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Abstract
Response functions that link regression predictors to properties of the response distri-
bution are fundamental components in many statistical models. However, the choice
of these functions is typically based on the domain of the modeled quantities and
is usually not further scrutinized. For example, the exponential response function is
often assumed for parameters restricted to be positive, although it implies a multi-
plicative model, which is not necessarily desirable or adequate. Consequently, applied
researchers might face misleading results when relying on such defaults. For param-
eters restricted to be positive, we propose to construct alternative response functions
based on the softplus function. These response functions are differentiable and corre-
spond closely to the identity function for positive values of the regression predictor
implying a quasi-additivemodel. Consequently, the proposed response functions allow
for an additive interpretation of the estimated effects by practitioners and can be a better
fit in certain data situations.We study the properties of the newly constructed response
functions and demonstrate the applicability in the context of count data regression and
Bayesian distributional regression. We contrast our approach to the commonly used
exponential response function.

Keywords Generalized linear model · Link function · Regression · Response
function · Softplus

1 Introduction

Regression analysis is an essential tool for understanding relationships between vari-
ables in many fields, including economics, social sciences, and engineering. Response
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functions and their inverse, known as link functions, play a pivotal role in modern
regression methods as they relate distribution parameters to predictors. While default
response functions such as the logistic and exponential functions are widely used, they
may not always provide the best fit for the specific problem at hand. The selection
of an appropriate response function impacts the model in two ways: First, unsuitable
response functions lead to poor model fit, potentially violating model assumptions.
Second, the choice of the response function significantly impacts the interpretation of
covariate effects in a regression model.

The exponential function is popular for strictly positive parameters due to the inter-
pretability of effects as multiplicative. However, this assumption of multiplicativity
can be restrictive, as additive effects are often desired in statistical modeling. Tradi-
tionally, researchers resort to not using a response function if they desire additivity
of effects. However, this can be problematic when the parameter modeled is strictly
positive. Certain covariate combinations might lead to a negative value and, thus,
invalidate the model.

In this paper, we propose constructing novel types of response functions for strictly
positive parameters based on the softplus function softplus(x) = log(1 + exp(x)).
These response functions may prove valuable when seeking a model with an additive
interpretation of effects since they allow for a quasi-additive interpretation over a
certain part of the range of predictor values while guaranteeing that the function’s
value complies with the positivity restriction. Furthermore, it is a strictly increasing
bijective function mapping the real values to its positive subset. Therefore, it is an
eligible response function for positively restricted distribution parameters. It can be
used instead of the exponential response function (providing a quasi-additive model)
or the identity response function (avoiding the restriction of regression coefficients).

In addition to the quasi-additive interpretation, the softplus function enables the
design of response functions with interesting properties. Augmented with an addi-
tional parameter, it yields further flexibility to model the data given, (i) it avoids
exponential growth, which can be an issue under certain covariate combinations, and
(ii) it enables the construction of an exponential-like function that avoids potential
numerical overflow when evaluating it for large positive predictor values.

For the choice of the response function, most researchers rely on default choices
such as the logistic response function for parameters restricted to the unit interval (e.g.,
probabilities) or the exponential response function for strictly positive parameters. In
generalized linear models (GLMs, McCullagh and Nelder 1989), these defaults can
often be justified by their characterization as natural link functions arising in the con-
text of exponential families. In other cases, the default response functions are chosen
to entail specificmodes of interpretation, e.g., multiplicative effects on odds in the case
of the logistic response function or multiplicative effects on the parameter of interest
in the case of the exponential response function. The straightforward interpretabil-
ity is also the reason why Fahrmeir et al. (2013) recommend using the exponential
response function for gamma-distributed responses in the GLM framework instead of
the canonical link function. Additionally, special situations require the use of rather
exotic response functions. For example, the square root link for Poisson distributed
data helps to mimic a least squares estimation on the square root transformed data
with a likelihood approach within the GLM framework.
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To determine the correct response function in a set of candidate functions, Ntzoufras
et al. (2003) propose employing a reversible jump algorithm instead of resorting to
model selection criteria. An alternative to pre-chosen response functions is to estimate
the response function flexibly from the data. The most well-known example of this
approach is the single-index model introduced by Ichimura (1993). The kernel-based
single-index models share the disadvantage that the estimated response function is
often too flexible. To counter this characteristic, Yu and Ruppert (2002) and Yu et al.
(2017) introduced penalization to single-index models. Recently, Spiegel et al. (2019)
presented an approach that combines the single-index models based on penalized
splineswith the flexibility of generalized additivemodels (Hastie andTibshirani 1986).

One practical challenge when employing flexible link functions lies in interpreting
the resulting model since restrictions must be assigned to the regression predictor to
render the response function estimate identifiable. In contrast, simple, fixed response
functions considerably facilitate interpretation.Having easily interpretable effectsmay
be why the exponential response function is still the most common approach for
positively bounded parameters.

Regardless of howwell default choices can be justified, no single response function
can fit all situations. Pregibon (1980) points out that a misspecification of the response
function is systematic model misspecification. Moreover, domain-specific knowledge
about the application can invalidate amultiplicativemodel entirely and, e.g., suggest an
additivemodel. Therefore, investigating alternative response functions is a worthwhile
and relevant endeavor.

