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Abstract

In many studies where it is known that one or more of the certain
covariates have monotonic effect on the response variable, common fitting
methods for generalized additive models (GAM) may be affected by a
sparse design and often generate implausible results. A fitting procedure is
proposed that incorporates the monotonicity assumptions on one or more
smooth components within a GAM framework. The flexible likelihood
based boosting algorithm uses the monotonicity restriction for B-spline
coefficients and provides componentwise selection of smooth components.
Stopping criteria and approximate pointwise confidence bands are derived.
The method is applied to data from a study conducted in the metropolitan
area of Sao Paulo, Brazil, where the influence of several air pollutants like
SO on respiratory mortality of children is investigated.

Keywords: Monotonic regression, Generalized additive models, Likelihood
based boosting, Air pollution data

1 Introduction

In many biometrical problems where generalized smooth regression methods are
used, a monotonic relationship between one or more explanatory variables and
the response variable is to be assumed. A typical problem of this type which will
be considered more closely arises in studies where the influence of air pollution
on mortality or illness is investigated, see e.g. Schwartz (1994) or Conceigao,
Miraglia, Kishi, Saldiva & Singer (2001). In these analyses, an increase of deaths



or cases of illness is expected with an increasing concentration of a certain pol-
lutant. When standard smoothing techniques, like spline smoothing (Green &
Silverman 1994) or local polynomial fitting (Fan & Gijbels 1996), are applied to
data of this type in a generalized additive modeling approach, the fitted curves
are often affected by few data points. This may lead to unconvincing results.
In the following, it is proposed to incorporate the knowledge about monotonic
relationships in the estimation by using monotonic regression methods.

Starting from the Pool Adjacent Violators Algorithm (PAVA) (see e.g. Robert-
son, Wright & Dykstra 1988) which produces a step function, a variety of methods
has been developed to smooth the PAVA results, obtaining a smooth estimate of
the underlying monotonic function. Details of such approaches, which are mainly
based on kernel regression techniques, are given in Friedman & Tibshirani (1984),
Mukerjee (1988) or Mammen, Marron, Turlach & Wand (2001). Alternative ap-
proaches, which will be pursued in the following, are based on the expansion of
a monotonic function into a sum of basis functions, i.e. f =Y ja;B;. To as-
sure monotonicity of the estimate, adequate constraints have to be put on the
coefficients «;. Ramsay (1988) suggests the use of monotonic basis functions
(integrated splines), while Kelly & Rice (1991) propose a B-spline basis. As
the B-spline approach has become very popular in nonparametric regression (see
Eilers & Marx 1996), we will focus on the latter.

Most of the publications on monotonic regression are limited to unidimen-
sional smoothing problems with a Gaussian response variable y. In the example
considered here, as in many ecological or biometrical applications, one has multi-
ple covariates x' = (x1,...,,), and only for some of the covariates a monotonic
relationship to E(y|x) has to be assumed. Furthermore, the response variables
are typically binary or count data, which are considered as binomial or Poisson
distributed. Because little work has been done on monotonic regression in a gen-
eralized linear model (GLM) context, least squares approaches have often been
used in such cases (see e.g. Kelly & Rice 1991), which lead to dissatisfactory
results. Flexible modeling tools are needed, where monotonicity restrictions can
easily be incorporated into a generalized additive model (GAM) framework.

Recently, boosting approaches became increasingly important in nonpara-
metric regression, see e.g. Biihlmann & Yu (2003). As Tutz & Leitenstorfer
(2005) demonstrate, monotonicity restrictions are easy to include in likelihood
based algorithms for generalized response problems by componentwise boost-
ing of monotonic basis functions in each step. In the present paper we suggest
boosting based on B-spline basis functions, rather than using monotonic basis
functions as in Tutz & Leitenstorfer (2005) or Ramsay (1988). When using B-
splines, the monotonicity condition of the estimate is preserved in a different way.
A special update scheme for the basis coefficients is proposed which shows good
performance. It should be noted that the proposed method avoids the use of
algorithms which handle inequality constraints. Procedures of this type typically
imply heavy computational burden and often yield unstable estimates. From



a Bayesian perspective, a B-spline approach to monotonic regression has been
suggested by Brezger & Steiner (2004).
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FIGURE 1: Deaths due to respiratory causes vs. SOz-concentration (above), and
PMjg-concentration (below), monotonic Boosting methods and GAM.



