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Abstract

We consider a polynomial regression model, where the covariate is measured
with Gaussian errors. The measurement error variance is supposed to be
known. The covariate is normally distributed with known mean and vari-
ance. Quasi Score (QS) and Corrected Score (CS) are two consistent estima-
tion methods, where the first makes use of the distribution of the covariate
(structural method), while the latter does not (functional method). It may
therefore be surmised that the former method is (asymptotically) more ef-
ficient than the latter one. This can, indeed, be proved for the regression
parameters. We do this by introducing a third, so-called Simple Score (SS),
estimator, the efficiency of which turns out to be intermediate between QS
and CS. When one includes structural and functional estimators for the vari-
ance of the error in the equation, SS is still more efficient than CS. When
the mean and variance of the covariate are not known and have to be esti-
mated as well, one can still maintain that QS is more efficient than SS for
the regression parameters.

Key words: Quasi Score, Corrected Score, Polynomial Model, Measurement
Errors, Efficiency, Structural Methods, Functional Methods.
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1 Introduction

We consider a polynomial regression model:

y = β0 + β1ξ + · · ·+ βkξ
k + ε

with additive measurement errors δ in the latent covariate ξ:

x = ξ + δ,

x being the observable surrogate for ξ. We assume δ to be independent of ξ
(classical measurement error model). We also assume

E(ε|ξ, δ) = 0, E(ε2|ξ, δ) = σ2
ε .

In addition, we often make use of the assumption

(N) δ ∼ N(0, σ2
δ ), ξ ∼ N(µξ, σ

2
ξ ),

For a review of the polynomial measurement error model see Cheng and
Schneeweiss (2002), see also Cheng and Schneeweiss (1998). The quadratic
model has been applied in practice, e.g., Fuller(1987) or Kuha and Temple
(2003).

The problem is to estimate the parameter vector β = (β0, β1, · · · , βk)
> con-

sistently given an i.i.d. sample of observations (xi, yi), i = 1, · · · , n. It is
well-known that replacing ξ with x and applying least square leads to an
inconsistent estimator (the naive estimator). For constructing consistent es-
timators we rely on additional pieces of information. Here we assume that
the distributions of ξ and δ are given. Under (N) this means that σ2

δ , µξ,
and σ2

ξ are known. This is a simplifying assumption, which in practice is met
only approximately. σ2

δ can often be estimated by replicated measurements
or with the help of validation data; µξ and σ2

ξ can be estimated from the
data xi alone:

µ̂ξ = x̄, σ̂2
ξ = s2

x − σ2
δ .

There are two major estimation methods that can be applied to this model,
apart from maximum likelihood (ML), which, however, is rather complex.
Both construct unbiased (vector-valued) estimating functions ψ(y, x; b), or
shorter ψ(b), such that Eψ(b) = 0 if, and only if, b = β and compute the
estimator β̂ as the solution to the equation

n∑
i=1

ψ(yi, xi; β̂) = 0.
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Under some regularity conditions, the unbiasedness of the estimating function
guarantees the consistency of the estimator.

The quasi score (QS) estimator uses the distribution of ξ in constructing ψ
and is therefore a so-called structural method, see Carroll et al. (1995). In
Kukush et al. (2002) and in Kukush and Schneeweiss (2005), it is called
”structural quasi score (SQS)”. The corrected score (CS) estimator does not
use the distribution of ξ. It is a so-called functional method, see Chan and
Mak (1985), Stefanski (1989), Cheng and Schneeweiss (1998); in the latter,
CS is called ”adjusted least squares (ALS)”.

CS has the advantage that it is insensitive with respect to possible misspeci-
fications of the regressor distribution, whereas QS is in danger of a bias, see
Schneeweiss and Cheng (2003). On the other hand, QS might be more effi-
cient, as it uses the information inherent in the regressor distribution, which
CS does not use. However, this is by no means obvious, as QS is not ML.
Nevertheless, we can prove that, indeed, QS is more efficient than CS in the
sense that its asymptotic covariance matrix (ACM) ΣQS is smaller, in the
Loewner sense, than the ACM ΣCS.

This result is proved with the help of an intermediate estimator, the so-called
simple score (SS) estimator, which is a simplified version of the QS estimator.
SS can be easier compared both to QS and to SS and it is also much easier
to compute than QS. The inequality relation ΣQS ≤ ΣCS is proved without
assumption (N). We need (N) only to prove the corresponding strict order
relation.

Shklyar and Schneeweiss (2005) have proved a similar result for the log-linear
Poisson model, but with different arguments. They were able to compute the
ACMs of CS and SS explicitly and they could compare them directly. Here
we do not have explicit formulas for the ACMs and their comparison has to
be accomplished in an indirect way, see Section 4.