The remainder of this paper is structured as follows: Sect. 2 introduces the softplus
response function, justifies the quasi-additive interpretation, and gives a guideline for
its proper use. Furthermore, Sect. 2 describes statistical inference when employing
the softplus response function. Section3 investigates the softplus response function
in simulation studies. The practical applicability of softplus-based regression spec-
ifications is demonstrated in Sect. 4. The final Sect. 5 summarizes our findings and
discusses future research directions. The code associated with this manuscript can be
found on GitHub.1

2 The softplus function

2.1 Definition and properties

The softplus function (Dugas et al. 2001) has primarily been employed in deep neural
networks (Zheng et al. 2015) as a smooth and differentiable approximation of the
rectifier function. In the statistics literature, the rectifier function is commonly known
as a linear spline, defined as x+ = max{0, x}. The softplus functionmaps real numbers
to their positive counterparts, such that the output is always in the positive subset R+.
We use a generalized version of the softplus function (similar to Liu and Furber 2016)

1 https://github.com/goestats/softplus-response-function.
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Fig. 1 Plot of the softplus function (left) for different values of softplus parameters a. The approximated
linear spline is shown as the dotted line

that incorporates an extra parameter a > 0 and can be defined using the equation

softplusa(x) = log (1 + exp(ax))

a
. (1)

When a = 1, the function reduces to its simple form. Figure1 illustrates the softplus
response function for different values of a. By introducing the softplus parameter a,
we can control the approximation error with respect to the linear spline. It can be
shown that for every ε > 0, exists some a > 0 such that

0 < softplusa(x) − max{0, x} ≤ log(2)/a < ε

holds for all x ∈ R. The largest approximation error is at x = 0 as visually indicated
by Fig. 1 and follows from the reformulation for numerical stability discussed in the
Appendix (see Eq. (3) in Sect. A.1). Besides, one can observe in Fig. 1 that the softplus
function follows the identity function very closely in the positive domain and rapidly
approaches zero in the negative domain for x → −∞. This behavior can be further
accentuated by increasing the parameter a. Therefore, the softplus parameter a can
be used to control how long the quasi-linear relationship should be maintained when
approaching zero and consequently, how fast the boundary of the linked distribution
parameter is approached.

The adoption of the softplus function as a response function features two major
advantages:

• It translates the additivity of effects on the predictor level to the parameter space for
a majority of the relevant distribution parameter space while always guaranteeing
the positivity of the distribution parameter. This is achieved by being quasi-linear
in its argument as long as the predictor is large enough for a given value of a.

• The softplus function allows for a straightforward interpretation of the covariate
effects. When the predictor value is large enough, the effects can be interpreted
directly on the parameter. Consider the linear effect of a covariate x with the
corresponding regression coefficient β. A difference in x by one unit is associated
with a difference of β in the predictor and, when using the softplus function, also
with a difference of almostβ in the distribution parameter or expressed as a formula
softplus(β(x + 1)) ≈ β + βx .
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Clearly, the quasi-additive interpretation is no longer valid once the argument of the
softplus function is not within the approximately linear part of the softplus function,
which we define in detail in Sect. 2.2. However, by choosing a sufficiently large a, the
linear part covers almost the entire positive domain. In the negative domain and for a
sufficiently large a, a slight change of the covariate usually does not cause a relevant
change in the parameter value since the softplus function outputs values very close to
zero. To ensure the validity of this interpretation, it is necessary to check the range of
values of the linear predictor for the observations in the data set. Most of them should
be located within the linear part of the softplus function.

The quasi-additive interpretation contrasts the usual multiplicative interpretation
for positively constrained parameters that arise from using the exponential response
function. For example, exp(β(x + 1)) = exp(β) exp(βx) leads to the interpretation
that a change of one unit in the covariate is associated with a multiplicative change of
exp(β) units on the parameter.

In contrast to large values for a, which enable the quasi-additive interpretation,
with the choice of sufficiently small values for a, the softplus function resembles the
exponential function with a scaled and shifted argument. This becomes more obvious
when taking into account that log(x + 1) is almost linear in x , for |x | � 1, and
thus log(1 + exp(ax))/a ≈ exp(ax − log(a)) for exp(ax) � 1. Consequently, the
choice of the softplus parameter a allows to continuously vary between an identity-
like response function (for a → ∞) and the exponential response function (with
scaled and shifted argument for a → 0). This property facilitates the construction of
the softplus exponential response function, approximating the exponential function
for small arguments but with a limiting gradient (see the Supplementary Material for
details). The function can be a viable alternative if one desires an exponential-like
response function, but unbounded growth is an (e.g., numerical) issue.

2.2 Linear part of the softplus function

A crucial consideration in employing the softplus function as a response function
in regression modeling is identifying the region where it behaves approximately lin-
early. Only within this section the interpretation of regression effects is quasi-additive.
However, due to the nonlinearity of the softplus function across its entire domain, it
is necessary to specify the conditions under which this interpretation is valid.

Consider a change in the regression predictor of γ ∈ R starting from the value
η ∈ R. Using the identity function as the response function, the change in the param-
eter modeled is equally γ . Thus, a regression effect of size γ can be interpreted as
influencing the parameter by γ .

When working with the softplus function, it is important to note that the same
change in the argument can lead to different changes depending on the location of
η. We need to identify the subset of the domain in which the function value change
approximately matches the argument’s change. This requires an assessment of the
error induced by the softplus function and establishing an acceptable error threshold.
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The error induced by using the softplus function is

errora(η, γ ) = γ − (softplusa(η + γ ) − softplusa(η)) (2)

while the relative error is

rerra(η, γ ) = errora(η, γ )

γ
= 1 − softplusa(η + γ ) − softplusa(η)

γ
.

We say that interpreting a regression effect γ directly on the parameter is valid
if, for some pre-specified acceptable relative error α, the predictor η is in the interval
[T ,∞) ⊆ R for which rerra(T , γ ) < α holds. The acceptable relative error, of course,
depends on the application and should be chosen carefully. In this work, we consider
a relative error of 5% acceptable.

2.3 Choosing the softplus parameter

There are two approaches to selecting a value for the softplus parameter a: based on
the model fit or to achieve the desired interpretability. In cases where interpretability
is of higher priority, we recommend selecting a value for a that permits the quasi-
additive interpretation with an relative error margin of nomore than five percent. More
precisely, after fitting the model, it should be confirmed that the estimated predictors
for (almost) all observations are within the interval [T ,∞) when interpreting effects
of size γ . However, since this assessment can only be done after fitting the model,
testing multiple values of a might be required. Additionally, we want to stress that it
is at least of equal importance to check that the model assumptions are met.

2.4 Inference

Replacing the standard exponential response function with the softplus response func-
tions introduced in this paper does not cause major difficulties as long as the parameter
a is fixed. Since the softplus-based response functions are continuously differentiable,
standard maximum likelihood inference can be used in GLM-type setting where only
the derivative of the link function in the definition of theworkingweights and thework-
ing observations of iteratively weighted least squares (IWLS) optimization have to be
replaced (see for example Fahrmeir et al. (2013), for details on the IWLS algorithm).

