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Mixed effect model for absolute log returns of ultra

high frequency data∗
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Summary

Considering absolute log returns as a proxy for stochastic volatility, the

influence of explanatory variables on absolute log returns of ultra high fre-

quency data is analysed. The irregular time structure and time dependency

of the data is captured by utilizing a continuous time ARMA(p,q) process.

In particular we propose a mixed effect model for the absolute log returns.

Explanatory variable information is used to model the fixed effects, whereas

the the error is decomposed in a non-negative Lévy driven continuous time

ARMA(p,q) process and a market microstructure noise component. The pa-

rameters are estimated in a state space approach. In a small simulation study

the performance of the estimators is investigated. We apply our model to

IBM trade data and quantify the influence of bid-ask spread and duration on

a daily basis. To verify the correlation in irregularly spaced data we use the

variogram, known from spatial statistics.
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Kalman filter, variogram
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2 Mixed effect model for absolute log returns of uhf data

1 Introduction

Efficient estimation of stochastic volatility is vital for risk management and option

pricing. We are interested in providing such estimates using all available data, al-

lowing for explanatory variables and accounting for market micro structures. For

this we use ultra high frequency (uhf) financial data. The term uhf data was defined

by Engle [1]. He calls financial data uhf data, if they consist of all transactions and

quotes recorded during the trading day. The recorded transactions of course do not

take place at regularly spaced time points, i.e. we have to analyse irregularly spaced

time series. One way would be to sample it at a given frequency, but this results in

a loss of information. Therefore we setup a model directly dealing with this irreg-

ular time spacing. Our object of interest will be the absolute log return, which is

a proxy for the unobservable instantaneous standard deviation σti , where ti is the

time of the i-th trade, of the log price Sti = log(Pti). By modeling the mean of the

absolute log returns, we get a model-based estimate of the instantaneous standard

deviation. This could then be used for example, like in Jungbacker and Koopman

[2], to estimate actual volatility of the interval [ti, tj], j > i, given by

σ∗2(ti, tj) =

∫ tj

ti

σ2
t dt

based on all available information. Here it is important to account for microstructure

noise, when dealing with ultra high frequencies. The problem of market microstruc-

ture noise at this frequency is for example explained in Aı̈t-Sahalia, Mykland and

Zhang [3]. It is more common to account for microstructure effects on the return

level, while we will account for these effects on the absolute log return scale. This is

more appropriate in the context of the regression setup we follow for the absolute

log returns. The absolute log-return |Sti −Sti−1
| will be modeled in this paper given

the past information Gti−1
= σ(Stj , dtj ; j ≤ i−1) and current duration dti = ti−ti−1.

Since the duration process is a stochastic process itself one also needs a model for

this regularly spaced (measured in tick time) time series. A popular model for the

durations given the past information, called Autoregressive Conditional Duration

(ACD) model, has been proposed by Engle and Russell [4]. There are a number of

modifications of the ACD model, which are described for example in Bauwens, Giot,

Gramming and Veredas [5].

To cope with the problem of unequally spaced data, we will assume a continuous

time parameter price process. The absolute log returns will be the response in a
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regression framework with the current duration as one of the explanatory variables

and correlated residuals. They have the correlation structure of a continuous time

ARMA process. The estimation of correlation for unequally spaced time series is

problematic, since e.g. the sample autocorrelation function can not be estimated

directly. We compute the sample variogram, which is defined in terms of increments

and therefore adequate for irregularly spaced observations. We have already said,

that the absolute log return is viewed in this paper as a noisy measure of instan-

taneous volatility. It can be decomposed into a fixed effect, a random effect and a

measurement error. The fixed effect describes the time dependent mean of the data,

whereas the random effect specifies the correlation structure. Since the fixed effect is

a function of time varying explanatory variables it allows for time of day effects (see

for example Bauwens and Giot [6]). The measurement error accounts for the market

microstructure noise on this absolute return level. The presence of microstructure ef-

fects also allows us to assume the mean function to be a continuous variable, despite

the fact that the prices are multiple of one hundreds of a dollar. The return of irreg-

ularly spaced transaction data is also modeled as a continuous variable for example

in Meddahi, Renault and Werker [7], whereas Engle and Russell [8] or Liesenfeld and

Pohlmeier [9] assume that it takes on only countably many values. The influence

of the explanatory variables will be modeled in a parametric way, which allows us

to compute predictions based on past information and current duration in a very

easy way. By using the mean squared error as scoring rule, we are able to quantify

the loss in predictive power, when duration is not used as a explanatory variable.

Here we would like to mention, that initially we are interested in detecting certain

dependencies between the response and the explanatory variables. In a further step

one could think about additionally applying an ACD model to compute predictions

in real applications. Visualisation of the explanatory variable effect on the abso-

lute log returns on a daily basis is also possible. Renault and Werker [10] studied

the instantaneous causality effect from transaction durations to price volatility and

found significant empirical evidence for it. There are also further regression models

with measures of volatility as response. Corsi [11], Anderson, Bollerslev and Diebold

[12] and Ghysels, Santa-Clara and Valkanov [13] have setup different kinds of lin-

ear regression models with for example realized volatility (see Barndorff-Nielsen and

Shepard [14]) as response. An overview over these three models can be found in Fors-

berg and Ghysels [15]. As we have already mentioned, Jungbacker and Koopman [2]

estimated actual volatility of ultra-high frequency data in a model-based approach.
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They considered a state space model for the return process, which is defined for

every second. This leads to a missing values problem. We also used a state space

approach, but rather prefer to work with time dependent matrices, to account for

the irregular time spacing, than to deal with a large number of missing values per

day.

The paper is organized as follows. In Section 2 we will setup our model for absolute

log-returns. The estimation of the model parameters will be explained in Section

3. The performance of the estimates from Section 3 will be tested in a simulation

study in Section 4. Section 5 shows an application of our model to IBM transaction

data from the NYSE. The last section gives a summary and draws conclusions.

2 A mixed effect regression model for irregularly

spaced data

The main characteristic of the data we deal with is that we have observations at

irregularly spaced time points. Therefore we think it is natural to assume, that these

observations are observations from a continuous time model. It is common practice

to model the volatility of high frequency data as a continuous time linear process (see

for example Barndorff-Nielsen and Shepard [16] or Jungbacker and Koopman [2]).

Since the absolute log return is a measure of the instantaneous standard deviation,

we will model them in such a way, that they have the autocorrelation structure

of a continuous time linear process. To be precise, we assume the autocorrelation

structure of a continuous time ARMA(p,q) process, henceforth called CARMA(p,q)

process.

