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Extreme value theory for moving average processes

with light-tailed innovations

Claudia Klüppelberg ∗ Alexander Lindner∗†

Abstract

We consider stationary infinite moving average processes of the form

Yn =
∞∑

i=−∞
ciZn+i, n ∈ Z,

where (Zi)i∈Z is a sequence of iid random variables with “light tails” and (ci)i∈Z is
a sequence of positive and summable coefficients. By light tails we mean that Z0

has a bounded density
f(t) ∼ ν(t) exp(−ψ(t)),

where ν(t) behaves roughly like a constant as t→∞ and ψ is strictly convex satis-
fying certain asymptotic regularity conditions. We show that the iid sequence asso-
ciated with Y0 is in the maximum domain of attraction of the Gumbel distribution.
Under additional regular variation conditions on ψ, it is shown that the stationary
sequence (Yn)n∈N has the same extremal behaviour as its associated iid sequence.
This generalizes results of Rootzén (1986, 1987), where f(t) ∼ ctα exp(−tp) for
c > 0, α ∈ R and p > 1.
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1 Introduction

The goal of this paper is to study extreme value theory of strictly stationary moving

average processes of the form

Yn =
∞∑

i=−∞

ciZn+i, n ∈ Z, (1.1)

where (Zi)i∈Z is a sequence of iid random variables (rvs) with E|Z0| < ∞ and (ci)i∈Z

is a sequence of non-negative real coefficients satisfying
∑∞

i=−∞ ci < ∞. The extremal

behaviour of such processes can be classified according to the tail behaviour of the in-

novation sequence (Zi)i∈Z and the decrease of the coefficient sequence (ci)i∈Z. Davis and

Resnick (1985) investigated the extremes of such moving average processes for innovations

whose distributions have regularly varying tails. In that case Y belongs to the maximum

domain of attraction of the Fréchet distribution and the point processes of exceedances

of (Yn)n∈Z converge to a compound Poisson process; i.e. extremes appear in clusters.

Davis and Resnick (1988) also considered innovations in the domain of attraction of the

Gumbel distribution, which are convolution equivalent. Here only the multiplicity of the

maximum of the coefficients (ci)i∈Z determines the cluster size of the limiting compound

Poisson process. A summary of results for innovations with subexponential tails can be

found in Embrechts et al. (1997, Section 5.5). All such innovations have tails which are

heavier than exponential.

A different regime was considered in Rootzén (1986, 1987), who investigated innova-

tions whose tails are lighter than exponential. More precisely, he considered innovations

with densities of the form f(t) ∼ Ktα exp(−tp) as t → ∞, with p > 1. Here a(t) ∼ b(t)

as t→∞ means that the quotient of left hand side and right hand side converges to 1 as

t→∞. The present paper can be seen as a generalization of Rootzén’s results.

We work under the following conditions on the innovations. Let Z be a generic rv with

the same distribution as Z0. We assume that Z has a bounded probability density and

that it satisfies

f(t) ∼ ν(t) exp(−ψ(t)) , t→∞ . (1.2)

Here ψ is convex, C2, with ψ′′ > 0 and ψ′(∞) = ∞, and the function φ = 1/
√
ψ′′ is

self-neglecting, i.e.

lim
t→∞

φ(t+ xφ(t))

φ(t)
= 1 uniformly on bounded x-intervals. (1.3)

The function ν is measurable and is flat for φ, i.e.

lim
t→∞

ν(t+ xφ(t))

ν(t)
= 1 uniformly on bounded x-intervals, (1.4)
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which guarantees that it is more or less flat on intervals of the appropriate length deter-

mined by φ. Such densities are closed with respect to finite convolutions, which applies to

a finite moving average process; see Balkema et al. (1993). This is a basic property needed

to analyze such light tailed linear models. As the assumptions in Balkema et al. (1993)

are minimal, our framework is to our knowledge the most general framework possible.