In our simulations and applications, we rely on the Bayesian paradigm for statis-
tical inference, since this allows us to apply the softplus-based response functions
also beyond GLMs, for example in generalized structured additive regression models
with complex additive predictor (Brezger and Lang 2006) or in structured additive
distributional regression models (Klein et al. 2015). For the pre-specified response
function with parameter a, we rely on an MCMC simulation scheme where we update
the parameter vector block-wise with aMetropolis-Hastings (MH) step in conjunction
with IWLS proposals (Gamerman 1997; Klein et al. 2015). IWLS proposals automat-
ically adapt the proposal distribution to the full conditional distribution and therefore
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avoid manual tuning which is, for example, required in randomwalk proposals. This is
achieved by approximating the full conditional distribution with a multivariate normal
distributionwhose expectation and covariancematrixmatchmode and curvature of the
full conditional distribution at the current state of the chain which can be determined
based on the IWLS algorithm of frequentist maximum likelihood estimation without
requiring the normalizing constant of the full posterior. More precisely, the parame-
ters of the proposal distribution are determined by executing one Fisher-Scoring step
and using the new position as the mean for the multivariate normal distribution while
the covariance of the normal distribution is set to be the inverted observed Fisher-
Information at the old position. More formally, let θ be the vector of parameters that
should be updated within a MH-block and let L(θ) be the unnormalized full con-
ditional posterior log density with respect to the parameter vector θ . The proposal
distribution is Normal with mean μ = θ + gF−1 and covariance matrix � = F−1

where g denotes the gradient of L(θ) and F denotes the Hessian of −L(θ) each with
respect to θ . This sampling scheme has proven effective in various regression models
(Lang and Brezger 2004; Klein et al. 2015; Klein and Kneib 2016). Our implemen-
tation relies on an extension of the R-package bamlss (Umlauf et al. 2018) which
implements methodology described above.

3 Simulations

With our simulations, we

• conduct a proof of concept evaluation that investigates how reliable models with
the softplus response function can be estimated and whether the resulting credible
intervals are well calibrated,

• study the ability of model selection criteria to distinguish between data-generating
processes involving either the softplus or the exponential response function.

For all simulations, estimation is conducted within the Bayesian paradigm and carried
out in R (R Core Team 2022) with the package bamlss (Umlauf et al. 2018). We
use a similar data-generating process varying only the sample size and the response
function. In particular, we employ data generated from a Poisson distribution with
expectation E(yi ) = λi = h(ηi ) where h denotes the response function. For a single
observation, we choose the predictor structure η = 1.0+ 0.5x1 + 1.0x2 + 2.0x3 with
x1, x2, x3 being independent and identically uniform distributed on the interval from
−1 to 1. All observations are stochastically independent. Throughout this section, we
assume flat priors for all regression coefficients.

3.1 Point estimates and credible intervals

In the first segment of the simulation studies, we present the results that demonstrate
the reliability of using the softplus function as a response function with well-calibrated
posterior means and credible intervals. The simulation scenarios feature the sample
sizes n ∈ {50, 100, 200, 500, 1000, 5000} and the softplus parameter a is set to a
value from {1, 5, 10}. Within each scenario, we carry out 6150 replications, a number

123



3162 P. F. V. Wiemann et al.

Fig. 2 Box plots of deviations from posterior mean estimates of regression coefficients to the true value for
different sample sizes and different softplus parameters a. Replications that include an absolute deviation
larger than five for one coefficient have been excluded from plotting for better visualization. This applies
to one replication with a = 5 and to ten replications with a = 10 each with a sample size of 50

that is determined by considering the coverage of the true parameter as a Bernoulli
experiment and imposing that the normal approximationof the 95%confidence interval
for a coverage rate of 0.8 does not surpass 0.02.

In the first part of the simulation studies, we show that the softplus function
can be reliably used as a response function and that posterior means and credi-
ble intervals are well-calibrated. The simulation scenarios feature the sample sizes
n ∈ {50, 100, 200, 500, 1000, 5000} and the softplus parameter a was set to a value
from {1, 5, 10}. Within each scenario, we simulated 6150 replications. The num-
ber 6150 is determined by considering the coverage of the true parameter as aBernoulli
experiment and requiring that the normal approximation of the 95% confidence inter-
val for a coverage rate of 0.8 is smaller than 0.02. We run one MCMC chain with
12,000 iterations, of which the first 2000 iterations are deemed the burn-in phase.

The results are visualized using box plots of the posterior mean estimates in Fig. 2
and coverage ranges of 80% and 95% credible intervals in Fig. 3. In summary, we
draw the following conclusions:

Bias For most simulation settings, the bias is negligibly small. The only
exception is a small sample size in conjunctionwith a rather large soft-
plus parameter a, where we can observe a slight bias, especially for
the intercept. However, one must keep in mind that a large parameter
a implies an almost linear link function such that there is consid-
erably less variability (and therefore information) in data sets with
the softplus response function compared to the exponential response
function with the same linear predictor value. Furthermore, the soft-
plus functionmaps even small negative values to a positive value close
to zero and thus close to the boundary of the parameter space. The
bias quickly diminishes as the sample size increases.
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Fig. 3 Coverage probability for 80% (solid line) 95% (dotted line) credible intervals for different sample
sizes and different softplus parameters a

Coverage rates Fig. 3 supports that our Bayesian approach provides accurate ’cred-
ible intervals’ for sufficiently sized samples. However, for smaller
samples, the coverage rates suffer from the bias that arises due to the
use of higher values for the softplus parameter.

In short, the results obtained with the softplus response function are reliable. Espe-
cially for larger sample sizes, no biases are observed and the coverage rates behave
as expected. Results of this simulation exercise obtained with maximum likelihood
inference are virtually identical and are omitted for the sake of brevity.

3.2 Model selection based on DIC

In this simulation setting, we study how successfully the well-established deviance
information criterion (DIC, Spiegelhalter et al. 2002) can be used to discriminate
between data generated by either the softplus or the exponential response function. As
in the last subsection, we vary the sample size and use a = 1 or a = 5 for the softplus
parameter. Each scenario is replicated 500 times, and as before, we run one MCMC
chain with a burn-in phase of 2000 iterations and 10,000 sampling iterations.