We will also extend our investigations to include the estimation of σ2
ε and

will show that the efficiency comparison, at least for CS and SS, also holds
with respect to this parameter.

Our results partially depend on the assumption that the nuisance parameters
of the distribution of ξ are known. If they have to be estimated along with
β and σ2

ε , the superiority of QS over CS is not clear, although it can still
be observed in many cases, see the simulation study in Wolf (2004). Never-
theless, one can at least show that QS is more efficient than SS even in the
presence of nuisance parameters.
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In Section 2, we introduce the unbiased estimating functions for CS, QS, and
SS. Section 3 has some remarks on the naive estimator. Section 4 has our
main results: the ACMs of the CS, QS, and SS estimators and their compar-
ison to each other. In Section 5 and Section 6 we extend our investigation
to the estimation of σ2

ε . Section 7 studies the effect of the estimation of the
nuisance parameters of the distribution of ξ. In Section 8 we study the mul-
tiple polynomial model. Section 9 has some concluding remarks. Proofs are
relegated to an appendix.

2 Unbiased estimating (score) functions for β

We write the polynomial model in matrix form

y = ζ>β + ε

with ζ> = (1, ξ, · · · , ξk). We assume the distribution of δ and ξ to be known.
We define a vector µ = µ(x) as the conditional mean

µ = E(ζ|x).

Under (N) the r-th component of µ is a polynomial in x of degree r− 1, see
Kukush et al. (2005). A corresponding matrix M = M(x) is defined by

M = E(ζζ>|x).

We also define a vector t = t(x) such that

E(t|ξ) = ζ.

t is uniquely defined a.s. The r-th component is a polynomial in x of degree
r−1, see Cheng and Schneeweiss (1998). Finally we define the (k+1)×(k+1)
matrix T = T (x) such that

E(T |ξ) = ζζ>.

µ, t, and T can be constructed from the data x. Indeed, if z is defined as
z = (1, x, · · · , xk)>, then t and µ are linear transforms of z, the latter under
(N):

t = K1z

µ = K2z,
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where K1 and K2 are lower triangular matrices with positive elements on the
diagonal, see Kukush et al. (2005).

The estimating (score) functions for the CS, SS, and QS estimators of β are
now given, respectively, by (for CS and QS see Kukush et al. (2005), where,
however, CS and QS are called ALS and SLS, respectively)

ψβC(b) = ty − Tb

ψβS(b) = ty − tµ>b

ψβQ(b) = v(b)−1(µy − µµ>b),

where v(β) = v(x, β, σ2
ε ) is the conditional variance V(y|x):

v(β) = σ2
ε + β>(M − µµ>)β,

see Thamerus (1998). Here we implicitly assume that σ2
ε is given, but see

Section 5. In order to be sure that the QS estimator is consistent, we also
need the ”technical” assumption that β is restricted to an inner point of a
given compact set.

These estimating functions imply the following CS and SS estimators, re-
spectively,

β̂C = T
−1

ty

β̂S = tµ>
−1

ty,

where the bar denotes averaging over the sample data (xi, yi), i = 1, · · · , n.
As under (N) t = K1K

−1
2 µ, β̂S can also be written as

β̂S = µµ>
−1

µy,

which corresponds to the estimating function ψ∗βS(b) = µy−µµ>b, equivalent

to ψβS(b). β̂S is thus seen to be the LS estimator in the (homoscedastic) linear
regression

y = µ>β + u.

For the QS estimator the same linear regression can be used but with a
heteroscedastic error term u with a variance equal to v(β). An iteratively
reweighted least squares method may be applied in order to compute the QS
estimate of β, see Kukush et al. (2001), see also Kukush and Schneeweiss
(2005).

In the following, when we use estimating functions without the subscript C,
S, or Q, we refer to any of the three types of estimating functions. Expecta-
tions are always meant with respect to the true model parameters.
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The following lemma shows that the estimating functions are indeed unbiased
estimating functions.

Lemma 1 For the CS, SS, and QS estimating functions, for the latter two
under (N), we have

Eψβ(b) = 0 if, and only if, b = β.

3 Naive estimation

The naive estimator β̂N is based on the estimating function

ψβN(b) = zy − zz>b.

β̂N is inconsistent with lim β̂N = β∗ 6= β. To find β∗ one has to solve the
equation

EψβN(β∗) = 0.

But,under (N),

EψβN(β∗) = K−1
1 E(ty − tµ>K−>

2 β∗)

= K−1
1 EψβS(K−>

2 β∗).

Thus

β∗ = K>
2 β.

A consistent estimator is constructed from β̂N by multiplying β̂N with K−>
2 .

But as ψβN(b) is equivalent to ty − tµ>K−>
2 b, which is ψβS(K−>

2 b), this

estimator is just β̂S:

β̂S = K−>
2 β̂N .