2.1 Second order Lévy driven CARMA(p,q) process

A second order Lévy driven CARMA(p,q) process Y := (Yt)t≥0 is defined (see Brock-

well and Marquardt [17]) in terms of the following state-space representation of the

formal equation,

a(D)Yt = b(D)DLt, t ≥ 0, (2.1)
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in which D denotes differentiation with respect to t, L := (Lt)t≥0 is a Lévy process

(see for example Applebaum [18]) with var(L1) < ∞,

autoregressive polynomial: a(z) := zp + a1z
p−1 + · · · + ap,

moving-average polynomial: b(z) := 1 + b1z + · · · + bp−1z
p−1,

and the coefficients bj satisfy bq 6= 0 and bj = 0 for q < j < p. It is assumed that

a(z) and b(z) have no common factors. The state-space representation consists of

the

observations equation: Yt = bTWt, (2.2)

and

state equation: dWt − AWtdt = 1pdLt, (2.3)

where

A =





0 1 0 · · · 0

0 0 1 · · · 0
...

...
...

. . .
...

0 0 0 · · · 1

−ap −ap−1 −ap−2 · · · −a1





, 1p =





0

0
...

0

1





, b =





1

b1

...

bp−2

bp−1





.

The state equation is therefore a system of linear stochastic differential equations

(see for example Applebaum [18] for details on stochastic differential equations).

Definition 2.1.

If the real part of the roots λ1, . . . , λp of the autoregressive polynomial a(z) is neg-

ative and W0 is independent of the driving Lévy process L, with E(L2
1) < ∞, then

the process

Yt = bTWt,

where

Wt = eAtW0 +

∫ t

0

eA(t−u)1pdLu,

i.e.

Yt = bT eAtW0 +

∫ t

0

bT eA(t−u)1pdLu, (2.4)

is called CARMA(p,q) process with finite second moment.
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Remark 2.1.

(i) The exponential matrix eAu is defined by eAu :=
∑∞

k=0
(Au)k

k!
.

(ii) If W0 has the same distribution as
∫ ∞

0
eAu1pdLu, then the CARMA(p,q) pro-

cess (2.4) is a strictly stationary process.

(iii) The CARMA(p,q) process (Yt)t≥0 is a weakly stationary process, if W0 has the

mean and covariance matrix of
∫ ∞

0
eAu1pdLu. The mean and autocovariance

function of a weakly stationary CARMA(p,q) process (Yt)t≥0 are

E(Yt) = −bT A−11pE(L1) (2.5)

and

cov(Yt, Yt+h) = var(L1)b
T eAhΣb, (2.6)

where Σ :=
∫ ∞

0
eAs1p1

T
p eAT sds.

(iv) For a proof of (ii) and (iii) see Brockwell and Marquardt [17].

(v) Let M be a second Lévy process independent of L, but with the same distribu-

tion, and define the following extension of L:

L∗
t = Ltχ[0,∞)(t) − M−t−χ(−∞,0)(t), −∞ < t < ∞,

where Mt− denotes the left limit of M at t and χA is the indicator function of

the set A. Then the process Y := (Yt)t∈R defined by

Yt =

∫ ∞

−∞

g(t − u)dL∗
u,

where

g(t) :=

{
bT eAt1p if t > 0

0 otherwise
, (2.7)

is a solution to (2.2) and (2.3) (with L replaced by L∗). The function g is

referred to as the kernel of the CARMA(p,q) process Y . For more details see

Brockwell and Marquardt [17].
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(vi) Discrete time observations (Yti) := (Yti)i=1,...,n follow the discrete time state

space model

Yti = bTWti

Wti = eA(ti−ti−1)Wti−1
+

∫ ti

ti−1

bT eA(ti−u)1pdLu.

Example 2.1. As an example consider the Lévy driven CARMA(2,1) process Y ,

where the driving Lévy process L is a compound Poisson process with gamma dis-

tributed jumps, i.e.

Lt =
Nt∑

k=1

Xk.

Here (Xk) are i.i.d. with density f(x) = 1002

Γ(2)
xe−100x and Nt ∼ Pois(t).

Since E(X1) = 0.02 and var(X1) = 0.0002 we have var(L1) = E(X1)
2 + var(X1) =

0.0006. As autoregressive and moving-average polynomial of this CARMA(2,1) pro-

cess we choose

a(z) = z2 + 8z + 4 and b(z) = 1 + z.

1000 observations at integer times of a simulated sample path can be seen in Figure 1.

0 100 200 300 400 500 600 700 800 900 1000
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.1

Figure 1: 1000 equidistant observations of the CARMA(2,1) process with a(z) =

z2 + 8z + 4 and b(z) = 1 + z from Example 2.1
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2.2 Regression mean specification

Ultra high frequency data exhibit some time of day effects (see for example Bauwens

and Giot [6]), which result in a nonstationary time series. We try to explain these

effects as being influenced by explanatory variables, which have time of day depen-

dent values. In our setup these explanatory variable information is used to model

the mean of the data,

µti := E(|rti|),

with

|rti| := | log(Pti) − log(Pti−1
)| · 100, i = 1, . . . , n, (2.8)

where Pti is the stock price observed at time ti, like in a typcial regression setup.

There will be no assumption made about a stock price model, except that we assume,

that it is a continuous time process. To assure positivity of the mean we will use a

log-link, i.e.

log(µti) := xT
ti
β, i = 1, . . . , n, (2.9)

with xT
ti
∈ R

1×s+1 the i-th row of the design matrix

X =





xT
t1
...

xT
tn



 ∈ R
n×s+1

and parameter vector βT := (β0, . . . , βs)
T ∈ R

s+1×1. As can be seen from (2.9), a

parametric approach is taken. The specific structure of the design matrix will be

discussed in the applications. Potential explanatory variables are

bti := the last bid-ask spread before time ti

dti := the duration ti − ti−1

vti := the volume of the the last trade before time ti.

The choice of explanatory variables will be discussed in the applications. The ex-

planatory variable dti is unknown before time ti and has therefore to be estimated, by

some autoregressive conditional duration model, if the model is used for prediction.
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2.3 Correlated residuals

As we have said in the beginning we model the absolute log returns as an autocor-

related process. The question is if autocorrelation is really present in this uhf data.