In Fig. 4, we present the results summarized as percentages of correct model
selection. In addition, we consider a more conservative model decision rule where
a minimum difference in DIC has to be achieved and use 1, 10, and 100 as threshold
values.

In all settings, a larger sample size leads to the correct model being recognizedmore
frequently. Furthermore, the correct model for the same sample size is better identified
if the data are generated with the exponential response function. As described above,
this can be attributed to the fact that the information per observation (quantified by the
expected Fisher information) is larger when generated with the exponential response
function than with the softplus response function with a = 5. Thus, a larger sample
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3164 P. F. V. Wiemann et al.

Fig. 4 Percentages of correct model selections based on DIC differences with thresholds 0, 1, 10 and 100
when data are generated with the exponential response function (top row) and the softplus response function
(second and third row)

size is needed to have the same probability of selecting the correct model. Yet, our
simulations show that the DIC is a reliable metric for differentiating between the
softplus response function and the exponential response function.

4 Applications

We present four applications to demonstrate how the softplus response function can
be used in practice. We contrast our novel approach to the commonly used exponen-
tial response function. First, we employ a well-known data set from ethology about
horseshoe crab mating behavior as an illustrative example for count data regression
with the softplus response function (Sect. 4.1). Then, we illustrate the usefulness of
the softplus response function in a distributional regression model with smooth effects
(Sect. 4.2). For that, we fit a model to data from a bike-sharing service in Washington,
D.C., where the softplus function can be used as a response function for the variance
parameter of a normally distributed outcome.

In an application to operational loss data (Sect. 4.3), we demonstrate the usefulness
of the softplus response function apart from the quasi-additive interpretation.

In the supplementary material, we revisit the horseshoe crab data estimating the
limiting gradient of the softplus exponential function, which suggests using a lin-
ear response function. Furthermore, using data from the Munich rent index, we
demonstrate similarities between results obtained from quantile regression and a
location-scale model with the softplus response function.

4.1 Horseshoe crabs

Brockmann (1996) investigates horseshoe crab mating behavior. Horseshoe crabs
have a strongly male-biased sex ratio which becomes particularly apparent in spring
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Table 1 The table displays the
DIC values broken down by
response function and response
distribution for each model
fitted. ZA indicates the
zero-adjusted response
distribution. The smallest value
is underlined

Negbin (ZA) Negbin

Exp 716 740

Softplus 715 738

when male and female horseshoe crabs arrive in pairs at the beach, ready to spawn.
Unattached males also come to the beach, gather around females and try to gain fertil-
ization at the expense of the attached males. Brockmann (1996) shows that the number
of unattached males, so-called satellites, gathering around a couple depends mainly
on the properties of the female crab and, to a lesser extent, on environmental factors.

Agresti (2013)2 and Kleiber and Zeileis (2016) reanalyze these data using count
data regression techniques to model the number of satellite males. Agresti (2013)
assumes the response value to be Poisson or negative binomial distributed, and for
each response distribution, he compares the exponential response function and the
identity response function. He finds that the negative binomial regression model with
identity response function fits the data best among these four models. Kleiber and
Zeileis (2016) extend this approach by using hurdle models to allow excess zeros. The
authors favor the negative binomial hurdle model with an exponential response func-
tion. However, they omit results for the identity response function since they claim that
the negative binomial hurdle model is superior with respect to predictions compared
to the negative binomial model with identity response function favored by Agresti
(2013). Their argumentation includes that, in contrast to the identity response func-
tion, the exponential response function avoids negative predictions for small carapace
widths. The softplus function prevents negative predictions as well.

To illustrate how the softplus function can be used to model the bounded expec-
tation of a count data model, we extend the analyses mentioned. We use the softplus
function with a = 5 as a response function in negative binomial regression models
with and without accounting for excess zeros. Following Kleiber and Zeileis (2016),
the carapace width and a numeric coding of the color variable are used as regressors
in all models. All models are fitted with bamlss using uninformative priors on all
coefficients.

We use the DIC to compare the eight models’ relative performances (see Table 1).
Similar to Kleiber and Zeileis (2016), we find that the negative binomial hurdlemodels
fit best, and theDIC slightly favors the softplus response function. The slight difference
in fit between the response functions is not surprising since Kleiber and Zeileis (2016)
already point out that, given at least one satellite, neither carapace width nor color
seems to have a significant contribution. Note that an intercept-only model does not
depend on the response function used since the intercept parameter can adapt to the
response function yielding the same distribution parameter. Consequently, the limited
impact of the response function in the zero-adjusted model is expected.

2 The accompanying website makes the data available; see https://users.stat.ufl.edu/~aa/cda/cda.html.
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Fig. 5 Plots of the expected response given carapace width and mean color for different response distri-
butions broken down by response function. ZA indicates the the zero-adjusted response distribution. In
addition, the dashed line indicates the probability of 0 satellites. The points show the observed data

Fig. 6 QQ-plots of one realization of RQRs for negative binomial distributed responses without and with
zero-adjustment (indicated by ZA) employing the softplus or the exponential response function

Nonetheless, the application gives insight into the usefulness of the softplus func-
tion. In Fig. 5, we display the expected number of satellites predicted as a function
of carapace width with color set to the mean value. When considering the negative
binomial regression, one can clearly observe the differently shaped curves reflecting
the response function employed. A visual examination suggests that the exponential
response function might not decay fast enough for small values of carapace width
while increasing too fast for large values. On the contrary, the softplus response func-
tion seems to fit better when compared to the pattern arising from the model with
zero-adjusted negative binomial response distribution (i.e., the hurdle model).