Under (N), the SS estimator is thus seen to be the bias-corrected naive
estimator.
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4 Comparing ACMs of β̂

Estimators of β that are based on an unbiased estimating function ψ are
asymptotically normal under general regularity assumptions:

√
n(β̂ − β) ∼ N(0, Σβ),

where Σβ is given by the sandwich formula

Σβ = A−1
β BβA−>

β

with

Aβ = −E∂ψβ

∂β>

Bβ = Eψβψ>β
ψβ = ψβ(β).

We compare the two factors Aβ and Bβ for QS and SS. We define β(0) to be
the k-dimensional vector that is derived from β by deleting its first element
β0, i.e.: β = (β0, β

>
(0))

>.

Lemma 2

AβC = AβS = Eζζ>.

Lemma 3

BβC ≥ BβS

with equality if β(0) = 0. Under (N), if β(0) 6= 0,

BβC > BβS.

Lemmas 2 and 3 imply the following theorem.

Theorem 1

ΣβC ≥ ΣβS

with equality if β(0) = 0. Under (N), if β(0) 6= 0,

ΣβC > ΣβS.
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As to QS, we can rely on a general theorem of Heyde (1997). According to
this theorem ψβQ is optimal in the class of all linear-in-y estimating functions
ψ with E(ψ|x) = 0. As ψβS belongs to this class, we can state the following
theorem

Theorem 2

ΣβS ≥ ΣβQ.

Under (N), ΣβS = ΣβQ if β(0) = 0; if β(0) 6= 0, ΣβS > ΣβQ if, and only if,
r > k

2
+ 1, where r = max{j : βj 6= 0}.

As a corollary we have that in a quadratic model (k = 2) the matrix ΣβS−ΣβQ

is always singular, while in a polynomial model with (k > 2) and with βk 6= 0
the matrix ΣβS − ΣβQ is nonsingular. It may also be noted that in a linear

model v is a constant and thus β̂S and β̂Q coincide and consequently ΣβS =
ΣβQ in this case even if β(0) 6= 0 , see Note 4 in the appendix.

The above argument cannot be extended to ΣβC because E(ψβC |x) 6= 0.
Nevertheless, Theorems 1 and 2 imply

ΣβC ≥ ΣβQ

where, under (N), we have equality if β(0) = 0 and strict inequality if β(0) 6= 0.

5 Unbiased estimating functions for σ2
ε

We can also estimate σ2
ε by using the following estimating functions for CS

and SS, respectively, together with the corresponding estimating functions
for β:

ψεC(s2, b) = y2 − b>Tb− s2

ψεS(s2, b) = y2 − b>Mb− s2.

The last estimating function can also be used in connection with the QS
estimator of β, i.e., ψεS = ψεQ. However, in this case, ψβQ and ψεQ have to
be used together in order to estimate β and σ2

ε simultaneously:

ψβQ(b, s2) = v(b, s2)−1(µy − µµ>b)

ψεQ(s2, b) = y2 − b>Mb− s2.
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where

v(b, s2) = s2 + b>(M − µµ>)b.

This does not change the unbiasedness property of ψβQ, as one can see from

the proof of Lemma 1. We shall see in Section 6 that the ACM of β̂Q does
not change either.

By contrast, the CS and SS estimation of β and σ2
ε can be accomplished in

two steps: first β is estimated using ψβC or ψβS, respectively, and then σ2
ε is

estimated using ψεC or ψεS, respectively, and the estimate of β from the first
step. For CS and SS, the estimation of β does not depend on the estimation of
σ2

ε , and consequently their ACMs do not change whatever estimation method
for σ2

ε is used.

The following lemma, together with Lemma 1, shows that ψε is, indeed,
unbiased for all three estimation methods.

Lemma 4

Eψε(s
2, β) = 0 if, and only if, s2 = σ2

ε .

6 Comparing asymptotic variances of σ̂2
ε

Let α = (β>, σ2
ε )
> and a = (b>, s2)>. The estimating function for α is just

the compound of the estimating functions for β and σ2
ε :

ψα(a) = (ψ>β (b, s2), ψε(s
2, b))>.

The ACM of α̂ is given by the sandwich formula

Σα = A−1
α BαA−>

α

with

Aα = −E∂ψα

∂α>

Bα = Eψαψ>α
ψα = ψα(α).

We investigate the structure of Aα. For CS and SS, ψβ does not depend on
σ2

ε . Therefore ∂ψβ/∂σ2
ε = 0. For QS, ψβQ does depend on σ2

ε . Nevertheless,
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E∂ψβ/∂σ2
ε = 0 because E

[
(µy − µµ>β)|x]

= 0. Finally −∂ψε/∂σ2
ε = 1.

Therefore, for all three estimators, Aα has the form

Aα =




Aβ 0

Aεβ 1


 ,

where Aεβ := −E ∂ψε

∂β> and ψε = ψε(σ
2
ε , β). Its inverse is

A−1
α =




A−1
β 0

−AεβA−1
β 1


 .

