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Abstract: In a structural error model the structural quasi score (SQS)

estimator is based on the distribution of the latent regressor variable. If this

distribution is misspecified the SQS estimator is (asymptotically) biased.

Two types of misspecification are considered. Both assume that the statisti-

cian erroneously adopts a normal distribution as his model for the regressor

distribution. In the first type of misspecification the true model consists of

a mixture of normal distributions which cluster round a single normal dis-

tribution, in the second type the true distribution is a normal distribution

admixed with a second normal distribution of low weight. In both cases of

misspecification the bias, of course, tends to zero when the size of misspecifi-

cation tends to zero. However, in the first case the bias goes to zero in a flat

way so that small deviations from the true model lead to a negligible bias,

whereas in the second case the bias is noticeable even for small deviations

from the true model.
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1 Introduction

A measurement error (or errors-in-variables) model is essently a regression

model with measurement errors in the regressor variables, Schneeweiss and

Mittag (1986), Fuller (1987), Carroll et al (1995), Cheng and Van Ness

(1999), Wansbeek and Meijer (2000). It is well-known that disregarding the

measurement error when estimating the regression parameters, i.e., using an

estimation procedure as if there were no measurement errors, results in incon-

sistent estimates. In some cases, the (asymptotic) bias can be devastating,

rendering the results of a regression analysis completely useless.

On the assumption that the measurement process as such is known, in

particular, that the measurement error variance is known, it is often possible

to correct the estimation procedure for the measurement error so as to recover

consistency.

Structural Quasi Score (SQS) (or Quasi Likelihood) is a method that

achieves this objective, Armstrong (1985), Carroll et al (1995), Kukush et

al (2002). It takes advantage of the distribution of the regressor variables,

which is supposed to be known, or known at least up to a finite number of

parameters (structural model).

There are other, so-called functional, methods that do not depend on

the knowledge of the regressor distribution, Carroll et al (1995). But these

methods typically yield estimates with larger standard errors than SQS, just

because they do not use the information inherent in the regressor distribution,

for an example see Shklyar and Schneeweiss (2002).

On the other hand, a method like SQS that so much depends on knowl-

edge of the regressor distribution may react adversely to any form of misspec-

ification of this distribution, in other words, there is the risk of reintroducing

a bias in the estimation of the regression parameters if the method is based

on the wrong model for the regressor distribution.

This bias has been found in various simulation studies, Schneeweiss and

Nittner (2001), and has been systematically studied for small misspecification
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deviations in a polynomial regression model by Schneeweiss et al (2003).

In the latter paper a normal distribution for the scalar regressor variable

was assumed as the misspecified model, whereas the true model consisted

of a mixture of two normals with equal variances but different means. The

difference of means was taken as a measure of deviation of the misspecified

model from the true model. When that measure tended to zero the misspec-

ification bias of the estimated polynomial regression coefficients also tended

to zero - as was to be expected -, but the bias was of the order of the squared

deviation rather than just of the order of the deviation, so that the bias

tended to zero in a flat way.

This result can be interpreted to mean that the bias of SQS under small

deviations from the assumed model is comparatively very small and may

often be neglected. SQS reacts rather insensitively to a misspecification of

the regressor distribution as long as the misspecification is of this particular

form and is not too strong.

This result was derived for a very special case: a special, viz., polyno-

mial, regression model was assumed, a normal distribution was taken for

the regressor, a very limited form of deviation from this assumption was

considered, finally only the scalar case was investigated. In this paper we

generalize this result to an arbitrary nonlinear regression model, a more gen-

eral distribution for the regressor variables, a wider form of deviation from

this distribution, and we consider the multivariate case. The true regressor

distribution is taken to be a finite mixture of normals which cluster round a

single normal, whereas the erroneously assumed distribution is just a normal

distribution. This type of misspecification, which generalizes the situation

studied in Schneeweiss et al (2003) and which can still be generalized further,

is called the clustering type of misspecification.

We also study a completely different form of deviation from the model

distribution, which consists of mixing the model distribution with another

normal distribution with a mean far away from the mean of the model distri-
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bution, but with a small weight, which eventually tends to zero. This is the

typical situation studied in the theory of robust statistics. Let us call it the

admixture type of misspecification. It turns out that in this case the bias of

the regression estimator, although going to zero when the weight of the ad-

ditional mixture component tends to zero, does not do so in a flat way. Thus

deviations of this kind have a stronger impact on the bias than deviations of

the kind considered before. On the other hand, admixture type deviations

are easier to detect and then can be taken care of in the estimation of the

regression parameter, see Section 9.

In Section 2 we introduce the model in its simplest form, where the re-

gressor distribution of the assumed model is just a normal distribution (i.e.,

it is a mixture of normals, with just one component), but the true model is

a mixture of normals clustering round a single normal. Section 3 prepares

for the SQS estimation method to be introduced in Sections 4 and for the

computation of the SQS bias in Section 5. The behavior of this bias for

small deviations from the true model and also for small measurement errors

is studied in Section 6 and 7, respectively. When both, measurement error

and deviation, are small, the bias is particularly small as found in Section 8.

Section 9 generalizes these results to the case where the latent distribution

of the assumed model consists of a mixture of normals. Section 10 studies

the bias resulting from the admixture type of misspecification. Section 11

contains some simulation results and Section 12 some concluding remarks.

2 The model

A structural measurement error model consists of three parts: a regression

model linking a scalar response variable y to a vector ξ of latent regressors,

a measurement model linking the latent ξ to an observable vector x, and a

model describing the distribution of ξ.

Here we assume that the regression model is given by conditional mean
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and variance functions:

E(y|ξ) = m∗(ξ, β) (1)

V(y|ξ) = v∗(ξ, β, γ), (2)

where m∗ and v∗ are known functions of ξ and a parameter vector β to

be estimated and v∗ is additionally dependent an a variance parameter γ,

which in some cases may be missing. These functions are supposed to be

differentiable with respect to β and γ.

Examples are the polynomial model, see Cheng and Schneeweiss (2002),

where

m∗(ξ, β) =
m∑

j=0

βjξ
j, v∗(ξ, β, γ) = γ,

and the Poisson model, see Kukush et al (2001), Shklyar and Schneeweiss

(2002), where

m∗(ξ, β) = v∗(ξ, β) = exp(β0 +
m∑

j=1

βjξj).

