb{R}_+ \times \mathbb{R}\}; see for example [13] or [2]. By rotation and shift, we establish a link to the process \{W(1_{R^{x,y}}); (t, x) \in \mathbb{R}_+ \times \mathbb{R}\} for which we derived asymptotics before.

A point \(z \in [0, 1]^2 \) is transferred to a point \((t, x) \in \mathbb{R}_+ \times \mathbb{R} \) by a 45°-clockwise rotation and a shift by \((-2^{-1/2}, 0), i.e.

\[
(t, x) = \left(\frac{z_1 + z_2}{\sqrt{2}}, \frac{-z_1 + z_2}{\sqrt{2}} \right) - \left(\frac{1}{\sqrt{2}}, 0 \right)
\]

equivalently

\[
z = \left(\frac{t + 2^{-1/2} - x}{\sqrt{2}}, \frac{t + 2^{-1/2} + x}{\sqrt{2}} \right).
\]

Let the clockwise rotation with shift be denoted by \(r^- \) and the shift with anti-clockwise rotation be denoted by \(r^+ \).

Corollary 2.10 Let \(f \in CR(\Delta(2^{-1/2}, 0)) \), then

\[
P \left\{ \sup_{(x,t) \in \Delta(2^{-1/2},0)} |W(G(t,x,f))| < \varepsilon \right\} \leq O \left(\exp \left(\frac{C(f)(\log(1/\varepsilon))^2}{4\varepsilon^2} \right) \right)
\]

for \(\varepsilon \to 0^+ \), where \(C(f) \) is a constant depending only on \(f \).

Proof. Define the function \(f_{r^-} \) on \([0, 1]^2\) by

\[
f_{r^-}(z) = \begin{cases}
 f(r^-(z)) & \text{if } z_1 + z_2 \geq 1 \\
 0 & \text{otherwise}.
\end{cases}
\]

Then the two random variables \(W(G(t,x,f)) \) and \(W((1/2)1_{R^+}f_{r^-}) \) are equal in law for \(z = r^+(t, x) \). Thus

\[
\sup_{\Delta(2^{-1/2},0)} |W(G(t,x,f))| \quad \text{and} \quad \sup_{[0,1]^2} |W((1/2)1_{R^+}f_{r^-})|
\]
are equal in law and the assertion follows from Corollary 2.7.

Putting things together gives the main result of this section. Notice that we use for the partial differential equations in question their integral equation representation, too; see again [13] or [2].

Theorem 2.11 Let \(f \in L^2(\mathbb{R}_+ \times \mathbb{R}) \) such that \(f|_{\mathcal{A}((2^{-1/2})^2, 0)} \in CR(\mathcal{A}(2^{-1/2}, 0)) \) and let \(g \) be a LIPSCHITZ continuous function on \(\mathbb{R} \). Let \(u_0 \) be a continuous function from \(\mathbb{R}_+ \times \mathbb{R} \) to \(\mathbb{R} \) and let \(X \) be the solution of the stochastic integral equation

\[
X(t, x) = u_0(t, x) + \int_{\mathbb{R}_+} \int_{\mathbb{R}} G(t, x, s, y)g(X(s, y)) \, dy \, ds + W(G(t, x)f) \tag{13}
\]

simultaneously for \((t, x) \in \mathbb{R}_+ \times \mathbb{R} \), almost surely. Finally, let \(u \) be the solution of the deterministic integral equation

\[
u(t, x) = u_0(t, x) + \int_{\mathbb{R}_+} \int_{\mathbb{R}} G(t, x, s, y)g(u(s, y)) \, dy \, ds. \tag{14}\]

Then for \(\varepsilon \to 0+ \),

\[
\mathbb{P} \left\{ \sup_{\mathcal{A}(2^{-1/2})^2} |X(t, x) - u(t, x)| < \varepsilon \right\} \leq \mathcal{O} \left(\exp \left(-\frac{C(f)(\log(1/\varepsilon))^3}{4(1 + C_L(g)/4)^2 \varepsilon^2} \right) \right).
\]