Similarly Bα has the form

Bα =




Bβ Bβε

Bεβ Bε


 ,

with Bβε = Eψβψε = B>
εβ, Bε = Eψ2

ε . The ACM of α̂ can be partitioned in a
similar way:

Σα =




Σβ Σβε

Σεβ Σε


 ,

where Σε is the asymptotic variance of σ̂2
ε .

An easy computation shows that Σβ = A−1
β BβA−>

β just as in Section 4. Thus

β̂ (in particular β̂Q) has the same ACM regardless of whether σ2
ε is known

or has to be estimated. By the same arguments this result holds also true if
any other estimating function for σ2

ε is employed. One can even show that
Σβ does not change if a consistent estimator of σ2

ε is used, which does not
necessarily stem from an estimating function.

We can compare ΣαC to ΣαS and thus extend Theorem 1.

Theorem 3

ΣαC ≥ ΣαS

with equality if β(0) = 0. Conversely, under (N), ΣαC = ΣαS implies β(0) = 0.

It follows that, in particular, ΣεC ≥ ΣεS. Under (N), we can also show that
ΣεC > ΣεS if β(0) 6= 0. We cannot maintain that ΣαC > ΣαS if β(0) 6= 0.
Indeed, there are counterexamples in the case of a linear model (k = 1), see
appendix after the proof of Theorem 3.
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7 Nuisance parameters

Structural methods, like SS and QS, make use of the conditional distribution
of ξ given x. Up to now this distribution was assumed to be known. We now
relax this assumption and instead assume that this distribution is known
only up to a vector γ of nuisance parameters. Under (N) and if σ2

δ is known,
γ is a parameter vector characterizing the normal distribution of x, e.g.,
γ = (µx, σ

2
x)
>. In this case, γ can be consistently estimated from the data xi

alone. We assume this to be so in general.

The structural estimators of β (and also of σ2
ε ) are then constructed in the

same way as before except that γ is replaced with its preestimated value γ̂.
That, however, will affect the asymptotic covariance matrix of β̂, which will
be given by the same sandwich formula as before plus an additional term that
stems from the estimation of γ. It turns out that,under (N), this additional
term is the same for SS and QS (and for other structural methods as well).
Therefore the efficiency order of QS over SS that we found before is preserved
in the presence of nuisance parameters.

We start from a more general model that comprises the polynomial model
as a special case. The model is given by conditional mean and variance
functions of y given x.

Let

m = m(x, β, γ) = E(y|x)

v = v(x, β, ϕ, γ) = V(y|x) = E
[
(y −m)2|x]

.

Here ϕ is a dispersion parameter. In the polynomial model, ϕ = σ2
ε . We

assume that γ can be estimated via an unbiased estimating function that
involves only x. We thus have the following set of estimating functions for
θ := (β>, ϕ, γ>)>, (for simplicity we take them as functions of the true
parameters):

ψβ = (y −m)e

ψϕ = y2 −m2 − v

ψγ = g(x, γ).

Here e = e(x, β, ϕ, γ) is an arbitrary function that defines the estimation
method used. For SS, e = ∂m/∂β, and for QS, e = v−1∂m/∂β. The func-
tion g is such that E(g|x) = 0. Then, ψθ := (ψ>β , ψϕ, ψ>γ )> is an unbiased
estimating function: Eψθ = 0.
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We remark that instead of the function ψϕ introduced above we may also use
the related function ψ∗ϕ = (y −m)2 − v without having to change the result
of this section.

Let α = (β>, ϕ)> and ψα = (ψ>β , ψϕ)>, so that ψθ = (ψ>α , ψ>γ )>. Then

Aθ := −E (
∂ψθ/∂θ>

)
can be partitioned as follows

Aθ = −E



∂ψα

∂α>
∂ψα

∂γ>

∂ψγ

∂α>
∂ψγ

∂γ>


 =:




Aα Aαγ

0 Aγ


 .

Similarly Bθ := Eψθψ
>
θ is partitioned as

Bθ =




Bα 0

0 Bγ


 ,

because E(ψαψ>γ |x) = E
[
(ψα|x)ψ>γ

]
= 0.

Now

A−1
θ =




A−1
α −A−1

α AαγA
−1
γ

0 A−1
γ


 ,

and

Σθ = A−1
θ BθA

−>
θ =




Σα Σαγ

Σγα Σγ


 ,

with

Σα = A−1
α (Bα + AαγΣγA

>
αγ)A

−>
α

Σαγ = −A−1
α AαγΣγ = Σ>

γα

Σγ = A−1
γ BγA

−>
γ .