We illustrate generalized monotonic regression techniques on a data set that
has been previously analyzed by Conceicao, Miraglia, Kishi, Saldiva & Singer
(2001), Singer, Andre, Lima & Congeicao (2002) and Einbeck, Andre & Singer
(2004). The data have been collected to evaluate the association between mor-
tality of children under five due to respiratory causes and the concentration of
various air pollutants in the city of Sao Paulo, Brazil, form 1994 to 1997 (the data
are available at http://www.ime.usp.br/~jmsinger; a detailed description follows
in Section 4). In Figure 1, in each panel the number of daily respiratory deaths
is given as a function of a specific air pollutant, fitted by the proposed monotonic
methods and a unconstrained generalized smoothing method (function gam() of
the R library mgev). The response variable was assumed to be Poisson distrib-
uted, and the log-link was used. These examples show that especially for SO,
and PM;,, the GAM fit is pulled downwards by few observations on the right side
where the design is sparse. The fitted curves imply a decrease of the mortality
for high pollutant concentrations, which has no causal plausibility. In contrast,
the monotonic approach shows resistance against such inconsistencies and yields
reliable fits. Einbeck, Andre & Singer (2004) found the same problems with the
data and proposed to stabilize a local fitting procedure by downweighting points
with small design density.

In Section 2 the concept of monotonic likelihood boosting based on B-splines
is introduced, and an extension to multiple covariate settings is given. In Section
3 approximate pointwise confidence bands are derived. In section 4 we take a
closer look on the data set mentioned above. Note that throughout the paper,
we refer to monotonic regression as nondecreasing regression.

2 Boosting B-splines in generalized monotonic regression

2.1 Monotonicity constraints for B-splines

First, we consider a generalized smooth monotonic regression problem with de-
pendent variable y that can be non-Gaussian, and a single covariate x. As in
generalized linear models (e.g. McCullagh & Nelder 1989) it is assumed that
y;|z; has a distribution from a simple exponential family f(y;|x;) = exp{(v:6; —
b(0;))/ o+ c(y;, ¢)} where 6; is the canonical parameter and ¢ denotes the disper-
sion parameter. The link between p; = F(y;|z;) and the explanatory variable x;
is determined by p; = h(n;), where h is a given response function which is strictly
monotone (the inverse of the link function g = h™!), and the predictor n; = n(x;)
is a function of x. While in generalized linear models, n(z) is assumed to be a
linear predictor, here more generally it is assumed that n(z) = f(z) is a smooth
function that satisfies the monotonicity condition

flz)> f(z) if x>z (1)

Obviously, monotonicity in 7 transforms into monotonicity in the means.
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Due to their flexibility, smoothing methods based on B-splines are a common
tool in statistics, see e.g. Eilers & Marx (1996). Such approaches are based on
an expansion of f into B-spline basis functions, where a sequence of knots {¢,} is
placed equidistantly within the range [Zin, Tmaz]- With m denoting the number
of interior knots, one obtains the linear term

n(r) = oo + Z a;Bj(z,q), (2)

where ¢ denotes the degree of the B-splines and m = m + 1 + ¢ (the augmented
set of knots). An algorithm for the computation of B-splines of degree ¢ is given
in De Boor (1978). Monotonicity can be assured in the following way: suppose
we have B-splines of degree ¢ > 1 and let h be the distance between the equally
spaced knots. Then the derivative 1/(x) = dn(z)/0x can be written as

n/(l’) = ZQJB;(JJ,Q) = %Z(Oéj+1 — ozj)Bj(x,q - 1),

for a proof see De Boor (1978). Since Bj(z,q — 1) > 0, it follows from
Qj1 = Qy, (3)

that 7/(x) > 0 holds. In other words, since (3) is a sufficient condition for the
monotonicity of n(z), the sequence of coefficients a; has to be nondecreasing
in order to obtain monotonic functions. This property of B-splines has been
previously exploited by Kelly & Rice (1991) and Brezger & Steiner (2004) in a
monotonic regression setting.