The answer to this question is part of the analysis. The problem with empirically

estimating the autocorrelation in uhf data is the irregularly time structure. There-

fore the empirical autocorrelation function can not be computed. One way out is

to consider the variogram (it will be introduced and discussed in the appendix),

which is defined for irregularly spaced data. But the variogram is also not defined

for (|rti|), because the mean of the increments is not a linear function of the time

lag, i.e. E(|rt|−|rs|) 6= C ·(t−s), which has to be the case. The variogram is however

defined, when we consider the residuals

εti := |rti| − µti , i = 1, . . . , n, (2.10)

with E(εti) = 0 and var(εti) =: σ2
ε . The εti are autocorrelated because of the following

assumption

εti =: Yti + ε̃ti , i = 1, . . . , n, (2.11)

where Y is a CARMA(p,q) process and (ε̃ti) is an i.i.d. sequence and uncorrelated

with (Yti). To motivate (2.11) think of (Yti) as the random effect of the absolute log

returns, which describes their correlation structure. The mean, as we have already

said, will be accounted for by µti . But since we will not observe µti + Yti due to

some microstructure noise, like for example the fixed tick size of the log returns, we

will make some measurement error ε̃ti . To assure that Y is non-negative, the driving

Lévy process L of the CARMA(p,q) process Y has to be non-decreasing and the

kernel of Y has to be non-negative. By substituting (2.11) into (2.10) we get

ε̃ti = |rti| − µti − Yti ,

which leads to

E(ε̃ti) = −E(Yti) = bT A−11pE(L1).

The variance of εti decomposes into

σ2
ε = var(Yti) + var(ε̃ti),

=: var(L1)b
T Σb + σ2

ε̃ ,

and the autocovariance function of (εti) is equal to that of (Yti), i.e.

cov(εti , εti−1
) = var(L1)b

T eA(ti−ti−1)Σb.
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2.4 A generalised regression model with CARMA(p,q) ran-

dom effects

The above considerations have led us to the model

|rti| = exp(xT
ti
β) + Yti + ε̃ti , i = 1, . . . , n. (2.12)

In (2.12) we will understand exp(xT
ti
β) as some fixed effect, Yti as some random

effect and ε̃ti as a measurement error. The parameters which have to be estimated

are

θ := (a1, . . . , ap, b1, . . . , bq, σ
2, β0, . . . , βs, σ

2
ε̃),

with σ2 := var(L1). This is done by an iterated estimation algorithm, which will be

described in the next section.

3 Parameter Estimation

The actual parameter estimation can be done in two ways. The first one (henceforth

called direct approach) works directly on the linear regression model approxima-

tion to model (2.12), which will be introduced in the following, and the second one

(henceforth called state space approach) on the associated state space model with

application of the Kalman filter. Both estimation procedures will be explained in

Section 3.1 and 3.2, respectively. But first we start by describing the general esti-

mation algorithm. Therefore consider equation (2.10) in vector notation

|r| = µ + ε, (3.13)

with |r| = (|rt1|, . . . , |rtn|)
T ,µ and ε similarly. Since we chose the logarithm as link

function, we have the relationship

log(µ) = Xβ =: η. (3.14)

The covariance matrix of ε shall be denoted by

V (ξ) = cov(Y) + σ2
ε̃In,

with ξ := (a1, . . . , ap, b1, . . . , bq, σ
2, σ2

ε̃) and Y = (Yt1 , . . . , Ytn)T . Equation (3.13) is

just a nonlinear regression model with correlated errors. Therefore the parameters

can be estimated by maximizing

G(θ, |r|) := −(|r| − µ)T V (ξ)−1(|r| − µ). (3.15)
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Applying the Fisher scoring algorithm to maximize (3.15) leads to an iterative gen-

eralised least squares problem. The linear model, occurring in each iteration step,

can be constructed as in generalised linear models (McCullagh and Nelder [19] p.40)

by applying the link function g(·) := log(·) to the data |r| and linearise to the first

order. The estimation algorithm, which can also be found e.g. in Schall [20] , is

described in the following.

General Estimation Algorithm:

(i) Linearize g(|r|) := (g(|rt1|), . . . , g(|rtn|)
T to the first order

g(|r|) = g(µ) +

(
∂

∂µ
g(µ)

)
(|r| − µ),

where
(

∂
∂µ

g(µ)
)

is a diagonal matrix with elements ( ∂
∂µt1

g(µt1), . . . ,
∂

∂µtn
g(µtn)),

and define the new dependent variable

z := g(µ) +

(
∂

∂µ
g(µ)

)
(|r| − µ)

= η +

(
∂

∂µ
g(µ)

)
ε

= η + e,

where e :=
(

∂
∂µ

η
)

ε. Now we have a linear regression model with correlated

errors

z = Xβ + e, (3.16)

where E(z) = Xβ and cov(e) = ( ∂
∂µ

η)V (ξ)( ∂
∂µ

η)T .

(ii) To get starting values η̂0, ẑ0 we fit a generalised linear model to (3.13) assuming

uncorrelated errors, i.e. cov(ε) = σ2
εIn.

(iii) Start Iteration k = 1

(iv) The parameters β and ξ in (3.16) are then estimated in the direct or state

space approach giving parameter estimates

β̂
k

and ξ̂
k
,

respectively.
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(v) Construct new estimates of η, i.e. define

η̂k := Xβ̂
k
.

Check if

||η̂k − η̂k−1|| < TOL

is satisfied. If not set

µ̂k := g−1(η̂k)

ẑk := η̂k +

(
∂

∂µ
η̂k|µ=µ̂k

)
(|r| − µ̂k)

k = k + 1 and go to (iv).

Both estimation approaches will perform quasi maximum likelihood (QML) es-

timation (see for example White [21]) of the parameters, which requires only the

knowledge of the first two moments of the model for the data. In particular the

quasi maximum likelihood estimate (QMLE) θ̂ of an arbitrary parameter vector θ

is defined, in this case, to maximizes the QML-estimation criterion

Qn(θ, z) := −
1

n

[
log(|Λ(ξ)|) + (z − Xβ)T Λ(ξ)−1(z − Xβ)

]
(3.17)

where

Λ(ξ) :=

(
∂

∂µ
η

)
V (ξ)

(
∂

∂µ
η

)T

.

Therefore

θ̂ := argmaxθ∈ΘQn(θ, z), (3.18)

where Θ := Θ̃ × R+ × R
s+1 × R+, with

Θ̃ := {(a1, . . . , ap, b1, . . . , bq) | a(z) 6= 0 if Re(z) ≥ 0; b(z) 6= 0 if Re(z) > 0 :

the kernel of Y is non-negative }.