Proof. Rewriting the subtraction of (14) from (13) and taking absolute values yields

\[
|W(G(t, x)f)| \leq |X(t, x) - u(t, x)| + \int_{\mathbb{R}_+} \int_{\mathbb{R}} G(t, x, s, y)\left|g(X(s, y)) - g(u(s, y))\right| \, dy \, ds.
\]

Since \(g \) is LIPSCHITZ continuous with LIPSCHITZ constant \(C_L(g) \), the last expression is less or equal to

\[
|X(t, x) - u(t, x)| + C_L(g) \int_{\mathbb{R}_+} \int_{\mathbb{R}} G(t, x, s, y)\left|X(s, y) - u(s, y)\right| \, dy \, ds \leq \sup_{(x,t) \in \mathcal{A}(2^{-1/2})^2} |X(t, x) - u(t, x)| \left(1 + \frac{C_L(g)^{1/2}}{2} \right)
\]
simultaneously for all \((t, x) \in \mathcal{A}(2^{-1/2})^2 \) with probability one. Furthermore, if \(\sup_{\mathcal{A}(2^{-1/2})^2} |X(t, x) - u(t, x)| < \varepsilon \), then this implies

\[
\sup_{\mathcal{A}(2^{-1/2})^2} |W(G(t, x)f)| < \varepsilon(1 + C_L(g)/4),
\]
and thus for $\varepsilon \to 0+$,
\[
\mathbb{P} \left\{ \sup_{\Delta(2^{1/2},0)} |X(t,x) - u(t,x)| < \varepsilon \right\} \\
\leq \mathbb{P} \left\{ \sup_{(x,t) \in \Delta(2^{1/2},0)} |W(G(t,x)f)| < \varepsilon(1 + C_L(g)/4) \right\} \\
\leq \mathcal{O} \left(\exp \left(- \frac{C(f)(\log(1/\varepsilon))^3}{4(1 + C_L(g)/4)^2 \varepsilon^2} \right) \right).
\]

As announced, we discuss the Klein-Gordon equation perturbed by space-time white noise.

Example 2.12 Consider the stochastic Klein-Gordon equation
\[
\frac{\partial^2 X}{\partial t^2}(t,x) - \frac{\partial^2 X}{\partial x^2}(t,x) = \alpha X(t,x) + dW(t,x)
\]
with initial conditions (F, μ). Let u be the solution of the deterministic Klein-Gordon equation
\[
\frac{\partial^2 X}{\partial t^2}(t,x) - \frac{\partial^2 X}{\partial x^2}(t,x) = \alpha X(t,x)
\]
with initial conditions (F, μ). Then Proposition 2.11 yields that for $\varepsilon \to 0+$
\[
\mathbb{P} \left\{ \sup_{\Delta(2^{-1/2},0)} |X(t,x) - u(t,x)| < \varepsilon \right\} \leq \mathcal{O} \left(\exp \left(- \frac{(\log(1/\varepsilon))^3}{4(1 + \alpha/4)^2 C_0^3 \varepsilon^2} \right) \right).
\]