In particular, when considering the probabilities of observing zero satellites
(P(y = 0); these are represented as dashed lines in Fig. 5), the model based on the
softplus function is closer the output from the zero-adjusted response distribution.
This is especially true for small width values of the carapace. This is due to the fact
that the softplus function with a = 5 approaches zero much faster than the expo-
nential response function does. Furthermore, quantile-quantile plots (QQ-plots) of the
randomized quantile residuals (RQRs, Dunn and Smyth 1996) indicate a decent fit
to the data for all models with a preference for the hurdle model (see Fig. 6 for one
realization).
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Table 2 Posterior estimates of the regression coefficients on the expected value together with their 95%
credible intervals (equal-tailed). The last column shows the posterior mean of the exponential function
applied to the regression coefficient. Besides, σ denotes the dispersion parameter

Softplus Exponential

Mean 2.5% 97.5% Mean 2.5% 97.5% Exp.(·)
(Intercept) –9.65 –15.86 –3.59 –3.12 –5.66 –0.86 0.08

width 0.53 0.32 0.75 0.18 0.11 0.27 1.20

color –0.54 –1.12 0.01 –0.27 –0.52 –0.04 0.77

log(σ ) 1.13 0.74 1.53 1.14 0.76 1.51 –

When removing the zero-adjustedmodel from our considerations, the DIC suggests
that themodelwith the softplus response function has an advantage. This finding aligns
with Agresti (2013) and his claim of a better fit using the identity response function
compared to the exponential response function.Byfitting Poissonmodelswith softplus
and exponential response functions, we can confirm the results from Agresti (2013),
i.e., the quasi-linear response function fits the data better in terms of DIC. However,
we omit the results here because Kleiber and Zeileis (2016) have already pointed out
that the Poisson response distribution can not appropriately model the data.

To illustrate the difference in the interpretation of softplus and exponential response
functions, we focus on the model assuming a negative binomial distributed response
without adjusting for zeros since the impact of the different link functions becomes
almost indistinguishable when adjusting for zeros. Posterior means of the parameters
are displayed in Table 2 together with the corresponding 95% credible interval (equal-
tailed). For a change of 0.53, the linear threshold, as defined in Sect. 2.2, is 0.37, while
for a change of − 0.54, its value is 0.91. Notice that more than 98% and 94% of the
posterior means of the linear predictor are larger than these linear thresholds. Thus,
we consider the linear interpretation of the covariate effects of width and color valid
for almost all observations. In particular, a change by one unit in carapace size or color
would increase the expected number of satellites by 0.53 or − 0.54, respectively. This
is in contrast to the interpretation of the exponential response function, where the same
changes would lead to a multiplicative change of 1.20 and 0.77, respectively. The 95%
credible interval of the effect of color includes 0 for the softplus response function
but not for the exponential response function. In both cases, however, the null effect
is very close to the credible interval’s boundary.

4.2 CapitalBikeshare

In this section, we demonstrate the applicability of the softplus function as a response
function in a Bayesian distributional regression model with flexible covariate effects.
We employ data from CapitalBikeshare, a bicycle-sharing service located in Wash-
ington D.C., to analyze the mean rental duration in minutes within each hour in the
years 2016–2017.3 The operator might want to predict the number of trips and their

3 The raw data can be found at https://www.capitalbikeshare.com/system-data.
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expected duration in order to know how many bikes have to be stocked. However, the
variance of the average journey time is evenly essential, as it can prevent bottlenecks
caused by unforeseen fluctuations.

The data have been preprocessed by the following rules:

• Trips taken by staff for service and inspection of the system have been removed,
as well as trips toward test stations.

• Trips taken by non-members have been removed.
• All trips with a duration of fewer than 60s have been removed since they most
likely indicate a false start or users ensuring that the bike is secure by redocking
it.

• Trips longer or equal to 60min have been removed. This amounts to roughly
0.5% of the eligible trips. We consider them outliers since the financial incentive
system of CapitalBikeshare strongly encourages users to return bikes within the
first hour.

The mean rental duration per hour is, on average, based on 308.24 trips. A raw
descriptive analysis of this quantity gives an average of 10.9 min with a standard
deviation of 1.88 min.

The framework of structured additive distributional regression models (Rigby and
Stasinopoulos 2005; Umlauf et al. 2018) extends the generalized additive models such
that multiple parameters of a response distribution can be modeled with structured
additive predictors and suitable response functions. For our analysis, we assume the
mean rental duration to be conditionally independent and normally distributed. We
model both distributional parameters (mean and standard deviation) with structured
additive predictors. In particular, the mean rental duration within each hour yi is
assumed to be independently and normally distributed with mean μi and standard
deviation σi . The parameters are linked to predictors (ημ

i , η
σ
i ) via response functions

hμ and hσ .
We use the same structure for both predictors and drop in the following superscript

index. The predictor is specified as

ηi = f1(ydayi ) + f2(dhouri ) + x′
iβ,

where yday denotes the day of the year, dhour denotes the hour of the day and
the last term contains the intercept and additional linear effects. As linear effects, we
consider a dummy variable for the year 2017 and a binary variable that encodes if the
trip took place on aweekend. The smooth functions are represented by cyclic P-splines
(Eilers and Marx 1996; Hofner et al. 2016) with second-order random walk penalty
(Lang and Brezger 2004).

To illustrate the difference in interpretation between the softplus response function
and the popular exponential response function,we estimate themodel for both response
functions, i.e., hσ = exp or hσ = softplus10. The DIC favors the softplus response
function (exponential: 58,152, softplus: 57,943). The softplus parameter was not cho-
sen on the basis of an information criterion but rather to enable the quasi-additive
interpretation.
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Fig. 7 Posterior mean estimates on the predictor of the standard deviation together with 95% point-wise
credible intervals (equal-tailed) for both response functions

Detailed results concerning the mean predictor and its components are omitted
since both models employ the same response functions and the results are very similar
(see the Supplementary Material for a full description).

We focus on the effect of the response function concerning the standard deviation σi
and, in particular, on the smooth effect of dhour and the linear effect of weekend.
Figure7 shows the estimated effect of the time of the day on the predictor of the
standard deviation. We find that both models yield similar patterns. The standard
deviation is much larger in the early hours of the day with a peak around 3 am, then
drops steeply, crosses the zero line shortly after 5 am and is comparatively low in the
morning. Over the course of the morning, the standard deviation increases slightly
until lunchtime, then decreases over the early afternoon before starting to increase
again around 4 pm. At first slightly and then very steep until it reaches its peak again
in the early morning hours.