Conditions for the kernel of Y to be non-negative are given in Tsai and Chan [22].
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3.1 Direct approach

The estimation of parameters in (3.16) is a generalised least squares problem. It

can be solved in the following way. Since Λ(ξ) is positive definite there exists a

positive definite lower triangular matrix K(ξ) with ones on the leading diagonal,

and a positive definite diagonal matrix F (ξ), such that

Λ(ξ)−1 := K(ξ)T F (ξ)−1K(ξ).

If we transform the data

z∗(ξ) := K(ξ)z, X∗(ξ) := K(ξ)X, e∗(ξ) := K(ξ)e,

we get the heteroscedastic regression model

z∗(ξ) = X∗(ξ)β + e∗(ξ) with cov(e∗) = F (ξ). (3.19)

If we assume that ξ is known and fixed, we get the generalised least squares estimate

of β by solving an ordinary least-squares problem:

β̂(ξ) = [(F (ξ)−1/2X∗(ξ))T F (ξ)−1/2X∗(ξ)]−1(F (ξ)−1/2X∗(ξ))T F (ξ)−1/2z∗(ξ)

= [XT Λ−1(ξ)X]−1XT Λ−1(ξ)z. (3.20)

Replacing β in (3.17) by the above estimate on gets the reduced QML-estimation

criterion

Qn(ξ, z) :=
1

n

n∑

i=1

[
− log(Fti(ξ)) −

v2
ti
(ξ)

Fti(ξ)

]
, (3.21)

with vti(ξ) = z∗ti(ξ)−x∗T

ti
(ξ)β̂(ξ) and Fti(ξ) = (F (ξ))i,i. QMLE of the parameters are

therefore obtained by first maximizing (3.21) with respect to ξ to get ξ̂. Afterwards

one replaces ξ in β̂(ξ) by ξ̂ to get the generalised least squares estimate of β.

Remark 3.1. The estimation of the parameters in the direct approach includes the

computation of the inverse of Λ(ξ). In the application, which we have in mind, the

dimension of Λ(ξ) 2000 to 3000. Λ(ξ)−1 will also be a full matrix in comparison to

regularly spaced observation, where Λ(ξ)−1 will be sparse (see Jones [23] for details).

Computationally it is not efficient to compute this inverse, and therefore we refor-

mulate (3.16) as a state space model and apply the Kalman filter to compute (3.21).

The idea to rewrite a regression model in state space form is explained for example

in Durbin and Koopman [24] and Jones [23].
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3.2 State space approach

Consider again the linear regression model with correlated errors

z = Xβ +

(
∂

∂µ
η

)
ε.

Since ε = Y + ε̃, where Yti = bTWti is a CARMA(p,q) process, and
∂

∂µ
η = diag (1/µt1 , . . . , 1/µtn), because of the log-link, we get the following state

space representation of (3.16).

(i) Observation equation:

zti = xT
ti
β + Gtiαti +

1

µti

ε̃ti , (3.22)

where

Gti :=
1

µti

bT and αti := Wti .

with xT
ti

the i-th row of X ∈ R
n×s+1.

(ii) State equation:

αti+1
= Ttiαti + ζti

, (3.23)

where

Tti := eA(ti+1−ti) and ζti
:=

∫ ti+1

ti

eA(ti+1−u)1pdLu.

One standard assumption for state-space models is the zero mean of the noise

processes. This assumption is not fullfilled in (3.22) and (3.23). But we can con-

struct a second state-space model, which has the same first and second moment

structure for the observations as the first model. Since we will use a quasi-likelihood

approach to estimate the parameters ξ, only the first two moments are required.

Because of the assumption E(ε̃ti) = −E(Yti), a zero mean CARMA(p,q) process

(Y ∗
t )t≥0 = (bTW∗

t )t≥0, with cov(Y ∗
t , Y ∗

s ) = cov(Yt, Ys), together with an i.i.d. noise

sequence(ε̃∗ti), with E(ε̃∗ti) = 0, var(ε̃∗ti) = σ2
ε̃ and uncorrelated with Y ∗,will lead

to the same first and second order structure of zti . Let L∗ be a Lévy process with

E(L∗
1) = 0 and var(L∗

1) = var(L1). Then we get the state-space model:

(i) Observation equation:

zti = xT
ti
β + Gtiα

∗
ti

+
1

µti

ε̃∗ti , (3.24)
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where

Gti =
1

µti

bT and α∗
ti

:= W∗
ti
.

with xT
ti

the i-th row of X ∈ R
n×s+1.

(ii) State equation:

α∗
ti+1

= Ttiα
∗
ti

+ ζ∗
ti
, (3.25)

where

Tti = eA(ti+1−ti) and ζ∗
ti

:=

∫ ti+1

ti

eA(ti+1−u)1pdL∗
u.

An augmented Kalman filter (see e.g. Durbin and Koopman [24]) will be ap-

plied to (3.24) and (3.25). The idea of this filter is to apply the Kalman filter

with observation matrix Gti and state matrix Tti to the variables zti , x
T
ti,1

, . . . , xT
ti,s+1

consecutively. xT
ti,k

is the k-th element of the row vector xT
ti
. For each of the vari-

ables xT
ti,1

, . . . , xT
ti,s+1 a new state vector αk

ti
, k = 1, . . . , s + 1 is taken, but the

variance elements in the Kalman filter are the same as for zti . The Kalman filter

computes best linear predictions ẑti , x̂
T
ti,1

, . . . , x̂T
ti,s+1 based on all past observations

{ztj , x
T
tj ,1, . . . , x

T
tj ,s+1; 1 ≤ j < i}. In each step of the filter we store the one-step fore-

cast errors z∗ti(ξ) := zti − ẑti , x
∗T

ti,1
(ξ) := xT

ti,1
− x̂T

ti,1
, . . . , x∗T

ti,s+1(ξ) := xT
ti,s+1 − x̂T

ti,s+1.

These forecast errors can then be used to calculate the generalised least square

estimates β̂, given by

β̂(ξ) :=

(
n∑

i=1

X∗T

ti
(ξ)F−1

ti
(ξ)X∗

ti
(ξ)

)−1 n∑

i=1

X∗T

ti
(ξ)F−1

ti
(ξ)z∗ti(ξ), (3.26)

where x∗T

ti
(ξ) := (x∗T

ti,1
(ξ), . . . , x∗T

ti,s+1(ξ)) and Fti(ξ) := var(z∗ti(ξ)− x∗T

ti
(ξ)β). To see

that (3.26) is equal to (3.20) one has to recall that

Λ−1(ξ) = KT (ξ)F−1(ξ)K(ξ). (3.27)

Inserting (3.27) into (3.20) yields

β̂(ξ) = [(K(ξ)X)T F−1(ξ)K(ξ)X]−1(K(ξ)X)T F−1(ξ)K(ξ)z.

