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0. Abstract

The Makov Chain Monte Carlo method (MCMC) is often used to generate independent (pseudo)

random numbers from a distribution with a density that is known only up to a normalising con-

stant. With the MCMC method it is not necessary to compute the normalising constant (see e.g.

Tierney, 1994; Besag, 2000). In this paper we show that the well-known acceptance-rejection

algorithm also works with unnormalised densities, and so this algorithm can be used to confirm

the results of the MCMC method in simple cases. We present an example with real data.
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1. Summary

Let X and Y be random variables (or vectors) with densities �  and � , and let 
�

� � ���  and

�� � ��� . We assume that ��  and ��  are known and that the normalising constants ��  and ��  are

unknown. We assume further that we are able to generate independent random realisations from

Y, and our aim is to find independent random realisations from X. Therefore g is called the pro-

posal distribution and f  is called the target distribution. If X and Y are discrete random variables

the densities are to be replaced by the probability functions.

In section 2 we describe the well known acceptance rejection method. Algorithm A makes the

assumption that we can find a constant �� �  such that � � � ��� � � �� ��  for all � . This assumption

is unrealistic in many situations where the target distribution f  is too complex to be analytically

tractable. Algorithm B of section 3 works without this assumption, but we have to assume that

� ��� ��� �� � . This condition implies that the proposal distribution is noninformative with

respect to the target distribution.

In section 4 we present three simple examples. The first example demonstrates the application of

Algorithm A; X  has a standard normal distribution (target distribution) and Y  has a Cauchy dis-

tribution (proposal distribution). The true constant c of Algorithm A can be easily found from the

data even if the densities are unnormalised. Example 2 demonstrates the application of Algo-

rithm B; the target distribution is again the standard normal distribution but the proposal distri-

bution is a uniform distribution in the interval � � 	� �� . There exists no constant �� �  such that

� � � ��� � � �� ��  for all � , and so we apply Algorithm B. If a is too small the generated data cannot

be considered as standard normal data. But if a is large enough the proposal distribution becomes

noninformative with respect to the target distribution and Algorithm B generates the desired

data. In Example 3 we treat the generalised linear model with binomial response in a Bayesian

framework. We have to overcome some theoretical and numerical problems before we can apply

Algorithm A.

In section 5 we treat in great detail an example with real data; the example is taken from Fahr-

meir-Tutz (2001), page 3: Credit-scoring. For 1000n �  bank customers the creditability y

( 0y � : credit-worthy, 1y � : not credit worthy) and 8k �  explanatory variables 1, , kx x�  are

given. As in Example 3 we apply a probit model in a Bayesian framework, and we show how we

can apply the simple classical acceptance-rejection algorithm (Algorithm A) to find a noninfor-

mative prior distribution (approximately) and to generate random data from the posterior distri-

bution. Our results confirm the results of the MCMC method.
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2. Acceptance-Rejection Algorithm

Let X  and Y  be n-dimensional random variables with densities �  and � , and let � �� � ��  and

�� � ��� . We assume that f�  and g�  are known and that the normalising constants ��  and ��  are

unknown. We assume further that we are able to generate independent random realisations from

Y, and our aim is to find independent random realisations from X.

Algorithm A

For Algorithm A we assume that we can find a constant �� �  such that 	 
 	 
�� � � �� ��  for all
	� � � . Let U be a random variable with a uniform distribution in the interval � ����  that is inde-

pendent of Y. Now the algorithm works as follows:

1. Generate a realisation y of Y;
generate a realisation u of U.

2. If  
	 

	 


�

�
� �



� � �


   set � �� ; otherwise go back to the first step.

Then x is a realisation of a random variable X with the density f.

In Algorithm A a realisation y of Y is proposed as a realisation of X, but y is accepted as a reali-

sation x of X only if the condition in step 2 is satisfied. Therefore g is called the proposal distri-

bution and f is called the target distribution. Note that the normalising constants ��  and ��  need

not to be known in Algorithm A. Although this fact it is known in the literature (see e.g. Ripley,

1987), we add the simple proof.

Proof of Algorithm A:

In Algorithm A x is a realisation of a random variable X and we want to prove that the distribu-

tion of X is given by the density f. With

	 

	 


�

�
� �

� 

� � �

� �� �� �� �� 
 �� �� �� �� �� �
 condition for acceptance

we have

(1) � � � � � �
	 


�� �
�� ��

��
� � �

� � � � �
�




 � 
 �

Now

(2)

	 

	 

	 


	 

	 


	 


	 

	 


	 
 	 


�� �� ��

�� �

� �

� � � �
� 
 
 � � ��

�� � � � �

� �� �
� � �� � � ��

� � � �� ��

��

��

�� ��

�� ��

� �� �� �� � � �� � � �� 
 � 
� � � �� � � �� � � �� � � �� �

� � �

�

� �

� �

� �

�

�

and

(3)

� � 	 

	 


	 

	 


	 


	 
 � �

�� � �� � ��




�

�
� �

� �

� � � �
� � � � � 
 
 � � ��

�� � �� �

� �
� � �� � �

�� ��
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��

� � � �� � � �� � � �
 � 
 
 � 
 �� � � �� � � �� � � �� � � �

� �

�

�

� �

� �
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Thus

(4) � �
� �

	 

� �

�� �
��

��
� � �

� � � �
�




 � � .

In the multivariate case our integrals are to be interpreted as n-fold integrals, e.g.

	 
 	 

	 


	 


	 

�� �

� � �

� �

� � � �
�

� ��

	 	 	� � �� � � � �� �� � � �
�� �� ��

� �� �
�

�

� � � .

So we have proved that the algorithm is correct and that we need not know the normalising con-

stants ��  and �� . The acceptance probability is given by 	 
�� � ���� � ��� .

3. Extension of Acceptance-Rejection Algorithm

As in complex practical situations it can be difficult to find a constant �� �  such that

	 
 	 
�� � � �� ��  for all 	� � � , it is desirable to find an algorithm that works without this condi-

tion. In Algorithm B we choose an arbitrary constant �� �  and we want to see what kind of

random data the algorithm generates in this case.

Algorithm B

Let U again be a random variable with a uniform distribution in the interval � ����  that is inde-

pendent of Y, and choose an (arbitrary) constant �� � . We consider the following algorithm:

1. Generate a realisation y of Y;
   generate a realisation u of U.

2. If  
	 

	 


� �
�

� �
�

�

�
  and  

	 

	 


�

�
� �



� � �


   set � �� ; otherwise go back to the first step.

Then x is a realisation of a random variable 
�

�  with the distribution function

(5) � � � � � ��� ��
� � �

� � � � � � � �� 
 � 
 � ,

where

(6)
� �

� �
IR

�

��

� �
� � �

� �
�

� �� �� �� �� �� �� �� �
.

If � ��� ��� � �� � �  for ��� ��  small, then

(7) � � � � � � IR	
�� � � � � � �� �� � � � � � .

So Algorithm B generates random data with the target density 
�

�  instead of F. If

� ��� ��� �� �  we have � � � �
�

� � � �� . 
�

�  is the set of points that are proposed for accep-

tance as random data of the target distribution. If this set does not cover nearly the complete tar-

get distribution Algorithm B cannot generate the desired data (see Example 2).

The distribution of Y is called informative with respect to the distribution of X if the distribution

of Y covers only part of the distribution of X. In a more formal way this is the case if there exists

a set IR	� �  such that � ��� �� �� �  ( �
����� , say), and if � ��� � ��  is significantly



5

smaller than 1 ( �
�
 , say). In this case a set 
�

�  with � ��� ��� �� �  cannot be found on the

basis of  say� ������ �� �  data of Y as 
�

�  will probably be a subset of C and then

� ��� �
��� �� 
 . So Algorithm B can generate the desired data only if the proposal distribu-

tion is noninformative with respect to the target distribution (see Example 2).

Proof of Algorithm B:

Let

(8)
	 

	 


� � 	 

	 


	 

	 


IR
� � �

� � �� �� ��� �
� � � � � �

� � � � � � � 

� � � � � � �

�

� �� � � �� �� � � � � �� � � � � �� � � � � � � 
� � � � � �� � � � � �� � � � � �� �� � � �� �
.

Then

(9) � � � � � �
	 


� �

� �

� �

�� �
�� ��

���

� � � �
� � � � � �

� �

�

�

�




 � 
 � .

Now

(10)

	 
 	 

	 


	 

	 


	 


	 

	 


	 
 	 
 � �

� �

� �

�

�

� ��� �� � ��

�� �

�

� �

�

�

� �
�

� �� �

� � � �
� � � � 
 
 � � ��

�� � � � �

� �� �
� � �� � � �� � �

� � � �� ��

�

� �� �� �� � � �� � � �� � 
 � 
� � � �� � � �� � � �� � � �� �

� � � �

�

� �
and

(11)

� � 	 

	 


	 

	 


	 
 	 
 � �

�

�

�

�

� ��� � �� � �

�� �� � 


� �
� �

�

� �
�

� �� � � �
� �

� �
� � � � � � � � 


�� �

� �� �

 � � �� � � �� � � � �

�� � �� ��

� �

� �


 


� �� �� �
 � 
 
 �� �� �� �� �
� �� �� �� 
 � � 
 �� �� �� �� �

� �

Thus

(12) � � � �
	 


� �
� �

� �� �

� �

�� � �� �
�� ��

�� ��
�

� �

�

� � � � � � � �
� � � � � �

� � � �

�

�


 
 �

 � � � 
 �

�
and so (5) is proved. To prove (7) we have to show that

	 

	 

	 


	 

��

�� ��
��

� �
� �

�
� �

�
� � � �

with � ���� � �� 
 , � ��� � �� �  and 	 
�� �� �� � . Now

 	 
 	 
 	 
�� �� ��� � � �� � � � � �� � � � �
and so

	 
 	 
 	 
�� � �� ���� � � � � �� � � � � � .

From this we obtain
	 


	 
 	 

��

�� ��
�

� �
� � � �

�
�

� � � �
�

	 

	 
 	 
 	 
 	 
 	 


��
� �� � �� ��

�

� �
� � � �� � �

�
�

� � � � � � �
�

as 	 
� � �� �� � �  for small values of � . So the two inequalities in (7) are also proved.
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4. Examples

Example 1:  Generation of standard normal data from Cauchy data

We want to generate random data with a standard normal distribution from a random variable

with a Cauchy distribution. So our target and proposal distributions are given by the densities

(13) 	 
 	 

     and     ��

� �

� �
� � 
�� � �

� �
� � � � �

�� �
� � �

�
.

We find

(14)
� �

��� �
�����
� �
� �
� �

� ,

the maximum being reached for �� � �  (see Figure 1). We

assume that we only know the unnormalised densities

(15)
with   

with   

�

�

� � 
��� �� � � �

�
� � � � 


�

� �

� �

� � � � � � �

� � � � � �
�

�

�

� � � �

� � �
�

�

�

and we use Algorithm B with a constant c that is determined from the data. We use Minitab to

generate the random data and we choose the random seed 77 so that the data can be reproduced.

In column 1 of Table 1a we have generated �� ���� �  random data �� � �� ��  from a Cauchy

distribution. In column 2 and 3 we compute the unnormalised densities � ��� ��  and � �
�

� �� . Col-

umn 4 gives the ratio � � � �
� �

� � � �� � . The maximum of column 4 is �
����� �  (see column 5),

and with this constant c we obviously have

(16)   for all � � � � � �� �� � �� � � � � � � �� �� � � .

As in this simple example the normalising constants �
�

� ��  and �� ��  are known, we can

derive from (14) the theoretically correct constant

(17) theor
� � � � �

��� ��� �
����� �
����
� � � �

�

�

�� � � �
�

� � � � �
�

�
� � � �

�

�
.

This constant is the same (to four decimal places) as the constant c that we have found empiri-

cally from the data, which is not surprising, as the maximum is reached for �� � � , and these

two points lie in the central part of the distribution g (see Figure 1). So in this example the theo-

retical maximum of � � � �� � � �� �  can be found from the random data. In column 6 we compute for

each point jy  the acceptance probability � � � �� �� � � � �� �� �
� � ; the total of column 6 (6580.9) is the

expected number of accepted points given �� � �� �� . In column 7 we generate M random data

�� � �� ��  from � ����� . If � � � �
� � �

� � � � � �� �� � �
� � , then ��  is accepted as a realisation ��  of the

standard normal distribution; this is indicated in column 8. The total number of accepted points

is 6590
�

	 �  out of the �� ���	 �  generated data from the Cauchy distribution. So the ac-

ceptance rate �	 	  is about 0.66. The theoretical acceptance rate is given by

Fig. 1: � � � �� � � � ��
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(18)
� �
� �

�
�� �	
���

�	��
�
�

�

�� 

�

�� 
 ��
�
�

	 
� �� �� � � �� 
� �� �� �

�

�
.

In Table 1b we give some descriptive statistics (mean, standard deviation, median, quartiles,

minimum and maximum) of the empirical data from the proposal (Cauchy) and target distribu-

tion (standard normal).

Table 1a:  Generation of standard normal data from Cauchy data

(0) (1) (2) (3) (4) (5) (6) (7) (8)

j �� � ��� �� � ��� ��
� �
� �

�

�

� �

� �

�

�
(4)

sorted
� �
� �
�

�

� �

� � �

�

� �� accept?