Our paper is organized as follows. In Section 2 we introduce the necessary assumptions,

state the main results and conclude with some examples. Assumption (A1) redefines any

density (1.2) satisfying (1.3) and (1.4) such that it satisfies certain conditions, which are

no restriction, but make calculations easier. Assumption (A2) allows for a generalization

of results from the finite moving average to the general model (1.1). Assumption (A2)

suffices already to determine the tail behaviour of Y0 up to a certain order (Theorem 2.1)

and to show that Y0 belongs to the domain of attraction of the Gumbel distribution (The-

orem 2.2). To investigate the extremal behaviour of the stationary sequence (Yn)n∈Z, we

have to impose certain regularity conditions on the function ψ. As is natural in extreme

value theory we require regular variation or rapid variation of ψ, as given in Assump-

tions (A3) and (A4). Theorem 2.3 then shows that the extremal behaviour of the moving

average process (Yn)n∈Z is exactly that of its associated iid sequence; i.e (Yn)n∈Z belongs

to the domain of attraction of the Gumbel distribution with the same norming constants

as the associated iid sequence.

In Section 3 we state some auxiliary results and discuss the assumptions. Section 4

is devoted to the proof of the tail behaviour and domain of attraction of Y0 as stated in

Theorems 2.1 and 2.2, while the extremal behaviour of the stationary sequence (Yn)n∈Z

as stated in Theorem 2.3 is proved in Section 5. Applications of the results to financial

time series such as stochastic volatility models or the EGARCH model are considered in

Section 6. Finally, in Section 7 we give some extensions of our results, treating for example

the case of positive and negative coefficients.

2 Assumptions and main results

We make the general assumptions of the Introduction more precise, introduce the neces-

sary notation, state our main results and give some examples. Throughout the paper we

shall assume the following condition (such a representation can always be found for the

class of densities introduced in Section 1).

Assumption (A1): The rv Z has finite expectation and a bounded density f , which

satisfies

f(t) = ν(t) exp(−ψ(t)), t ≥ t0, (2.1)
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for some t0 ∈ R and functions ν, ψ : [t0,∞)→ R, where ψ is C2, ψ′(t0) = 0, ψ′(∞) =∞,

ψ′′ is strictly positive on [t0,∞) and 1/
√
ψ′′ is self-neglecting. The function ν is measurable

and flat for 1/
√
ψ′′.

The function ψ′ is continuous and strictly increasing on [t0,∞) with range [0,∞).

Therefore, for any τ ∈ [0,∞) and the non-negative summable sequence (ci)i∈Z we can

define

q(τ) := ψ′←(τ),

S2(τ) := q′(τ) = 1/ψ′′(q(τ)),

qi(τ) := ciq(ciτ),

σ2
i (τ) := q′i(τ) = c2

iS
2(ciτ),

where ψ′← denotes the inverse of ψ′. Note that q(0) = t0, q is C1 on [t0,∞) and strictly

increasing with q(∞) = ∞. Furthermore, on any compact interval of the form [t0, s] for

s ∈ [t0,∞), S2 = q′ is bounded above and bounded away from zero.

Then, by the previous considerations,

Q(τ) :=
∞∑

i=−∞

qi(τ) and σ2
∞(τ) :=

∞∑
i=−∞

σ2
i (τ)

can be defined pointwise for any τ ≥ 0. The sum defining σ2
∞ converges uniformly on

any compact interval [0, s] (s > 0), which then implies that the sum defining Q converges

uniformly on compacts, and that Q is C1 satisfying

Q′(τ) = σ2
∞(τ) =

∞∑
i=−∞

q′i(τ), τ ≥ 0. (2.2)

Furthermore, Q is strictly increasing and maps [0,∞) onto [t0
∑∞

i=−∞ ci,∞). Set S :=√
S2, σi :=

√
σ2
i , σ∞ :=

√
σ2
∞. To describe the tail behaviour of Y0, we will need further

conditions on the speed of convergence of the sum defining σ2
∞. More precisely, we will

impose:

Assumption (A2): (ci)i∈Z is a summable sequence of non-negative real numbers, not

all zero, and the following two conditions hold:

lim
m→∞

lim sup
τ→∞

∑
|j|>m σ

2
j (τ)

σ2
∞(τ)

= 0, (2.3)

lim
m→∞

lim sup
τ→∞

∑
|j|>m σj(τ)

σ∞(τ)
= 0. (2.4)