In a Poisson model with overdispersion we may have a variance function

given by

v∗(ξ, β, γ) = γ exp(β0 +
m∑

j=1

βjξj).

We consider a ”classical” measurement model, where

x = ξ + δ (3)

with δ ∼ N(0, Σ) and δ being independent of ξ and y. The covariance matrix

Σ of the measurement error δ is supposed to be known.

In Section 7 we want to study the properties of the model when Σ tends

to zero. A convenient way to achieve this goal is to extract a common factor

σ2, writing

Σ = σ2Ω,
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and to let σ2 tend to zero keeping Ω fixed.

Finally, ξ is taken to be a random vector with a parametric distribution.

We have to distinguish between the (misspecified) model adopted by the

statistician and the true model (the ”data generating process”). We assume

that the statistician erroneously adopts a normal distribution for ξ:

ξ ∼ N(µξ, Σξ), (4)

which, because of its simplicity, turns out to be particularly suited for the

ensuing analysis of the regression model. By contrast, the true model is a

mixture of normals:

ξ ∼
K∑

k=1

pkN(µk, Σk), (5)

with nonnegative weights pk summing to 1 and p.d. covariance matrices Σk.

Such a model is very flexible and can approximate many distributions that

may turn up in practice.

Here, however, we assume that the mixture model comes close to a refer-

ence normal model N(µ0, Σ0), Σ0 p.d., in the sense that

µk = µ0 + κkϑ + O(ϑ2) (6)

Σk = Σ0 + Λkϑ + O(ϑ2) (7)

with some fixed vectors κk and symmetric matrices Λk and a scalar ϑ, which

should be small and which later on we will let tend to zero. The O-functions

are assumed to be differentiable. Thus the adopted model and the true

model do not deviate too much from each other, and both come close to the

reference model. Indeed, we have for the true model

µξ =
K∑
1

pkµk = µ0 + κ̄ϑ + O(ϑ2) (8)

Σξ =
K∑
1

pkΣk +
K∑
1

pk(µk − µξ)(µk − µξ)
′

= Σ0 + Λ̄ϑ + O(ϑ2), (9)
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where κ̄ =
∑K

1 pkκk and Λ̄ =
∑K

1 pkΛk.

The adopted model, although differing in its distribution law from the

true model, has the same parameters µξ and Σξ as the true model. These

(nuisance) parameters can be consistently estimated directly from the data

xi, i = 1, · · · , n, without recourse to the regression model:

µ̂ξ = x̄, Σ̂ξ =
1

n − 1

n∑
1

(xi − x̄)(xi − x̄)
′ − Σ.

For simplicity we here assume that µξ and Σξ are known to the statistician.

This assumption does not invalidate the ensuing results as the consistency

properties of the SQS estimator do not change when the nuisance parameters

are replaced with consistent estimates, see Kukush et al (2002).

Remark 1: ϑ is a dimensionless parameter, while κk and Λk take care

of the dimensions in the components of x. It might seem inadequate and

inconsistent to measure the deviations in (7) via Λk with squared and cross-

product dimensions, whereas in (6) they are measured via κk in the same

dimensions as the components of x. However an alternative specification of

variance deviation like, e.g., Σ
1
2
k = Σ

1
2
0 + Mkϑ + O(ϑ2) will again lead to

equation (7).

Remark 2: When ϑ is small, the components of the true model cluster

round the reference distribution, which consists of only one component, just

as the misspecified model. We therefore call this type of misspecification the

clustering type of misspecification to distinguish it from another type to be

considered in Section 10.

3 Conditioning

In order to explain the SQS procedure, but also to derive the bias of SQS,

we need to condition the mean and variance of y on the observable regressor

x.
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Let I be an indicator variable taking the values 1, · · · , K such that I = k

means that x comes from the k’th component of the mixture model. Then

pk = P (I = k),

and

ξ|I = k ∼ N(µk, Σk).

We find from (1)

E(y|x, I = k) = E[E(y|x, ξ, I = k)|x, I = k]

= E[E(y|ξ)|x, I = k]

= E[m∗(ξ, β)|x, I = k]

=: mk(x, β) =: mk. (10)

Here we assumed implicitly that, given ξ, the additional knowledge of I

has no influence on y, more precisely: y|ξ, I ∼ y|ξ, and also that I is inde-

pendent of δ. This, however, is not a model assumption. One can always

construct an indicator variable I that has these properties. The variable I is

a completely artificial variable, designed so as to describe the mixed distribu-

tion of ξ, without reflecting any real structure of the underlying population

of ξ, see A1.

In order to be able to evaluate the conditional mean mk of (10), we need

to find the conditional distribution of ξ given x and given I = k. As (ξ
′
, x

′
)

given I = k is jointly normally distributed, the conditional distribution is

normal, too, i.e.,

(ξ|x, I = k) ∼ N(µk(x), Tk)

with (see Shklyar and Schneeweiss (2002) and A2)

µk(x) = x − Σ(Σk + Σ)−1(x − µk) (11)

Tk = Σk − Σk(Σk + Σ)−1Σk

= Σ − Σ(Σk + Σ)−1Σ. (12)
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It follows that the expression mk of (10) is a function of µk(x) and Tk, which

is the same for all k and will be designated by m̃:

mk(x, β) = m̃(µk(x), Tk, β). (13)

The function m̃ is differentiable in all three arguments. In principle mk(x, β)

is found by integrating m∗(ξ, β) with respect to the c.d.f. N(µk(x), Tk). In

several cases this integration can be easily carried out explicitly, leading to

closed expressions for mk(x, β). The polynomial and the Poisson model of

Section 2 are cases in point. Here, however, we do not need explicit formulas

for mk or for m̃.

The conditional distribution of ξ given x is a mixture of the conditional

distribution of ξ given x and given I = k, k = 1, · · · , K:

ξ|x ∼
K∑

k=1

πk(x)N(µk(x), Tk). (14)

Here the weights πk(x) are the conditional (posterior) probabilities that I = k

pertains, given the observation x:

πk(x) = P (I = k|x) =
pkϕk(x)∑K
j=1 pjϕj(x)

, (15)

where ϕj(x) is the density of N(µj, Σj + Σ).