2.2 An outline of the algorithm

Boosting has originally been introduced within the machine learning community
(e.g. Schapire 1990) for classification problems. More recently, the approach
has been extended to regression modeling with a continuous dependent variable
(e.g. Bithlmann & Yu 2003, Bithlmann 2004). The basic idea is to fit a function
iteratively by fitting in each stage a "weak” learner to the current residual. In
componentwise boosting as proposed by Bithlmann & Yu (2003), only the contri-
bution of one variable is updated in one step. In contrast to these approaches we
propose to update a specific simplification of the predictor which makes it easy
to control the monotonicity restriction.

For simplicity, in the following, the degree ¢ of the B-splines is suppressed. In
matrix notation, the data are given by y = (y1,...,y,)", x = (z1,...,2,)". Based
on the expansion into basis function, the data set may be collected in matrix
form (y,B), where B = (By(x), ..., Byn(x)), Bj(x) = (Bj(z1),...,Bj(x,))".



The residual model that is fitted by weak learners in one iteration step uses
a grouping of B-splines. One considers for r = 1,...,m — 1 the simplified model
that has the predictor

n(z:) = aopy + a1y (Z Bj(:vi)> + Qo) ( > Bj(?Ci)) : (4)

j=r+1

When fitting model (4) the monotonicity constraint is easily checked by compar-
ing the estimates d(,y and dy(), since monotonicity follows from dgy > aq(p).
Given an estimate from previous fitting,

m
Mot (i) = Ao pla + Z & o1aBj(xi)

j=1

refitting is performed by

fnew(®i) = Nota(T:) + Gogr) + Qagr) (Z Bj($i)) + Q) ( > Bj(l“z'))
J

j=1 j=r+1
= Qood + Qogr) + Z(dj70ld + dur)) Bj(x;) + Z (Qjota + Gory) Bj(;).
j=1 j=r+1

It is obvious that 7),e, is monotonic if estimates fulfill &y, > Ay, provided
that the previous estimate 7,4 was monotonic. The grouping of basis functions
into By,..., B, and B,,,..., By, which are adapted by the amount o, in the
first and ay() in the second group allows to control monotonicity in a simple
way. Fitting a full model with m new parameters would imply much more com-
putational effort and rise problems if the newly fitted model is non-monotonic.
Instead, the possible groupings (r = 1,...,m—1) are evaluated and in analogy to
componentwise boosting the best refit is selected. The grouping of B-splines can
be derived as a restricted model in the sense of restricted least squares estimators
(RLSE) in linear models, see Theil & Goldberger (1961). In the usual form of a
smoothed estimate based on B-splines, model (4) is given by

nw) = aoy + o Bywi) + 3 o) By(w) (5)
j=1 j=r+1
: : (G RN () R G N O I
with the constraints a;’ = =’ = Qi) O = = am = ag(). The

constraints specify that blocks of » and m — r parameters have to be identical.

Before giving the algorithm, which is based on likelihood based boosting
strategies as proposed by Tutz & Binder (2004), the fit of model (4) is embedded
into the framework of penalized likelihood estimation. Let