Clearly, (A2) is satisfied if all but finitely many of the ci are zero. Assumptions (A1)

and (A2) allow us to obtain the tail behaviour of Y0. Denote by Φ the moment generating
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function of Y0, which in Lemma 4.1 will be shown to exist under (A1) and (A2). Then

with the aid of Φ we can express the exact tail behaviour of Y0, and without using Φ we

obtain the tail behaviour of Y0 up to a certain order:

Theorem 2.1. Suppose that (A1) and (A2) hold. Then

P (
∞∑

i=−∞

ciZi > Q(τ)) ∼ 1√
2πτσ∞(τ)

e−τQ(τ)Φ(τ), τ →∞. (2.5)

Furthermore, there is a function ρ(τ) = o(1/σ∞(τ)), τ →∞, such that

P (
∞∑

i=−∞

ciZi > t) ∼ 1/
√

2π

Q←(t)σ∞(Q←(t))
exp

(
−
∫ t

t0
∑
ci

(Q←(v) + ρ(Q←(v))) dv

)
, t→∞,

(2.6)

and 1/σ∞(τ) = o(τ), τ →∞, so the first term in the integral is the leading term.

As Y0 is light-tailed, it is no surprise that Y0 belongs to the domain of attraction of

the Gumbel distribution; we write Y0 ∈ MDA(Λ). We also say that the associated iid

sequence to (Yn)∈Z belongs to MDA(Λ); this is a sequence (Ỹn)n∈Z of iid rvs all with the

stationary distribution. Then Y0 ∈ MDA(Λ) means that there exist norming constants

(an)n∈N and (bn)n∈N such that an > 0, bn ∈ R, and

lim
n→∞

P (an( max
j=1,...,n

Ỹj − bn) ≤ x) = Λ(x) = exp(−e−x) , x ∈ R .

For more details on classical extreme value theory we refer to Embrechts et al. (1997),

Leadbetter et al. (1983) or Resnick (1987).

Theorem 2.2. Assume conditions (A1) and (A2). Then

lim
t→∞

P (Y0 > t+ x
Q←(t)

)

P (Y0 > t)
= e−x , x ∈ R. (2.7)

The iid sequence associated with (Yn)n∈Z belongs to MDA(Λ), with norming constants an

and bn given by the equations

lim
n→∞

nP (Y0 > bn) = 1 and an := Q←(bn). (2.8)

It does not seem to be too restrictive to impose further regular variation conditions

on ψ. We shall denote the class of functions regularly varying in infinity with index β by

RVβ; for definitions and results we refer to the monograph by Bingham et al. (1987).

Assumption (A3): Suppose that ψ′′ ∈ RVβ for β ∈ [−1,∞]. For β = ∞, which

corresponds to the class of rapidly varying functions, we require additionally that ψ′′ is
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ultimately absolutely continuous on compacts (i.e. there is T such that ψ′′ is absolutely

continuous on [T, T + x] for any x > 0) and that limt→∞
d
dt

ψ′(t)
ψ′′(t)

= 0.

Define β′ such that 1 +β′ = 1/(1 +β) with the convention that the left hand side is equal

to 0 for β =∞ and equal to ∞ if β = −1.

Furthermore, suppose there exists θ ∈ [0, 2) such that θ+ β′ > 0 and
∑∞

i=−∞ c
1−θ/2
i <∞,

where (ci)i∈Z is a sequence of non-negative real numbers, not all zero.

In Proposition 3.2 it will be shown that (A3) together with (A1) already imply (A2).

Under the slightly stronger condition (A4) given below we will show that the extremal

behaviour of the moving average process (Yn)n∈Z is the same as the extremal behaviour

of its associated iid sequence: the dependence vanishes in the extremes.

Assumption (A4): Suppose that ψ, β and β′ are as in (A3).

Furthermore, suppose there is some constant ϑ > max{1, 2/(2 + β′)} such that ci =

O(|i|−ϑ), i→∞, where (ci)i∈Z is a sequence of non-negative real numbers, not all zero.

Finally, suppose that Z has finite variance.

Condition (A4) implies (A3): if we choose θ ∈ [0, 2− 2/ϑ) such that θ + β′ > 0, then

(A3) follows, since (1− θ/2)ϑ > 1. The extremal behaviour of the stationary (Yn)n∈Z can

now be described as follows:

Theorem 2.3. Suppose that (A1) and (A4) hold. Let (an)n∈N and (bn)n∈N as given in

(2.8) be norming constants of the iid sequence associated with Y0. Then (Yn)n∈N belongs

to MDA(Λ) with the same norming constants, i.e.

lim
n→∞

P

(
an( max

j=1,...,n
Yj − bn) ≤ x

)
= exp(−e−x), x ∈ R.