It follows that

E(y|x) =
K∑
1

πk(x)mk(x, β) =:
∑

πkmk. (16)

Let us now turn to the misspecified model (4). If (4) were true, the

conditional distribution of ξ given x would be N(µ(x), T ) with

µ(x) = x − Σ(Σξ + Σ)−1(x − µξ) (17)

T = Σξ − Σξ(Σξ + Σ)−1Σξ

= Σ − Σ(Σξ + Σ)−1Σ, (18)
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similar to (11) and (12), where µξ and Σξ come from (8) and (9), respectively.

The conditional expectation of y given x, then, would be

Eo(y|x) = Eo[m
∗(ξ, β)|x] =: m(x, β) = m̃(µ(x), T, β), (19)

with the same function m̃ as in (13), but with µ(x) and T in place of µk(x)

and Tk, respectively. Similarly, the conditional variance of y given x under (4)

is denoted by

Vo(y|x) =: v(x, β, γ). (20)

It is computed as

v(x, β, γ) = Eo[v
∗(ξ, β, γ)|x] + Vo[m

∗(ξ, β)|x].

The subscript o for E and V was chosen to designate the dependence on

the misspecified distribution (4). This is the model, which is taken as the

basis for constructing the SQS estimator.

4 The SQS estimator

Starting from the mean - variance model (19), (20) under the misspecified

distribution (4), the SQS estimator of β and γ is defined as the solution to

the system of estimating equations

n∑
i=1

[
yi − m(xi, β̂)

v(xi, β̂, γ̂)

∂m(xi, β̂)

∂β̂

]
= 0 (21)

n∑
i=1

{v(xi, β̂, γ̂) − [yi − m(xi, β̂)]2} = 0, (22)

where (xi, yi), i = 1, · · · , n, is a sample of i.i.d. observations xi, yi having

the distribution of the true model (1), (2), (3), and (5). It should be noted

that other estimating equations instead of (22) are also possible, see Carroll

et al (1995), but these would not change the subsequent results.
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If (4) were true, the SQS estimators β̂, γ̂ would be consistent under rather

general regularity assumptions, Kukush et al (2002). This follows essentially

from the fact that after dividing (21) and (22) by n and going to the limit

n → ∞ the resulting equations

E

[
y − m(x, β)

v(x, β, γ)

∂m(x, β)

∂β

]
= 0 (23)

E[v(x, β, γ)] − E[y − m(x, β)]2} = 0, (24)

would be satisfied for the true parameter values β and γ. However, under

the assumption that (4) is misspecified, as it is in our case, the solutions

to (23) and (24) will not be the true β and γ any more and the estimators

(i.e., the solutions to (21) and (22)) will be asymptotically biased. We want

to investigate this bias.

Since we are here only interested in the regression parameter β, we can

reduce the system (21), (22) to just one (vector-valued) equation for β̂ only

by solving (22) for γ̂ given β̂ and substituting the resulting solution γ̂(β̂) for

γ̂ in (21). If, for simplicity, we then change the notation by writing v(x, β̂)

for v(x, β̂, γ̂(β̂)), the estimating equation for β̂ becomes

n∑
i=1

[
yi − m(xi, β̂)

v(xi, β̂)

∂m(xi, β̂)

∂β̂

]
= 0. (25)

Its solution is the SQS estimator of β. Due to the misspecification of the

underlying model, β̂ will be (asymptotically) biased.

5 Bias

If we denote the probability limit plimβ̂ by b, the (asymptotic) bias of β̂ is

given by

B = b − β.

We find b by solving the limit (n → ∞) of the estimating equation (25)

divided by n; i.e., b is the solution to

E

[
y − m(x, b)

v(x, b)

∂m(x, b)

∂b

]
= 0, (26)
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which for short we may also write as

E[(y − m)v−1mb] = 0,

where we introduced the abbreviations

m := m(x, b), v := v(x, b), mb :=
∂

∂b
m(x, b).

The expectation is to be taken with respect to the true model. Thus

E[(y − m)v−1mb] = E{E[(y − m)v−1mb|x]}

and, by (16),

E[(y − m)v−1mb] = E[(
K∑

k=1

πkmk − m)v−1mb]

=
K∑

k=1

E[πk(mk − m)v−1mb] (27)

because
∑

πk = 1.

Clearly, the right hand side of (27) is a function of ϑ, σ, and b, as its

constituents are functions of these parameters. (We keep all the remaining

parameters, like β, γ, µ0, Σ0, Ω, pk κk, Λk fixed). Thus

E[(y − m)v−1mb] = f(ϑ, σ, b), (28)

and f is differentiable. Equation (26) now becomes

f(ϑ, σ, b) = 0

with a solution b which is a (differentiable) function of ϑ and σ:

b = b(ϑ, σ).

The same is true for the Bias: B = B(ϑ, σ).

Clearly, the bias vanishes when ϑ = 0, because then we have no misspec-

ification and SQS becomes a consistent estimation procedure. Thus

b(0, σ) = β.
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Similarly, σ = 0 implies a vanishing bias, because in this case the model

has no measurement errors and SQS reduces to an ordinary quasi-score

method to be applied to the model (1), (2), which then is a consistent pro-

cedure. Thus

b(ϑ, 0) = β.

6 Small deviations

We want to study the bias B(ϑ, σ) near ϑ = 0. We know that B(0, σ) = 0.

To find out about the behavior of B(ϑ, σ) in a neighborhood of ϑ = 0 we

shall evaluate the derivative ∂B/∂ϑ or, equivalently, ∂b/∂ϑ at ϑ = 0. By the

implicit function theorem

∂b

∂ϑ
= −

(
∂f

∂b′

)−1
∂f

∂ϑ
. (29)

At ϑ = 0, we have b = β, µξ = µk = µ0, Σξ = Σk = Σ0, and conse-

quently µ(x) = µk(x) =: µ0(x), and T = Tk =: T0, see (6) to (9), (11), (12),

and (17), (18). It follows that

m(x, b) = mk(x, β) = m̃(µ0(x), T0, β) (30)

at ϑ = 0, see (13), (19). In addition

πk(x) = pk (31)

at ϑ = 0, see (15).