A further decomposition of ψα into ψβ and ψϕ yields

Aα =




Aβ 0

Aϕβ Aϕ




Bα =




Bβ Bβϕ

Bϕβ Bϕ


 .
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We also have

Aαγ =




Aβγ

Aϕγ


 .

We then can compute the two terms of Σα as

A−1
α BαA−>

α =




A−1
β BβA−>

β ∗

∗ ∗




A−1
α AαγΣγA

>
αγA

−>
α =




A−1
β AβγΣγA

>
βγA

−>
β ∗

∗ ∗


 ,

where ∗ denotes submatrices of no further interest. We finally get Σβ as the
upper left corner of Σα:

Σβ = A−1
β BβA−>

β + A−1
β AβγΣγA

>
βγA

−>
β ,

where the first term is the ACM of β̂ if γ were known and the second term
is the correction due to the estimation of γ.

Returning to our original polynomial model, we see that

m = µ>β

v = σ2
ε + β>(M − µµ>)β.

We want to show that the correction for estimation of γ in the formula of Σβ

is independent of e (i.e., independent of the estimation method used). For
this we evaluate, under (N),

Aβ = −E∂ψβ

∂β>
= Ee

∂m

∂β>
= Eeµ>

Aβγ = −E∂ψβ

∂γ>
= Ee

∂m

∂γ>
= Eeβ>

∂µ

∂γ>
.

Now with µ = K2z, we find

β>
∂µ

∂γ>
= z>

∂K>
2 β

∂γ>

= µ>K−>
2

∂K>
2 β

∂γ>

=: µ>G,

13



where G is a constant matrix that does not depend on e. Thus

Aβγ = AβG

and

Σβ = A−1
β BβA−>

β + GΣγG
>,

which proves that the correction term due to estimation of γ is, indeed, the
same for all estimation methods e. In particular, it is the same for SS and
QS.

This shows that Theorem 2 is still valid, even in the presence of nuisance
parameters.

8 Multiple polynomials

The previous results can all be extended to the case of a multiple polynomial
model.

We have to replace the random scalar variables ξ, x, and δ with random
vector variables ξ = (ξ1, . . . , ξq)

>, x = (x1, . . . , xq)
>, and δ = (δ1, . . . , δq)

>,
respectively, such that x = ξ + δ, as before. The covariance matrix Σξ of ξ is
supposed to be nonsingular.

Consider the power term ξk1
1 · · · ξkq

q with ki being nonnegative integers. Let
k1+ · · ·+kq be the degree of this power term. A (multiple) polynomial in ξ of
degree k is a linear combination of all such power terms up to the maximum
degree k. Let ζ be the vector consisting of all power terms up to the degree
k arranged by increasing degree, where all terms with the same degree are
arranged in an arbitrary way. Then

y = ζ>β + ε

is a (multiple) polynomial model with the unknown parameter vector β.

The vectors t and µ and the matrices T and M are defined in the same way
as in Section 2. It turns out that a typical element of t is of the form

tk1...kq = xk1
1 · · · xkq

q + pk1...kq(x),

where pk1...kq(x) is a polynomial in x of lower degree than k1 + · · ·+ kq. Let
z be the vector defined just as ζ but with the ξi replaced by xi. Then

t = K1z
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with K1 being a triangular matrix with ones on the diagonal.

Under (N), the conditional distribution of ξ given x is N(µ̃, Σ̃) with

µ̃ = E(ξ|x) = (µ̃1, . . . , µ̃q)
> = Ax + b,

where A = ΣξΣ
−1
x is nonsingular and b is a vector of constants. It follows

that a typical element of µ is of the form

µk1...kq = E[(ξ1 − µ̃1 + µ̃1)
k1 · · · (ξq − µ̃q + µ̃q)

kq |x] = µ̃k1
1 · · · µ̃kq

q + qk1...kq(µ̃),

where qk1...kq(µ̃) is a polynomial in µ̃ of lower degree than k1 + · · · + kq.

Moreover, µ̃k1
1 · · · µ̃kq

q is a polynomial in x of degree k1 + · · · + kq, and so is
µk1...kq . Thus

µ = K2z.

Conversely, as x = A−1µ̃ + c (with c = −A−1b), any term xl1
1 · · · xlq

q is a
polynomial in µ̃ of degree l1 + · · · + lq and so z is a linear transform of µ.
Thus K2 is nonsingular.

The arguments and results of the preceding section can now be taken over
to the multiple case.

9 Conclusion

We proved that the (structural) QS estimator of the regression parameter β of
a polynomial measurement error model is more efficient than the (functional)
CS estimator under the assumption that ξ ∼ N(µξ, σ

2
ξ ) and δ ∼ N(0, σ2

δ )
with the parameters µξ, σ2

ξ , and σ2
δ known. The proof was accomplished by

introducing an intermediate structural estimator, the SS estimator, which is
simpler than QS, but is strongly related to QS so that a comparison of their
ACMs can be carried out. It is also related to CS, albeit in a different way,
so that the ACMs of SS and CS can be compared as well.