In the course of proving our results, we will use the following

Notation: For any summable sequence (ci)i∈Z of non-negative real numbers let i0 be an

index such that ci0 = max{ci : i ∈ Z}. Let c and d be strictly positive real numbers, and

let 0 ≤ θ < 2. Denote by Gc,d,θ the set of all non-negative sequences (ci)i∈Z such that∑∞
i=−∞ ci ≤ d,

∑∞
i=−∞ c

2−θ
i ≤ d,

∑∞
i=−∞ c

1−θ/2
i ≤ d, and c

2
≤ ci0 ≤ c.

If in the following limits of summation are missing, then it is understood that summation is

over Z. Convergence in distribution will be denoted by
d→, and convergence in probability

by
P→.

We conclude this section with some examples.

Example 2.4. (a) Let ψ(t) := 1
β+2

tβ+2, where β ∈ (−1,∞). Then ψ′′ ∈ RVβ and ψ

satisfies (A1) with t0 = 0. An example for a flat function ν for 1/
√
ψ′′ would be any
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function behaving asymptotically like a rational function, or also ν(t) = et if β > 0. Put

β′ := (1+β)−1−1 and suppose that ci = O(|i|−ϑ) for some ϑ > max(1, 2/(2+β′)). If Z is

then such that it has finite variance and bounded density f as in (2.1), then (A1) and (A4)

hold and Theorems 2.1 – 2.3 can be applied. In particular, since Q←(t) = (t/
∑
c2+β′

i )1+β

and Q′(Q←(t)) = ct−β for some constant c, (2.6) gives

P

(
∞∑

i=−∞

ciZi > t

)
= exp

(
−(2 + β)−1(

∑
c2+β′

i )−1−β t2+β + o(t1+β/2)
)
, t→∞.

This agrees with Theorem 6.1 in Rootzén (1987); however, focusing on this example and

under an additional smoothness condition, Rootzén obtains the estimate O(t(1+β)/ϑ) for

the remaining term (as t→∞), which can be seen to be slightly better than our estimate,

since ϑ > 2/(2 + β′) implies (1 + β)/ϑ < 1 + β/2.

(b) Let ψ : [1,∞)→ (0,∞) be given by ψ(t) = t log t− t. Then ψ′′(t) = 1/t ∈ RV−1 and

ψ satisfies (A1) with t0 = 1. Any rational function would then be flat for 1/
√
ψ′′. Let

ci = O(|i|−ϑ) for some ϑ > 1. For simplicity, assume that ci0 = 1, and that this maximum

ci0 is taken with multiplicity N . Let c′ := max{ci : i ∈ Z, ci 6= 1} < 1. Assume that Z also

satisfies all other properties of (A1) and (A4). Then Theorems 2.1 – 2.3 are applicable. For

the tail, note that q(τ) = eτ , Q(τ) = Neτ + O(ec
′τ ), τ → ∞, and approximate inversion

shows

Q←(t) = log t− logN +O(tc
′−1), t→∞.

Since Q′(τ) ∼ Neτ , τ →∞, it follows that σ−1
∞ (Q←(τ)) ∼ t−1/2, so that (2.6) gives

P

(
∞∑

i=−∞

ciZi > t

)
= exp

(
−t log t+ t(1 + logN) +O(tmax{c′,1/2})

)
, t→∞.

(c) Examples where ψ′′ is in RV∞ and satisfies the additional condition in (A3) are ψ(t) =

et or ψ(t) = exp(et) for large t. If then ci = O(|i|−ϑ) for some ϑ > 2 and the additional

conditions in (A1) and (A4) are satisfied (a flat function could be a rational function, or

also ν(t) = et), then Theorems 2.1 – 2.3 can be applied. We consider one example in more

detail. Let ψ : [0,∞)→ (0,∞) be given by ψ(t) = et2/2 for t ∈ [0, 1] and ψ(t) = et − e/2
for t > 1. Let θ ∈ (1, 2) such that

∑
c

1−θ/2
i < ∞. For simplicity, assume that

∑
ci = 1.