Since the Kalman filter performs the Cholesky decomposition (3.27) (Harvey [25]),

we see that applying the Kalman filter is equivalent to the multiplication by the

matrix K(ξ). For more details on the augmented Kalman filter see Durbin and

Koopman [24] or Harvey [25].
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The procedure to estimate the parameters is then exactly the same as in the

direct approach. First ξ is estimated by maximizing

Qn(ξ, z) =
1

n

n∑

i=1

[
− log(Fti(ξ)) −

(v∗
ti
(ξ) − X∗

ti
(ξ)β̂(ξ))2

Fti(ξ)

]

=
1

n

n∑

i=1

[
− log(Fti(ξ)) −

v2
ti
(ξ)

Fti(ξ)

]

with respect to ξ. This estimate is denoted by ξ̂. Afterwards ξ in (3.26) is replaced

by ξ̂ to get the generalised least squares estimate of β.

4 Simulation results

The performance of the QML estimator using the state space approach is going to be

analysed in a small simulation study. The parameters are estimated in two setups.

One with regularly spaced observations and the other with irregularly spaced ones.

For the regularly spaced observations we created 2000 equidistant time points in

the interval (0, 400). In case of irregularly sampling the durations are exponentially

distributed, with a mean value of 0.2, to assure that time points are also in the

interval (0, 400).

In each of the 100 simulations the sample size was 2000. As a explanatory variable

we took real bid ask spreads from the IBM stock. The regression coefficient β was

taken equal to 0.3. We did not include an intercept in the regression. The correlation

was simulated by a CARMA(1,0) process with parameter a = 0.8. As driving Lévy

process L wwe chose a compound Poisson process with jumps (Xk) i.i.d. expo(100)

(E(Xk) = 0.01, var(Xk) = 0.0001) and Nt ∼ Pois(3t). The jump rate of the Poisson

process N was taken equal to 3. The mean and variance of L1 are then 0.0375 and

σ2 = 0.0006, respectively. The choice of the parameter values was motivated by sim-

ilar parameter values obtained in the application presented later. The measurement

noise ε̃ was simulated as a Gaussian i.i.d. noise with mean −0.0375 and variance

σ2
ε̃ = 0.0001, respectively.

For the resulting estimates we computed estimates of mean, bias, mean absolute

error (MAE), mean squared error (MSE) and the estimated standard errors of these

estimates. The results can be seen in Table 1 and 2 showing satisfying performance

for both settings.
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â β̂

true value 0.8000 3.0000e-01

mean 0.8122 (0.0095) 2.9881e-01 (1.1341e-03)

median 0.8106 (0.0095) 2.9972e-01 (1.1341e-03)

bias 0.0122 (0.0095) -1.1903e-03 (1.1341e-03)

MAE 0.0781 (0.0056) 8.8016e-03 (7.1971e-04)

MSE 0.0092 (0.0013) 1.2875e-04 (1.8454e-05)

σ̂2 σ̂2
ε̃

true value 6.0000e-04 1.0000e-04

mean 6.1091e-04 (6.9019e-06) 9.9395e-05 (7.8563e-07)

median 6.0989e-04 (6.9019e-06) 9.9384e-05 (7.8563e-07)

bias 1.0916e-05 (6.9019e-06) -6.0439e-07 (7.8563e-07)

MAE 5.7419e-05 (3.9417e-06) 6.2597e-06 (4.7446e-07)

MSE 4.8352e-09 (6.04782e-10) 6.1470e-11 (7.7510e-12)

Table 1: Mean, median, bias, mean absolute error (MAE) and mean squared error

(MSE) for â, β̂, σ̂2 and σ̂2
ε̃ together with their estimated standard errors in paren-

theses in case of regularly spaced observations.

â β̂

true value 0.8000 3.0000e-01

mean 0.8015 (0.0092) 2.9844e-01 (9.4843e-04)

median 0.7944 (0.0092) 2.9764e-01 (9.4843e-04)

bias 0.0015 (0.0092) -1.5541e-03 (9.4843e-04)

MAE 0.0696 (0.0059) 8.1259e-03 (5.0689e-04)

MSE 0.0082 (0.0014) 9.1468e-05 (1.1264e-05)

σ̂2 σ̂2
ε̃

true value 6.0000e-04 1.0000e-04

mean 6.0974e-04 (6.9191e-06) 9.8657e-05 (5.4509e-07)

median 6.0357e-04 (6.9191e-06) 9.9198e-05 (5.4509e-07)

bias 9.7488e-06 (6.9191e-06) -1.3423e-06 (5.4509e-07)

MAE 5.5842e-05 (4.1634e-06) 4.4295e-06 (3.4225e-07)

MSE 4.8344e-09 (6.8064e-10) 3.1220e-11 (4.2670e-12)

Table 2: Mean, median, bias, mean absolute error (MAE) and mean squared error

(MSE) for â, β̂, σ̂2 and σ̂2
ε̃ together with their estimated standard errors in paren-

theses in case of irregularly spaced observations.
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5 Application

The data,which we will use, comes from the Trades and Quotes (TAQ) database of

the New York Stock Exchange (NYSE). We will work with IBM trade data from

September 30, 2002 up to October 31, 2002. The NYSE market opens 9:30 am and

closes at 4:00 pm. Tradings outside these official trading hours have been deleted.

Since we want to concentrate on real price changes we also excluded all zero returns

and the corresponding explanatory variables. We also eliminated all multiple trades.

Trades for the same transaction price were treated as a single trade by adding up the

volumes. Different transaction prices were averaged and the volumes totalled. The

resulting data set consists of transaction, bid and ask prices (all measured in cents

of US dollars), transaction times (measured in seconds) and volumes (measured

in the number of shares) realised over the specified time period. No further data

manipulations have been carried out. Exemplary the absolute log returns of six

trading days have been plotted in Figure 2.