1, o,
R = ( Opr Lo ) ’
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with 0,, 1, denoting the vectors of length r containing Os and 1s only, then (4)
may be represented in matrix form by the linear predictor 7(z) = B a,), where
B(T) = (l,BR(r)) and Qy = (Oéo(r),Oél(T),OéQ(T))/. It is pl"OpOSGd that in each
boosting step, model (4) is estimated by one-step Fisher scoring based on gen-
eralized ridge regression (Marx, Eilers & Smith 1992). Common ridge regression
maximizes the penalized log-likelihood

law) =Y lileg) — Plag),
=1

where [;(a)) = L;(h(Bgya(y)) is the usual log-likelihood contribution of the
ith observation and the P(ey)) = (A/2)e, e represents the penalty term with
ridge parameter A. However, model (4) is asymmetric in a specific sense. Consider
therefore the representation (5) of the restricted problem. If for example r = 2,

the first constraint 0452) = aéz) concerns only two parameters, whereas the second

constraint a:(f) = ... = oYY concerns m — 2 parameters, which for m = 20
means 18 parameters are restricted. It seems sensible to adapt the penalty to the
complexity of the constraints which are implicitly used. We propose to use the
penalty

P(a(r)) = g(ral(r) + (m — T)ag(r)), (6)

where the parameters are weighted by the number of parameters that are implic-
itly considered as identical. When using (6) we found much better performance
of the estimator than by using the usual ridge constraint P(a,)) = (A/2)ay, e ().
In matrix form one obtains the penalized log-likelihood

. A
lp(a(r)) = Z li(a(r)) — §a'(T)Aa(T),
=1

where
0 0 .
A= 0 R’(T)R(r) = diag(0,7,m — ), (7)

and A\ > 0 represents the ridge parameter. Derivation yields the corresponding
penalized score function

sa) = TR B WD) 5 - i) < Mag (9

with W(n) = D*(n)Z(n)~", D(n) = diag{0h(m)/on,...,0h(n,)/0n}, B(n) =
diag{o?,...,0%}, 0? = var(y;), all of them evaluated at the current value of 7.
Note that the intercept term is refitted in each iteration by the corresponding
unpenalized one-step estimate. The monotonicity constraint from (3) is incor-
porated by taking into account only estimates which fulfill &y > (. It is

7



easily seen that the update scheme given below yields the desired nondecreasing
sequences of estimates aq, ..., &, in each boosting iteration. An outline of the
algorithm is as follows.

Monotonic Likelihood Boosting for B-splines

Step 1 (Initialization)

Standardize y to zero mean, i.e. set &g = 7, a® = (9,0,...,0), f)(o) =
@.-..,9) and g = (h(g),.... h(z))"

Step 2 (Iteration)
Forli=1,2,...

1. Fitting step
For r = 1,...,m — 1 compute the modified ridge estimate based on one
step Fisher scoring,

&(r) = ( I(T)WlB(r) + AA)ilB/(r)WlDl_l(y - ﬁ’(l_l))a (9)

where a(y = (Gow), 1), Gay), Wi = WEHT), D; = D®HY), and
pl=y = h(ﬁ(lfl)). Compute the potential update of the linear predictor,
Ty mew = ﬁ(l’l) +Bay. Let A= {r:ayp) < Gon} denote the candidates

that fulfill the monotonicity constraint.

2. Selection step
Compute the potential update of the linear predictor, 7)) e, = ﬁ(l_l) +
Boyapy, r € 1,...,m — 1. Choose r; € A such that the deviance is mini-

mized, i.e.
T = arg Igél}ll Dev(n(r),new>'
3. Update
Set

N ~ (- .
dy = a5 "+ dog,

-1
a = {

'f)(l) = 'f’(l_l) + B(rz)&(rz) and ﬂ(l) = h(ﬁ(l))'

)+d1(rl) 1<j<n

. . (10)
) + Qo) ] > T

-1

=

g
~(
@;



When using boosting techniques, the number of iterations [ plays the role
of a smoothing parameter. Therefore, in order to prevent overfitting, a stop-
ping criterion is necessary. A quite common measure of the complexity of a
smooth regression fit is the hat-matrix. Consequently, Bithlmann & Yu (2003)
and Bithlmann (2004) developed a hat-matrix for Lo-boosting with continuous de-
pendent variable. In the case of likelihood boosting, for more general exponential
type distributions, the hat-matrix has to be approximated. For integrated splines,
Tutz & Leitenstorfer (2005) give an approximation based on first order Taylor
expansions, which shows satisfying properties. It is straightforward to derive the
hat-matrix for the present case along the lines of Tutz & Leitenstorfer (2005).