Then q(τ) = τ/e for 0 ≤ τ ≤ e and q(τ) = log τ for τ ≥ e. This shows

Q(τ) =
∞∑

i=−∞

ci log ci + log τ +
∑
i:ciτ<e

(
c2
i τ

e
− ci log(ciτ)

)
,

where∑
i:ciτ<e

(
c2
i τ

e
− ci log(ciτ)

)
= τ−θ/2

∑
i:ciτ<e

c
1−θ/2
i

(
(ciτ)1+θ/2

e
− (ciτ)θ/2 log(ciτ)

)
= o(τ−θ/2),
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as τ →∞. Approximate inversion yields

Q←(t) = et−
∑
ci log ci + o(et(1−θ/2)), t→∞.

Furthermore, it holds

Q′(τ) =
1

τ

( ∑
i:ciτ≥e

ci +
∑
ciτ<e

(ciτ)
ci
e

)
∼ 1

τ
, τ →∞,

so that σ−1
∞ (Q←(t)) = O(et/2), t→∞. An application of (2.6) then shows

P

(
∞∑

i=−∞

ciZi > t

)
= exp

(
−et−

∑
ci log ci +O(et/2)

)
, t→∞.

3 Auxiliary results

3.1 Exponential families

A basic role in our proofs will be played by exponential families. Let X be a rv whose

moment generating function EeτX exists for all τ ∈ [0,∞). Then the exponential family

(Xτ )τ≥0 is defined to be a family of rvs such that

FXτ
(dz) =

eτzFX(dz)

EeτX
, τ ≥ 0,

where FX and FXτ
denote the distribution function ofX andXτ , respectively. Exponential

families have the following useful properties, which follow by standard calculations; see

e.g. Rootzén (1987, Section 3):

P (X ∈ A) = E(e−τXτ1Xτ∈A)EeτX , τ ≥ 0, A a Borel set, (3.1)

(cX)τ
d
= cXcτ , c, τ ≥ 0. (3.2)

We will consider the exponential families of the random variables Xi := ciZi. Denote

by Φi the moment generating function of Xi, which by (A1) exists and is finite for all

τ ≥ 0, as shown in Balkema et al. (1993, Prop. 5.11). Denote the density of Xi by fi,

and the exponential family associated with Xi by (X i,τ )τ≥0. Assume throughout that the

exponential families are taken such that (X i,τ )i∈Z are mutually independent for any τ ≥ 0.

The exponential family associated with the generic rv Z will be denoted by (Zτ )τ≥0. In

Lemma 4.1 it will be shown that the moment generating function Φ of
∑
Xi exists and

is finite for every argument τ ≥ 0, and that
∑∞

i=−∞X i,τ converges almost surely for any

τ ≥ 0. In particular, the exponential family of
∑
Xi exists, and since taking exponential

families commutes with taking convolution (see e.g. Rootzén 1987, equation (3.4)), this

exponential family is given by (
∑∞

i=−∞X i,τ )τ≥0.
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3.2 ANET convergence

A family (Wτ )τ≥0 of rvs with densities wτ is called asymptotically normal with exponential

tails (ANET), if wτ (x) converges locally uniformly in x to the density ϕ(x) = e−x
2/2/
√

2π

of the standard normal distribution as τ → ∞, and if for any ε > 0 there exist τε and a

constant Mε > 1, such that

wτ (x) ≤ e−|x|/ε ∀ |x| ≥Mε, τ ≥ τε.

If a sequence is ANET, it is known that the moment generating functions and the (ab-

solute) moments of all orders converge to the corresponding moment generating function

and (absolute) moments of the standard normal distribution, and that Wτ converges in

distribution to N(0, 1), see Balkema et al. (1993, Proposition 6.3).

In Balkema et al. (1993, Theorem 6.6) it is shown that under the assumption (A1),

a suitable centering and normalization transforms the exponential family associated with

Z into an ANET sequence. More precisely, the sequence
(
(Zτ − q(τ))/S(τ)

)
τ≥0

is ANET.