We want to evaluate (29) at ϑ = 0. In the sequel all functions and their

derivatives are taken at ϑ = 0 and b = β. Now, by (28) and (27), noting that

πk and mk are not functions of b,

∂f

∂b′ = −E(v−1mbm
′
b) +

K∑
k=1

E[πk(mk − m)
∂

∂b′ (v
−1mb)]

= −E(v−1mbm
′
b) (32)
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owing to (30). This matrix is negative definite.

The other factor in (29) is

∂f

∂ϑ
= E[(

K∑
k=1

πk
∂mk

∂ϑ
− ∂m

∂ϑ
)v−1mb]

+
K∑

k=1

E[(mk − m)
∂

∂ϑ
(πkv

−1mb)].

The last term, again, is zero owing to (30), and, due to (31), we get

∂f

∂ϑ
= E[(

K∑
k=1

pk
∂mk

∂ϑ
− ∂m

∂ϑ
)v−1mb]. (33)

Now by (13),

∂mk

∂ϑ
=

∂m̃

∂µ
′
k(x)

∂µk(x)

∂ϑ
+ tr(

∂m̃

∂Tk

∂Tk

∂ϑ
).

According to (30) we may also write, at ϑ = 0:

∂mk

∂ϑ
=

∂m̃

∂µ
′
0(x)

∂µk(x)

∂ϑ
+ tr(

∂m̃

∂T0

∂Tk

∂ϑ
). (34)

Similarly, by (19), and (30),

∂m

∂ϑ
=

∂m̃

∂µ
′
0(x)

∂µ(x)

∂ϑ
+ tr(

∂m̃

∂T0

∂T

∂ϑ
). (35)

Furthermore, by (11), see also A2,

∂µk(x)

∂ϑ
= Σ(Σk + Σ)−1∂Σk

∂ϑ
(Σk + Σ)−1(x − µk)

+ Σ(Σk + Σ)−1∂µk

∂ϑ
,

see Dhrymes (1984), especially Corollary 41, p.125, for the rules of differen-

tiating matrices. To continue: by (6) and (7), at ϑ = 0,

∂µk(x)

∂ϑ
= Σ(Σ0 + Σ)−1Λk(Σ0 + Σ)−1(x − µ0) + Σ(Σ0 + Σ)−1κk. (36)

Similarly, by (17), (8), and (9),

∂µ(x)

∂ϑ
= Σ(Σ0 + Σ)−1Λ̄(Σ0 + Σ)−1(x − µ0) + Σ(Σ0 + Σ)−1κ̄. (37)
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Finally, by (12) and (7), see also A2,

∂Tk

∂ϑ
= Σ(Σ0 + Σ)−1Λk(Σ0 + Σ)−1Σ, (38)

and, by (18) and (9),

∂T

∂ϑ
= Σ(Σ0 + Σ)−1Λ̄(Σ0 + Σ)−1Σ. (39)

Collecting terms and using the definitions of Λ̄ and κ̄ just after (9), we

see that (33) to (39) imply

∂f

∂ϑ
= 0 (40)

at ϑ = 0. Finally (29), (32), and (40) imply

∂b

∂ϑ
= 0

at ϑ = 0 and consequently also ∂B
∂ϑ

= 0. We thus have proved the following

theorem:

Theorem 1

The bias B of the SQS estimator β̂ in the model (1), (2), (3), (5), computed

under the misspecified model (4), tends to zero, when the deviation of the

misspecified model from the true model as measured by the parameter ϑ tends

to zero, in such a way that
∂B

∂ϑ
= 0

at ϑ = 0.

7 Small measurement errors

We have a similar theorem when σ → 0, when again the bias goes to zero in

a flat way. But the arguments leading to this result are somewhat different.

Theorem 2

Under the conditions of theorem 1 and for any fixed misspecification, the bias
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of β̂ tends to zero, when the measurement error variances tend to zero, in

such a way that
∂B

∂σ
= 0

at σ = 0.

Proof: Similar to (29) we have

∂b

∂σ2
= −(

∂f

∂b′ )
−1 ∂f

∂σ2
. (41)

For σ2 = 0 and therefore Σ = 0 we have b = β, as noted at the end of

Section (5); furthermore µ(x) = µk(x) = x = ξ and T = Tk = 0 for σ2 = 0,

see (11), (12), and (17), (18). It follows that

m(x, b) = mk(x, β) = m̃(x, 0, β) (42)

at σ2 = 0, see (13), (19). This is similar to (30); however (31) is not valid

any more if σ2 = 0, but ϑ �= 0. In the sequel functions and their derivatives

are taken at σ2 = 0.

Just as in (33) we have, owing to (42),

∂f

∂σ2
= E[(

K∑
k=1

πk
∂mk

∂σ2
− ∂m

∂σ2
)v−1mb]

and, similar to (34) and (35),

∂mk

∂σ2
=

∂m̃

∂µ′(x)

∂µk(x)

∂σ2
+ tr(

∂m̃

∂T

∂Tk

∂σ2
)

∂m

∂σ2
=

∂m̃

∂µ′(x)

∂µ(x)

∂σ2
+ tr(

∂m̃

∂T

∂T

∂σ2
).

But now by (11), (12) and (17), (18), see A2,

∂µk(x)

∂σ2
= −ΩΣ−1

k (x − µk)

∂µ(x)

∂σ2
= −ΩΣ−1

ξ (x − µξ)

∂Tk

∂σ2
=

∂T

∂σ2
= Ω.
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Collecting terms, we get

∂f

∂σ2
= E{ ∂m̃

∂µ′(x)
Ω[Σ−1

ξ (x − µξ) −
K∑

k=1

πkΣ
−1
k (x − µk)]v

−1mb}

at σ2 = 0. We cannot say (as we could with ∂f/∂ϑ) that this term is zero.

However, we may state that |∂f/∂σ2| < ∞ at σ2 = 0, and so, by (41),

| ∂b

∂σ2
| < ∞.

It then follows that

∂b

∂σ
=

∂b

∂σ2

dσ2

dσ
=

∂b

∂σ2
· 2σ = 0

at σ = 0, which proves Theorem 2.