With My = 1,1/, and M, = £,*W,"*B,,)(B{,,, W /B, + M) 'B|, 'W,”’5}”*,

where W; = W(ﬁ(l_l)), [=1,2,...,and ¥; = E(ﬁ(l_l)), the approximate hat-
matrix is given by

Hl:I—(I—MO)(I—Ml)---(I—Ml):ZMjl:[(I—Mi), (11)

with ﬂ(l) ~ H,y. By considering tr(H;) as the degrees of freedom of the smoother,
we investigate the AIC and the BIC criteria as potential stopping criteria,

AIC(l) = Dev, + 2tr(Hy)

and
BIC(l) = Dev; + log(n)tr(Hy),

where Dev; = 27" [li(y;) — li(ﬁi(l))} denotes the deviance of the model in the
lth boosting step. The optimal number of boosting iterations is defined by
IgC = argming AIC(I) or I5}¢ = argmin; BIC(I). Since the BIC (Schwarz
1978) penalizes the complexity of the fit stronger, usually more sparse models
result. A more extensive treatment of stopping criteria for boosting algorithms

is given in Bithlmann & Yu (2005).

2.3 Extension to generalized additive models

In biometrical or ecological problems, one is usually interested in the effect of
several predictor variables, where some of them might have monotonic influence
on y, whereas others have not. Additionally, a smooth estimation is not always
appropriate for all covariates. In the following we demonstrate that the concept
given above can easily be extended to a GAM setting (see e.g. Hastie & Tibshirani
1990 or Marx & Eilers 1998). Let

n(z) = ap+ Z fs(zs), (12)

9



where for part of the unknown smooth functions (say fi, ..., f,, v < s) monotonic-
ity constraints are assumed to hold. Using the matrix notation from above, we
have a design matrix X = (xy,...,X,), where x5 = (z15,...,Z,s). Component-
wise expansion into B-spline basis functions leads to the data set (y, B(, ..., B®)),
where B refers to the jth predictor.

It is essential to distinguish between components that are under monotonicity
restrictions and those that are not. For the former, grouping of basis functions
is done within each component in the same way as described in (4). For the
unconstrained components, we follow Biithlmann & Yu (2003) and Tutz & Binder
(2004) and use penalized regression splines (P-splines, cf. Eilers & Marx 1996) as
weak learner for the chosen component. Thereby, the second order differences of
the B-spline coefficients are penalized. For simplicity, it is assumed that the same
number of basis functions m is used for all f;. The vector of basis coefficients
for the whole model is then given by & = (ap, 11, -, Q1,3 Qp 1y vy Q)
Thus, step 2 (iteration) of the algorithm described above is extended as follows:

Step 2 (Iteration):

For[=1,2,...

1. Fitting step
Fors=1,...,p,

o If s € {1,...,v} (the components under monotonicity constraint),
compute the estimates from (9) componentwise for the possible group-
ingsr=1,...,m— 1, with

B{’) = (1,BYRy,). (13)

The set of indices for components s and split points r that satisfy the
monotonicity constraint is given by

Ar={(s;r) €{l,... v} x {1,....(m— D)} : 4}, < ay}

o If s {v+1,...,p} (the components without constraints), compute
the one step Fisher scoring estimate of the P-spline including the in-
tercept term,

&(s) _ (B*(s)/WlB*(s) + )\PA/2A2)—1B*(5)/WlDl71(y _ﬂ(l—l))7 (14)
where
N L
0o ... 1 =21
denotes the matrix representation of the second order differences, and

B*®) = (1,B®). Since the P-spline fit (14) does not distinguish be-
tween split points € {1,...,m—1}, for convenience of notation we set

10



r = 0 and extend the selection set by As = {(s,0),s € {v+1,...,p}},
yielding
A=A UA,. (15)

2. Selection step
Compute the potential update of the linear predictor, which only for the
monotonic coefficients s < v depends on the split point r. Otherwise, r is
set to 0, indicating that ﬁgg;mw is not affected by r. Choose (s;,7;) € A
such that the deviance is minimized, i.e.