1 −0.47 0.8171 0.8941 1.0943 0.0000 0.9021 0.7774 1

2 −2.63 0.1266 0.0317 0.2507 0.0000 0.2067 0.9402 0

3 0.17 0.9727 0.9861 1.0137 0.0000 0.8357 0.5177 1

4 0.10 0.9906 0.9953 1.0047 0.0000 0.8282 0.8376 0

5 −5.13 0.0367 0.0000 0.0001 0.0000 0.0000 0.5532 0

6 −3.82 0.0641 0.0007 0.0106 0.0000 0.0087 0.1775 0

7 1.90 0.2175 0.1654 0.7607 0.0000 0.6271 0.1814 1

8 742.94 0.0000 0.0000 0.0000 0.0000 0.0000 0.9528 0

9 −2.23 0.1671 0.0827 0.4949 0.0000 0.4080 0.5643 0

10 1.15 0.4292 0.5143 1.1983 0.0000 0.9878 0.4375 1

� � � � � � � � �
9 991 1.14 0.4345 0.5217 1.2006 1.2131 0.9897 0.2365 1

9 992 −3.43 0.0784 0.0028 0.0357 1.2131 0.0295 0.4103 0

9 993 15.98 0.0039 0.0000 0.0000 1.2131 0.0000 0.9674 0

9 994 −0.50 0.8029 0.8845 1.1016 1.2131 0.9081 0.9936 0

9 995 −1.05 0.4751 0.5756 1.2115 1.2131 0.9987 0.8262 1

9 996 0.35 0.8908 0.9405 1.0559 1.2131 0.8704 0.2184 1

9 997 −0.16 0.9742 0.9869 1.0130 1.2131 0.8351 0.9822 0

9 998 0.10 0.9894 0.9947 1.0053 1.2131 0.8287 0.4127 1

9 999 1.33 0.3619 0.4141 1.1443 1.2131 0.9433 0.8507 1

10 000 −0.46 0.8244 0.8990 1.0904 1.2131 0.8989 0.2240 1

Sum 6580.9 6590

Table 1b: Descriptive statistics of the proposal (P) and target (T) distribution in Table 1a

# mean stdev median
�� �� min max

(P) 10 000 0.9962 85.73 −0.0015 −1.019 0.972 −1072.95 7603.28

(T) 6 590 0.0069 1.003 0.0164 −0.662 0.687 −4.218 3.889
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Example 2:  Generation of standard normal data from data with a uniform distribution

Here we want to generate random data with a standard normal distribution from random data

with a uniform distribution � � �� � �� . So our target and proposal densities are given by

� �
� � � �for  

     and     
else.

��
�

� � ��
� � ��� � �

��

� � � �
� � � � �

�

	 � ����� � � �����
.

As � � �� � �  for � ��  we obviously have

IR

� �
���

� ��

� �
� ��

� � ,

and so Algorithm A cannot work in this example as a constant � �� ��  with � � � �� � � � ��  for

all � � �  does not exist. With ��  and ��  we denote the unnormalised densities

� � � �

� �for  
     and     

else ,
��

�

� �
� � ��� � � � � � �

�

� � �
� � � � � � � � � ��

	 � ����� � � � � �����

� �

and we try to use Algorithm B. As a first try we choose �� � , i.e. we choose the uniform distri-

bution � ����� �  as our proposal distribution. We again use Minitab to generate the random data

and we again choose the random seed 77. In column 1 of Table 2a we have generated

�� ���	 �  random data �� � �� ��  from the uniform distribution � ����� � . In column 2 and 3

we compute the unnormalised densities � ��� ��  and � �
�

� �� . Column 4 gives the ratio � � � �
� �

� � � �� � .

The maximum of column 4 is �	����� �  (see column 5), and with this constant c we obviously

have

  for all � � � � � �� �� � �� � � � � � � 	� �� � � .

This is not surprising as obviously   for � � � � � � � �� � � � � � �� � � �� � . In column 6 we compute for

each point jy  the acceptance probability � � � � � �� � �� � � � � � �� � �� �
� �� ; the total of column 6 (8563.7)

is the expected number of accepted points given �� � �� �� . In column 7 we generate

�����	 �  random data �� � �� ��  from � ����� . If � � � �
� � �

� � � � � �� �� � �
� � , then ��  is accepted

as a realisation ��  of the standard normal distribution; this is indicated in column 8. The total

number of accepted points in Table 2a is ��
�
�

	 �  out of the �� ���	 �  generated data

from the uniform distribution � ����� � . So the acceptance rate �	 	  is about 85 %.

Obviously, the 8567 generated random data cannot be considered as data from a standard normal

distribution. As all proposed data lie in the interval � ����� , the accepted data also all lie in this

interval. But for the standard normal distribution we have � ��� � �	
���� 
 � � , and so about

32 % of the target distribution remain unconsidered. According to our theorem concerning Algo-

rithm B the accepted random data possess the distribution function

 � � � ���� �� � 
 � 
 �� � �
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Table 2a:  Generation of standard normal data from data with a uniform distribution

(0) (1) (2) (3) (4) (5) (6) (7) (8)

j �� � ��� �� � ��� ��
� �
� �

�

�

� �

� �

�

�
(4)

sorted
� �
� �
�

�

� �

� � �

�

� �� accept?

1 -0.2813 1 0.9612 0.9612 0.6066 0.9612 0.7774 1

2 -0.7684 1 0.7443 0.7443 0.6067 0.7443 0.9402 0

3 0.1056 1 0.9944 0.9944 0.6068 0.9944 0.5177 1

4 0.0618 1 0.9981 0.9981 0.6069 0.9981 0.8376 1

5 -0.8773 1 0.6805 0.6805 0.6069 0.6805 0.5532 1

6 -0.8370 1 0.7045 0.7045 0.6071 0.7045 0.1775 1

7 0.6912 1 0.7875 0.7875 0.6071 0.7875 0.1814 1

8 0.9991 1 0.6071 0.6071 0.6072 0.6071 0.9528 0

9 -0.7319 1 0.7650 0.7650 0.6074 0.7650 0.5643 1

10 0.5452 1 0.8619 0.8619 0.6074 0.8619 0.4375 1

� � � � � � � � �
9 991 0.5418 1 0.8635 0.8635 1.0000 0.8635 0.2365 1

9 992 -0.8193 1 0.7149 0.7149 1.0000 0.7149 0.4103 1

9 993 0.9602 1 0.6306 0.6306 1.0000 0.6306 0.9674 0

9 994 -0.2929 1 0.9580 0.9580 1.0000 0.9580 0.9936 0

9 995 -0.5158 1 0.8754 0.8754 1.0000 0.8754 0.8262 1

9 996 0.2145 1 0.9773 0.9773 1.0000 0.9773 0.2184 1

9 997 -0.1027 1 0.9947 0.9947 1.0000 0.9947 0.9822 1

9 998 0.0656 1 0.9979 0.9979 1.0000 0.9979 0.4127 1

9 999 0.5891 1 0.8407 0.8407 1.0000 0.8407 0.8507 0

10 000 -0.2752 1 0.9628 0.9628 1.0000 0.9628 0.2240 1

Sum 8563.7 8567

where

� �

� �
IR � � ����

�

� �
� �

� �

	 
� �� �� � � � �� 
� �� �� �

�

�
.

So we have � � � ��� �
�

� � 
 � 
� � �  and this is a trimmed standard normal distribution.

Obviously, the distribution 
�

�  is too far away from our target distribution, as about 32 % of the

total probability mass are trimmed away.

The remedy to our problem is obvious: we need a proposal distribution that covers nearly the

complete target distribution, i.e. we have to choose a uniform distribution � � �� � ��  with a larger

value of a. In Table 2b we give the results for the proposal distributions � � �� � ��  with

�� �� �
� �� ��� � � . For each value of a we perform a simulation study as in the above case with

�� � . We see e.g. that for �� �  the total number of accepted data is 3211 out of the

�����	 �  proposed data, and the probability trimmed away in the distribution 
�

�  is only
��	


� ���� . So we can consider the 3211 accepted data as random data from a standard nor-

mal distribution as it is unlikely that among 3211 random data from a true standard normal dis-

tribution one of these values lies in the range trimmed away.
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Table 2b: Result for different proposal distributions � � �� � ��

a � ���� 
 �� �
	

1 0.3173 8567

2 0.04550 6054

3 0.002 700 4201

4 0.6334 E�4 3211

5 0.5733 E�6 2585

6 0.1973 E�8 2142

8 0.1244 E�14 1623

10 0.1524 E�22 1291

In our simple example we can compute the probability � � � ��� ���
 � 
 �� � � , but in real

applications this will often be impossible as the density f is only known in its unnormalised form

�� . How can we know that the generated data can be considered as data from the target distribu-

tion? In Table 2c we give some descriptive statistics (mean, standard deviation, median, quarti-

les, minimum and maximum) of the data generated from the trimmed distributions 
�

�  for

�� �� �
� �� ��� � � . We can see that the empirical distribution remains essentially unchanged

for �� � , and so one would use the uniform distribution with �� �  to generate about 3000

data from the standard normal distribution. Table 2d is similar to Table 2c but with

������	 �  instead of �����	 � .

Table 2c: Descriptive statistics of the empirical distribution of the data
generated for �� �� �
� �� ��� � �  with �����	 �

a
�

	 mean stdev median �� �� min max
1 8567 -0.0011 0.5384 0.0028 -0.4430 0.4425 -0.9994 0.9999

2 6054 0.0010 0.8823 0.0057 -0.6301 0.6354 -1.9987 1.9998

3 4201 0.0046 0.9782 0.0076 -0.6505 0.6672 -2.9008 2.8606

4 3211 0.0188 0.9866 0.0203 -0.6405 0.6875 -3.4072 3.5196

5 2585 0.0041 0.9920 0.0057 -0.6580 0.6760 -3.9361 3.4378

6 2142 0.0314 0.9858 0.0311 -0.6260 0.7065 -3.6231 3.6309

8 1623 0.0399 0.9994 0.0409 -0.6495 0.6936 -3.4570 3.6647

10 1291 0.0300 1.0138 0.0282 -0.6644 0.6937 -4.1202 4.5808

Table 2d: Descriptive statistics of the empirical distribution of the data
generated for �� �� �
� �� ��� � �  with ������	 �

a
�

	 mean stdev median
�� �� min max

1 85 601 0.0018 0.5403 0.0043 -0.4409 0.4428 -1.0000 1.0000

2 59 774 0.0018 0.8796 0.0045 -0.6347 0.6409 -1.9999 1.9999

3 41 685 0.0040 0.9857 0.0073 -0.6685 0.6781 -2.9932 2.9974

4 31 528 0.0072 1.0009 0.0085 -0.6747 0.6902 -3.7235 3.8321

5 25 227 0.0033 1.0060 0.0068 -0.6818 0.6770 -4.1832 4.2647

6 21 043 0.0004 1.0051 0.0069 -0.6875 0.6815 -4.4336 3.6795

8 15 713 0.0004 1.0026 0.0092 -0.6799 0.6852 -3.6744 3.8567

10 12 555 0.0078 1.0112 0.0121 -0.6784 0.6950 -4.0250 3.9600
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Example 3:  Generalised linear model with binomial response

Let �� �
�


 
�  be independent random variables with

(19)
� �

� � � �� �

� � �� � �� � �

� ����������������� !"������	

� � �

� � � �


 � �� � � �

� 
 � �� �

�

� � � �

��

�

�

�
Then

� � � �     and     �� � �� � �� � � �
 � 
 �� � � � �
or

� � � � � � � �1
, 0,1�� � ��

��
� � � � ��� � � � � � ��� � � � ��

and

(20) � � � � � � � �1
, 0,1

� �

� ��

� �
��

� � ��
� �

� � � � � ��

� �

� � � �� �� � � .

We assume that the values �� �
�

� ��  are given (deterministic predictor), and that �  is a random

vector with the prior distribution (Bayesian model)

(21)

� � � �

� �

� � �
� � �

� �

� �� � ���	�� � �
�	�	
�	

�	������
�� �� � ��
��
�

� �
	�� ����	
��
�����

� �

� � �

�

� � �

� �

� � � � �

�� �

	 
�� ��� � �� �� �� �
 �

�

� � � �T
.

The posterior distribution of �  for given observations � ��� � �� ��� �  is given by:

(22) � � � � � � � ��� �
�

� �
	�� �

� �
��

�
��

��
�

� � � � �
� ��� �

�

�

	 
�� ��� � � � � ��� �� �� �
 �
�� �� � � � �T .

As the random variables 
�

�  are discrete we obviously have � � �� �� � . Random data from

� �� �  ( � �	� � , proposal distribution) are available, and random data from the posterior distri-

bution � �� ��  ( � �
� � , target distribution) have to be generated. The normalising constant of

the posterior distribution is unknown:

� � � � � � � � � �� �� 
 � � � � 
� � �� � �� � � � �  with unknown 
� .

But we have

(23)
� �
� �

� � � �
� �

� � �
� �


�
	 �

� � �
�

�
� � ��

�
� �

,

and so Algorithm A works (in theory) with
(24) � � � � � � � � � � � �� � ��
 � � 	 	 � �� � � ��� �� � � � � �

In Table 3a we find the data for our example with ����� � . Column 1 and 2 give the observed

values �� �
�

� ��  and �� �
�

� �� . As an interpretation we could think that 
�
�  denotes whether in-

dividual i is employed ( �
�
� � ) or unemployed ( ��� � ), and that 

�
�  is the age of individual i

(�� ��
�

�� � ). Column 3 gives the normalised age �
�� � ���� �� �� �� , so that � �

�
�� � �� .

The "observed " data points � � �� �� �� �� � � �� � , were generated with Minitab as follows:

1. Set the starting value of the random number generator to 77.
2. Generate ����� �  random data �� �

�
� ��  from the binomial distribution �

�� � ��� � .

3. Generate ����� �  random data �� �
�

� ��  from the uniform distribution over the inte-
gers ������� ����� .
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For given coefficients ��  and ��  we compute in column 4 and 5 the values � �� �

 �� �� � �  and

� �� �� 
� � . Column 6 gives the probabilities � � ��� �� �
� �

� ��� � � � �� �� , and column 7 gives

the logarithms of these probabilities so that

� � � �
�

 �!  �! ��""��#��
�

�
�

� � �
�

� � ��� � �

and � � � � ��$	�� ��""��#�� ���#%$ ��� �� � � �� � .