8 Small deviations and small measurement

errors

In this section we want to study the behavior of the bias function B(ϑ, σ)

when both ϑ and σ tend to zero. Let us denote the first and second derivatives

of B with respect to ϑ and σ by using ϑ and σ as subscripts. The results of

Theorem 1 and 2 can then be summarized as

Bϑ(0, σ) = 0

Bσ(ϑ, 0) = 0,

from which follows that also

Bϑσ(0, σ) = Bϑσσ(0, σ) = 0

Bσϑ(ϑ, 0) = Bσϑϑ(ϑ, 0) = 0.

On the other hand, B(0, σ) = 0, which implies

Bσ(0, σ) = Bσσ(0, σ) = Bσσσ(0, σ) = 0.
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Similarly, B(ϑ, 0) = 0, and thus

Bϑ(ϑ, 0) = Bϑϑ(ϑ, 0) = Bϑϑϑ(ϑ, 0) = 0.

A Taylor expansion of B(ϑ, σ) at (0, 0) results in

B(ϑ, σ) = Bσσϑϑ(0, 0)ϑ2σ2 + terms of higher order.

Suppose ϑ and σ tend to zero simultaneously in such a way that ϑ = aλ,

σ = bλ and λ → 0. Then

∂B

∂λ
=

∂2B

∂λ2
=

∂3B

∂λ3
= 0

at λ = 0. In other words, B(λ) = O(λ4). This means that the bias tends to

zero in an extremely flat way if both ϑ and σ become small.

9 Mixture of normals for the ξ-distribution

Up to now we assumed that the true distribution of ξ was a mixture of

normals, the components of which, however, come close to one fundamental

normal distribution, and this distribution is taken by the statistician as the

model basis for estimating the parameter vector β. Indeed, when the com-

ponents of the mixture cluster round one main component, it will typically

be difficult for the statistician to even recognize that a mixture is present

let alone to distinguish between its various components. In this situation, a

misspecification as considered in this paper can easily come up, leading to a

bias in the estimation of β. But, as we have seen, this bias will most often

be negligible.

However, if the true distribution of ξ is a mixture with clearly distin-

guishable components, i.e., with means and/or variances for apart, the bias

resulting from the use of a misspecified model with only one component can

be very large, and our Theorem 1 does not apply. On the other hand, in such

a situation the statistician will easily recognize the presence of a mixture dis-

tribution, even though the distribution of ξ is latent. The statistician can
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”observe” the distribution of x and this will be a similar mixture of normals

as the distribution of ξ except that the component covariance matrices will

be enlarged by the addition of the measurement error covariance matrix Σ.

Let us therefore now assume that the statistician recognizes a mixture of

normals for the distribution of ξ so that his (more flexible) model, instead

of (4), becomes

ξ ∼
K∑

k=1

pkN(µkξ, Σkξ).

But again this model is misspecified. The true model is a more compli-

cated (and even more flexible) mixture of normals

ξ ∼
K∑

k=1

Jk∑
j=1

pkjN(µkj, Σkj),

where the components cluster round the K components of a ”reference”

mixture distribution
∑K

k=1 pkN(µk, Σk) with pk =
∑Jk

j=1 pkj, i.e.,

µkj = µk + κkjϑ + O(ϑ2)

Σkj = Σk + Λkjϑ + O(ϑ2)

and ϑ is small.

The SQS estimator of β can now be constructed in a similar way as before.

Conditioning ξ on x results in the mixture model

ξ|x ∼
K∑

k=1

Jk∑
j=1

πkj(x)N(µkj(x), Tkj)

with

µkj(x) = x − Σ(Σkj + Σ)−1(x − µkj)

Tkj = Σ − Σ(Σkj + Σ)−1Σ

πkj(x) =
pkjϕkj(x)∑K

l=1

∑Jk

h=1 plhϕlh(x)
,
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ϕlh(x) being the p.d.f. of N(µlh, Σlh + Σ), and consequently

E(y|x) =
∑

k

∑
j

πkj(x)mkj(x, β),

where

mkj(x, β) = E[m∗(ξ, β)|x, I = (k, j)]

= m̃(µkj(x), Tkj, β)

with the same function m̃ as in (13).

Starting from the misspecified model, however, the statistician will work

with the conditional expectation

E0(y|x) =
K∑

k=1

πk(x)mk(x, β),

where

πk(x) =
pkϕkξ(x)∑K

h=1 phϕhξ(x)
,

ϕhξ(x) being the p.d.f. of N(µhξ, Σhξ + Σ), and

mk(x, β) = m̃(µkξ(x), Tkξ, β)

with

µkξ(x) = x − Σ(Σkξ + Σ)−1(x − µkξ)

Tkξ = Σ − Σ(Σkξ + Σ)−1Σ

and

µkξ =

Jk∑
j=1

pkjµkj/pk

Σkξ =

Jk∑
j=1

pkjΣkj/pk +

Jk∑
j=1

pkj(µkj − µkξ)(µkj − µkξ)
′
/pk.
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The conditional variance of y given x computed under the misspecified

model is denoted by v̄(x, β, γ). It is given by

v̄(x, β, γ) =
K∑

k=1

πk(x)vk(x, β, γ) +
K∑

k=1

πk(x)m2
k(x, β) − [

K∑
k=1

πk(x)mk(x, β)]2

with vk(x, β, γ) computed in a similar way as v(x, β, γ) in Section 3 - just

replace µ(x) and T of (17) and (18) with µkξ(x) and Tkξ, respectively. The

SQS estimator is now found as the solution to the equations

n∑
i=1

[
yi −

∑K
k=1 πk(xi)mk(xi, β̂)

v̄(xi, β̂, γ̂)

∂
∑K

k=1 πk(xi)mk(xi, β̂)

∂β̂

]
= 0

n∑
i=1

[
v̄(xi, β̂, γ̂) − {yi −

K∑
k=1

πk(xi)mk(xi, β̂)}2

]
= 0.

The probability limit of β̂, b =plimβ̂, is found as the solution to

E

[
y − ∑K

k=1 πk(x)mk(x, b)

v̄(x, b, γ(b))

∂
∑K

k=1 πk(x)mk(x, b)

∂b

]
= 0

where the expectation is taken with respect to the true model. The solution

b is a function of ϑ and σ.