(s) )

(s;,r;) = arg min Dev(ﬁ(r) ow

(s,r)€A
3. Update
Besides the intercept, in each iteration only the basis coefficients belonging
the chosen component s; are refitted. That means, if the selected s; is in
{1,...,v}, then @él) and ézii?j, j =1,...,m, are updated by the refitting
scheme (10). If s; > v, then update

. ~ ~(-1) |
oy =qy '+ and & =al 44l

with &* from (14).

By using Bgi; from (13), along with B*(*) and the penalty matrix A,A, for
the P-spline estimates, the hat-matrix approximation from (11) and the corre-
sponding AIC and BIC stopping criteria can be extended to the additive setting.
In the case of many predictors it might occur that boosting stops before a certain
component has been chosen. Thus, the extended approach has the nice effect of
doing variable selection for smooth components, similar to the methods proposed
by Bithlmann & Yu (2003). This additional strength is important only in data
sets with a large number p of covariates, where only some of them are influential.

If a set of covariates Ty41, . .., Tp, v < w < p has to be modeled in a parametric
way, i.e. if we have a semiparametric linear predictor

w p
n@) =00+ Y fulz)+ D> Buty

s=1 u=w+1
(e.g. Speckman 1988), the estimation of the corresponding parameters is easy to
incorporate in our proposed algorithm. However, it turns out that fixed effects
that are included with one basis function in the selection are rarely chosen, espe-
cially for dummy covariates, since they carry much less information compared to
metrical variables. Hence, after initialization, we treat parametric covariates like
the intercept: unpenalized one step estimates result from (9) and (14) respec-
tively by simply enlarging the matrix Bgig (B*®) by Xyi1,. - , X, and correcting
the penalty matrix A (ALA,) appropriately. The corresponding coefficients are
then updated in each boosting iteration.

11



3 Standard deviations

In order to obtain standard deviations for function estimates, we suggest to start
from the approximate hat-matrix given in (11). Consider the model from (12),

where components 1,...,v are estimated under the monotonicity constraint and
components v+ 1, ..., p are not, the linear predictor after [ boosting iterations is
given by
P
A" =165 +> BWal, (16)
where &\ = (a4 gl)l, . aglzn) and 07(()[) results from updating the intercept in each

iteration. Let s; be the component chosen in the kth boosting iteration, one has
from the update step of the extended algorithm,

(5)"(16 1)
() A (k) _ B a s sk#s
B Q" = { B(S)&gk 1) +S ( /l(k_l)), Sk = 8, (17)

where, according to (12) and (14),

(sk) (R (sk) (sk) 1 (sk) -1
Sk:{B( 9B )’WkB + M) BU WD, <V g

B*(S’“)(B )W, B0 + APA'AQ) B O'W Dy, sp > .

From (18), it becomes apparent that the type of the update of the chosen com-
ponent depends on the presence or absence of a monotonicity restriction. Using
the indicator function I(.), (17) can be written in the closed form

B4l = BUal ) ¢ I(s = )8ty — ).

With the approximation of the hat-matrix, one has ﬂ(k ERN H,_,y, which leads
to
B(S)&gk) ~ B(S)dgk_l) + ](Sk = S)Sk(I - Hk_l)y,

and hence, in a recursive fashion,
DAl ~ o)
B¢ )as ~Q°,
where

l
Q= I(si = 5)Sk(I— Hy_y).
k=1

Approximate confidence intervals for the estimate of the smooth component f
after [ boosting iterations are then found from

on(QVy) = QVéon(y)Ql”,

where cov(y) = diag(62,...,62).
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4 Air pollution in S3o Paulo

In the following the air pollution data from Section 1 are investigated more closely.
The objective is to evaluate the association between mortality of children under
five attributed to respiratory causes and the concentration of SO,, CO, PM;, and
O3. The response variable is the number of daily deaths attributed to respiratory
causes in the city of Sao Paulo. The sample size is n = 1067. A standard
approach for data of this type is to use a generalized additive "core’ model which
includes terms to control for trend, seasonality and other influential variables
like temperature or humidity, cf. Schwartz (1994). As the dependent variable
consists of count data, we use a Poisson model along with the (natural) log-link,
and consider the core model of Singer, Andre, Lima & Congeicao (2002),

n = log[E(resp. deaths)] = «ap+ fi(time) + fo(temp) + f5(humidity)
+/1 - Monday + - - - + [ - Saturday (19)
+ (7 - non-resp. deaths.