Apart from its role as a tool to prove the superiority of QS over CS, the SS
estimator has its own merits as an estimator that can be very simply com-
puted just using ordinary least squares, albeit not in the original polynomial
model but in a related multiple linear model.

We could extend this result to the estimation of σ2
ε in so far as we showed

that the SS estimator of σ2
ε is more efficient than the CS estimator.

It should be noted that the result on the efficiency comparison between CS
and QS holds true under the assumption that the nuisance parameters µξ

15



and σ2
ξ are known. It is an open question whether this result still holds

under unknown nusiance parameters to be estimated by the data xi. We
can, however, show that QS is more efficient than SS regardless of whether
the nuisance parameters are known or unknown.

It should also be noted that despite its inferiority with regard to its relative
efficiency, the CS estimator has the big advantage not to depend on the
knowledge of the distribution of ξ. It is therefore robust with regard to any
misspecification of this distribution. This is different for SS and QS, which
do depend on the correct knowledge of the ξ-distribution and which show an
asymptotic bias if that distribution has been misspecified.

Finally, let us note that for small σ2
δ the difference ΣC − ΣQ is of order σ4

δ ,
see Kukush et al. (2005), see also Kukush and Schneeweiss (2005).

We conclude with a technical remark. The main results concerning the
(weak) inequalities (≤) of covariance matrices as stated in Theorems 1 to
3 do not rely on the normality assumption (N). They even hold true under
much more general assumptions: ξ and δ need not be independent as long as
we can assume that the joint distribution of ξ and δ is known. Thus these
results remain valid also under the Berkson variant of the measurement error
model where instead of δ being independent of ξ, δ is independent of x.

Appendix: Proofs

Lemma 1: Start with CS. We have

EψβC(b) = E(tζ>β − Tb) + Etε

= EE(tζ>β − Tb|ξ) + E[tE(ε|x)]

= Eζζ>(β − b),

which is zero iff b = β because Eζζ> is p.d.

For SS, we have

EψβS(b) = E
[
tE(ζ>|x)β − tµ>b

]
+ Etε

= Etµ>(β − b),

which is zero iff b = β because (under (N))

tµ> = K1zz
>K>

2

and Ezz> is p. d. The proof for QS proceeds in a similar way as for SS.
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Note 1: It can be seen from the proof that not only is EψβS(β) = 0 but
even

E [ψβS(β)|x] = 0.

The same is true for ψβQ, but not for ψβC .

Note 2: Assumption (N) was only needed to assume the nonsingularity of
Etµ>. If it can be assumed that Etµ> is nonsingular, assumption (N) is not
needed.

Lemma 2: First note that

∂ψβC

∂β>
= −T

∂ψβS

∂β>
= −tµ>.

Now

ET = EE(T |ξ) = Eζζ>

Etµ> = E[tE(ζ>|x)] = EE(tζ>|x)

= Etζ> = EE(tζ>|ξ)
= E[E(t|ξ)ζ>] = Eζζ>.

Thus AβC = AβS.

Lemma 3: As E(ψβS|x) = 0 (compare Note 1) and ψβC − ψβS is a function
of x alone, therefore

EψβS(ψβC − ψβS)> = E
[
E(ψβS|x)(ψβC − ψβS)>

]
= 0.

It follows that

EψβCψ>βC = EψβSψ>βS + E(ψβC − ψβS)(ψβC − ψβS)> ≥ EψβSψ>βS

or

BβC ≥ BβS,

which proves the first part of the lemma.

By the definition of the estimating functions ψβ, the difference of BβC and
BβS is

BβC −BβS = E
(
T − tµ>

)
ββ>

(
T − tµ>

)>
.

17



Consider the (i, j)-th element, i, j = 0, · · · , k, of T − tµ>, which is

Tij − tiµj = ti+j − tiµj.

For j = 0 this is 0 because µ0 = 1. Thus the first column of T − tµ> is zero.
Consequently, β(0) = 0 implies

(
T − tµ>

)
β = 0 and thus BβC = BβS.

To prove the last part of the lemma, we have to show (under (N)) that, for
any (k + 1)-dimensional vector a 6= 0, a>(BβC − BβS)a > 0 if β(0) 6= 0. This
is equivalent to

P
(
a>

(
T − tµ>

)
β 6= 0

)
> 0

if β(0) 6= 0. But, under (N), a>
(
T − tµ>

)
β is a polynomial in x. So it

suffices to show that the degree of this polynomial is greater than zero if
β(0) 6= 0.