By arguments very similar to those in Sections 6 and 7 one finds that

Theorems 1 and 2 hold true even in this more general setting. The same

applies to the results of Section 8.

10 Admixtures

In this section, we study another kind of misspecification of the ξ-distribution.

We return to the situation of Section 2, where the assumed model consists

of just one (normal) component, see (4), whereas now the true model is a

mixture of two normals, one being the main component with high weight

1−p and the other one being an admixture to the main component with low

weight p. We keep the two components fixed and let p tend to zero. In doing

so, we study the bias of the SQS estimator as a function of p.
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The model now is given by (5) with K = 2 components, where p1 = 1−p

and p2 = p. The assumed (misspecified) model is again given by (4).

The definitions of µ(x), T , µk(x), Tk, k = 1, 2 are the same as before,

see (17), (18), (11), (12), except that now µξ and Σξ are functions of p.

µξ = (1 − p)µ1 + pµ2 (43)

Σξ = (1 − p)Σ1 + pΣ2 + (1 − p)p(µ1 − µ2)(µ1 − µ2)
′
. (44)

Similarly π1 and π2 are functions of p, in particular, see (15),

π2(x) =
pϕ2(x)

(1 − p)ϕ1(x) + pϕ2(x)
. (45)

The bias is found as before by solving (26), and (26) can again be trans-

formed into (27), which here becomes

g(p, b) = E[(π1m1 + π2m2 − m)v−1mb]. (46)

Note that, because the right hand side of (27) is now to be considered as a

function of p, we used the notation g(p, b) instead of f(ϑ, σ, b). The symbols

m, mb, v, and mk, k = 1, 2, have the same meaning as before, in particular

we will use again (13) and (19), the latter with β = b, as before.

Now, since b is the solution to g(p, b) = 0, b is a function of p and its

derivative with respect to p is given by

db

dp
= −

(
∂g

∂b′

)−1
∂g

∂p
. (47)

We want to evaluate db/dp at p = 0. In the sequel all functions and their

derivatives are to be taken at p = 0 and b = β.

We note that as p → 0:

µξ → µ1 , Σξ → Σ1,

µ(x) → µ1(x) , T → T1, (48)

m → m1 , π2 → 0.
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Let us first find ∂g/∂b
′
from (44):

∂g

∂b′ = E(v−1mbm
′
b)

+ E[π1(m1 − m)
∂(v−1mb)

∂b′ ] + E[π2(m2 − m)
∂(v−1mb)

∂b′ ],

which by (48) simplifies to

∂g

∂b′ = −E(v−1mbm
′
b), (49)

and this is negative definite, see also (32).

Now as to the derivative with respect to p, we have

∂g

∂p
= E

[(
∂π1

∂p
m1 +

∂π2

∂p
m2 − ∂m

∂p

)
v−1mb

]
.

plus two more terms, which however turn out to be zero at p = 0, just as in

the derivation of (49). Because π1 = 1 − π2, this simplifies to

∂g

∂p
= E

[(
∂π2

∂p
(m2 − m1) − ∂m

∂p

)
v−1mb

]
. (50)

Let us evaluate the various derivatives one by one. From (45) we see that

∂π2

∂p
=

ϕ2

ϕ1

(51)

at p = 0. Furthermore, by (19),

∂m

∂p
=

∂m̃

µ′(x)

µ(x)

∂p
+ tr

(
∂m̃

∂T

∂T

∂p

)
, (52)

where, by (17), see also A2,

∂µ(x)

∂p
= Σ(Σξ + Σ)−1∂Σξ

∂p
(Σξ + Σ)−1(x − µξ)

+ Σ(Σξ + Σ)−1∂µξ

∂p

and, by (18) and (48), see also A2,

∂T

∂p
= Σ(Σ1 + Σ)−1∂Σξ

∂p
(Σ1 + Σ)−1Σ.



24

from (43) and (44) we find, at p = 0,

∂µξ

∂p
= µ2 − µ1

∂Σξ

∂p
= Σ2 − Σ1 + (µ1 − µ2)(µ1 − µ2)

′
.

Substituting these last expressions in ∂µ(x)/∂p and ∂T/∂p and using (48),

we get

µ(x)

∂p
= Σ∆(x − µξ) + Σ(Σ1 + Σ)−1(µ2 − µ1) (53)

∂T

∂p
= Σ∆Σ, (54)

where

∆ := (Σ1 + Σ)−1[(Σ2 − Σ1) + (µ1 − µ2)(µ1 − µ2)
′
](Σ1 + Σ)−1

is a matrix which, in a sense, measures the distance of the two components

of the model. Substituting (53) and (54) in (52) and (52) and (51) in (50),

we get

∂g

∂p
= E[

ϕ2

ϕ1

(m2 − m1)v
−1mb]

− E[
∂m̃

∂µ′(x)
{Σ∆(x − µ1) − Σ(Σ1 + Σ)−1(µ2 − µ1)}v−1mb]

− E[tr

(
∂m̃

∂T
Σ∆Σ

)
v−1mb].

The expectations are to be taken with respect to N(µ1, Σ1 + Σ), as this

is the distribution of x at p = 0. The first term on the right hand side can

also be written as

E2[(m2 − m1)v
−1mb],

where E2 is the expectation with respect to N(µ2, Σ2 + Σ)). Clearly ∂g/∂p

does generally not vanish, and so in general

db

dp
�= 0
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at p = 0.

Remark 3: It should be noted that an exception is the linear model

y = β0 + β1ξ + u. For the linear model, the bias of SQS is always zero no

matter whether the correct distribution of ξ or a misspecified one is used.

Therefore in this case, db/dp = 0. In all other cases db/dp is a complicated

function of (µ2 − µ1) and Σ2 − Σ1.

Remark 4: Letting Σ2 = 0, the resulting expression db/dp as a function

of µ2 is nothing but the influence function of the bias at the underlying

normal distribution N(µ1, Σ1), see Hampel et al (1986).

Remark 5: One might object against the use of p as a measure of

deviation from the true model. Why not use
√

p, for instance ? It would seem

plausible to use a measure with the same dimension as x, e.g., e := µξ − µ1.

But this measure is proportional to p and would lead to the same result:

db/de �= 0 at e = 0. This justifies the use of p as a measure of deviation in

the case of the admixture type of misspecification.