Table 3a: � ���"�#%� ��%���� �� � � �

(0) (1) (2) (3) (4) (5) (6) (7)

i �
�

�
� ��� �



�
� � ��� � �  �!� � ���� � �

1 1 49 0.45 -1.1899 0.1170 0.1170 -2.1452
2 1 36 -0.20 0.0841 0.5335 0.5335 -0.6283
3 0 28 -0.60 0.8681 0.8073 0.1927 -1.6468
4 0 58 0.90 -2.0719 0.0191 0.9809 -0.0193
5 1 28 -0.60 0.8681 0.8073 0.8073 -0.2140

� � � � � � � �
996 0 58 0.90 -2.0719 0.0191 0.9809 -0.0193
997 1 35 -0.25 0.1821 0.5723 0.5723 -0.5582
998 1 47 0.35 -0.9939 0.1601 0.1601 -1.8317
999 1 23 -0.85 1.3581 0.9128 0.9128 -0.0913

1000 1 60 1.00 -2.2679 0.0117 0.0117 -4.4509

Sum 485 -1033.2741

Now we want to apply Algorithm A to generate random data from the posterior distribution by

means of random data from the prior distribution with � ��� � . We again use Minitab with the

seed 77 to generate ��� ���� �  data vectors � �� � �� � �� ��� , �� �� �� � , from the prior

distribution � ���� ������ �� . These data are to be found in column 1 and 2 of Table 3b. Column

3 gives the logarithms of the acceptance probabilities � ��� � �  computed according to Table 3a;

the first line in Table 3b contains the result of Table 3a; for � �� ��"�#%� ��%���� � ��  we have

� �! � � ��""��#� � �� � . In column 4 we find the sorted values of column 3. The smallest and

largest value in column 3 is ��� �����#%� � �  and 
���

�$%�%$� ��  so that the smallest and

largest probability � ��� � �  are given by
����

��� ���	��� � ���#� ��� � �� � � � ;
���

��� ���	��� � ����� ��� � �� � � � .

If we tried to use Algorithm A according to (23) and (24) with �� � , the acceptance probabili-

ties � ��� � �  would be so small that most probably not a single vector ��  could be accepted as a

random vector of the posterior distribution. But from our data in column 4 of Table 3b we see

that for the given data points � � �� �� �� �� � � �� � , the conditional probability � �� � �  as a func-

tion of the parameter vector � �� � �� ���  obviously has a maximum, namely

��� ���
	��� �� �� � . In Table 3c we find the 10 data vectors � �� � �� ���  of Table 3b with the

largest values of � �� � � . We see that � �� � �  becomes maximum for & � ���"'� ���'�� � �� , and
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this is obviously the maximum likelihood estimator of � �� � �� ���  for the given data points

� � �� �� �� �� � � �� � . Instead of using Algorithm A with the theoretical upper bound ������� �  of

the probabilities � �� � �  we now use the maximum

��� ���
(�� � � 	��� �� � � �� � � ��
�

�

as found in Table 3b. With this constant the acceptance probabilities are given by (��� ��� �� � .

So we compute in column 5 of Table 3b the values

(��
(��

� �
 �!  �! � ��

�

�
� �

�
� �

�
�

�
� ,

and by exponentiation we obtain in column 6 the acceptance probabilities (��� �� �� � . Note

that all these computations are done in a numerically stable way. The sum of the acceptance

probabilities in column 6 now becomes 257.08. Column 7 gives independent data �� � �� ��

from ������ , and if an acceptance probability (��� ��� �� �  is smaller the corresponding value

��  the data vector ��  is accepted as a vector of the posterior distribution. In our Table 3b the

number of accepted vectors is 271, so that the acceptance rate is about �#� ����"� � .

What can be done to find more than just 271 data vectors from the posterior distribution? One

way is to enhance the number ��� ���� �  of proposed vectors. Another possibility would be

to reduce the variance � ��� �  of the prior distribution. If we used �
��� �  instead of ��� � ,

the two-dimensional density in the neighbourhood of & � ���"'� ���'�� � ��  would be about four

times higher and so the number of accepted points would also be about four times higher. And in

fact the analogous computations as in Table 3b now give 995 acceptable data vectors. But we

have to ask whether the posterior distribution remains essentially unchanged when we reduce the

standard deviation of the prior distribution from ��� �  to �
��� � . Table 3d and 3e give some

descriptive statistics (mean, standard deviation, median, quartiles, minimum and maximum) of

the two empirical data sets from the posterior distribution, and the answer to our question seems

to be positive. A more detailed treatment of our example can be found in Knüsel (2002).

Our example shows that the acceptance-rejection algorithm works fine even for data sets with

����� �  and more observations. In our example we have used just one predictor variable (age

x); if there are � ��� �  predictor variables our parameter vector �� � � ��� ��� �  becomes

� ��� � -dimensional, but no new problems will arise if k is not too large (see section 5).
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Table 3b: Simulation with ����� �  observations and ��� ���� �

(0) (1) (2) (3) (4) (5) (6) (7) (8)

j � �� ���  
 � ��� � � (3) sorted (3)�
���
�

(��

� ���
�
� �

�� accept?

1 -0.3079 -1.9600 -1033.27 -6614.79 -343.29 0.0000 0.4283 0
2 -0.8409 1.1722 -1075.30 -6590.37 -385.32 0.0000 0.4195 0
3 2.5018 -2.1165 -2868.18 -6271.10 -2178.20 0.0000 0.1676 0
4 1.4639 1.3051 -1611.67 -5928.48 -921.69 0.0000 0.9560 0
5 -0.4848 0.3408 -779.96 -5691.63 -89.98 0.0000 0.2997 0
6 0.3611 -0.6306 -763.01 -5361.96 -73.04 0.0000 0.8459 0
7 -0.5657 -1.0905 -862.12 -5302.70 -172.14 0.0000 0.3587 0
8 0.5270 -0.9555 -854.04 -5282.21 -164.06 0.0000 0.2080 0
9 1.0423 -1.0347 -1123.31 -5167.82 -433.33 0.0000 0.7861 0

10 -0.9534 0.5409 -1004.02 -5154.44 -314.05 0.0000 0.0995 0
� � � � � � � � �

99 991 1.2408 0.4125 -1237.90 -690.01 -547.92 0.0000 0.5524 0
99 992 -0.0757 -1.0427 -770.99 -690.01 -81.02 0.0000 0.0753 0
99 993 -0.7856 0.4639 -907.07 -690.01 -217.09 0.0000 0.5538 0
99 994 -0.2130 1.8180 -1110.69 -690.01 -420.71 0.0000 0.9853 0
99 995 -0.6739 -0.4450 -824.26 -690.01 -134.28 0.0000 0.0428 0
99 996 -0.5381 -0.4991 -779.78 -690.01 -89.80 0.0000 0.0079 0
99 997 -0.1721 1.2053 -893.29 -689.99 -203.31 0.0000 0.7317 0
99 998 0.9925 -0.2832 -1024.02 -689.98 -334.04 0.0000 0.6037 0
99 999 -1.6129 0.3741 -1478.52 -689.98 -788.54 0.0000 0.7684 0

100 000 1.2603 -0.5943 -1228.64 -689.98 -538.66 0.0000 0.3476 0

Sum 257.08 271

Table 3c: The 10 data vectors of Table 3b with the largest acceptance probabilities

(0) (1) (2) (3) (3)

j � �� ���  
 � ��� � �
(��

� ���
�
� �

11929 -0.0423 -0.1434 -690.01 0.9704
47267 -0.0457 -0.1725 -690.01 0.9713
23848 -0.0298 -0.1479 -690.01 0.9713
5887 -0.0273 -0.1581 -690.01 0.9726

33652 -0.0319 -0.1753 -690.01 0.9728
2067 -0.0308 -0.1734 -690.01 0.9740

85760 -0.0296 -0.1597 -689.99 0.9861
46858 -0.0424 -0.1561 -689.98 0.9979
1899 -0.0329 -0.1602 -689.98 0.9996

20415 -0.0340 -0.1654 -689.98 1.0000

Table 3d: Descriptive statistics of the data from the posterior distribution of ��

�� # mean stdev median �� �� min max

1 271 �0.035 0.045 �0.035 �0.066 �0.008 �0.184 0.104

½ 995 �0.037 0.039 �0.037 �0.064 �0.010 �0.168 0.099

Table 3e: Descriptive statistics of the data from the posterior distribution of ��

�� # mean stdev median �� �� min max

1 271 �0.161 0.070 �0.159 �0.209 �0.111 �0.321 0.033

½ 995 �0.157 0.067 �0.157 �0.203 �0.114 �0.360 0.049
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5. An example with real data

Now we present an example with real data. We will work with a Bayesian model and we try to determine

the posterior distribution that corresponds to a noninformative prior distribution using classical simulation

methods. We work with the multivariate normal, Laplace, Cauchy and uniform distribution as prior dis-

tributions, and we use an iterative procedure that takes into account the approximate covariance matrix of

the posterior distribution.

5.1 Overview

The example is taken from Fahrmeir-Tutz (2001), page 3: Credit-scoring. For 1000n �  bank customers

the creditability y ( 0y � : credit-worthy, 1y � : not credit worthy) and 8k �  explanatory variables

1, , kx x�  are given. We apply a probit model in a Bayesian framework, and we want to apply the simple

classical acceptance-rejection algorithm (Algorithm A) to generate random data from the posterior distri-

bution (section 5.2).

First we have to find the maximum likelihood estimator of the parameter vector 0( , , )k� �� ��  so that

Algorithm A can work efficiently (section 5.3). Then we have to find a noninformative prior distribution;

we call a prior distribution noninfomative if the posterior distribution does not change anymore when

enlarging the dispersion of the prior. We face the problem that too few acceptable data are found from the

posterior distribution if the prior distribution is too far away from the posterior distribution.

In section 5.4 we work with a ( 1)k � -dimensional prior distribution with independent normal compo-

nents 2( , )jN �� �  where ˆ
j j� ��  is the maximum likelihood estimate of j� . But we are not able to in-

crease ��  to a value such that the corresponding prior distribution could be considered as approximately

noninformative as the number of acceptable data becomes too small for larger values of �� .

In section 5.5 we work with the multivariate normal distribution as prior distribution. In the first iteration

step we compute the covariance matrix appC  found from the posterior data in section 5.4; this covariance

matrix can be considered as an approximation to the unknown covariance matrix of the posterior distribu-

tion connected with the uninformative prior distribution. As prior distribution we now use the multivariate

normal distribution 9 ( , )N ��  where ˆ�� �  is the maximum likelihood estimate of �  and where
2

appr� C�  with a factor 1r �  chosen as large as possible in order to come close to the noninformative

prior distribution; we started with 1.5r �  and in a second series of simulations we chose to 2r � . Then

we generate the corresponding posterior data. In the second iteration step we compute an updated covari-

ance matrix appC  found from the posterior data in step 1. As prior distribution we now use the multivari-

ate normal distribution 9 ( , )N ��  where 2
appr� C�  with the updated covariance matrix appC . We re-

peat this procedure until the correlation matrix and the eigenvalues of appC  become stable. But if we

replace 1.5r �  by 2r �  the eigenvalues increase significantly and so we cannot consider our prior dis-

tribution as noninformative. We are again not able to increase r to value such that the corresponding prior

distribution could be considered as approximately noninformative as the number of acceptable data be-

comes too small for larger values of r.
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In section 5.6 we work with a ( 1)k � -dimensional multivariate uniform prior distribution and perform

the same iterative procedure as in section 5.4 with the multivariate normal distribution. We also tried out

the multivariate Laplace (two-sided exponential distribution) and Cauchy distribution, but the best results

were found with the multivariate uniform distribution.

In section 5.7 we compare the results found with the multivariate uniform distribution as prior distribution

with the results found by the MCMC method with a diffuse prior. I thank Dr. Stefan Lang from the De-

partment of Statistics, University of Munich, for performing the MCMC computations. Our results come

rather close to the results of the MCMC method.

5.2 Data and model
The example is taken from Fahrmeir-Tutz (2001), page 3: Credit-scoring. The corresponding data set can
be found under www.stat.uni-muenchen.de/~lang/compstat20022003/compstat0203.html. The data set
gives for 1000n �  bank customers the creditability y and 8k �  explanatory variables 1, , kx x� :

1

2

3

 creditability ( 0: credit-worthy; 1: not credit worthy)
 duration of credit in months
 payment of previous credits (1: good; -1: bad)
 intended use of credit (1: private; -1: professional)

y y y
x
x
x

� � �
�
�
�

4

5

6

7

8

 amount of credit (in 1000 DM)
 gender (1: male; -1: female)
 marital status (1: married; -1: unmarried)
 covariable 1 (running account)
 covariable 2 (running account)

x
x
x
x
x

�
�
�
�
�

The creditability y of a customer is to be explained by the 8k �  explanatory variables 1, , kx x� . We
want to apply a probit model in a Bayesian framework. Let 1, , nY Y�  be independent random variables
with

� �
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~ 1, , 1, , ;
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Then
� � � �Pr 1      and     Pr 0 1i i i iY p Y p� � � � 	

or

� � � � � �1
( ) Pr 1 , 0,1ii yy

i i i i iip y Y y p p y
	� � � 	 
�

and

� � � � � � � �1
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1 , 0,1ii
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� � 	 
� �y � � .

Within the framework of our model the values , 1, , , 1, ,ijx i n j k� �� �  are given (k deterministic pre-
dictor variables), and in a first step we assume that 0 , , k� ��� �� �  is a random vector with the following
prior distribution:

0 1, , , k� � ��  are independent random variables, where � �2~ ,j jN �� � � , 1, ,j k� � .