Now, under (N), µj is a polynomial of degree j in µ1 with highest coefficient
1, and since

µ1 = µx
σ2

δ

σ2
x

+ ρx, ρ := 1− σ2
δ

σ2
x

,

see Kukush et al. (2005), µj is a polynomial in x of degree j with highest
coefficient ρj. Moreover, as ti is a polynomial in x of degree i with highest
coefficient 1, we have that, for j 6= 0, Tij− tiµj is a polynomial in x of degree
i + j with highest coefficient 1− ρj 6= 0.

Now, let β(0) 6= 0. Then there exists an index r, 1 ≤ r ≤ k, such that βr 6= 0
but βj = 0 for j > r. It follows that

(
T − tµ>

)
β is a (k + 1)-dimensional

vector the elements of which are polynomials in x of degree r, r+1, · · · , r+k,
respectively. Consequently, for any a 6= 0, a>

(
T − tµ>

)
β is a polynomial of

degree at least r and r > 0.

Theorem 2: The first part of the theorem is a consequence of general quasi
score theory, see Heyde (1997). If we assume (N), which we shall do for the
rest of the proof, we can prove the first part of the theorem more directly
by other means. Using the estimating functions ψ∗βS and ψβQ, one can show
that

ΣβS = (Eµµ>)−1Evµµ>(Eµµ>)−1

ΣβQ = (Ev−1µµ>)−1.

The first part of the theorem then follows from the matrix inequality

Evww> ≥ (Ev−1ww>)−1,
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where w is a random vector with Eww> = I, see Appendix in Shklyar and
Schneeweiss (2005).

If β(0) = 0, then v = σ2
ε because M00 − µ2

0 = 1− 1 = 0. Hence ΣβS = ΣβQ.

Now, suppose β(0) 6= 0. Let r be the degree of the true polynomial, r ≥ 1.
Then v(β) is a polynomial in µ1 of degree 2r − 2 because, by the definition
of µr, see Kukush et al. (2005), µr = µr

1 + pr−2(µ1), where pr−2(µ1) is a
polynomial in µ1 of degree at most r − 2. According to the Appendix in
Shklyar and Schneeweiss (2005), the matrix ΣS − ΣQ is singular iff there
exist f1, f2 ∈ Rk+1 \ {0}, such that

f>1 µ = v(β) f>2 µ a.s. (∗)

The left-hand side of (∗) is a polynomial in µ1 of degree up to k, the right-
hand side is of a degree in the interval [2r − 2, 2r − 2 + k]. Therefore (∗)
implies k ≥ 2r − 2.

Conversely, if k ≥ 2r− 2, then v(β) = f>3 µ for some f3. Then (∗) holds true
with f1 = f3 and f2 = (1, 0, . . . , 0)>.

Lemma 4: First consider CS. We have

EψεC(s2, β) = Eβ>ζζ>β + EE(2εζ>β|ξ) + Eε2 − Eβ>Tβ − s2

= β>EE(T |ξ)β + σ2
ε − β>ETβ − s2

= σ2
ε − s2,

which is 0 iff s2 = σ2
ε .

Next consider SS or QS. Here we have

EψεS(s2, β) = EE(β>ζζ>β + 2εζ>β + ε2|x)− Eβ>Mβ − s2

= σ2
ε − s2

which again is 0 iff s2 = σ2
ε .

Note 3: Note that not only do we have EψεS(σ2
ε , β) = 0 but even

E
[
ψεS(σ2

ε , β)|x]
= 0.

This can be seen from

E(ε2|x) = E
[
E(ε2|x, ξ)|x]

= σ2
ε

E(εζ|x) = E [E(εζ|x, ξ)|x] = E [ζE(ε|x, ξ)|x] = 0.
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Theorem 3: We first show that EψαS(ψαC−ψαS)> = 0. Indeed, this matrix
is equal to

E




ψβS(ψβC − ψβS)> ψβS(ψεC − ψεS)

ψεS(ψβC − ψβS)> ψεS(ψεC − ψεS)


 .

All four parts of this matrix vanish. For the upper left part this has been
shown in the proof of Lemma 3. Because E(ψεS|x) = 0 (compare Note 3),
one can show in a similar way that the two lower parts also vanish. The
upper right part is zero because E(ψβS|x) = 0. It now follows immediately,
just as in the proof of Lemma 3, that

EψαCψ>αC ≥ EψαSψ>αS

or in other words,

BαC ≥ BαS.

We have equality iff ψαC = ψαS a.s. If β(0) = 0, then ψβC − ψβS = (T −
tµ>)β = 0 by the proof of Lemma 3. But also ψεC = ψεS because ψεC−ψεS =
β> (M − T ) β, which is zero for β(0) = 0, as M00 − T00 = µ0 − t0 = 0. Thus
β(0) = 0 implies ψαC = ψαS. Conversely, under (N), ψαC = ψαS implies
ψβC = ψβS and this in turn implies β(0) = 0 by Lemma 3.