The direct interpretation of these effects is difficult, especially when using the expo-
nential response function. For the softplus model, the estimated values of the linear
predictor are larger than 0.42 and, in conjunction with a softplus parameter of 10,
covariate effects can be interpreted as quasi-additive effects on the parameter (the
relative error for a change of 0.0001 at predictor value 0.42 is smaller than 2%). In
the following, consider the difference between the initial peak at 2.5 am and the sec-
ond peak at lunchtime. In the model with the softplus response function, we observe
that the predictor decreases by about 2.7 units and, consequently, the standard devia-
tion likewise. In contrast, for the competing model, the exponential function must be
applied to the predictor, and the outcome can subsequently be interpreted multiplica-
tively. The exponential model outputs an additive change of −1.25 on the predictor
ησ , which is reflected in a multiplicative change of the standard deviation by 3.5−1.

When considering the variable weekend (Table 3), its effect is similar in both
models: the mean rental duration exhibits more variance during the weekend, and both
95% credible intervals exclude zero. However, the interpretation of the exponential
model is not straightforward: the posterior mean of the regression coefficient related to
weekend is 0. In order to assess the multiplicative effect of weekend on the standard
deviation, one needs to consider the posterior mean of the transformed parameter, that
is exp(βweekend) = 1.48. We conclude that on a weekend, the standard deviation is
1.48 times larger than on weekdays.
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Table 3 Posterior estimates of the linear effects on the predictor of the standard deviation together with
their 95% credible intervals (equal-tailed)

Exponential Softplus

Mean 2.5% 97.5% Exp.(·) Mean 2.5% 97.5%

(Intercept) 0.151 0.134 0.168 1.163 1.325 1.303 1.348

weekend 0.392 0.364 0.419 1.480 0.566 0.525 0.604

year 2017 –0.016 –0.037 0.005 0.984 –0.009 –0.032 0.014

Fig. 8 Predicted standard deviation over the course of a day. Exemplary for the first day of the year 2016
and July 1st on a working day (Panel A) and on a weekend (Panel B). The solid line refers to predictions
for the model with exponential response function while the dashed line refers to the model with softplus
response function

The softplus model directly outputs the additive effect of weekend. We expect that
the standard deviation of the mean rental duration is 0.56 minutes larger on weekends
than on working days.

In both models, the interpretation of regression effects w.r.t. the predictor ησ is
straightforward, and the nature of the effects w.r.t. the standard deviation is known
(i.e., additive or multiplicative). Despite this, the combination of effects and their
interaction with the response function makes assessing the absolute effects on the
distribution parameter difficult. However, it becomes more apparent when considering
plots of the predicted parameter values. In Fig. 8, we show the predicted values (using
the posterior mean of the estimated parameters) for σ over the course of two selected
days of the year 2016 (these are the 1st of January and the 1st of July). We further add
the effect of weekend and display the predicted values for both models. We observe
that both models output similar values for a weekday on the 1st of July. Even the
spike in the early morning appears similar. In the winter or on a weekend, the standard
deviation is larger in both models (exponential model: 1.48 times larger on weekends,
1.31 times larger on the 1st of January; softplus model: 0.56min larger on weekends,
0.23min larger on the 1st of January). The difference between the models is most
apparent at the 3 ampeak,where it is now about oneminute. The exponential function’s
almost explosive behavior becomes apparent when considering the combined effect
(left panel in Fig. 7B). The difference between the peak at noon and in the morning
is almost 5min with the exponential function (that is a 3.5 fold increase) and just
2.75min with the softplus function. Again, for the remaining time of the day, both
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models output relatively minor differences. Compared to the right panel in A, we find
exp(0.27 + 0.39 + 1.25) = 6.75 fold increase between noon and morning peak with
the exponential function. Due to the additive nature of the softplus function, the effects
are not multiplied and the difference is just 4.53 fold (4.49min compared to 0.99min).

We can draw the following conclusions from this application: the softplus function
can serve as an alternative response function in distributional regression for a bounded
parameter and result in improved model fit. Additionally, the limited growth rate of
the softplus function can prevent the explosive behavior of the exponential function
while also providing a quasi-additive interpretation of regression effects. Even when
both functions fit equally well, the softplus function remains a viable alternative, and
the choice between the two functions ultimately rests with the practitioner. A final
remark: In the distributional regression framework, choosing an appropriate response
distribution is essential. In our case, the mean rental duration is modeled, and hence
the normal distribution appears to be a natural choice. However, the quantile-quantile
plots (shown in the Supplementary Material) of the estimated residuals indicate that
potentially skewed distributions with heavier tails may be more suitable and warrant
further investigation in future research.

4.3 Operational losses at UniCredit

In this section, we demonstrate the usefulness of the softplus function in the context of
a distributional regression model. To do so, we employ the data4 used in Hambuckers
et al. (2018a) where the authors model the size distribution of extreme operational
losses in a large Italian bank (i.e., losses stemming from fraud, computer crashes or
human errors) given a set of economic factors (e.g., interest rates, market volatility or
unemployment rate). This conditional distribution is then used to estimate a quantile
at the 99.9% level, a quantity needed to establish the regulatory capital held by the
bank, with large quantile values requesting more capital, and to monitor operational
risk exposure in various economic situations, such as a financial crisis or economic
expansion periods.

Since operational loss data are heavy-tailed and the focus is on extreme value
dynamics, distributional regression techniques are needed to properly reflect the effect
of the covariates on extreme quantiles. Following Chavez-Demoulin et al. (2016), an
approach based on extreme value theory is traditionally used: a high threshold τ is
defined by the statistician, and only losses larger than this threshold are kept for the
analysis. Then, we assume that the distribution of the exceedances above the threshold
is well approximated by a Generalized Pareto distribution (GPD). In the context of
extreme value regression, the parameters of the GPD are additionallymodeled as func-
tions of covariates, defining a Generalized Pareto (GP) regression model. Estimated
parameters of this model are used to derive the quantile of interest given values of the
covariates.