On the other hand the solution of equation (15) is given by
\[
X(t,x) = j_{F,\mu}(t,x) + \int_{\mathbb{R}^+} \int_{\mathbb{R}} G_{KG}^\alpha(t,x,s,y)dW(s,y),
\]
where
\[
G_{KG}^\alpha(t,x,s,y) = G(t,x,s,y)I_0 \left(\sqrt{\alpha((t-s)^2 - (x-y)^2)} \right); \quad \alpha \geq 0
\]
and
\[
G_{KG}^\alpha(t,x,s,y) = G(t,x,s,y)J_0 \left(\sqrt{|\alpha|((t-s)^2 - (x-y)^2)} \right); \quad \alpha < 0,
\]
respectively. I_0 is the modified Bessel function of order zero and of the first kind and J_0 is the regular Bessel function of order zero and of the first kind. The function $j_{F,\mu}$ is defined by
\[
j_{F,\mu}(t,x) = \frac{\partial}{\partial t} \int_{x-t}^{x+t} G_{KG}^\alpha(t,x,0,y)F(y)dy + \int_{x-t}^{x+t} G_{KG}^\alpha(t,x,0,y)\mu(dy).
\]
Moreover, $j_{F, \mu}$ is the solution of the deterministic homogeneous KLEIN-GORDON equation (16) which yields $j_{F, \mu} = u$. Thus inequality (17) yields a small ball asymptotics for (18), i.e. for $\varepsilon \to 0+$

$$\mathbb{P}\left\{ \sup_{x \in \Delta(2^{-1/2}, 0)} |X(t, x) - j_{F, \mu}(t, x)| < \varepsilon \right\} \leq \mathcal{O}\left(\exp\left(-\frac{(\log(1/\varepsilon))^3}{4(1 + C_0^2\varepsilon^2)}\right)\right).$$

In the case $\alpha = 0$, equation (18) reduces to the solution of the linear stochastic wave equation.

3 Lower Asymptotics

In this section we derive the small ball asymptotics from below. We start from TALAGRAND’s general result for a Brownian sheet and transfer this asymptotics to our special case of stochastic wave equations. We give the main result of this section in Theorem 3.4. Finally, we discuss again the example of the stochastic KLEIN-GORDON equation.

Let ν be a positive measure on $[0, 1]^2$ and let W^{ν} denote again a centred Gaussian process on $[0, 1]^2$ with

$$\mathbb{E}\{W^{\nu}(x, y)W^{\nu}(x', y')\} = \nu \left([0, \min(x, x')] \times [0, \min(y, y')] \right).$$

The analogue of Corollary 2.7 reads:

Proposition 3.1 ([12], Proposition 4.1) For $\varepsilon \to 0+$,

$$\mathbb{P}\left\{ \sup_{x, y \in [0, 1]^2} |W^{\nu}(x, y)| < \varepsilon \|\nu\|^{1/2} \right\} \geq \mathcal{O}\left(\exp\left(-\frac{(\log(1/\varepsilon))^3}{\varepsilon^2}\right)\right).$$

Let $f \in L^2[0, 1]^2$ with $\|f\|_2 > 0$. Consider the positive and non singular measure ν on $\mathcal{B}[0, 1]^2$ defined by $\nu(A) = \int_A f(z)^2 \, dz$. Then $\{W(1_{R(x,y)}f); (x, y) \in [0, 1]^2\}$ is a centred Gaussian process with

$$\mathbb{E}\{W(1_{R(x,y)}f)W(1_{R(x',y')})\} = \nu \left([0, \min(x, x')] \times [0, \min(y, y')] \right)$$

and Proposition 3.1 yields for $\varepsilon \to 0+$,

$$\mathbb{P}\left\{ \sup_{x, y \in [0, 1]^2} |W(1_{R(x,y)}f)| < \varepsilon \right\} \leq \mathcal{O}\left(\exp\left(-\frac{\|f\|_2^2(\log(1/\varepsilon))^3}{\varepsilon^2}\right)\right).$$

The next step is rotating and shifting coordinates like in the section above. Recall that the 45°-clockwise rotation with shift is denoted by r^- and the shift with anti-clockwise rotation is denoted by r^+.