The parameters 2
0, , ,k �� � ��  are assumed to be known; the density of the prior distribution of

0( , , )k� �� ��  is then given by
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The posterior distribution of �  for given observations � �1, , ny y�y �  has the density

� � � � � � � � � �1
1

1 ii
n

yy
ii

i

p p p p p p
	

�

� � � � 	�y y� � � � .

As the random variables iY  are discrete we obviously have � � 1p �y � . Random data from � �p �

( � � � �g g� � �� � , proposal distribution) are available, and random data from the posterior distribution

( )p y�  ( � �f� � , target distribution) have to be generated. The normalising constant of the posterior

distribution is unknown:

� � � � � � � � � �f fp f c p p c f� � �y y �� � � � �  with unknown fc .

But we have

� �
� �

� �
� �

� � � �
� �

� � 1
p pf f

p
g g p

� � � �
y

y
� �

�

� �� �
�

� � �
,

and so Algorithm A works (in theory) with

� � � � � � � � � � � �; ; 1.f p p g g p c� � � �y� �� � � � � �

In Table 5.2 we find the raw data of our example. We consider 1000n �  bank customers with the vari-

ables 1 8, , ,y x x� �� . Column 1 gives the observed values 1, , ny y�  and column 2 to 9 give the values ijx�  of

the 8k �  explanatory variables 1 8, ,x x� �� . In order to avoid numerical problems we will work with nor-

malised variables 1 8, ,x x�  where

(25) 1
42

j j
j

j

x m
x

r

	
� 	

�
,

where minj iji
m x� � , maxj iji

M x� � , and j j jr M m� 	 .

The normalised data ijx  will all lie in the interval 1 1
4 4

[ , ]	 .

The normalising constants are to be found in Table 5.1. In

Table 5.3 we compute for a given vector

0 1( , , , )k� � �� ��  the quantity � �log p y � . In column 10

and 11 we compute 0 1 1i i k ikz x x� � �� � � ��  and

� �i ip z�� . Column 12 gives the probabilities � � 1(1 )i iy y
i iip y p p �� 	� , and column 13 gives the loga-

rithms of these probabilities. Due to our normalisation the values ip  will most probably neither under-

flow to zero nor overflow to 1 so that the probabilities � �ip y �  will not become zero and the logarithm

can be taken without error. The sum of column 13 is

� � � �
1

log log 700.1879
n

i
i

p p y
�

� �	�y � �

and 304( ) exp( 700.19) 0.82 10p 	� 	 � �y � . Such small probabilities can cause underflow problems and

therefore we will work with logarithms and not with probabilities wherever possible.

Table 5.1: Normalising constants

j jm jM jr

1 4 72 68
2 -1 1 2
3 -1 1 2
4 0.25 18.424 18.174
5 -1 1 2
6 -1 1 2
7 -1 1 2
8 -1 1 2
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Table 5.2: Raw data of our example with 1000n �  bank customers

(0) (1) (2) (3) (4) (5) (6) (7) (8) (9)

i iy 1ix� 2ix� 3ix� 4ix� 5ix� 6ix� 7ix� 8ix�

1 0 24 1 1 2.957 -1 1 1 0
2 0 12 1 1 1.424 1 -1 -1 -1
3 0 18 1 1 2.051 -1 1 0 1
4 0 12 1 1 4.675 1 -1 0 1
5 0 24 1 -1 2.978 -1 1 0 1
6 0 24 1 1 2.603 1 -1 0 1
7 0 36 1 1 4.686 -1 1 0 1
8 0 24 1 1 2.835 -1 1 0 1
9 0 21 1 -1 1.602 1 1 1 0

10 0 10 1 1 2.848 -1 1 0 1

� � � � � � � � � �
991 1 36 1 1 1.977 -1 1 1 0
992 1 18 1 -1 0.976 1 -1 1 0
993 1 48 1 -1 3.914 -1 -1 0 1
994 1 30 1 1 11.998 -1 -1 1 0
995 1 15 -1 -1 6.850 -1 1 -1 -1
996 1 48 1 -1 15.672 -1 1 -1 -1
997 1 15 1 1 2.327 1 -1 -1 -1
998 1 24 1 1 1.024 1 1 1 0
999 1 30 1 -1 1.908 -1 1 -1 -1

1000 1 60 1 -1 14.027 -1 1 -1 -1

sum 300

Table 5.3: Computation of � �log p y �  for 0 1 8( , , , )� � �� ��  where

0� 1� 2� 3� 4� 5� 6� 7� 8�
-0.3079 -1.9600 -1.6480 -1.6173 0.5248 0.3849 -0.7045 -1.8751 -0.5106

(0) (1) (2) (9) (10) (11) (12) (13)

i iy 1ix � 8ix iz ip ( )ip y � log( ( ))ip y �
1 0 -0.1029 � 0.00 -1.7557 0.0396 0.9604 -0.0404
2 0 -0.1912 � -0.25 0.0050 0.5020 0.4980 -0.6971
3 0 -0.1471 � 0.25 -1.3411 0.0899 0.9101 -0.0942
4 0 -0.1912 � 0.25 -0.6721 0.2508 0.7492 -0.2887
5 0 -0.1029 � 0.25 -0.6056 0.2724 0.7276 -0.3180
6 0 -0.1029 � 0.25 -0.8750 0.1908 0.8092 -0.2117
7 0 -0.0147 � 0.25 -1.5625 0.0591 0.9409 -0.0609
8 0 -0.1029 � 0.25 -1.4163 0.0783 0.9217 -0.0816
9 0 -0.1250 � 0.00 -0.7309 0.2324 0.7676 -0.2645

10 0 -0.2059 � 0.25 -1.2143 0.1123 0.8877 -0.1191

� � � � � � � � �

991 1 -0.0147 � 0.00 -1.9427 0.0260 0.0260 -3.6488
992 1 -0.1471 � 0.00 -0.3445 0.3652 0.3652 -1.0072
993 1 0.0735 � 0.25 -0.5857 0.2790 0.2790 -1.2764
994 1 -0.0588 � 0.00 -1.3593 0.0870 0.0870 -2.4416
995 1 -0.1691 � -0.25 1.1280 0.8703 0.8703 -0.1389
996 1 0.0735 � -0.25 -0.0442 0.4824 0.4824 -0.7290
997 1 -0.1691 � -0.25 -0.0252 0.4900 0.4900 -0.7135
998 1 -0.1029 � 0.00 -1.5911 0.0558 0.0558 -2.8862
999 1 -0.0588 � -0.25 0.0165 0.5066 0.5066 -0.6800

1000 1 0.1618 � -0.25 -0.2408 0.4048 0.4048 -0.9043

sum -700.1879
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5.3 Maximum Likelihood Estimate

Now we try to apply Algorithm A (see Knüsel, 2003) to generate random data from the posterior distri-

bution by means of random data from the prior distribution ( )p �  with 0 8 0� �� � ��  and 2 1�� � .

We again use Minitab with the seed 77 to generate 100000M �  data vectors 0 1, 8( , , )i i i i� � �� �� ,

1, ,i M� � . These data are to be found in column 0 to 8 of Table 5.4a. Column 9 gives the logarithms

log ( )ip y �  computed according to Table 5.3; the first line in Table 5.4a contains the result of Table

5.3; for 1 ( 0.3079, , 0.5106)� 	 	��  we have � �1log 700.19p �	y � . In column 10 we find the sorted

values of column 9. The smallest and largest value in column 10 are min 8808.60l �	  and

max 536.90l �	  so that the smallest and largest probability ( )ip y �  are given by

3825
min minexp( ) 0.296 10p l �� � � ;

233
max maxexp( ) 0.671 10p l �� � � .

If we tried to use Algorithm A with 1c � , the acceptance probabilities ( | )ip y �  would be so small that

most probably not a single vector i�  could be accepted as a random vector of the posterior distribution.

But from the sorted data in column 10 of Table 5.4a we see that for the given data points

1 8( , , , ), 1, ,i i iy x x i n�� � , the conditional probability ( )p y �  as a function of the parameter vector

0 1 8( , , , )� � �� ��  seems to have a maximum that will be close to max maxexp( )p l� . The maximum

will be reached for the maximum likelihood estimate 0 1 8
ˆ ˆ ˆ ˆ( , , , )� � �� �� . We obviously have

ˆ( | ) ( | )p p�y y� �  for all possible values of � . So we can apply Algorithm A with ˆ( | )c p� y �  instead

of 1c � , and thus we want to find the maximum likelihood estimate �̂ . In Table 5.4b we find the 10 data

vectors 0 1 8( , , , )i i i i� � �� ��  of Table 5.4a with the largest values of ( )ip y � . We see that ( )p y �  be-

comes maximum for ˆ (0.0, 0.7, 1.1, 0.3,1.2, 0.3, 0.0,1.0,1.7)� 	 	� , which is the mean of the 10 vectors

in Table 5.4b rounded to 1 decimal place. As the maximum max 536.90l �	  and the corresponding

maximum likelihood estimate are not very accurate (look at the sorted values in column 10 of Table 5.4a)

we want to improve the maximum likelihood estimate before we apply Algorithm A.

In our first simulation (Table 5.4a and Table 5.4b) the parameters of the prior distribution ( )p �  were

0 8 0� �� � ��  and 2 1�� � . In the second simulation we choose 1
2�� �  and

� �0 8( , , ) 0.0,0.7, , 1.7� � � 	� �  which is our provisional estimate of 0 1 8
ˆ ˆ ˆ ˆ( , , , )� � �� ��  found in the

first simulation. With this prior distribution we find the data in Table 5.5a and 5.5b. The maximum value

of log ( )ip y �  has increased from max 536.90l �	  in Table 5.4a to max 514.24l �	  in Table 5.5a. So

we can expect that the new estimate for 0 1 8
ˆ ˆ ˆ ˆ( , , , )� � �� ��  given by (0.14,1.40, , 2.24)	�  will be better

than the old one. This procedure is repeated until the estimate becomes stable. Our final estimate is found

in Table 5.6a and Table 5.6b. The maximum of the log-likelihood function log ( )ip y �  is now

max 508.998l �	  and our maximum-likelihood estimate for 0 1 8
ˆ ˆ ˆ ˆ( , , , )� � �� ��  is given by the values in

Table 5.6c; in the view of the author these estimates are correct with an absolute error 0.01�� . So we

now know that for our data 1 8( , , , ), 1, ,i i iy x x i n�� �  the upper limit of the log-likelihood log ( )p y �  is

given by max 508.998l �	 , and now we can apply Algorithm A with the constant maxexp( )c l� .
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Table 5.4a: Simulation with ~ (0,1), 0, ,8j N j� � �  and 100000M �

(0) (8) (9) (10) (11) (12)

i 0i� � 8i� ln ( )ip y � (9) sorted (9)	 maxl
max

( )ip
p
y �

1 -0.3079 � -0.5106 -700.19 -8808.60 -163.29 0.0000
2 -0.8409 � -0.8646 -840.11 -8533.03 -303.20 0.0000
3 2.5018 � -0.0407 -4689.85 -8426.73 -4152.94 0.0000
4 1.4639 � -0.4728 -2020.32 -7943.92 -1483.42 0.0000
5 -0.4848 � 1.4662 -699.34 -7720.46 -162.44 0.0000
6 0.3611 � 0.7853 -1125.67 -7709.91 -588.77 0.0000
7 -0.5657 � -0.9004 -653.03 -7384.15 -116.12 0.0000
8 0.5270 � -1.7131 -1009.61 -7269.52 -472.71 0.0000
9 1.0423 � 0.4248 -1532.74 -7214.35 -995.84 0.0000

10 -0.9534 � 0.6656 -781.71 -7114.27 -244.81 0.0000

� � � � � � � �

99 991 1.2408 � -1.7120 -1861.72 -544.63 -1324.82 0.0000
99 992 -0.0757 � 0.3897 -881.96 -544.60 -345.06 0.0000
99 993 -0.7856 � 0.2108 -726.45 -544.28 -189.55 0.0000
99 994 -0.2130 � 0.0309 -598.61 -543.57 -61.71 0.0000
99 995 -0.6739 � -0.8967 -789.97 -542.70 -253.07 0.0000
99 996 -0.5381 � 1.9608 -761.53 -540.09 -224.63 0.0000
99 997 -0.1721 � -2.4754 -863.38 -539.28 -326.48 0.0000
99 998 0.9925 � 0.2018 -2423.74 -538.96 -1886.84 0.0000
99 999 -1.6129 � -0.2222 -780.53 -538.76 -243.63 0.0000