Formathematical and conceptual reasons, both parameters of theGPDare restricted
to strictly positive values: the scale parameter σ(x) is strictly larger than 0, whereas
the shape parameter γ (x) is restricted to positive values to guarantee the consistency

4 The data can be accessed through: http://qed.econ.queensu.ca/jae/datasets/hambuckers001/.
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Table 4 Descriptive statistics of the exceedance. iqr denotes the inter-quantile range

Category n Mean Median Skewness Kurtosis Iqr

CPBP 4034 255,879 29,453 24 674 68,361

EDPM 3302 133,468 15,571 20 539 43,689

EFRAUD 1598 64,027 15,277 37 1412 31,169

Fig. 9 Histograms of the log-losses larger than the 75% quantile per category, for the three event types

of the maximum likelihood estimator and to reflect the tail-heaviness of the loss distri-
bution. Thus, an exponential response function is commonly used for computational
simplicity, although no theoretical support for a multiplicative model exists (see, e.g.,
Umlauf and Kneib (2018), Hambuckers et al. (2018b), Bee et al. (2019) and Groll
et al. (2019)). However, this choice for γ (x) might quickly generate explosive quan-
tile estimates for some combinations of the covariates,making themodel economically
unexploitable to derive capital requirements. In addition, it can have a similar unde-
sired effect on uncertainty quantification: the width of the confidence interval on the
quantile increases exponentially with the estimated quantile itself. Consequently, it is
in times of high estimated risk exposure (i.e., large values of the 99.9% quantile) that
risk managers face the highest model uncertainty to take decisions.

To illustrate how the softplus function helps mitigate these issues, we reanalyze the
UniCredit loss data for three categories of operational losses, namely the categories
execution, delivery and process management (EDPM), clients, products, and business
practices (CPBP) and external fraud (EFRAUD). The data were collected over the
period January 2004–June 2014. As in Hambuckers et al. (2018a), we work with the
25% largest losses in each category. Descriptive statistics and histograms of the data
are provided in Table 4 and Fig. 9. They both highlight the presence of extreme values
that need to be accounted for. For each loss registered during a given month, we
associate the values taken by a set of economic covariates observed the month before
that were found susceptible to influence the loss distribution by Hambuckers et al.
(2018a) (the complete list can be found in the Supplementary Material). Denoting by
yi = zi − τ the exceedance of a loss zi above the threshold τ , and by xγ,i and xσ,i

the corresponding vectors of covariates for both γ and σ , our model can be written in
generic form as

yi ∼ G(γ (xi ), σ (xi )),
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Table 5 Deviance information criterion for the different models.Null model refers to the exponential model
with no covariates. The smallest value in each category is underlined

Category Exp Sofptplus 1 Softplus 5 Softplus 10 Null model

CPBP 23,593.24 23,594.99 23,598.48 23,603.37 23,626.18

EDPM 16,532.26 16,532.77 16,535.42 16,540.51 16,542.68

EFRAUD 6547.11 6545.59 6545.89 6546.31 6567.46

Fig. 10 QQ-plots of the RQRs for the different models. The number in parentheses refers to the employed
goodness of approximation parameter in the softplus function

γ (xi ) = hγ (x
′
γ,iβββγ ),

σ (xi ) = hσ (x
′
σ,iβββσ ),

with G(·) denoting the cumulative distribution function of the GPD, and βββγ and βββσ

being the vectors of regression parameters for γ and σ , respectively.
We fit separate GP regression models to each sample with bamlss using

24,000 MCMC iterations, treating the first 4000 iterations as burn-in and applying a
thinning factor of 20.We compare the results obtained with various response functions
hγ (we keep the exponential function for hσ ). Estimated regression parameters can be
found in theSupplementaryMaterial.We report theDIC inTable 5,whereasFig. 10dis-
plays the QQ-plots of the RQRs. They both indicate that the overall goodness-of-fit is
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Fig. 11 Box plots of the estimated 99.9% quantiles of the conditional loss size distribution (x-axis is in
log-scale).

Fig. 12 Ratio of the sizes of the confidence intervals (sp / exp). Left panel: ratio expressed as a function of
the softplus posterior mean estimate. Right panel: ratio expressed as a function of the exponential posterior
mean estimate. Each row displays the results with the softplus parameter set to the value indicated on the
right (a = 1, 5, 10)

satisfactory and similar across models, with a slight preference for the softplus models
for EFRAUD, and an advantage of the exponential model for the other categories.

However, looking first at the predicted values of the 99.9% quantile of the con-
ditional distributions, models based on the softplus functions generate fewer outliers
than the exponential function (Fig. 11): the largest predicted quantiles are between
1.5 and 3471 times smaller with the softplus models than with the exponential model.
Whereas UniCredit is exposed to extremely high (and unrealistic) capital requirements
if it uses the exponential model, this issue is well mitigated with the softplus model.
This effect is particularly strong for EFRAUD. Second, looking at the size of the con-
fidence intervals for the 99.9% quantiles, we observe a clear trend: in Fig. 12, we
show the ratio between the size of the confidence intervals obtained with the softplus
functions and those obtained with the exponential function, with values smaller than
1 indicating an advantage for the softplus functions. For large values of the estimated
quantile, we obtain much narrower confidence intervals with the softplus functions,
with most ratios below 1. This result implies that, in times of financial stress charac-
terized by high values of the quantiles, the softplus models deliver more informative
estimations.

Finally, we investigate if these results also imply a better fit of the models based
on the softplus function for the observations far in the tail. To do so, we report the
Anderson-Darling (AD) statistics (Stephens 1974) computed on the RQRs (Fig. 13).
Compared to AIC or DIC, the AD statistic gives more weight to extreme residuals and
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Fig. 13 Anderson-Darling statistics obtained from the RQRs for the three categories

is therefore routinely used to assess the goodness-of-fit of extreme value regression
models (Choulakian and Stephens 2001; Bader et al. 2018). On this latter criterion, we
observe a better fit of the softplus functions for CPBP and EFRAUD. The fit is rather
similar for EDPM, although slightly better for the exponential model.