9:30am 11:00am 12:00am 1:00pm 2:00pm 3:00pm 4:00pm
0

0.5

October 11, 2002

9:30am 11:00am 12:00am 1:00pm 2:00pm 3:00pm 4:00pm
0

0.2

0.4
October 18, 2002

9:30am 11:00am 12:00am 1:00pm 2:00pm 3:00pm 4:00pm
0

0.2

0.4
October 22, 2002

9:30am 11:00am 12:00am 1:00pm 2:00pm 3:00pm 4:00pm
0

0.2

0.4
October 23, 2002

9:30am 11:00am 12:00am 1:00pm 2:00pm 3:00pm 4:00pm
0

0.5
October 24, 2002

9:30am 11:00am 12:00am 1:00pm 2:00pm 3:00pm 4:00pm
0

0.2

0.4
October 25, 2002

Figure 2: Absolute log returns of the 11th (first row), 18th (second row), 22nd (third

row), 23rd (fourth row), 24th (fifth row) and 25th (last row) of October 2002. The

time is measured in real time.
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In Section 2 we have said, that a parametric approach is used. But up to now we

have not specified the parametric setup. To get an idea how the absolute log return

may depend on the explanatory variables, we perform some kind of explorative data

analysis by fitting a Generalized Additive Model (see Hastie and Tibshirani [26])

with uncorrelated errors to the data. The functional relationship displayed by the

model, will then be used to set up a parametric model. The aim of the analysis in

this section is to fit our model to the data. Then to check if the fitted correlation

structure can be justified and investigate the predictive power of the explanatory

variables. The one step ahead predictions of the absolute log return for October 14th

until October 31st, 2002, will be computed using the information corresponding to

each of the following four setups:

(i) the last day

(ii) the last three days

(iii) the last day and the same day one week ago

(iv) the same day one and two weeks ago.

The different forecasts are then compared using the mean squared error as criterion.

Exemplary we will present the estimation results for the days needed to predict

October 25th, 2002.

5.1 Explorative data analysis

Initially we chose only the bid-ask spread and the duration as explanatory vari-

ables. The influence of the volume will be analysed in a further study. Therefore the

generalised additive model under consideration is the following one

log(µti) = s1(bti) + s2(dti),

where si(), i = 1, 2, are smoothing splines and bti (bid-ask spread) and dti (dura-

tions) are the explanatory variables. This model is fitted using the Splus function

gam() under the assumption of uncorrelated errors. The results of this estimation

procedure can be seen in Figure 3.

For the bid-ask spread as well as the duration one can recognize a relatively smooth

functional relationship. We decided, that a polynomial of third order has enough
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Day β̂0 β̂1 β̂2 β̂3 β̂4

October 11, 2002 -4.2726 18.0106 -48.9357 49.1082 1.8313

October 18, 2002 -4.4576 18.0729 -27.0261 -42.8318 2.6261

October 22, 2002 -4.6144 24.0957 -113.1130 253.7693 2.1601

October 23, 2002 -4.3120 17.2861 -38.7623 22.5341 1.3981

October 24, 2002 -4.4129 15.7375 -27.6543 16.4028 2.8124

October 25, 2002 -4.6366 26.6262 -117.5710 228.4430 1.8190

Day β̂5 β̂6 â σ̂2 σ̂2
ε̃

October 11, 2002 -2.1036 0.7714 0.3942 1.1e-03 2.6e-09

October 18, 2002 -4.7253 2.6941 0.5942 7.4e-04 9.1e-13

October 22, 2002 -3.8395 3.2206 0.9886 2.1e-04 4.1e-04

October 23, 2002 -0.2093 -0.7194 0.7301 1.3e-03 2.1e-10

October 24, 2002 -3.4322 -0.0021 0.5253 7.1e-04 4.0e-08

October 25, 2002 -1.4558 0.2407 0.8991 9.8e-04 1.4e-04

Table 3: QMLE based on the augmented Kalman filter.

flexibility to model both explanatory variables. This led us to consider a model with

design matrix X, where

xT
ti
β := β0 + β1bti + β2b

2
ti

+ β3b
3
ti

+ β4dti + β5d
2
ti

+ β6d
3
ti
,

with bid-ask spread bti and duration dti .

5.2 Estimation results

The application of the augmented Kalman filter, which was described in Section

3.2, and the quasi maximum likelihood estimation of the remaining parameters re-

sulted in the parameter estimates, which can be seen in Table 3. The coefficients β̂k,

k = 4, 5, 6, correspond to durations measured in one-hundredth of a second, whereas

the time was measured in seconds. The plots of the absolute log returns together

with their fitted mean values are shown in Figure 4 demonstrating no obvious lack

of fit.

The regression coefficients lead to estimates of the two polynomials

pb(bti) := β0 + β1bti + β2b
2
ti

+ β3b
3
ti

(5.28)

pd(dti) := β4dti + β5d
2
ti

+ β6d
3
ti
. (5.29)
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The estimated polynomials of the m-th day are denoted by

p̂m
b (x) := β̂m

0 (bm,dm) + β̂m
1 (bm,dm)x + β̂m

2 (bm,dm)x2 + β̂m
3 (bm,dm)x3

and

p̂m
d (x) := β̂m

4 (bm,dm)x + β̂m
5 (bm,dm)x2 + β̂m

6 (bm,dm)x3

and the observations on the m-th day by

bm := (bm
t1

, . . . , bm
tnm

) and dm := (dm
t1

, . . . , dm
tnm

)

where nm is the number of observations on day m. These estimated polynomials are

shown in Figure 3.
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Figure 3: Smoothing spline estimates and estimated bid-ask and duration polyno-

mials p̂m
b (·) and p̂m

d (·) for the days 11th (first row), 18th (second row), 22nd (third

row), 23rd (fourth row), 24th (fifth row) and 25th (last row) of October 2002. The

marks represent the observed values of the explanatory variables.
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5.3 Analysis of the correlation structure

In the end we want to take a look at the sample variograms of the residuals, and see

if the assumed correlation structure can be justified. The variogram is defined in the

appendix, where we also present four examples of sample variograms of simulated

CARMA(p,q) processes. Figure 4 contains the sample variograms and variograms

of the estimated models for all six residual processes.

The rough structure of the sample variogram is due to the irregularly spaced ob-

servations, because the irregular spacing leads to greater changes in the number of

observations for consecutive lags. For October 11, 2002 the estimated model pro-

poses stronger correlation than the sample variogram, but despite this fact, the

shape of the sample variogram and the variogram based on the estimated model is

quite similar. The reason for this might be a numerical imprecison or a misspecified

correlation structure, which has to be further analysed. The other days show less

correlation in the residuals, which can be seen by the faster increasing variograms.

The sample variograms represent the proposed structure of the model variogram

quite well. Only for the first few lags we see consistently smaller values of the sam-

ple variogram γ̂(h) compared to the model variogram γ(h). This may be due to the

fact that γ(h) → σ2
ε̃ but γ̂(h) → 0 as h → 0 (see also the appendix). This effect

is known in the geostatistics literature as a nugget effect and appears because of

the superposition of independent noise on an underlying process. The nugget effect

can be seen on all six days. Therefore one could try to fit CARMA processes of

higher order to the data on October 11th to see, if the fit could be improved. For

the remaining days the proposed correlation could be justified.