Since the set of random variables satisfying (A1) is closed under finite convolution, as

shown in Balkema et al. (1993, Theorem 1.1), it follows that for any m ∈ N0 such that

at least one of the ci for |i| ≤ m is non-zero, the exponential family associated with∑m
i=−mXi can be transformed into an ANET sequence. More precisely, the sequence(∑m
i=−m(X i,τ − qi(τ))/

√∑m
i=−m σ

2
i (τ)

)
τ≥0

is ANET, see Balkema et al. (1993, p. 586).

See also Barndorff-Nielsen and Klüppelberg (1992) for further calculations.

3.3 Discussion of the assumptions

Recall that a function g : [0,∞)→ R is in RVβ (β ∈ R) if and only if there are constants

a, c > 0, a measurable function c(·) and a locally Lebesgue integrable function ε on [a,∞)

such that limx→∞ c(x) = c, limx→∞ ε(x) = 0, and

g(x) = xβ c(x) exp

(∫ x

a

ε(u)

u
du

)
, x ≥ a. (3.3)

If the function c(·) in (3.3) can be taken as a constant, then g is said to be normalized

regularly varying with index β; we write g ∈ NRVβ.

The following lemma clarifies condition (A3). In particular, limt→∞
d
dt

ψ′(t)
ψ′′(t)

= 0 means

nothing else than q′ ∈ NRV−1, which already implies that ψ′′ ∈ RV∞.

Lemma 3.1. Suppose that ψ : [t0,∞) → R is C2, ψ′(∞) = ∞ and that ψ′′ > 0. Let

q = ψ′←, and for β ∈ [−1,∞] define β′ through 1 + β′ = (1 + β)−1.

(a) For all β ∈ [−1,∞] we have ψ′ ∈ RV1+β if and only if q ∈ RV1+β′.

(b) If ψ′′ ∈ RVβ where β ∈ R, then β ≥ −1, ψ′ ∈ RV1+β, 1/
√
ψ′′ is self-neglecting, and
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q′ ∈ RVβ′. If β ∈ (−1,∞), then ψ′′ ∈ RVβ if and only if q′ ∈ RVβ′.

(c) Let β′ ∈ [−1,∞). Then ψ′′ is ultimately absolutely continuous on compacts and satisfies

limt→∞
d
dt

ψ′(t)
ψ′′(t)

= 1 + β′ if and only if q′ ∈ NRVβ′.

(d) If q′ ∈ RV−1, then 1/
√
ψ′′ is self-neglecting and ψ′′ ∈ RV∞.

(e) 1/
√
ψ′′ is self-neglecting if and only if 1/

√
q′ is self-neglecting.

Proof. (a) This follows from Proposition 1.5.15 and Theorem 2.4.7 of Bingham et al. (1987).

(b) Since ψ′(∞) =∞ and ψ′′ ∈ RVβ, it follows from l’Hospital’s rule that ψ′ ∈ RV1+β

and further that 1 + β ≥ 0. Since q′(τ) = 1/ψ′′(q(τ)), by composition it follows that

q′ ∈ RVβ′ if β 6= −1, and the converse follows similarly. If β = −1, then ψ′ ∈ RV0, hence

q ∈ RV∞. By the monotone equivalence theorem (Bingham et al. 1987, Theorem 1.5.3),

ψ′′ is asymptotically equivalent to a decreasing function h, say. Then if c ∈ (0, 1), for any

ε > 0 there exists τε such that q(cτ) < εq(τ) for τ ≥ τε, since q ∈ RV∞. This then implies

q′(cτ)

q′(τ)
∼ h(q(τ))

h(q(cτ))
≤ h(q(τ))

h(εq(τ))
→ ε, τ →∞,

showing that q′ ∈ RV∞. To show that 1/
√
ψ′′ is self-neglecting note that

lim
t→∞

t+ x/
√
ψ′′(t)

t
= 1 + lim

t→∞

x

t
√
ψ′′(t)

= 1

uniformly in x ∈ R, since t 7→ t
√
ψ′′(t) is in RV1+β/2.

(c) Note that ψ′′ is ultimately absolutely continuous on compacts and satisfies the

relation limt→∞
d
dt

ψ′(t)
ψ′′(t)

= 1 + β′ if and only if q′ is ultimately absolutely continuous on

compacts and satisfies

lim
τ→∞

τq′′(τ)

q′(τ)
= lim

τ→∞

−ψ′(q(τ))ψ′′′(q(τ))

ψ′′(q(τ))2
= lim

t→∞

−ψ′(t)ψ′′′(t)
ψ′′(t)2

= β′.