11 Simulation

Simulation results showing the effect of the clustering type of misspecification

can be found in Schneeweiss et al (2003). We here repeat only one result

using however a somewhat different model. We also study two examples of

the admixture type of misspecification.

The regression model of our simulation study is a polynomial of degree 2:

y = β0 + β1ξ + β2ξ
2 + ε

with β0 = 0, β1 = 1, β2 = −0.5, and σ2
ε = 1. The measurement error variance

is σ2
δ = 0.2. The misspecified model for the distribution of ξ is N(µξ, σ

2
ξ ).

For the clustering type of misspecification the true distribution (model 1)
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is the mixture

ξ ∼ 0.5 · N(0, 1) + 0.5 · N(ϑ, 1 − ϑ)

and N(0, 1) is the reference distribution. We let ϑ go to zero at steps of 0.05

starting from ϑ = 0.5

For the admixture type of misspecification we tried two distributions for

the true model. In the first (model 2)

ξ ∼ (1 − p)N(0, 1) + pN(3, 1)

and in the second (model 3)

ξ ∼ (1 − p)N(0, 1) + pN(0, 3).

In both cases, N(0, 1) is again the reference distribution (p = 0). We let

p go to zero at steps of 0.01 starting from p = 0.1.

We chose a sample size n = 500, large enough so that asymptotic results

apply. The number of replications was N = 1000.

Table 1 shows the bias of the SQS estimations of β0, β1, and β2 in model 1

for various values of ϑ. In the corresponding Figure 1 one can see that the

bias, in all three cases tends to 0 in a flat way when ϑ → 0.

Tables 2 and 3 show the bias for models 2 and 3, respectively, as a function

of p. Figures 2 and 3 show that the bias tends to 0 when p → 0, but not in

a flat way.

These results are in full accordance with the theoretical findings of Sec-

tions 6 and 10.

12 Conclusion

The structural quasi-score estimation method in a measurement error model

starts from the conditional mean and variance functions of the response vari-

able given the observable regressor. In order to be able to obtain these
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functions a distribution of the regressor must be specified. Clearly, when the

statistician assumes a misspecified distribution, the resulting SQS estimator

will be bias and the bias will depend on the degree of misspecification. Two

types of misspecification have been considered.

In the first type the statistician assumes erroneously a single normal dis-

tribution, whereas the true distribution is a (finite) mixture of normals clus-

tering round this single normal. (More generally the assumed distribution

can be a mixture of normals and the true distribution a mixture of sub-

mixtures each of which cluster round one of the components of the assumed

mixture.)

If the cluster comes very close to the assumed distribution, the bias will

hardly be perceptible. More precisely, if the bias is measured as a function

of a suitable measure of deviation ϑ between cluster and single component,

the derivative of the bias with respect to ϑ is zero at the point ϑ = 0.

This result is very handy for practical purposes. It says that in situations

where the statistician has difficulties in making out the true distribution

because it consists of several components clustering closely round one single

component, the assumption of a simplified model by the statistician is of no

great harm as the resulting estimation bias will be negligible.

There is, however, another type of misspecification, which occurs when

the statistician again assumes a normal distribution but the true distribution

consists of the assumed distribution admixed with another component (or,

more generally, several components) far away from the assumed one, but with

low weight. One can hope that due to the low weight the estimation bias

will be small, but it turns out that it will rise steeply with growing weight p

of the admixture so that the bias even for small p , though small, will most

often not be negligible. Technically speaking: The derivative of the bias with

respect to p is generally not zero at p = 0.

Fortunately, this more critical situation, where the bias reacts sensitively

on misspecification, can be much better mastered by the statistician than
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the former case of the cluster type of misspecification. Admixtures with

components markedly different from the assumed normal distribution can

often be easily detected even if the weights of those admixture components

should be small.

The essential implication of these results is that SQS seems to work nicely

as far as a possible bias of SQS is concerned, as long as the statistician takes

care in modelling the distribution of the latent regressor as accurately as

possible. Slight misspecifications that might be difficult to avoid are of no

great danger.

On the other hand, as far as efficiency is concerned, SLS is probably

superior to other methods that do not take the regressor distribution into

account. One such method is corrected score (CS); for CS applied to polyno-

mials see Cheng and Schneeweiss (1998) and Cheng et al (2000). Although

one can show that CS and SQS are practically of equal efficiency when the

measurement error variance is small, c.f. Kukush et al (2002), for larger

measurement errors SQS is likely to be more efficient than CS. An example

is the Poisson regression model, c.f. Shklyar and Schneeweiss (2002).

This is another arguments which points to SQS as the preferred esti-

mation method. However, SQS sometimes may be difficult to apply. An

approximate, easy to apply, method, which is also based on knowledge of

the regressor distribution, is Regression Calibration (RC), c.f. Carroll et al

(1995).

In Table 4 and Figure 4, the bias from a simulation study of five estimators

of β1 from model 1 is shown as a function of ϑ: naive, CS, SQS, RC, and

MSQS. The latter is SQS applied to a mixture of normals, as described in

Section 9. The naive method is biased even for ϑ = 0. CS and NSQS

have hardly any bias (but are less efficient than SQS). SQS and RC behave

similarly in this case (but not in others).

Acknowledgement: The authors want to thank Jia-Ren Tsai and Roland

Wolf for their technical help in setting up the simulation study.



29

Appendix

A1. The indicator variable I

Let Ξ be the sample space of the random variable ξ with p.d.f. f(ξ) =∑K
k=1 fk(ξ)pk, and let K = {1, · · · , k}. Let

pk(ξ) =
fk(ξ)pk

f(ξ)
.

pk(ξ) is a probability function on K depending on ξ. Define a probability

measure on Ξ × K and implicitly a random variable I with values in K by

letting

P (ξ ≤ x, I = k) = F (ξ)pk(ξ),

where F (ξ) is the c.d.f. of ξ. Then the marginal distribution of I is given by

P (I = k) =

∫
f(ξ)pk(ξ)dξ = pk.

and the conditional distribution of ξ given I by

f(ξ|I = k) =
f(ξ)pk(ξ)

pk

= fk(ξ).

Thus I is an indicator variable for the components of the distribution of ξ.