5.4 Prediction

Since we have shown how to estimated the polynomials, we want to explain now how

to predict the mean of the absolute log return of the next trading day. Imagine that

we have estimates for m = 1, . . . ,M days. Using these 2M polynomials we construct

two mean piecewise polynomials by averaging over the observed data points

pM
b (x) :=

1

|M b(x)|

∑

m∈Mb(x)

p̂m
b (x) (5.30)

pM
d (x) :=

1

|Md(x)|

∑

m∈Md(x)

p̂m
d (x), (5.31)
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Figure 4: Left column: Absolute log returns (dashed line) together with the fitted values

(solid line ) for the days 11th (top row ), 18th (second row), 22nd (third row), 23rd (fourth

row), 24th (fifth row) and 25th (bottom row) of October 2002. Right column: Model (dashed

line) and sample variogram of the residuals εti (solid line) for the days 11th (top row ),

18th (second row), 22nd (third row), 23rd (fourth row), 24th (fifth row) and 25th (bottom

row) of October 2002.
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where

M b(x) := {m ∈ {1, . . . ,M}| x ∈ [0, max
i

bm
ti

]}

|M b(x)| := card M b(x)

and

Md(x) := {m ∈ {1, . . . ,M}| x ∈ [0, max
i

dm
ti

]}

|Md(x)| := card Md(x).

A smoothed version of these two piecewise polynomials for day M + 1 we get by

fitting two smoothing splines at pM
b (·) and pM

d (·) over the intervals [0, maxm bm
tnm

]

and [0, maxm dm
tnm

]. The smoothing splines pb(·) and pd(·) minimise

n∑

i=1

(
pM

b (xb
ti
) − pb(x

b
ti
)
)2

+ λb

∫ Tb

0

[
∂2pb(x)

∂2x

]2

dx, xb
ti
∈ [0, max

m
bm
tnm

], (5.32)

and

n∑

i=1

(
pM

d (xd
ti
) − pd(x

d
ti
)
)2

+ λd

∫ Td

0

[
∂2pd(x)

∂2x

]2

dx, xd
ti
∈ [0, max

m
dm

tnm
] (5.33)

respectively, where λb, λd > 0 are smoothing parameters, Tb := maxm bm
tnm

and

Td similarly. λb and λd are maximum likelihood estimates. Maximum likelihood

estimation of smoothing parameters for spline smoothing is explained in Durbin

and Koopman [24].

The predicted mean values of the absolute log returns |r̂ti | of the M + 1-th day are

then defined like this

P (|rM+1
ti

|) := exp(pb(b
M+1
ti

) + pd(d
M+1
ti

)). (5.34)

Remark 5.1. Observe that dti is unknown up to time ti. Since we mainly want to

investigate the dependence on the explanatory variables, we will assume in a first

step, that the durations are known. In a second step an ACD model could be fitted

to the durations, to get forecasts also for the durations.

5.5 Prediction results

As we mentioned at the beginning of this section, the one step ahead predictions

of the absolute log return for the days October 14th-31st, 2002, will be computed

using the data of:
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(i) the last day

(ii) the last three days

(iii) the last day and the same day one week ago

(iv) the same day one and two weeks ago.

Performing the steps described in Section 5.4 produced for each day the smoothing

spline estimates pb
k(·), k = 1, . . . , 4 and pd

k(·), k = 1, . . . , 4. In the first prediction

setup (i) the smoothing splines are equal to the estimated polynomials for the last

day, since we have only one polynomial observation in each case. For the 25th of

October, the smoothing splines together with the mean piecewise polynomials are

shown in Figure 5. The absolute log returns together with corresponding predictions

can also be seen.
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Figure 5: Smoothing spline (solid line) and mean piecewise polynomials (dashed line)

in rows 1,2,4 and 5, absolute log returns (dashed line) and mean value predictions

(solid line) in rows 3 and 6 for the prediction setup (i) (top left 3 panels), (ii) (top

right 3 panels), (iii) (bottom left 3 panels) and (iv) (bottom right 3 panels).
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The different forecast are now compared using the mean squared errors

MSEk,j :=
1

nj

nj∑

i=1

(|rj
ti| − P k(|rj

ti|))
2, k = 14, . . . , 4, j ∈ I,

where

P k(|rj
ti|) := exp(pb

k(bj
ti) + pd

k(dj
ti)), k = 1, . . . , 4, j ∈ I,

and I is the index set of the sample including October 14th to 31st, as criterion.

These MSE are shown in Table 5.4. In parentheses one can see the rank of the

prediction within each day. For October 14th the random effect could not be de-

Day setup (i) setup (ii) setup (iii) setup (iv)

October 14 1.3872e-03 (3) 1.3565e-03 (1) 1.3683e-03 (2) 1.3894e-03 (4)

October 15 6.8258e-04 (2) 6.8303e-04 (3) 6.8049e-04 (1) 7.7766e-04 (4)

October 16 9.5416e-04 (1) 9.6394e-04 (2) 9.7708e-04 (3) 1.0133e-03 (4)

October 17 4.5386e-04 (1) 5.1570e-04 (2) 5.6619e-04 (3) 8.8701e-04 (4)

October 18 6.4535e-04 (3) 6.2039e-04 (1) 6.2105e-04 (2) 6.4852e-04 (4)

October 21 5.5981e-04 (1) 5.9419e-04 (3) 5.6657e-04 (2) 8.3658e-04 (4)

October 22 5.2608e-04 (3) 5.2541e-04 (2) 5.2283e-04 (1) 5.9528e-04 (4)

October 23 9.3108e-04 (2) 8.7059e-04 (1) 3.8468e-03 (4) 1.4754e-03 (3)

October 24 7.6446e-04 (4) 7.5806e-04 (3) 7.5375e-04 (2) 7.3782e-04 (1)

October 25 7.0539e-04 (4) 7.0106e-04 (3) 6.9328e-04 (2) 6.9282e-04 (1)

October 28 1.0484e-03 (4) 8.1573e-04 (2) 8.0485e-04 (1) 8.7461e-04 (3)

October 29 8.5291e-04 (2) 8.4212e-04 (1) 8.5606e-04 (3) 8.8279e-04 (4)

October 30 2.6574e-03 (4) 1.8290e-03 (3) 1.2266e-03 (1) 1.3234e-03 (2)