Corollary 3.2 Let $f \in L^2(\Delta(2^{-1/2}, 0))$ with $\|f\|_2 > 0$. Then for $\varepsilon \to 0+$,

$$\mathbb{P}\left\{ \sup_{x \in \Delta(2^{-1/2}, 0)} |W(G(t, x)f)| < \varepsilon \right\} \leq \mathcal{O}\left(\exp\left(-\frac{\|f\|_2^2(\log(1/\varepsilon))^3}{4\varepsilon^2}\right)\right).$$
3 LOWER ASYMPTOTICS

Proof. Define the function \(f_{r,-} \) on \([0,1]^2\) by
\[
f_{r,-}(z) = \begin{cases} f(r^-(z)) & \text{if } z_1 + z_2 \geq 1 \\ 0 & \text{otherwise.} \end{cases}
\]
Then the two random variables \(W(G(t,x)f) \) and \(W((1/2)1_{R_c}f_{r,-}) \) are equal in law for \(z = r^+(t,x) \) and hence
\[
\sup_{\triangle(2^{-1/2},0)} |W(G(t,x)f)| \quad \text{and} \quad \sup_{[0,1]^2} |W((1/2)1_{R_c}f_{r,-})|
\]
are equal in law, too. This implies the assertion. \(\square \)

Recall now GRONWALL’s lemma [14], Proposition 19, III, p. 125: Let the order interval \{ \(y \leq z \) \} be given by
\[
\{ y \leq z \} = \{ y \in \mathbb{R}_+^d; 0 \leq y_i \leq z_i, \text{ for all } i \in \{ 1, \ldots, d \} \}
\]
and denote the closure of a set \(G \in \mathbb{R}_+^d \) by \(\overline{G} \).

Lemma 3.3 (Gronwall) Let \(G \in \mathbb{R}_+^d, \alpha \in \mathbb{R}, \beta > 0 \) and let \(v \in C(\overline{G}) \) with
\[
v(z) \leq \alpha + \beta \int_{\overline{G} \cap \{ y \leq z \}} v(y) \, dy.
\]
Then
\[
v(z) \leq \alpha E_d(\beta z_1 \cdots z_d) : = \alpha \sum_{i=0}^{\infty} \frac{(\beta z_1 \cdots z_d)^i}{(i!)^d}.
\]
Especially, \(E_1(x) = \exp(x) \) and \(E_2(x) = I_0(2\sqrt{x}) \), where \(I_0 \) denotes the modified Bessel function of order zero and of the first kind.

Theorem 3.4 Let \(f \in L^2(\mathbb{R}_+ \times \mathbb{R}) \) with \(\|f_1\|_{\triangle(2^{-1/2},0)}^2 > 0 \) and let \(g \) be a Lipschitz continuous function on \(\mathbb{R} \). Further, let \(u_0 \) be a continuous function from \(\mathbb{R}_+ \times \mathbb{R} \) to \(\mathbb{R} \) and let \(X \) be the solution of the stochastic integral equation
\[
X(t,x) = u_0(t,x) + \int_{\mathbb{R}_+} \int_{\mathbb{R}} G(t,x,s,y)g(X(s,y)) \, dy \, ds + W(G(t,x)f) \quad (19)
\]
simultaneously for \((t,x) \in \mathbb{R}_+ \times \mathbb{R} \), almost surely. Finally, let \(u \) be the solution of the deterministic integral equation
\[
u(t,x) = u_0(t,x) + \int_{\mathbb{R}_+} \int_{\mathbb{R}} G(t,x,s,y)g(u(s,y)) \, dy \, ds. \quad (20)
\]
Then for \(\varepsilon \to 0^+ \),
\[
\mathbb{P}\left\{ \sup_{\triangle(2^{-1/2},0)} |X(t,x) - u(t,x)| < \varepsilon \right\}
\]
\[
\geq \mathcal{O}\left(\exp \left(-\frac{\|f\|_{L^2(\mathbb{R})}(2\sqrt{C_1}g)(\log(1/\varepsilon))^{3}}{4\varepsilon^2} \right) \right).
\]
3 LOWER ASYMPTOTICS

Proof. The following inequalities hold almost surely. Suppose that
\[
\sup_{\triangle(2^{-1/2},0)} |W(G(t,x)f)| \leq \varepsilon / I_0(2\sqrt{C_L(g)}/\sqrt{2}).
\]