We know already from Lemma 2 that AβC = AβS.

Similarly

AεβC = 2β>ET = 2β>EE(T |ξ)
= 2β>Eζζ> = 2β>E(ζζ>|x)

= 2β>EM = AεβS.

Thus

AαC = AαS,

and the theorem is proved.

In addition, consider Bε under (N). If β(0) 6= 0, ψεC−ψεS = β> (M − T ) β is a
polynomial of degree 2r with r as in the proof of Lemma 3, and consequently
P (ψεC − ψεS 6= 0) > 0, which implies BεC > BεS, and, together with AαC =
AαS, this implies ΣεC > ΣεS.

In order to see that β(0) 6= 0 does not necessarily imply ΣαC > ΣαS, consider
a linear model (k = 1) under (N). We can show that for any β, there is always
a vector a 6= 0 such that a> (ψαC − ψαS) ≡ 0 and thus a> (ΣαC − ΣαS) a = 0.
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Indeed, with µ0 = t0 = 1,

ψαC − ψαS = β1




µ1 − t1

µ1t1 − t2

2β0(µ1 − t1) + β1(µ2 − t2)




.

Let µx = 0. Then µ1 = ρx, see proof of Lemma 3, and µ2 = µ2
1 +σ2

δρ, t1 = x,
t2 = x2 − σ2

δ , see Kukush et al. (2005). Hence

ψαC − ψαS = β1




(ρ− 1)x

(ρ− 1)x2 + σ2
δ

2β0(ρ− 1)x + β1(ρ + 1) ((ρ− 1)x2 + σ2
δ )




.

Let a = (−2β0,−β1(ρ + 1), 1)>, then a> (ψαC − ψαS) ≡ 0. (In a similar way
we can construct a counterexample for k = 2 if β2 = 0).

Note 4: It might be noted that in the linear model, under (N), v = σ2
ε +

β2
1(µ2 − µ2

1) = σ2
ε + β2

1σ
2
δρ = const and hence that ψαS is equivalent to ψαQ,

which implies ΣαS = ΣαQ.

21



References

1. Carroll, R.J., Ruppert, D., and Stefanski, L.A. (1995), Measurement
Error in Nonlinear Models. Chapman and Hall, London.

2. Chan, L.K. and Mak, T.K. (1985), On the polynomial functional rela-
tionship. Journal of the Royal Statistical Society B 47, 510-518.

3. Cheng, C.-L. and Schneeweiss, H. (1998), Polynomial regression with
errors in the variables. Journal of the Royal Statistical Society B 60,
189-199.

4. Cheng, C.-L. and Schneeweiss, H. (2002), On the polynomial measure-
ment error model. In: S. van Huffel and P. Lemmerling (eds.), Total
Least Squares and Errors-in-Variables Modeling. Kluwer, Dordrecht,
131-143.

5. Fuller, W.A. (1987), Measurement Error Models. Wiley, New York.

6. Heyde, C.C. (1997), Quasi-Likelihood And Its Application. Springer,
New York.

7. Kuha, J.T. and Temple, J. (2003), Covariate measurement error in
quadratic regression. International Statistical Review 71, 131-150.

8. Kukush, A. and Schneeweiss, H. (2005), Comparing different estimators
in a nonlinear measurement error model, I. Mathematical Methods of
Statistics 14, 53-79.

9. Kukush, A., Schneeweiss, H., and Wolf, R. (2001), Comparison of three
estimators in a polynomial regression with measurement errors. Discus-
sion Paper 233, SFB 386, Universität München.

10. Kukush, A., Schneeweiss, H., and Wolf, R. (2002), Comparing different
estimators in a nonlinear measurement error model. Discussion Paper
244, SFB 386, Universität München.

11. Kukush, A., Schneeweiss, H., and Wolf, R. (2005), Relative efficiency of
three estimators in a polynomial regression with measurement errors.
Journal of Statistical Planning and Inference 127, 179-203.

12. Schneeweiss, H. and Cheng, C.-L. (2003), Bias of the quasi score es-
timator of a measurement error model under misspecification of the
regressor distribution. Discussion Paper 340, SFB 386, Universität
München. To appear in Journal of Multivariate Analysis.

22



13. Shklyar, S. and Schneeweiss, H. (2005), A comparison of asymptotic
covariance matrices of three consistent estimators in the Poisson regres-
sion model with measurement errors. Journal of Multivariate Analysis
94, 250-270.

14. Stefanski, L.A. (1989), Unbiased estimation of a nonlinear function of
a normal mean with application to measurement error models. Com-
munications in Statistics, Part A - Theory and Methods 18, 4335-4358.

15. Thamerus, M. (1998), Different Nonlinear Regression Models with In-
correctly Observed Covariate. In: R. Galata and H. Küchenhoff (eds.),
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