As by construction I depends only on ξ and ξ is independent of δ, so also I

is independent of δ. Again because I depends only on ξ, we have y|ξ, I ∼ y|ξ.

A2. The conditional distribution of ξ given x

Let x = ξ + δ as in (3) with (ξ
′
, δ

′
) ∼ N(µ∗, Σ∗), where µ∗ = (µ

′
ξ, 0

′
) and

Σ∗ = block diagonal (Σξ, Σ). Then ξ|x ∼ N(µ(x), T ), where µ(x) and T can

be found from the linear regression

ξ − µξ = B(x − µx) + ε,
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where ε is independent of x. Obviously

B = ΣξxΣ
−1
x .

Because of (3),

B = Σξ(Σξ + Σ)−1.

Thus, because µx = µξ,

µ(x) = µξ + Σξ(Σξ + Σ)−1(x − µξ)

= x − Σ(Σξ + Σ)−1(x − µξ),

which proves (17) and by analogy (11).

From the first equation

∂µ(x)

∂σ2
= −Σξ(Σξ + Σ)−1Ω(Σξ + Σ)−1(x − µξ)

= −ΩΣ−1
ξ (x − µξ)

at σ2 = 0. Similarly from the last equation

∂µ(x)

∂ϑ
= Σ(Σξ + Σ)−1∂Σξ

∂ϑ
(Σξ + Σ)−1(x − µξ)

+ Σ(Σξ + Σ)−1∂µξ

∂ϑ

and

∂µ(x)

∂p
= Σ(Σξ + Σ)−1∂Σξ

∂p
(Σξ + Σ)−1(x − µξ)

+ Σ(Σξ + Σ)−1∂µξ

∂p
.

Finally,

T = Eεε
′
= Σξ − BΣxB

′

= Σξ − Σξ(Σξ + Σ)−1Σξ

= Σ − Σ(Σξ + Σ)−1Σ,

which proves (18) and by analogy (12).
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Clearly from the next to last equation

∂T

∂σ2
= Σξ(Σξ + Σ)−1Ω(Σξ + Σ)−1Σξ

= Ω

at σ2 = 0. Similarly from the last equation

∂T

∂ϑ
= Σ(Σξ + Σ)−1∂Σξ

∂ϑ
(Σξ + Σ)−1Σ

∂T

∂p
= Σ(Σξ + Σ)−1∂Σξ

∂p
Σξ + Σ)−1Σ.

We used the differentiation rule for a nonsingular matrix A(x) being a

differentiable function of x:

∂A−1

∂x
= −A−1∂A

∂x
A−1,

see Dhrymes (1984), especially Corollary 41.
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Tables and Figures

Table 1: Bias of SQS-Estimators as a function of ϑ

Model 1: ξ ∼ 0.5N(0, 1) + 0.5N(ϑ, 1 − ϑ)

ϑ β0 β1 β2

0.00 -0.001 0.003 -0.001

0.05 -0.001 0.003 -0.001

0.10 -0.001 0.004 -0.002

0.15 0.000 0.005 -0.003

0.20 0.001 0.008 -0.004

0.25 0.003 0.011 -0.006

0.30 0.004 0.015 -0.009

0.35 0.006 0.020 -0.013

0.40 0.008 0.026 -0.017

0.45 0.010 0.034 -0.022

0.50 0.011 0.044 -0.027
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Table 2: Bias of SQS-Estimators as a function of p

Model 2: ξ ∼ (1 − p)N(0, 1) + pN(3, 1)

p β0 β1 β2

0.00 -0.001 0.000 0.000

0.01 0.014 -0.013 -0.014

0.02 0.022 -0.024 -0.018

0.03 0.026 -0.032 -0.019

0.04 0.029 -0.040 -0.018

0.05 0.029 -0.046 -0.016

0.06 0.030 -0.051 -0.014

0.07 0.031 -0.055 -0.012

0.08 0.031 -0.060 -0.010

0.09 0.030 -0.064 -0.007

0.10 0.029 -0.067 -0.005
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Table 3: Bias of SQS-Estimators as a function of p

Model 3: ξ ∼ (1 − p)N(0, 1) + pN(0, 3)

p β0 β1 β2

0.00 -0.001 0.000 0.000

0.01 0.002 0.000 -0.003

0.02 0.005 0.000 -0.006

0.03 0.008 0.000 -0.009

0.04 0.011 0.000 -0.011

0.05 0.013 0.000 -0.013

0.06 0.014 0.000 -0.014

0.07 0.016 -0.001 -0.015

0.08 0.018 -0.001 -0.016

0.09 0.019 -0.001 -0.017

0.10 0.020 -0.001 -0.018
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Table 4: Bias of 5 Estimators as a function of ϑ

Model 1: ξ ∼ 0.5N(0, 1) + 0.5N(ϑ, 1 − ϑ)

ϑ naive CS SQS RC MSQS

0.00 -0.164 0.002 0.003 0.004 0.005

0.05 -0.171 0.002 0.003 0.004 0.005

0.10 -0.177 0.002 0.004 0.005 0.005

0.15 -0.183 0.002 0.005 0.007 0.004

0.20 -0.187 0.003 0.008 0.010 0.004

0.25 -0.191 0.003 0.011 0.015 0.004

0.30 -0.194 0.003 0.015 0.020 0.005

0.35 -0.196 0.003 0.020 0.027 0.005

0.40 -0.197 0.003 0.026 0.036 0.006

0.45 -0.196 0.004 0.034 0.046 0.006

0.50 -0.195 0.004 0.044 0.058 0.007
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Figure 1: Bias of SQS-Estimators as a function of ϑ
Model 1: ξ ∼ 0.5N(0, 1) + 0.5N(ϑ, 1 − ϑ)
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Figure 2: Bias of SQS-Estimators as a function of p
Model 2: ξ ∼ (1 − p)N(0, 1) + pN(3, 1)



40

Figure 3: Bias of SQS-Estimators as a function of p
Model 3: ξ ∼ (1 − p)N(0, 1) + pN(0, 3)
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Figure 4: Bias of 5 Estimators as a function of ϑ
Model 1: ξ ∼ 0.5N(0, 1) + 0.5N(ϑ, 1 − ϑ)