100 000 1.2603 � -1.2523 -2482.00 -536.90 -1945.09 0.0000

sum 1.4238

max 536.90l �	  (Maximum of column 9); max maxexp( )p l�

Table 5.4b: The 10 data vectors � �0 8, ,i i i� �� ��  of Table 5.4a with the largest values of ( )ip y �

i 0i� 1i� 2i� 3i� 4i� 5i� 6i� 7i� 8i� ln ( )ip y �
�

���

� ���
�
�

6558 0.2640 0.1137 -1.7095 -0.8097 1.3562 0.7755 0.4383 0.9235 -1.5331 -544.63 0.0004
30324 -0.1328 1.4296 -0.6186 0.3987 1.4232 0.1062 -0.1876 0.9782 -1.4693 -544.60 0.0005
85500 0.0156 1.3439 -2.3623 0.0080 0.5519 -0.3711 -0.1158 1.3830 -1.9515 -544.28 0.0006
32528 0.0614 0.4902 -0.9626 -0.2633 1.6502 0.4529 0.2293 0.3928 -1.6524 -543.57 0.0013
41695 -0.3635 0.9383 -0.0743 -0.5906 0.9310 0.6163 0.0852 1.0256 -2.2649 -542.70 0.0030
66759 -0.2886 0.5887 -0.0343 -0.0445 0.3141 0.2990 -0.1270 1.5290 -2.0055 -540.09 0.0412
46451 0.0637 0.0547 -0.8878 -0.6488 2.0261 0.0793 -0.1535 0.6189 -1.4089 -539.28 0.0931
70833 0.0491 1.7412 -1.8137 -0.1716 0.0031 0.2713 -0.1071 0.5096 -1.0515 -538.96 0.1273
49598 -0.0687 -0.3137 -0.4785 -0.8969 2.2658 0.7387 0.5530 1.4297 -2.0962 -538.76 0.1559
19202 0.0985 0.6737 -1.7471 -0.2160 1.2136 -0.1218 -0.9260 0.7276 -1.2722 -536.90 1.0000

mean -0.0301 0.7060 -1.0689 -0.3235 1.1735 0.2846 -0.0311 0.9518 -1.6705
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Table 5.5a: Simulation with 1
2�� � , 2~ ( , ), 0, ,8j jN j�� � � � �  and 100000M �

j 0 1 2 3 4 5 6 7 8

j� 0.0 0.7 -1.1 -0.3 1.2 0.3 0.0 1.0 -1.7

(0) (8) (9) (10) (11) (12)

i 0i� � 8i� ln ( )ip y � (9) sorted (9)	 maxl
max

( )ip
p
y �

1 -0.1539 � -1.9553 -590.65 -1983.57 -76.41 0.0000
2 -0.4205 � -2.1323 -669.83 -1914.25 -155.59 0.0000
3 1.2509 � -1.7203 -1177.23 -1895.07 -662.99 0.0000
4 0.7319 � -1.9364 -696.55 -1843.49 -182.31 0.0000
5 -0.2424 � -0.9669 -576.89 -1784.88 -62.65 0.0000
6 0.1806 � -1.3074 -572.51 -1760.78 -58.27 0.0000
7 -0.2828 � -2.1502 -551.22 -1715.56 -36.98 0.0000
8 0.2635 � -2.5565 -561.93 -1696.18 -47.69 0.0000
9 0.5211 � -1.4876 -614.77 -1690.49 -100.53 0.0000

10 -0.4767 � -1.3672 -572.71 -1655.74 -58.47 0.0000

� � � � � � � �

99 991 0.6204 � -2.5560 -692.20 -516.26 -177.96 0.0000
99 992 -0.0378 � -1.5051 -554.06 -516.13 -39.82 0.0000
99 993 -0.3928 � -1.5946 -620.54 -515.85 -106.30 0.0000
99 994 -0.1065 � -1.6845 -529.92 -515.61 -15.68 0.0000
99 995 -0.3370 � -2.1483 -655.14 -515.61 -140.90 0.0000
99 996 -0.2690 � -0.7196 -574.19 -515.47 -59.96 0.0000
99 997 -0.0861 � -2.9377 -583.45 -515.38 -69.21 0.0000
99 998 0.4962 � -1.5991 -764.41 -514.94 -250.17 0.0000
99 999 -0.8064 � -1.8111 -629.71 -514.85 -115.47 0.0000

100 000 0.6301 � -2.3262 -781.41 -514.24 -267.17 0.0000

sum 5.7054

max 514.24l �	  (Maximum of column 9); max maxexp( )p l�

Table 5.5b: The 10 data vectors � �0 8, ,i i i� �� ��  of Table 5.5a with the largest values of ( )ip y �

i 0i� 1i� 2i� 3i� 4i� 5i� 6i� 7i� 8i� ln ( )ip y �
�

���

� ���
�
�

5837 0.0579 1.6484 -1.3853 -0.4044 0.5597 0.4204 -0.0575 1.6405 -1.9325 -516.26 0.1329
80594 0.2312 1.7712 -1.2685 -0.3603 1.4566 0.5683 -0.0330 1.3211 -2.2235 -516.13 0.1513
48997 0.1770 1.0681 -1.4054 -0.6197 1.3122 0.1093 -0.2624 2.1728 -2.2593 -515.85 0.2001
24211 0.1709 1.4467 -1.2827 -0.4801 1.1979 0.1214 -0.6598 1.6117 -1.8036 -515.61 0.2540
79123 0.1695 1.0113 -1.3463 -0.7838 1.1988 0.0478 -0.6884 1.7812 -2.3318 -515.61 0.2542
16215 0.0612 1.2741 -0.9954 -0.3605 1.3543 0.0205 -0.2050 2.2081 -2.6671 -515.47 0.2931
97091 0.1236 0.9531 -0.7810 -0.4192 2.0337 0.3055 -0.3580 2.1528 -2.3815 -515.38 0.3181
34170 0.2024 1.6183 -1.0916 -0.4315 1.4545 0.7944 -0.3328 1.9082 -2.3583 -514.94 0.4942
59328 0.2241 1.6693 -1.3258 -0.4010 1.3221 0.2162 -0.2452 1.3798 -2.0192 -514.85 0.5412
53942 0.0286 1.4939 -0.8164 -0.7252 0.9306 0.4360 -0.0962 1.8855 -2.4385 -514.24 1.0000

mean 0.1446 1.3955 -1.1698 -0.4986 1.2820 0.3040 -0.2938 1.8062 -2.2415
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Table 5.6a: Simulation with  0.01�� � , 2~ ( , ), 0, ,8j jN j�� � � � �  and 100000M �

j 0 1 2 3 4 5 6 7 8

j� 0.232 2.785 -1.166 -0.558 0.685 0.264 -0.441 2.025 -2.505

(0) (8) (9) (10) (11) (12)

i 0i� � 8i� ln ( )ip y � (9) sorted (9)	 maxl
max

( )ip
p
y �

1 0.2289 � -2.5101 -509.024 -509.480 -0.026 0.9739
2 0.2236 � -2.5136 -509.059 -509.472 -0.061 0.9405
3 0.2570 � -2.5054 -509.215 -509.455 -0.217 0.8047
4 0.2466 � -2.5097 -509.063 -509.454 -0.065 0.9371
5 0.2272 � -2.4903 -509.015 -509.451 -0.017 0.9835
6 0.2356 � -2.4971 -509.010 -509.449 -0.012 0.9882
7 0.2263 � -2.5140 -509.008 -509.446 -0.010 0.9903
8 0.2373 � -2.5221 -509.019 -509.443 -0.021 0.9794
9 0.2424 � -2.5008 -509.034 -509.438 -0.036 0.9647

10 0.2225 � -2.4983 -509.012 -509.431 -0.014 0.9860

� � � � � � � �

99 991 0.2444 � -2.5221 -509.074 -508.999 -0.076 0.9268
99 992 0.2312 � -2.5011 -509.008 -508.998 -0.010 0.9901
99 993 0.2241 � -2.5029 -509.038 -508.998 -0.040 0.9612
99 994 0.2299 � -2.5047 -509.005 -508.998 -0.007 0.9928
99 995 0.2253 � -2.5140 -509.050 -508.998 -0.052 0.9494
99 996 0.2266 � -2.4854 -509.013 -508.998 -0.015 0.9855
99 997 0.2303 � -2.5298 -509.030 -508.998 -0.032 0.9687
99 998 0.2419 � -2.5030 -509.074 -508.998 -0.075 0.9273
99 999 0.2159 � -2.5072 -509.037 -508.998 -0.039 0.9615

100 000 0.2446 � -2.5175 -509.087 -508.998 -0.089 0.9148

sum 96669.9

max 508.998l �	  (Maximum of column 9); max maxexp( )p l�

Table 5.6b: The 10 data vectors � �0 8, ,i i i� �� ��  of Table 5.6a with the largest values of ( )ip y �

i 0i� 1i� 2i� 3i� 4i� 5i� 6i� 7i� 8i� ln ( )ip y �
�

���

� ���
�
�

39188 0.2335 2.8007 -1.1664 -0.5527 0.6771 0.2635 -0.4479 2.0306 -2.5038 -508.999 0.9995
58201 0.2319 2.7929 -1.1647 -0.5529 0.6829 0.2701 -0.4353 2.0306 -2.5075 -508.998 0.9996
93483 0.2327 2.7915 -1.1700 -0.5552 0.6730 0.2621 -0.4405 2.0301 -2.5033 -508.998 0.9996
64494 0.2291 2.7896 -1.1657 -0.5555 0.6705 0.2634 -0.4365 2.0305 -2.5048 -508.998 0.9996
4006 0.2326 2.7942 -1.1724 -0.5584 0.6729 0.2589 -0.4480 2.0322 -2.5072 -508.998 0.9997

98968 0.2306 2.7930 -1.1728 -0.5554 0.6664 0.2662 -0.4373 2.0290 -2.5050 -508.998 0.9998
41525 0.2311 2.7963 -1.1636 -0.5589 0.6763 0.2587 -0.4450 2.0299 -2.5036 -508.998 0.9998
22361 0.2316 2.7901 -1.1651 -0.5532 0.6849 0.2679 -0.4381 2.0306 -2.5043 -508.998 0.9998
81937 0.2324 2.7874 -1.1702 -0.5535 0.6839 0.2640 -0.4446 2.0307 -2.5052 -508.998 0.9999
79658 0.2319 2.7874 -1.1660 -0.5551 0.6830 0.2621 -0.4410 2.0286 -2.5045 -508.998 1.0000

mean 0.2317 2.7923 -1.1677 -0.5551 0.6771 0.2637 -0.4414 2.0303 -2.5049

Table 5.6c: Maximum likelihood estimate 0 8
ˆ ˆ ˆ( , , )� �� ��  from Table 5.6b

j 0 1 2 3 4 5 6 7 8
ˆ

j� 0.232 2.792 -1.168 -0.555 0.677 0.264 -0.441 2.030 -2.505
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5.4 Application of Algorithm A with normal prior distribution

We now know that

� �
� �

� �
� �

� � � �
� �

� � max maxexp( )
p pf f

p c p l
g g p

� � � � � �
y

y
� �

�

� �� �
�

� � �
,

where max 508.998l �	 , and we also know that � �p y �  becomes maximal in the neighbourhood of the

maximum likelihood estimate �̂  (see Table 5.6c). So we choose in a first try the following proposal dis-

tribution ( )p � : 0 8, ,� ��  are independent random variables with 2~ ( , ), 0, ,8j jN j�� � � � � , where

0 8 0 8
ˆ ˆ, , ) ( , , )� � � �� �� �  and 0.2�� � . The results are to be found in Table 5.7a, which has the same

form as Table 5.4a; the starting value of the random number generator is again 77. In column 12 we find

the acceptance probabilities

� � � �
� �� �max

max

1
exp ln

i
i i

p
p p l

c p
� � 	

y
y y

�
� � ;

so these probabilities are computed simply by exponentiation of the values in column 11. In column 13

we give M random data 1, , Mu u�  from � �0,1U  and if � �i iu p c� y �  then the corresponding data vec-

tor 0 1 8( , , , )i i i i� � �� ��  is accepted as a random realisation of the posterior distribution; this is indicated

in column 14. So the total number of accepted data vectors is acc 3024M �  (sum of column 14).

In a second try we choose a proposal distribution ( )p �  that is characterised by the parameters 0.25�� �

and 0 8 0 8
ˆ ˆ, , ) ( , , )� � � �� �� � . The results are to be found in Table 5.7b. The total number of accepted

vectors has now decreased from 3024 to only 1195. The results of a third try with 0.3�� �  and

0 8 0 8
ˆ ˆ, , ) ( , , )� � � �� �� �  are to be found in Table 5.7c. The number of accepted data vectors is now re-

duced to 481. For 0.5�� �  we would find only 25 acceptable data vectors out of the 100 000M �  vec-

tors generated from the prior distribution.

Bayesian statisticians are often interested in a noninformative prior distribution to avoid that a subjective

choice of the parameters of the prior distribution influences the posterior distribution. In our case the so-

called diffuse prior corresponding to Lebesque measure can be considered as a noninformative prior distri-

bution. Within our framework we cannot generate diffuse random data, but we can approximate the diffuse

prior by increasing the standard deviation ��  of our prior distribution. If we could find a value 0�  such

that the posterior distribution does not change anymore if the standard deviation ��  of the prior distribu-

tion becomes larger than 0� , then such a prior could be considered as noninformative for the data at hand.

Now the question arises whether the posterior distribution in our three simulations (see Table 5.7a, 5.7b,

5.7c) still depends on the parameter ��  of the prior distribution. To answer this question we consider the

covariance matrix of the generated data vectors from the posterior distribution and compute its eigenval-

ues. Note that the sum of the eigenvalues corresponds to the sum of the posterior variances of 0 8, ,� �� . If

the covariance matrix does not change anymore then also the eigenvalues must become stable. Table 5.7d

gives the eigenvalues for the three simulations in Table 5.7a, 5.7b, and 5.7c. We can see that our posterior

distributions heavily depend on the prior distributions, as the eigenvalues clearly increase for increasing

standard deviations of the prior distribution. One could try to increase ��  and M in order to get closer to

the noninformative prior, but in the next section we will apply a more efficient method.
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Table 5.7a: Simulation with 0.2�� � , 2ˆ~ ( , ), 0, ,8j jN j�� � � � �  and 100000M � ; max 508.998l �	

(0) (8) (9) (10) (11) (12) (13) (14)

i 0i� � 8i� ln ( )ip y � (9) sorted (9)	 maxl
�

���

� ���
�
�

iu accept?