The model includes non-specified functions to control for long-term seasonality
(days), temperature (daily minimum, lag 2) and relative humidity (lag 0). In ad-
dition day of week dummies are included to control for short-term seasonality and
the number of deaths by non-respiratory causes as a linear term. The basic strat-
egy to investigate the effect of a specific pollutant is to take only this pollutant
into the model. In the following, we will exemplarily focus on the concentration
of SOy, given in daily 24-h mean values of pg/m?, considering the predictor

1 =n+ f4(SOy). (20)

Since an increase in respiratory mortality with rising pollutant concentrations is
expected, it is sensible to assume the function f; to be isotonic. To account for
that assumption, model (20) has been fitted by the boosting procedure described
in Section 2 (GMBBoost, Generalized Monotonic B-spline Boosting), where f;
was estimated under the monotonicity constraint. We used a B-spline basis of
degree 3 with m = 20 equidistant interior knots for each of the smooth compo-
nents. The penalty parameter A\p in the one step P-spline estimates from (14)
for the non-monotonic components was set to 200. For the monotonic estima-
tion of f4, we chose a smaller A\ of 20 due to the multiplication by weighting the
penalty, see (6). It should be noted that the choice of penalty parameters is not
crucial in boosting approaches; it is chosen for convenience such that the number
of iterations is not too high. The fixed effects were re-estimated in each iteration.
To stabilize the approximation of the hat-matrix, we put an additional shrinkage
factor of v = 0.1 on the estimates in each boosting step. Boosting was stopped
by AIC as well as by BIC. For comparison, we also fitted a generalized additive
model using gam() from the R package mgcv (for details see R Foundation for
Statistical Computing 2004 and Wood 2000).
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Figure 2 shows the estimated curves fl, cee f4 for the various fitting proce-
dures. It is seen from fl (upper left panel) that the seasonal pattern in mortality
is evident for all three fitting methods. Mortality tends to decrease as temper-
ature increases (upper right panel). Interestingly, the GAM fit yields a almost
straight line, while both boosting estimates show a plateau between 10 and 15
°C, a result that has also been reported by Conceicao, Miraglia, Kishi, Saldiva
& Singer (2001). For the relative humidity (lower left panel), GAM results in an
increasing, again almost straight line. AIC-stopped boosting shows two troughs
at 656% and 90% relative humidity, while BIC-stopped boosting assigns only a
marginal relevance to that component. The most interesting result is found in
the fit for the concentration of SOy (lower right panel), where the monotonicity
constraint is set in GMBBoost. The GAM fit shows the same effect that is seen
in the simple introductory example presented in Figure 1: the curve is severely
pulled down by the sparse points of high concentrations, resulting in the implau-
sible result of decreasing mortality for concentrations larger than 40 pg/m?. This
phenomenon has been also detected by Einbeck, Andre & Singer (2004). Instead,
GMBBoost shows a quite different behaviour. Since monotonicity is assumed for
this component, one obtains a monotonic increasing fit, which remains constant
on a high level of mortality for high pollutant concentrations. This result is in
accordance with biological theory. For BIC-stopped boosting, the effect is flatter
then for AIC-stopped boosting.