October 31 5.4630e-04 (1) 5.5581e-04 (2) 5.7003e-04 (3) 6.8218e-04 (4)

average rank (2.50) (2.07) (2.14) (3.28)

Table 4: MSE of the one step ahead predictions on the next trading day for the

setup (i), (ii), (iii) and (iv) together with the corresponding rank in parentheses.

scribed by a CARMA(1,0) process. Therefore we fitted a CARMA(2,1) process to

the data. To compare the different prediction setups we calculated average ranks

over the days. For this data the best strategy would be to use the information of the

last three days for prediction. Setup (iii) is the second best strategy and setup (i)

and (iv) are third and fourth. This presents a method which allows to empirically
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Figure 6: Absolute log returns on October 25th (dashed line) and mean value pre-

dictions (solid line) for prediction setup (iv) using bid ask and duration (top) and

using only bid ask (bottom).

investigate the performance of different prediction strategies. The predictive power

of the duration can be seen, when we recompute the predictions for the setup with

the smallest MSE without using the duration. We observed an increase in the MSE

between 5 and 20 percent. For October 25th the resulting predictions are shown in

Figure 6. The mean squared error in this case is equal to 8.1874e − 04, showing a

significant increase of about 18 percent.

6 Conclusions and further work

We have proposed a model for ultra high frequency data to investigate the influence

of explanatory variables on the mean of the absolute log return. In contrast to other

regression analyses of volatility characteristics we worked on a tick-by-tick level.

As a result no information is lost in contrast to working with interpolated data of

lower frequency. The problem of market microstructure noise of tick-by-tick data

will be accounted for on the one hand by the measurement noise and on the other

by the fact that we do not accumulate data, but analyse it at every time point. In

Section 5 we have seen how to predict the mean value of uhf absolute log returns.

To get predictions, which do not depend on unknown explanatory variables, we
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could use an autoregressive conditional duration model. Another way of predicting

absolute log returns could be to compute some kind of online prediction. This means

computing forecasts between two trades for every second, that would display some

kind of trend of ”inter trade” volatility. These forecasts are then independent of a

duration model. One could also think of taking this model as a reference model and

trying to replicate the achieved fit with explanatory variables known before the next

trade occurs. Here we think of a model with last available bid ask spread, volume

of the last trade and the last transaction time as explanatory variables. The MSE

as scoring rule has the disadvantage, that it does not take into account the variance

of the predictions. Therefore we want to specify the variance of the predictions and

use scoring rules like the average ignorance (see for example Gneiting and Raftery

[27]), which take into account this variance, to compare predictions.
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Appendix

A Variogram for irregularly spaced time series

The variogram is mainly used in geostatistics. Applications for time series data are

rare, despite the fact that it has the advantage to be defined for irregularly spaced

and even non-stationary time series in comparison to the autocovariance function

(see Haslett [28]).

Definition A.1. (variogram)

Let (Zt)0≤t<∞ be a process, such that

E(Zt+h − Zt) = Ch,

with a constant C, and

var(Zt+h − Zt) =: 2γ(h), (A.1)

where γ(h) is a conditionally negative definite function. Then γ(h) is called the

variogram.

Remark A.1. The requirement that γ(h) be conditionally negative definite means

that var(
∑

i aiYti) (which is equal to −
∑

i,j aiajγ(ti − tj) when
∑

i ai = 0) be non-

negative definite when
∑

i ai = 0.

For observations Zt1 , . . . , Ztn , with C = 0, the variogram can be estimated

through the sample variogram

γ̂(h) :=
1

2
(n − |Nh|)

−1
∑

(i,j)∈Ih

(Zti − Ztj)
2, (A.2)

where Nh := {(i, j), i, j ∈ {1, . . . , n}| |ti − tj| = h}.

To compare the sample variogram of the residuals (ε̂ti) in (2.12) with the theoretical

one, we have to compute the variogram of (εti). It is given by the following expression

γε(h) = var(L1)b
T (Ip − eAh)Σb + σ2

ε̃ . (A.3)

Example A.1. As an example consider a Lévy driven CARMA(p,q) process (Yt).

Here the driving Lévy process (Lt) is chosen to be a compound Poisson process with

exponentially distributed jumps, i.e.

Lt =
Nt∑

k=1

Xk,
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where (Xk) i.i.d.with density f(x) = 100e−100x and Nt ∼ Pois(15t). The simulated

sample path has 2000 equidistant observations. The variogram γ(h) and sample var-

iogram γ̂(h) for the following parameter sets:

(i) p = 1, q = 0, a(z) = z + 0.1, b(z) = 1

(ii) p = 2, q = 1, a(z) = z2 + 0.9z + 0.5, b(z) = 1 + z

(iii) p = 2, q = 1, a(z) = z2 + 0.09z + 0.5, b(z) = 1 + z

(iv) p = 3, q = 2, a(z) = z3 + 1.1z2 + 2.8174z + 0.2717, b(z) = 1 + 5z + z2.

are shown in Figure 7. They are all computed for a maximal lag of 30. Figure 7 shows

the flexibility of the CARMA(p,q) process to model a wide variety of correlation

structures, represented by a slowly, fast increasing or oscillating variogram.

0 5 10 15 20 25 30
0

0.005

0.01

0.015
a(z)=z+0.1,  b(z)=1

0 5 10 15 20 25 30
0

1

2

3

4

5

6
x 10

−3 a(z)=z2+0.9z+0.5,  b(z)=1+z

0 5 10 15 20 25 30
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14
a(z)=z2+0.09z+0.5,  b(z)=1+z

0 5 10 15 20 25 30
0

0.005

0.01

0.015

0.02

0.025
a(z)=z3+1.1z2+2.8174z+0.2717,  b(z)=1+5z+z2

variogram
sample variogram

variogram
sample variogram

variogram
sample variogram

variogam
sample variogram

Figure 7: (i) γ(h) and γ̂(h) for CAR(1) with a(z) = z + 0.1 and b(z) = 1 (top left),

(ii) γ(h) and γ̂(h) for CARMA(2,1) with a(z) = z2 + 0.9z + 0.5 and b(z) = 1 + z

(top right), (iii) γ(h) and γ̂(h) for CARMA(2,1) with a(z) = z2 + 0.09z + 0.5 and

b(z) = 1 + z (bottom left), (iv) γ(h) and γ̂(h) for CARMA(3,2) with a(z) = z3 +

1.1z2 + 2.8174z + 0.2717 and b(z) = 1 + 5z + z2 (bottom right)