1 0.1704 � -2.6071 -517.697 -714.845 -8.699 0.0002 0.8823 0
2 0.0638 � -2.6779 -532.952 -700.872 -23.954 0.0000 0.9751 0
3 0.7324 � -2.5131 -599.024 -700.541 -90.026 0.0000 0.3074 0
4 0.5248 � -2.5996 -535.178 -698.325 -26.180 0.0000 0.4620 0
5 0.1350 � -2.2118 -516.496 -687.393 -7.498 0.0006 0.4663 0
6 0.3042 � -2.3479 -513.687 -685.686 -4.689 0.0092 0.4623 0
7 0.1189 � -2.6851 -511.781 -683.060 -2.783 0.0619 0.0598 1
8 0.3374 � -2.8476 -516.287 -681.569 -7.289 0.0007 0.7843 0
9 0.4405 � -2.4200 -524.081 -680.547 -15.083 0.0000 0.9679 0

10 0.0413 � -2.3719 -514.469 -679.669 -5.471 0.0042 0.6104 0

� � � � � � � � � �
99 991 0.4802 � -2.8474 -539.040 -509.267 -30.042 0.0000 0.5323 0
99 992 0.2169 � -2.4271 -513.015 -509.264 -4.017 0.0180 0.1487 0
99 993 0.0749 � -2.4628 -524.420 -509.261 -15.422 0.0000 0.2785 0
99 994 0.1894 � -2.4988 -512.546 -509.258 -3.548 0.0288 0.8768 0
99 995 0.0972 � -2.6843 -527.850 -509.248 -18.852 0.0000 0.0173 0
99 996 0.1244 � -2.1128 -515.131 -509.225 -6.133 0.0022 0.7312 0
99 997 0.1976 � -3.0001 -519.377 -509.221 -10.379 0.0000 0.1777 0
99 998 0.4305 � -2.4646 -539.985 -509.213 -30.987 0.0000 0.3573 0
99 999 -0.0906 � -2.5494 -524.212 -509.167 -15.214 0.0000 0.1206 0

100 000 0.4841 � -2.7555 -545.342 -509.140 -36.344 0.0000 0.5435 0

sum 2984.9 3024

Table 5.7b: Simulation with  0.25�� � , 2ˆ~ ( , ), 0, ,8j jN j�� � � � �  and 100000M � ; max 508.998l �	

(0) (8) (9) (10) (11) (12) (13) (14)

i 0i� � 8i� ln ( )ip y � (9) sorted (9)	 maxl
�

���

� ���
�
�

iu accept?

1 0.1550 � -2.6326 -522.516 -835.710 -13.518 0.0000 0.8823 0
2 0.0218 � -2.7211 -545.976 -814.208 -36.978 0.0000 0.9751 0
3 0.8574 � -2.5152 -651.474 -813.338 -142.476 0.0000 0.3074 0
4 0.5980 � -2.6232 -550.114 -808.670 -41.116 0.0000 0.4620 0
5 0.1108 � -2.1385 -520.671 -791.586 -11.673 0.0000 0.4663 0
6 0.3223 � -2.3087 -516.363 -785.131 -7.365 0.0006 0.4623 0
7 0.0906 � -2.7301 -513.335 -781.869 -4.337 0.0131 0.0598 0
8 0.3638 � -2.9333 -520.394 -779.137 -11.396 0.0000 0.7843 0
9 0.4926 � -2.3988 -532.652 -774.553 -23.654 0.0000 0.9679 0

10 -0.0063 � -2.3386 -517.542 -771.760 -8.544 0.0002 0.6104 0

� � � � � � � � � �
99 991 0.5422 � -2.9330 -556.053 -509.417 -47.055 0.0000 0.5323 0
99 992 0.2131 � -2.4076 -515.297 -509.414 -6.299 0.0018 0.1487 0
99 993 0.0356 � -2.4523 -532.912 -509.408 -23.914 0.0000 0.2785 0
99 994 0.1788 � -2.4973 -514.519 -509.405 -5.521 0.0040 0.8768 0
99 995 0.0635 � -2.7292 -538.192 -509.389 -29.194 0.0000 0.0173 0
99 996 0.0975 � -2.0148 -518.558 -509.353 -9.560 0.0001 0.7312 0
99 997 0.1890 � -3.1239 -525.170 -509.348 -16.172 0.0000 0.1777 0
99 998 0.4801 � -2.4545 -557.963 -509.334 -48.965 0.0000 0.3573 0
99 999 -0.1712 � -2.5606 -532.656 -509.263 -23.658 0.0000 0.1206 0

100 000 0.5471 � -2.8181 -566.237 -509.220 -57.239 0.0000 0.5435 0

sum 1185.4 1195
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Table 5.7c: Simulation with 0.3�� � , 2ˆ~ ( , ), 0, ,8j jN j�� � � � �  and 100000M � ; max 508.998l �	

(0) (8) (9) (10) (11) (12) (13) (14)

i 0i� � 8i� ln ( )ip y � (9) sorted (9)	 maxl
�

���

� ���
�
�

iu accept?

1 0.1396 � -2.6582 -528.355 -986.248 -19.357 0.0000 0.8823 0
2 -0.0203 � -2.7644 -561.596 -955.790 -52.598 0.0000 0.9751 0
3 0.9825 � -2.5172 -716.680 -954.038 -207.682 0.0000 0.3074 0
4 0.6712 � -2.6468 -568.507 -945.591 -59.509 0.0000 0.4620 0
5 0.0866 � -2.0651 -525.741 -921.070 -16.743 0.0000 0.4663 0
6 0.3403 � -2.2694 -519.662 -912.248 -10.664 0.0000 0.4623 0
7 0.0623 � -2.7751 -515.225 -906.243 -6.227 0.0020 0.0598 0
8 0.3901 � -3.0189 -525.423 -895.672 -16.425 0.0000 0.7843 0
9 0.5447 � -2.3776 -543.187 -889.741 -34.189 0.0000 0.9679 0

10 -0.0540 � -2.3053 -521.289 -888.947 -12.291 0.0000 0.6104 0

� � � � � � � � � �
99 991 -3.0186 � -3.0186 -576.907 -509.600 -67.909 0.0000 0.5323 0
99 992 -2.3881 � -2.3881 -518.101 -509.598 -9.103 0.0001 0.1487 0
99 993 -2.4417 � -2.4417 -543.165 -509.587 -34.167 0.0000 0.2785 0
99 994 -2.4957 � -2.4957 -516.911 -509.585 -7.913 0.0004 0.8768 0
99 995 -2.7740 � -2.7740 -550.657 -509.562 -41.659 0.0000 0.0173 0
99 996 -1.9168 � -1.9168 -522.727 -509.510 -13.729 0.0000 0.7312 0
99 997 -3.2476 � -3.2476 -532.217 -509.503 -23.219 0.0000 0.1777 0
99 998 -2.4444 � -2.4444 -580.296 -509.481 -71.298 0.0000 0.3573 0
99 999 -2.5717 � -2.5717 -542.892 -509.380 -33.894 0.0000 0.1206 0

100 000 -2.8807 � -2.8807 -592.061 -509.318 -83.063 0.0000 0.5435 0

sum 493.3 481

Table 5.7d: Eigenvalues of covariance matrices of posterior data in Table 5.7a, 5.7b, 5.7c

�� accM 0� 1� 2� 3� 4� 5� 6� 7� 8� sum

0.20 3024 0.039 0.033 0.030 0.029 0.026 0.019 0.016 0.013 0.002 0.207
0.25 1195 0.061 0.048 0.041 0.040 0.034 0.024 0.019 0.016 0.002 0.285
0.30 481 0.086 0.055 0.054 0.050 0.042 0.028 0.022 0.017 0.002 0.356
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5.5 Multivariate normal distribution as prior distribution

If we look at the eigenvalues of the posterior data in Table 5.7c (see Table 5.7d) we see that

max min 0.086 0.002 40� � � � . This shows that it is no good idea to use a prior distribution for

0 8( , , )� �� ��  where all components j�  have independent normal distributions 2( , )jN �� �  with the

same standard deviation �� . The proposal (prior) distribution is quite different from the target (posterior)

distribution and so too many proposed data vectors are lost. In this section we will apply an iterative pro-

cedure where the prior distribution takes into account an approximate covariance structure of the posterior

distribution. Our procedure works as follows:

1. Determine a first approximation appC  of the covariance matrix (9 9)� �C  of the posterior distri-

bution. In our example the covariance matrix of the 481 data vectors in Table 5.7c will be used as

such an approximation appC .

2. Generate 100 000M �  random vectors from the multivariate normal distribution 9 ( , )N � � , where
ˆ���  is the maximum likelihood estimate for �  (see section 3) and where 2

appr� C�  with a

factor 1r �  chosen as large as possible to come close to the noninformative prior.

3. As the acceptance probability for a data vector � �0 8, ,i i i� �� ��  is given by

max( | ) ( | )i ip c p p�y y� � , we can proceed as in section 4 to compute the acceptable data vec-

tors from the posterior distribution.

4. Compute the covariance matrix of the accepted data vectors from the posterior distribution and

denote it by appC . Continue with step 2 until stabilisation of appC .

How can we generate 100 000M �  random vectors from a multivariate normal distribution ( , )pN � � ?

1. Determine the decomposition � R R� � T  where R  is orthogonal and �  is diagonal. Compute
1 2�A R R� T . The matrix A  is symmetric and 2 �A � , i.e. A  is the symmetric root of � . If

� �1p� �x  is a random vector with independent standard normal components then �y A x  has a

multivariate normal distribution ( , )pN 0 �  as 2� �A A A �T .

2. Generate 100 000M �  random vectors from ( , )pN 0 I , and arrange these data in a matrix

� �M p� �X . Let �Y XA . Now the rows of Y  are independent random vectors from ( , )pN 0 � .

3. Add j�  to column j of the matrix Y; we denote the resulting matrix by ( )M p� �Z ; its rows are

independent random vectors from ( , )pN � � .

Table 5.8a gives the results of the first iteration. We start with the covariance matrix appC  computed from

the 481 accepted data vectors in Table 5.7c. Column (1) to (8) in Table 5.8a give the 100 000M �  data

vectors from 2
9 app

ˆ( , )N r C�  with 1.5r � . Column (9) to (14) are computed exactly the same way as in

section 4 (see Table 5.7a). We find acc 2954M �  acceptable data vectors from the posterior distribution. We

compute the new covariance matrix appC  from these data vectors, list its eigenvalues in Table 5.8b (first

line) and proceed with the next iteration. In Table 5.8b we can see that the sum of the eigenvalues increases

and tends to a limit, but we have to ask ourselves whether the factor 1.5r �  is large enough so that we can

hope that the prior 2
9 app

ˆ( , )N r C�  in the last iteration is close enough to the noninformative prior.
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Table 5.8a:  100000M �  data vectors � �0 8, ,i j j� �� ��  from 2
app

ˆ( , )kN r C� with 1.5r � .

(0) (8) (9) (10) (11) (12) (13) (14)

i 0i� � 8i� ln ( )
i

p y � (9) sorted (9)	 maxl
max

( )
i

p
p
y �

iu accept?

1 0.2704 � -2.5275 -516.545 -540.304 -7.547 0.0005 0.8823 0
2 0.3078 � -2.7263 -516.266 -538.496 -7.268 0.0007 0.9751 0
3 0.3447 � -2.4607 -520.161 -535.578 -11.163 0.0000 0.3074 0
4 0.3389 � -2.7011 -513.695 -535.149 -4.697 0.0091 0.4620 0
5 0.2644 � -2.1079 -511.975 -535.130 -2.977 0.0509 0.4663 0
6 0.2137 � -2.2397 -512.576 -534.660 -3.578 0.0279 0.4623 0
7 0.1144 � -2.7074 -511.605 -534.513 -2.607 0.0738 0.0598 1
8 0.2220 � -3.0228 -514.270 -533.903 -5.272 0.0051 0.7843 0
9 0.3069 � -2.4954 -514.950 -533.826 -5.952 0.0026 0.9679 0

10 0.0300 � -2.3465 -514.143 -533.557 -5.145 0.0058 0.6104 0

� � � � � � � � � �
99 991 0.2436 � -3.0347 -521.267 -509.357 -12.269 0.0000 0.5323 0
99 992 0.1631 � -2.3553 -513.576 -509.355 -4.578 0.0103 0.1487 0
99 993 0.2727 � -2.4463 -512.655 -509.340 -3.657 0.0258 0.2785 0
99 994 0.2484 � -2.5816 -512.855 -509.334 -3.857 0.0211 0.8768 0
99 995 0.3255 � -2.6882 -516.716 -509.332 -7.718 0.0004 0.0173 0
99 996 0.2036 � -1.9601 -514.283 -509.324 -5.285 0.0051 0.7312 0
99 997 0.1797 � -3.2001 -525.273 -509.293 -16.275 0.0000 0.1777 0
99 998 0.1778 � -2.4521 -516.243 -509.286 -7.245 0.0007 0.3573 0
99 999 -0.0199 � -2.5560 -513.349 -509.199 -4.351 0.0129 0.1206 0

100 000 0.2118 � -2.8880 -516.771 -509.198 -7.773 0.0004 0.5435 0

sum 2865.2 2954

Table 5.8b: Eigenvalues of the covariance matrix of the posterior data
of 11 iterations with 1.5r �  and 4 iterations with 2r �

M r accM 0� 1� 2� 3� 4� 5� 6� 7� 8� sum
1 100 000 1.5 2954 0.153 0.074 0.059 0.056 0.045 0.024 0.019 0.013 0.001 0.444
2 100 000 1.5 3112 0.234 0.086 0.062 0.060 0.046 0.022 0.017 0.012 0.001 0.541
3 100 000 1.5 2962 0.306 0.095 0.063 0.060 0.047 0.021 0.017 0.011 0.001 0.623
4 100 000 1.5 2785 0.354 0.100 0.063 0.061 0.048 0.021 0.016 0.011 0.001 0.674
5 100 000 1.5 2707 0.371 0.102 0.064 0.061 0.048 0.021 0.016 0.011 0.001 0.695
6 100 000 1.5 2643 0.381 0.103 0.063 0.061 0.048 0.021 0.016 0.011 0.001 0.705
7 100 000 1.5 2638 0.385 0.104 0.064 0.061 0.049 0.021 0.016 0.011 0.001 0.711
8 100 000 1.5 2608 0.390 0.104 0.063 0.061 0.049 0.021 0.016 0.011 0.001 0.716
9 100 000 1.5 2627 0.393 0.105 0.064 0.061 0.049 0.021 0.016 0.011 0.001 0.721