With the integral equations (19) and (20), and the triangle inequality one achieves for each \((t,x) \in \triangle(2^{-1/2},0),\)
\[
|X(t,x) - u(t,x)|
\leq \int_{\mathbb{R}_+} \int_{\mathbb{R}} G(t,x,s,y)\|g(X(s,y)) - g(u(s,y))\| \, dy \, ds + |W(G(t,x)f)|
\leq \frac{C_L(g)}{2} \int_{\triangle(2^{-1/2},0)} \|X(s,y) - u(s,y)\| \, dy \, ds + \varepsilon / I_0(2\sqrt{C_L(g)}/\sqrt{2}).
\]

In the last inequality the **Lipschitz** property of \(g\) is used. In the notation with shifted and rotated coordinates this is equal to
\[
|X(z) - u(z)| \leq \frac{C_L(g)}{2} \int_{R(z)} |X(w) - u(w)| \, dw + \varepsilon / I_0(2\sqrt{C_L(g)}/\sqrt{2}),
\]
where \(X(z) = u(z) = 0\) for \(z_1 + z_2 < 1\). **Gronwall’s** lemma yields
\[
|X(z) - u(z)| \leq \frac{\varepsilon}{I_0(2\sqrt{C_L(g)}/\sqrt{2})} I_0(2\sqrt{(C_L(g)/2)z_1z_2}) \leq \varepsilon,
\]
for \(z \in [0,1]^2\) and thus
\[
\sup_{\triangle(2^{-1/2},0)} |X(t,x) - u(t,x)| = \sup_{[0,1]^2} |X(z) - u(z)| \leq \varepsilon.
\]

This implies for \(\varepsilon \to 0^+\) that
\[
\mathbb{P}\left\{ \sup_{(t,x) \in \triangle(2^{-1/2},0)} |X(t,x) - u(t,x)| < \varepsilon \right\}
\geq \mathbb{P}\left\{ \sup_{(t,x) \in \triangle(2^{-1/2},0)} |W(G(t,x)f)| < \varepsilon / I_0(2\sqrt{C_L(g)}/\sqrt{2}) \right\}
\geq \mathcal{O}\left(\exp\left(- \frac{\|f\|_2 I_0(\sqrt{2C_L(g)}) (\log(1/\varepsilon))^3}{4\varepsilon^2} \right) \right)
\]
and the proof is complete. \(\square\)

The example is again the **Klein-Gordon** equation perturbed by space-time white noise.

Example 3.5 Consider the stochastic **Klein-Gordon** equation
\[
\frac{\partial^2 X}{\partial t^2}(t,x) - \frac{\partial^2 X}{\partial x^2}(t,x) - \alpha X(t,x) = dW(t,x)
\quad (21)
\]
with initial conditions \((F, \mu)\). The lower asymptotics can be derived like in Example 2.12, and for \(\varepsilon \to 0^+\)

\[
\Pr \left\{ \sup_{\Delta(2^{-1/2}, 0)} |X(t, x) - jF_{\mu}(t, x)| < \varepsilon \right\} \\
\geq \mathcal{O} \left(\exp \left(- \frac{I_0(\sqrt{|\theta|})(\log(1/\varepsilon))^3}{4\varepsilon^2} \right) \right),
\]

where again

\[
jF_{\mu}(t, x) = \frac{\partial}{\partial t} \int_{x-t}^{x+t} G_{K_G}^\alpha(t, x, 0, y) F(y) dy + \int_{x-t}^{x+t} G_{K_G}^\alpha(t, x, 0, y) \mu(dy).
\]

Acknowledgement. I like to thank Volker Liebscher, Peter Mörters, Gerhard Winkler, and Olaf Wittich for stimulating discussions and suggestions. I am also indebted to Robert C. Dalang who draw my attention to this subject.

References

REFERENCES