But this is equivalent to q′ being ultimately absolutely continuous on compacts and sat-

isfying

lim
τ→∞

τ d
dτ

(τ−β
′
q′(τ))

τ−β′q′(τ)
= 0,

which is equivalent to q′ ∈ NRV−1, see Bingham et al. (1987, p. 15).

The proof of (d) is similar to the proof of (b), using (e) to show that 1/
√
ψ′′ is self-

neglecting.

(e) itself is proved in Balkema et al. (1993, Theorem 5.3).

Next we show that (A1) and (A3) already imply (A2):
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Proposition 3.2. Suppose the assumptions (A1) and (A3) are satisfied. Then (A2) holds.

Furthermore, there exists a positive constant D, depending only on ψ and on θ, such that

for every constant c bounding (ci)i∈Z from above, it holds

σ2
∞(τ) ≤ D

∞∑
i=−∞

(ci
c

)2−θ
c2q′(cτ) , τ ≥ 0. (3.4)

Proof. Note that q′ ∈ RVβ′ by Lemma 3.1. Define p1(τ) := τ θq′(τ) for τ ≥ 0. Then there

exists an increasing function p2 : [0,∞)→ R such that p1(τ) ≤ p2(τ) for any τ ≥ 0, and

p1(τ) ∼ p2(τ) as τ →∞. For β′ 6=∞, this follows from the monotone equivalence theorem

(Bingham et al. 1987, Theorem 1.5.3), and for β′ = ∞ from q′(τ) = 1/ψ′′(q(τ)), the

monotonicity of q and an application of the monotone equivalence theorem to 1/ψ′′ ∈ RV1.

We conclude that there exists a positive constant d1 such that p2(τ) ≤ d1p1(τ) for all τ ≥ 1.

Let c ≥ max{ci : i ∈ Z}. Then if cτ ≥ 1, we have

p1(ciτ) ≤ p2(ciτ) ≤ p2(cτ) ≤ d1p1(cτ).

Since q′ is continuous and strictly positive on [0, 1], there exists some d2 > 0 such that

q′(x) ≤ d2q
′(y) for every x, y ∈ [0, 1]. In particular, for cτ ≤ 1, q′(ciτ) ≤ d2q

′(cτ). Then,

with D := max(d1, d2), it follows

cθi q
′(ciτ) ≤ Dcθq′(cτ) , τ ≥ 0, (3.5)

giving (3.4). Since
∑
c

1−θ/2
i <∞, it follows from (3.5), the dominated convergence theo-

rem and the fact that p1 ∈ RVβ′+θ, that

lim
τ→∞

∑∞
i=−∞ ci

√
q′(ciτ)

c
√
q′(cτ)

=
∞∑

i=−∞

(ci
c

)1−θ/2
lim
τ→∞

√
cθi τ

θq′(ciτ)

cθτ θq′(cτ)
=

∞∑
i=−∞

(ci
c

)1+β′/2

,

where the right hand side has to be interpreted as card{i : ci = c} if β′ = ∞. Similarly,

for any m > 0,

lim
τ→∞

∑
|i|>m ci

√
q′(ciτ)

c
√
q′(cτ)

=
∑
|i|>m

(ci
c

)1+β′/2

,

and (2.4) follows. The limit relation (2.3) follows similarly.

Remark 3.3. The proof shows that the condition limt→∞
d
dt

ψ′(t)
ψ′′(t)

= 0 (for the case ψ′′ ∈
RV∞), which by Lemma 3.1 is equivalent to q′ ∈ NRV−1, can be slightly relaxed to

q′ ∈ RV−1, and (A2) still follows.

There are also many examples when (A1) and (A2) hold, but (A3) does not:
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Example 3.4. Let ψ : [0,∞)→ (0,∞) such that ψ′(0) = 0 and ψ′′(t) = (2+cos(π
√
t))−2.