10 100 000 1.5 2574 0.397 0.105 0.064 0.061 0.049 0.021 0.016 0.011 0.001 0.724
11 100 000 1.5 2602 0.399 0.105 0.064 0.061 0.049 0.021 0.016 0.011 0.001 0.727

12 500 000 2 2578 0.470 0.135 0.080 0.074 0.061 0.026 0.021 0.013 0.001 0.881
13 500 000 2 1269 0.520 0.142 0.083 0.078 0.061 0.028 0.022 0.014 0.001 0.949
14 500 000 2 1019 0.525 0.143 0.083 0.077 0.061 0.028 0.022 0.014 0.001 0.955
15 500 000 2 1027 0.539 0.145 0.082 0.078 0.061 0.029 0.022 0.014 0.001 0.970
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Table 5.8c: Correlation matrix of 0 1, , , k� � ��  in the posterior distribution of simulation number 15

0� 1� 2� 3� 4� 5� 6� 7� 8�

0� 1.00

1� 0.05 1.00

2� -0.46 0.08 1.00

3� -0.10 0.00 -0.05 1.00

4� 0.57 -0.60 -0.02 0.02 1.00

5� 0.16 0.00 -0.00 -0.05 0.18 1.00

6� 0.04 -0.06 -0.01 0.01 0.15 0.69 1.00

7� 0.06 0.06 0.07 -0.14 0.02 0.02 0.05 1.00

8� 0.07 -0.10 -0.17 0.05 0.02 0.02 -0.07 -0.51 1.00

To answer this question we choose 2r �  and now we generate 500 000M �  data vectors from the prior

distribution in order to find sufficiently many acceptable data vectors. The results of 4 iterations starting

with the covariance matrix appC  of iteration 11 is given in Table 5.8b (last 4 lines). We see that the sum

of the eigenvalues is still clearly increasing and so we cannot hope to have found the noninfomative prior

yet.

What can we do to come closer to the noninformative prior? One could choose a still larger value of r and

enhance the number M of generated data vectors from the prior distribution correspondingly. Another

possibility is to replace the multivariate normal prior distribution by some other multivariate distribution.

We tried with the Cauchy, Laplace, uniform and triangular distribution. And the best results (largest ei-

genvalues of the posterior distribution with a given value of M) were found with the uniform distribution.

These results are given in the next section.

5.6 Multivariate uniform distribution as prior distribution

Here we proceed as in the preceeding section but with the multivariate normal distribution being replaced

by the multvariate uniform distribution. If u denotes a random variable with a uniform distribution in

� �,a b  then ( ) ( ) 2E u a b� �  and 2( ) ( ) 12Var u b a� 	 . So if 3a b�	 �  u has mean zero and vari-

ance 1, and we say that u has a standard uniform distribution. Let 1, , pu u�  be independent standard uni-

form variables and let � �p p���  be any covariance matrix. �  can be written as � R R� � T , where R

is orthogonal and �  is diagonal. Let 1( , , )pu u�u � T  and 1 2�v R u� . As 1 2
1 1( , , )p pu u� ��u � T�

we obtain v  by rescaling and rotating u , and so the distribution of v  is the uniform distribution in a

rotated p-dimensional rectangle. The covariance matrix of v  is given by 1 2 1 2( ) �R R R RT T� � � �� .

If 1, , p� ��  denote any real numbers and 1( , , )p� �� �� T , then the vector �v �  has a multivariate

uniform distribution ( , )pU � �  with ( )E �v �  and ( )Cov �v � .
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Now we proceed as follows:

Step 1: Determine a first approximation appC  of the covariance matrix ( ) (9 9)p p� � � �C  of the pos-

terior distribution. One can start with app p�C I  (identity matrix), or with some other covariance

matrix that could be an approximation to C .

Step 2: Generate 500 000M �  random vectors from the multivariate uniform distribution ( , )pU � � ,

where ˆ���  is the maximum likelihood estimate for �  (see section 3) and where 2
appr� C�

with a factor 1r �  chosen as large as possible to come close to the noninformative prior.

Step 3: As the acceptance probability for a data vector � �0 8, ,i i i� �� ��  is given by

max( | ) ( | )i ip c p p�y y� � , we can proceed as in section 4 to compute the acceptable data

vectors from the posterior distribution.

Step 4: Compute the covariance matrix of the accepted data vectors from the posterior distribution and

denote it by appC . Continue with step 2 until stabilisation of appC .

How can we generate 500 000M �  random vectors from a multivariate uniform distribution ( , )pU � � ?

(i) Determine the decomposition � R R� � T  where R  is orthogonal and �  is diagonal. Compute
1 2�A R� . Note that we do not choose the symmetric root of �  here as in section 4 with the

normal distribution; if � �1p� �x  is a random vector with independent standard normal compo-

nents then �y R x  has again independent standard normal components, but this is not true for the

uniform distribution. Now, if � �1p� �x  is a random vector with independent standard uniform

components then �y A x  has a multivariate uniform distribution ( , )pN 0 �  as

� �A A R �T T � .

(ii) Generate 500 000M �  random vectors from ( , )pU 0 I , and arrange these data in a matrix

� �M p� �X . Let �Y XA . Now the rows of Y  are independent random vectors from ( , )pU 0 � .

(iii) Add j�  to column j of the matrix Y; we denote the resulting matrix by ( )M p� �Z ; its rows are

independent random vectors from ( , )pU � � .

Table 5.9a gives the results of the first simulation. As an approximation appC  of the covariance matrix

( ) (9 9)p p� � � �C  of the posterior distribution we compute the covariance matrix of the 1027 data

vectors of the last simulation in Table 5.8b. Then we compute 2
appr� C�  with 2 3r � , determine the

decomposition � R R� � T  and compute the matrix 1 2�A R� . The starting value of our random num-

ber generator is again set to 77, and the result of step 2 are the data vectors in column (0) to (8) of Table

5.9a. These vectors can be considered as independent random vectors from ( , )pU � � . The rest of Table

5.9a is computed exactly the same way as the corresponding columns in Table 5.7a. We find acc 690M �

acceptable data vectors from the posterior distribution (out of the 500 000M �  data vectors from the

multivariate uniform distribution). We denote the covariance matrix of these 690 vectors as appC  (new

approximation), and compute its eigenvalues; they are found in the first row of Table 5.9b. If we compare

these eigenvalues with those of the old approximation (last line in Table 5.8b), we can see that the eigen-

values of the new approximation are somewhat larger, and so the multivariate uniform distribution comes
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closer to the noninformative prior distribution than the multivariate normal distribution of simulation 15

in Table 5.8b.

For the second simulation we choose the new covariance matrix appC  as an approximation to the covari-

ance matrix of the posterior distribution and we perform again the above steps 2 to 4, but this time we

generate 1000 000M �  data vectors from our prior distribution and we find acc 513M �  acceptable data

vectors from the posterior distribution (out of the 1000 000M � ). We compute the covariance matrix of

these acc 513M �  vectors, compute its eigenvalues (second row of Table 5.9b), and use this new covari-

ance matrix as appC  for our third simulation.

In our third and last simulation we find acc 475M �  acceptable data vectors from the posterior distribu-

tion (out of the 1000 000M � ). The third row of Table 5.9b gives the corresponding eigenvalues; not

much has changed as compared with simulation 2. The correlation matrix of the acc 475M �  accepted

vectors in simulation 3 is given in Table 5.9c. If we compare this correlation matrix with the correspond-

ing matrix in the last simulation of section 5 (see last row of Table 5.8b and Table 5.8c), we can see that

eigenvalues with the uniform distribution are somewhat larger than with the normal distribution, but the

correlation matrix is approximately the same.

Now we have to ask ourselves whether our prior distribution can be considered as approximately nonin-

formative. This would be the case if any multivariate uniform prior distribution with a wider support

would give essentially the same results. So we try to use a multivariate uniform distribution with appC  as

in simulation 3 but with 2 6r �  instead of 2 3r � . As the ratio between the new and old prior density in

the central part is given by 9 2(1 2) 0.0442�  ( 1 9k � �  dimensions) we can expect only

475 0.0442 21.0� �  acceptable data vectors from the posterior distribution. We performed the simulation

along the same lines as in simulation 3 and found just 15 acceptable data points out of one million gener-

ated from the prior distribution. So we must admit that it can be difficult to find a noninformative prior

distribution if the number k of independent variables is too large ( 10k � , about).
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Table 5.9a: 100000M �  data vectors � �0 8, ,i j j� �� ��  from a multivariate uniform distribution ( 2 3r � )

(0) (8) (9) (10) (11) (12) (13) (14)

i 0i� � 8i� ln ( )
i

p y � (9) sorted (9)	 maxl
max

( )
i

p
p
y �

iu accept?

1 0.0915 � -1.9866 -514.358 -535.149 -5.360 0.0047 0.9239 0
2 0.4287 � -1.9431 -515.090 -534.414 -6.092 0.0023 0.2976 0
3 0.2479 � -2.8310 -514.265 -534.240 -5.267 0.0052 0.7315 0
4 0.4447 � -2.3770 -520.507 -534.207 -11.509 0.0000 0.1413 0
5 0.0903 � -2.9840 -518.933 -534.039 -9.935 0.0000 0.5389 0
6 0.4257 � -2.4369 -520.181 -533.675 -11.183 0.0000 0.5142 0
7 -0.0505 � -2.1193 -521.143 -533.634 -12.145 0.0000 0.5777 0
8 0.2757 � -2.0805 -515.818 -533.526 -6.820 0.0011 0.7893 0
9 0.5560 � -2.0514 -521.455 -533.433 -12.457 0.0000 0.0254 0

10 0.5853 � -2.6138 -519.884 -533.306 -10.886 0.0000 0.0470 0
� � � � � � � � � �

499991 0.4677 � -3.2353 -518.987 -509.834 -9.989 0.0000 0.9090 0
499992 -0.0470 � -2.9289 -521.851 -509.811 -12.853 0.0000 0.2265 0
499993 0.3454 � -2.8488 -512.699 -509.771 -3.701 0.0247 0.4353 0
499994 0.0923 � -2.5542 -522.325 -509.752 -13.327 0.0000 0.6102 0
499995 0.6657 � -2.5089 -520.250 -509.745 -11.252 0.0000 0.4774 0
499996 0.1032 � -1.8918 -523.651 -509.716 -14.653 0.0000 0.8084 0
499997 0.3099 � -2.3252 -514.756 -509.706 -5.758 0.0032 0.1900 0
499998 0.0945 � -2.9679 -515.036 -509.698 -6.038 0.0024 0.0098 0
499999 0.3410 � -2.2448 -521.220 -509.587 -12.222 0.0000 0.8073 0
500000 0.3639 � -2.6123 -513.330 -509.459 -4.332 0.0131 0.4647 0

sum 694.8 690

Table 5.9b: Eigenvalues of the covariance matrix of the posterior data in 3 simulations with 2 3r �

M accM 0� 1� 2� 3� 4� 5� 6� 7� 8� sum
1 500 000 690 0.633 0.183 0.108 0.104 0.073 0.032 0.029 0.019 0.002 1.183
2 1 000 000 513 0.672 0.192 0.119 0.102 0.076 0.032 0.029 0.019 0.002 1.242
3 1 000 000 475 0.654 0.182 0.128 0.103 0.078 0.035 0.030 0.021 0.002 1.232

Table 5.9c: Correlation matrix of 0 1, , , k� � ��  in the posterior distribution of the last simulation

0� 1� 2� 3� 4� 5� 6� 7� 8�

0� 1.00

1� 0.07 1.00

2� -0.46 0.05 1.00

3� 0.02 -0.04 -0.08 1.00

4� 0.59 -0.57 -0.01 0.14 1.00

5� 0.23 0.08 -0.16 -0.02 0.07 1.00

6� 0.03 -0.02 -0.10 -0.00 0.03 0.66 1.00

7� 0.00 0.05 0.10 -0.03 0.02 0.00 0.02 1.00

8� 0.13 -0.03 -0.20 0.01 0.01 0.06 0.02 -0.56 1.00
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5.7 Results with MCMC method

Here we want to compare our results with the results that are found when the data from the posterior dis-

tribution are generated with the MCMC method using a diffuse prior distribution. I thank Dr. Stefan Lang

from the Department of Statistics of the University of Munich who performed the computations with the

program BayesX. The program was developed by Dr. Lang and two co-authors (see Brezger-Kneib-Lang,

2003).

Three simulations were performed all with a diffuse prior distribution:

Simulation 1 Simulation 2 Simulation 2

Number of iterations 12 000 15 000 18 000

Burn-in period 1 000 2 000 4 000

Thinning parameter 5 10 20

Number of generated
data vectors

2 200 1 300 700

The log-files of the three runs are given in the Appendix. The MCMC simulations were performed with

the original variables 1 8, ,x x� ��  and not with the normalised variables 1 8, ,x x�  that we used up to now.

So we want to transform the data vectors 0 8( , , )i i i� ��� � ���  for the original variables to data vectors

0 8( , , )i i i� �� ��  for the normalised variables. According to (25) in section 5.2 we have

1
42

j j
j

j

x m
x

r

	
� 	

�
,

where the normalising constants jm  and jr  are given in Table 5.1, and so

1
2

2j j j j jx m r x r� � �� � .