In Table 1, the parameter estimates for the fixed effects, controlling for long-
term seasonality and non-respiratory deaths, are given for the different fitting
methods, along with the corresponding values of AIC and BIC. It is seen that
the estimates are rather stable across fitting procedures. More importantly, it
is seen that AIC-stopped GMBBoost outperforms GAM distinctly in terms of
the AIC criterion, indicating that the constrained boosting approach results in
a more appropriate model for the present data. Interestingly, also BIC-stopped
boosting does slightly better than GAM in terms of AIC. A similar result is
seen for the BIC. The corresponding GMBBoost estimate performs best for this
criterion, whereas GAM does even worse than AIC-stopped boosting. Since in
the BIC criterion, the complexity of the fit is penalized stronger as compared
to AIC, GMBBoost stops earlier for the former (IJ; = 88) than for the latter
(l;‘;ftc = 213).

Figure 3 shows the curves fitted by AIC-stopped GMBBoost, and approximate
0.95 pointwise confidence bands as derived in Section 3. In the lights of confidence
intervals, it is seen that the effects of temperature and humidity are rather weak.

In studies of the type presented here, one is often interested in the risk of
death at a certain pollutant concentration, relative to the risk of death at the min-
imum concentration of that pollutant, see e.g. Singer, Andre, Lima & Conceicao
(2002) or Einbeck, Andre & Singer (2004). Let SO2(i) be the recorded concentra-
tion in observation i, i = 1,..., 1067, and SO3(min) the minimum concentration
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FIGURE 2: Core model + f4(S0Os3), estimated curves for the smooth components,
GMBBoost with monotonic fitting of f4(SO2), AIC-stopped (solid), BIC-stopped
(dashed) and GAM (dotted). Data points are given as rug at the foot of each
panel.

recorded, then the relative risk of death is defined by

E(respiratory death|SOs(1)) _ exp[n + f1(SO2(i))]
E(respiratory death|SOy(min))  exp[n + f4(SOz(min))]
= exp[f1(SO2(i)) — f1(SO2(min))].

In Figure 4, the estimated relative risk curve is given for the three fitting meth-
ods. The implausible result of the GAM fit which indicates that high SO,-
concentration causes a decrease in the relative risk of death, is apparent. In
contrast, the GMBBoost fits show a monotonic increase of the risk curve for val-
ues up to 35 ug/m?>. For larger concentrations, the risk remains at a fairly high
level for the AIC-stopped boosting, whereas the effect is not as strong if boosting
is stopped by BIC.

RR(i) =

5 Concluding remarks

A procedure is proposed that allows to use the information on monotonicity
for one or more components within a generalized additive model. By using
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GAM GMBBoost, AIC | GMBBoost, BIC
intercept 0.9687 1.0971 1.0995
Monday -0.1578 -0.1621 -0.1799
Tuesday -0.2094 -0.2347 -0.2717
Wednesday -0.0034 -0.0048 -0.0061
Thursday -0.1213 -0.1136 -0.1105
Friday -0.1673 -0.1733 -0.1727
Saturday -0.1123 -0.1114 -0.1123
non-resp. deaths -0.0088 -0.0086 -0.0058
AIC 1292.0622 1279.6322 1289.8215
BIC 1408.3948 1393.3433 1375.8885

TABLE 1: Core model + f4(SO3), estimates of fixed coefficients for GAM and
GMBBoost.
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FIGURE 3: Core model + f4(S0O3), AIC-stopped GMBBoost with monotonic
fitting of f4(SO3) along with the approximate confidence intervals. Data points
are given as rug at the foot of each panel.

monotonicity, the procedure prevents that few outlying observations yield im-
plausible fits. These effects may be avoided to a certain degree by downweighting
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FIGURE 4: Relative risk curves vs. SOy concentration for GAM (-), GMBBoost,
AIC-stopped (+) and BIC-stopped (o).

observations with small design density (Einbeck, Andre & Singer 2004). However,
with downweighting approaches, problems arise in higher dimensions, since den-
sities have to be estimated. The monotone regression boosting approach does not
suffer from these problems. It should also be noted that the problem of choosing
smoothing parameters - which in case of higher dimensional covariates is hard to
tackle - is avoided in boosting techniques. The only crucial tuning parameter is
the number of boosting iterations, which is chosen by the AIC or BIC criterion.
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