Overall, this application demonstrates the usefulness of the softplus function to
prevent outliers among estimated quantities of interest (in the present case, a quantile
far in the tail) when there are no justifications for a multiplicative model. In addition,
it shows that the softplus models provide similar global goodness-of-fit levels but
dramatically reduce the uncertainty around large estimated quantities of interest, a
desirable feature for end-users.

Finally, notice that, once the softplus response function has been chosen to avoid
outliers and to decrease estimation uncertainty, one may be interested in selecting
an appropriate softplus parameter a, as discussed in Sect. 2.3. In the present case,
this selection can be conducted using either an information criterion like DIC, or a
goodness-of-fit statistic focusing on the tail observations such as theAD statistic, since
this is a primary concern in our application.

5 Summary and conclusion

This paper introduces the softplus response function and showcases its applicabil-
ity in a broad range of statistical models. The novel response function ensures the
positivity of the associated distribution parameter while allowing for a quasi-additive
interpretation of regression effects for the majority of the relevant predictor space.
We highlight the interesting theoretical properties of the softplus response function,
justify the quasi-additive interpretation and give a guideline to assess the validity of
this interpretation.

Particular emphasis is placed on demonstrating the straightforward quasi-linear
and quasi-additive interpretation of covariate effects with several applications. Fur-
thermore,wehighlight that the limited growth rate of the softplus response function can
prevent outliers in predictions and, thus, can reduce prediction uncertainty. Thereby,
we show that the new response function is applicable to a great variety ofmodel classes
and data situations.

Our simulation studies demonstrate that the softplus function behaves well as a
response function with no noticeable shortcomings. Estimates are consistent and our
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Bayesian approach yields reliable credible intervals. Furthermore, we show that infor-
mation criteria can be used to distinguish between data generated by the exponential
and the softplus response function.

We do not claim that the softplus function is generally a better response function
than the exponential function, nor that the softplus response function is always the best
choice for a quasi-additive interpretation. Indeed, other response functions to approx-
imate the linear spline can be easily constructed. For example, based on the work of
Bacon andWatts (1971) one can construct lim0<ε→0 0.5x +0.5

√
x2 + ε = x+. How-

ever, since the implementation of the softplus response function is straightforward, it
provides an easy quasi-additive alternative response function for empirical verifica-
tion. Thus, we are optimistic that the softplus response function will be available in
more software for regression modeling, as it is already included in the R-packages
brms (Bürkner 2017) and bamlss (Umlauf et al. 2018), and will allow researchers
to benefit from it. The work of Weiß et al. (2021), evaluating the softplus response
function in the context of INGARCH models, is a first indication for interest of the
statistical community in the novel response function.
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Appendix A: On implementation and properties of the softplus
function

A.1: Numerical stability

A naive implementation of the softplus function derived from Eq. (1) can easily lead
to numerical issues. The value of the exponential function for relatively small inputs
is infinity on common computer hardware. To give some intuition, according to the
IEEE 754 standard (Zuras et al. 2008) the largest 32-bit and 64-bit floating point
numbers are roughly 3.4028 · 1038 and 1.7977 · 10308, respectively. Consequently,
calculating exp(89) and exp(710), respectively, yields infinity.
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This is of special concern for the implementation of softplus function since the
argument to the softplus function is multiplied with the softplus parameter a before
the exponential function is applied. Consider a Poisson regression model with softplus
response function and a = 10. The predictor η = 9, targeting an expected value of
9, would already yield infinity on a 32-bit system using the naive implementation
although the correct result is between 9 and 9+10−40. Albeit 64-bit CPUs are common
nowadays, one should still consider 32-bit floating point arithmetic since it is often used
in high-performance computing or when the computation is carried out on graphical
processing units (GPUs) or tensor processing units (TPUs).

Despite the difficulties described, the softplus function becomes numerically stable
by using the equality

softplusa(x) = max{0, x} + log(1 + exp(−|ax |))
a

(3)

in conjunction with the log1p procedure. log1p evaluates log(1+ x) very precisely
even for |x | � 1 (Abramowitz and Stegun 1972, p. 68) and is available in most pro-
gramming languages. In this formulation, the exponential function must be evaluated
only for arguments less than 0 which can be done accurately. Besides numerical sta-
bility, Eq. (3) also implies that the softplus function has its largest approximation error
with respect to the linear spline at x = 0 with log(2)/a.

The correctness of the numerical stable formulation is easily verified by expressing
the softplus function in terms of the log-sum-exp (LSE) function and exploiting its
translation property. The LSE function takes l real valued arguments x1, . . . , xl . Its
value is given by

LSE(x1, . . . , xl) = log

(
l∑

i=1

exp(xi )

)
.

The translational property (Nielsen and Sun 2016) states that for c ∈ R

LSE(x1, . . . , xl) = c + log

(
l∑

i=1

exp(xi − c)

)

holds. Consequently, we have

softplusa(x) = log(1 + exp(ax))

a
= LSE(0, ax)

a

= max{0, x} + log(exp(0 − max{0, ax}) + exp(ax − max{0, ax}))
a

= max{0, x} + log(1 + exp(−|ax |))
a

where the second line arises by setting c = max{0, ax} and the last line follows from
the observation that −|ax | = ax for x < 0.
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A.2: On the inverse function

The inverse of the softplus is easily derived as

softplus−1
a (y) = log(exp(ay) − 1)

a
.

However, potential numerical issues have to be taken into consideration when
implementing. We suggest to implement

softplus−1
a (y) =

{
log(exp(ay)−1)

a , if y <
log(2)
a

y + log(1−exp(−ay))
a , otherwise

and use the procedure expm1(x) to calculate exp(x)−1. The first derivative is given
by

d

dy
softplus−1

a (y) = 1

1 − exp(−ay)
.

A.3: Further properties

The softplus function shares a number of its properties with the exponential function.
Both functions are smooth and bijectivemappings from the real numbers to the positive
half-axis. The first derivative of the softplus function is always positive and is given
by

0 <
d

dx
softplusa(x) = 1

1 + exp(−ax)
< 1.

The second derivative is likewise strictly positive

0 <
d2

dx2
softplusa(x) = a exp(ax)

(1 + exp(ax))2
.

Therefore, the softplus function is strictly monotonically increasing and strictly
convex.
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