From the equality

0 1 1 8 8 0 1 1 8 8x x x x� � � � � �� � � � � � �� � �� �� �

we derive

� � � � � � � � � �1 1 1
0 0 1 1 1 2 2 2 8 8 8 0 42 2 2

4 34 0.25 9.087m r m r m r� � � � � � �� � � � � � � � � � � �� � � � � ��

2 , 1, ,8j j jr j� �� �� � .

After these transformations we compute for the 2200accM �  data vectors from the posterior distribution

in simulation 1 the correlation matrix and the eigenvalues of the covariance matrix. The same is done for

simulation 2 and 3. The correlation matrices are given in Table 5.10a to 5.10c and the eigenvalues in Ta-

ble 5.11. We can see that the correlation matrices and the eigenvalues are essentially the same in all three

simulations. So the optional MCMC parameters are not chosen too small. If we compare Table 5.10a to

10c and Table 5.11 with the corresponding tables in section 6 (Table 5.9b and 5.9c) we again see that the

correlation matrices are essentially the same; but the eigenvalues with the MCMC method are somewhat

larger than the eigenvalues in Table 5.9b. So one can find with the classical method described in section 6

(multivariate uniform distribution as prior distribution) essentially the same results as with the MCMC

method. But we must admit that the classical method will fail if the number of dimensions becomes too

large ( 10k � , about) as then it will be difficult to find a noninformative prior distribution that still gives

sufficiently many data from the posterior distribution (see section 6).
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Table 5.10a: Correlation matrix of 0 1, , , k� � ��  in the posterior distribution simulation 1

0� 1� 2� 3� 4� 5� 6� 7� 8�

0� 1.00

1� 0.06 1.00

2� -0.47 0.01 1.00

3� -0.04 -0.09 -0.07 1.00

4� 0.57 -0.59 0.04 0.09 1.00

5� 0.14 0.05 -0.01 -0.07 0.11 1.00

6� -0.02 -0.02 -0.01 0.02 0.05 0.68 1.00

7� 0.03 0.01 0.04 -0.03 0.05 0.01 0.00 1.00

8� 0.07 -0.01 -0.10 0.03 -0.02 0.02 0.02 -0.54 1.00

Table 5.10b: Correlation matrix of 0 1, , , k� � ��  in the posterior distribution of simulation 2

0� 1� 2� 3� 4� 5� 6� 7� 8�

0� 1.00

1� 0.09 1.00

2� -0.49 -0.03 1.00

3� -0.03 -0.04 -0.09 1.00

4� 0.57 -0.57 0.04 0.06 1.00

5� 0.15 0.09 0.01 -0.06 0.11 1.00

6� 0.00 0.03 -0.01 0.04 0.06 0.71 1.00

7� 0.09 0.01 0.03 0.02 0.09 0.00 0.00 1.00

8� -0.01 0.01 -0.06 -0.00 -0.07 -0.01 0.00 -0.55 1.00

Table 5.10c: Correlation matrix of 0 1, , , k� � ��  in the posterior distribution of simulation 3

0� 1� 2� 3� 4� 5� 6� 7� 8�

0� 1.00

1� 0.02 1.00

2� -0.43 0.10 1.00

3� -0.08 -0.05 -0.10 1.00

4� 0.58 -0.63 -0.02 0.01 1.00

5� 0.14 0.00 0.01 -0.12 0.12 1.00

6� -0.06 0.01 0.04 -0.02 0.03 0.71 1.00

7� 0.06 -0.02 0.06 -0.09 0.07 0.04 0.03 1.00

8� 0.07 0.07 -0.07 0.05 -0.05 0.03 0.00 -0.55 1.00

Table 5.11: Eigenvalues of the covariance matrix of the posterior data in the 3 MCMC-simulations

accM 0� 1� 2� 3� 4� 5� 6� 7� 8� sum
1 2200 0.724 0.191 0.114 0.108 0.094 0.038 0.030 0.020 0.002 1.322
2 1300 0.700 0.204 0.116 0.110 0.099 0.038 0.031 0.019 0.002 1.319
3 700 0.777 0.185 0.118 0.110 0.087 0.036 0.030 0.019 0.002 1.365
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Appendix:  Log-file of the three simulations with BayesX

Simulation 1

> dataset d
> d.infile using c:\texte\compstat\daten\kredit.raw
NOTE: 9 variables with 1000 observations read from file
c:\texte\compstat\daten\kredit.raw

> bayesreg b
> b.outfile = c:\tmp\kr_12000_1000_5
> b.regress boni = laufz + moral + zweck + hoehe + geschl + famst + ko1 + ko2 , itera-
tions=12000 burnin=1000 step=5  family=binomialprobit using d

BAYESREG OBJECT b: regression procedure

GENERAL OPTIONS:

  Number of iterations:  12000
  Burn-in period:        1000
  Thinning parameter:    5

RESPONSE DISTRIBUTION:

  Family: binomial
  Number of observations: 1000
  Number of observations with positive weights: 1000
  Response function: standard normal (probit link)

OPTIONS FOR ESTIMATION:

  OPTIONS FOR FIXED EFFECTS:

  Priors:

  diffuse priors

MCMC SIMULATION STARTED

  ITERATION: 1

  APPROXIMATE RUN TIME: 23 seconds

  ITERATION: 1000
  ITERATION: 2000
  ITERATION: 3000
  ITERATION: 4000

  FixedEffects1

  Acceptance rate:    100 %

  Relative Changes in

  Mean:               0.158158
  Variance:           3.30948e+14
  Minimum:            0.641668
  Maximum:            0.529792

  ITERATION: 5000
  ITERATION: 6000
  ITERATION: 7000
  ITERATION: 8000

  FixedEffects1

  Acceptance rate:    100 %
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  Relative Changes in

  Mean:               0.00432139
  Variance:           0.0511951
  Minimum:            0.0431187
  Maximum:            0.116425

  ITERATION: 9000
  ITERATION: 10000
  ITERATION: 11000

  FixedEffects1

  Acceptance rate:    100 %

  Relative Changes in

  Mean:               0.00160812
  Variance:           0.0140995
  Minimum:            0.0143712
  Maximum:            0.000479932

  ITERATION: 12000

SIMULATION TERMINATED

SIMULATION RUN TIME: 24 seconds

ESTIMATION RESULTS:

  Estimation results for the intercept:

         mean           Std. Dev.      2.5% quant.    median         97.5% quant.
  const  -0.728514      0.114421       -0.941884      -0.729197      -0.50626

  Results for the intercept are also stored in file
  c:\tmp\kr_12000_1000_5_intercept.res

  FixedEffects1

  Acceptance rate:    100 %

  Variable  mean           Std. Dev.      2.5% quant.    median         97.5% quant.
  laufz     0.020626       0.00460928     0.0117804      0.0206232      0.0298025
  moral     -0.293213      0.0791512      -0.450335      -0.292876      -0.139568
  zweck     -0.139871      0.0487599      -0.235281      -0.139976      -0.0426651
  hoehe     0.0189294      0.0196181      -0.019854      0.0184192      0.0565769
  geschl    0.0668102      0.0641114      -0.057821      0.0668595      0.192727
  famst     -0.109951      0.0654435      -0.237741      -0.109278      0.0143968
  ko1       0.511998       0.0623867      0.388653       0.513778       0.634742
  ko2       -0.629133      0.066475       -0.764348      -0.62726       -0.501886
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Simulation 2

> b.outfile = c:\tmp\kr_15000_2000_10
> b.regress boni = laufz + moral + zweck + hoehe + geschl + famst + ko1 + ko2 , itera-
tions=15000 burnin=2000 step=10  family=binomialprobit using d

BAYESREG OBJECT b: regression procedure

GENERAL OPTIONS:

  Number of iterations:  15000
  Burn-in period:        2000
  Thinning parameter:    10

RESPONSE DISTRIBUTION:

  Family: binomial
  Number of observations: 1000
  Number of observations with positive weights: 1000
  Response function: standard normal (probit link)

OPTIONS FOR ESTIMATION:

  OPTIONS FOR FIXED EFFECTS:

  Priors:

  diffuse priors

MCMC SIMULATION STARTED

  ITERATION: 1

  APPROXIMATE RUN TIME: 28 seconds

  ITERATION: 1000
  ITERATION: 2000
  ITERATION: 3000
  ITERATION: 4000
  ITERATION: 5000
  ITERATION: 6000

  FixedEffects1

  Acceptance rate:    100 %

  Relative Changes in

  Mean:               0.165164
  Variance:           7.07928e+14
  Minimum:            0.624997
  Maximum:            0.580698

  ITERATION: 7000
  ITERATION: 8000
  ITERATION: 9000
  ITERATION: 10000

  FixedEffects1

  Acceptance rate:    100 %

  Relative Changes in

  Mean:               0.00753161
  Variance:           0.0332624
  Minimum:            0.0302839
  Maximum:            0.143588



37

  ITERATION: 11000
  ITERATION: 12000
  ITERATION: 13000
  ITERATION: 14000

  FixedEffects1

  Acceptance rate:    100 %

  Relative Changes in

  Mean:               0.00359838
  Variance:           0.0431959
  Minimum:            0.0806361
  Maximum:            0.029805

  ITERATION: 15000

SIMULATION TERMINATED

SIMULATION RUN TIME: 30 seconds

ESTIMATION RESULTS:

  Estimation results for the intercept:

         mean           Std. Dev.      2.5% quant.    median         97.5% quant.
  const  -0.724311      0.115032       -0.96177       -0.721248      -0.505426

  Results for the intercept are also stored in file
  c:\tmp\kr_15000_2000_10_intercept.res

  FixedEffects1

  Acceptance rate:    100 %

  Variable  mean           Std. Dev.      2.5% quant.    median         97.5% quant.
  laufz     0.0205542      0.00460502     0.011275       0.0205432      0.029393
  moral     -0.290763      0.0796846      -0.440505      -0.292199      -0.132041
  zweck     -0.139515      0.0481798      -0.231566      -0.140301      -0.044125
  hoehe     0.0181128      0.0192823      -0.0217374     0.0183151      0.0545265
  geschl    0.0631148      0.0675965      -0.0685707     0.0609438      0.197365
  famst     -0.113338      0.0656589      -0.245869      -0.113483      0.013942
  ko1       0.511449       0.0645808      0.386591       0.50865        0.63758
  ko2       -0.630771      0.0669017      -0.765591      -0.629044      -0.496258



38

Simulation 3

> b.outfile = c:\tmp\kr_18000_4000_20
> b.regress boni = laufz + moral + zweck + hoehe + geschl + famst + ko1 + ko2 , itera-
tions=18000 burnin=4000 step=20  family=binomialprobit using d

BAYESREG OBJECT b: regression procedure

GENERAL OPTIONS:

  Number of iterations:  18000
  Burn-in period:        4000
  Thinning parameter:    20

RESPONSE DISTRIBUTION:

  Family: binomial
  Number of observations: 1000
  Number of observations with positive weights: 1000
  Response function: standard normal (probit link)

OPTIONS FOR ESTIMATION:

  OPTIONS FOR FIXED EFFECTS:

  Priors:

  diffuse priors

MCMC SIMULATION STARTED

  ITERATION: 1

  APPROXIMATE RUN TIME: 35 seconds

  ITERATION: 1000
  ITERATION: 2000
  ITERATION: 3000
  ITERATION: 4000
  ITERATION: 5000
  ITERATION: 6000
  ITERATION: 7000
  ITERATION: 8000

  FixedEffects1

  Acceptance rate:    100 %

  Relative Changes in

  Mean:               0.229289
  Variance:           4.80195e+14
  Minimum:            0.703814
  Maximum:            0.597886

  ITERATION: 9000
  ITERATION: 10000
  ITERATION: 11000
  ITERATION: 12000
  ITERATION: 13000

  FixedEffects1

  Acceptance rate:    100 %

  Relative Changes in

  Mean:               0.00355154
  Variance:           0.0402934
  Minimum:            0.0150448
  Maximum:            0.0684176
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  ITERATION: 14000
  ITERATION: 15000
  ITERATION: 16000
  ITERATION: 17000

  FixedEffects1

  Acceptance rate:    100 %

  Relative Changes in

  Mean:               0.00482424
  Variance:           0.0303285
  Minimum:            0.0367421
  Maximum:            0.0945194

  ITERATION: 18000

SIMULATION TERMINATED

SIMULATION RUN TIME: 36 seconds

ESTIMATION RESULTS:

  Estimation results for the intercept:

         mean           Std. Dev.      2.5% quant.    median         97.5% quant.
  const  -0.722283      0.114144       -0.946497      -0.721339      -0.513788

  Results for the intercept are also stored in file
  c:\tmp\kr_18000_4000_20_intercept.res

  FixedEffects1

  Acceptance rate:    100 %

  Variable  mean           Std. Dev.      2.5% quant.    median         97.5% quant.
  laufz     0.0206172      0.00491122     0.0111257      0.0204497      0.030657
  moral     -0.294855      0.0740638      -0.447033      -0.292939      -0.150401
  zweck     -0.138648      0.0466079      -0.227665      -0.138944      -0.0471488
  hoehe     0.0188599      0.0194518      -0.0186513     0.018544       0.0588403
  geschl    0.0657355      0.0668609      -0.0742874     0.0665778      0.187904
  famst     -0.111984      0.0662743      -0.249423      -0.11182       0.0165249
  ko1       0.510375       0.0647189      0.382203       0.510969       0.641179
  ko2       -0.628938      0.0672198      -0.768028      -0.628772      -0.497938

  Results for fixed effects are also stored in file
  c:\tmp\kr_18000_4000_20_FixedEffects1.res

> logclose
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