Then the derivative of 1/
√
ψ′′(t) tends to 0 as t → ∞, and the mean value theorem

implies that 1/
√
ψ′′ is self-neglecting. A flat function ν would be any rational function

or ν(t) = exp(tα) for α ∈ [0, 1). If then Z has finite expectation and bounded density f

satisfying (2.1), then (A1) holds. If furthermore (ci)i∈Z is a summable sequence of non-

negative numbers, then it is easy to see that (A2) holds, too. Note, however, that (A3) is

not satisfied for this example.

4 Proof of Theorems 2.1 and 2.2

In this section we shall prove the tail behaviour of Y0 as stated in Theorem 2.1 and then

use this result to prove Theorem 2.2, i.e. that the associated iid sequence is in MDA(Λ).

The proofs will be split up into several lemmas, and exponential families will play an

important role. We will also give some uniform estimates under the extra assumption

(A3) and for coefficient sequences in Gc,d,θ. These will be used in Section 5 when proving

Theorem 2.3. Recall the notations of Section 3.1.

Lemma 4.1. Under the assumptions (A1) and (A2), the moment generating function Φ

of
∑
Xi =

∑
ciZi exists and is finite for all τ ≥ 0, and it holds

Φ(τ) =
∞∏

i=−∞

Φi(τ), τ ≥ 0,

as well as
d

dτ
log Φ(τ) =

∞∑
i=−∞

d

dτ
log Φi(τ) =

∞∑
i=−∞

EX i,τ , τ ≥ 0, (4.1)

where the sum and the product converge uniformly on compact subsets of [0,∞). The

exponential family associated with
∑
Xi is (

∑∞
i=−∞X i,τ )τ≥0, where the sum converges

a.s. absolutely.

Proof. By the definition of the exponential family,

EX i,τ =
EXie

τXi

Φi(τ)
=

∫∞
−∞ fi(t) t e

τt dt

Φi(τ)
=

d
dτ

Φi(τ)

Φi(τ)
=

d

dτ
log Φi(τ),

where we used the differentiation lemma for the third equality. Furthermore, we see (since

E|Xi| < ∞) that [0,∞) → R, τ 7→ E|X i,τ | is continuous. Since (Zτ − q(τ))/S(τ))τ≥0 is

ANET as noted in Section 3.2, it follows that the absolute moment E|(Zτ − q(τ))/S(τ)|
converges to the absolute moment of N(0, 1) as τ → ∞. Furthermore, q(τ), 1/S(τ) and
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E|Zτ | are bounded on compact subintervals of [0,∞). This shows that there is a con-

stant C, such that E|Zτ − q(τ)| ≤ CS(τ) for all τ ≥ 0. Using (3.2), this implies that

E|X i,τ − qi(τ)| ≤ Cσi(τ) ∀τ ≥ 0 ∀i ∈ Z. (4.2)

In particular, it follows that for any s > 0,

sup
0≤τ≤s

E|X i,τ | ≤ C sup
0≤τ≤s

σi(τ) + sup
0≤τ≤s

|qi(τ)|,

implying absolute and uniform convergence on compacts of
∑∞

i=−∞EX i,τ . The conver-

gence of
∑∞

i=−∞E|X i,τ | gives almost sure convergence of
∑∞

i=−∞X i,τ . Note that uniform

convergence on compacts of
∑

d
dτ

log Φi(τ) implies uniform convergence on compacts of∑
log Φi(τ) and hence of

∏∞
i=−∞Φi(τ). That the limit is in fact Φ(τ) follows from the

dominated convergence theorem. For application of the latter, construct a random vari-

able Z̃ such that Z̃ = Z if Z ≥ 0, and Z̃ ∈ [0, 1] if Z < 0, and such that Z̃ has a bounded

density. Then if (Z̃i)i∈Z is an iid sequence with distribution Z̃, then the same calculations

as before show that
∏∞

i=−∞ e
ciZ̃i is an integrable majorant. That the exponential family

associated with
∑
Xi is indeed (

∑∞
i=−∞X i,τ )τ≥0 was already noted in Section 3.1.

Lemma 4.2. Under the assumptions (A1) and (A2),

1

σ∞(τ)

∞∑
i=−∞

(X i,τ − qi(τ))
d→ N(0, 1), τ →∞ . (4.3)

Proof. For τ ≥ 0 and m ∈ N such that not all of the (ci)|i|≤m are zero define

Amτ :=
m∑

i=−m

(X i,τ − qi(τ))

 1

σ∞(τ)
− 1(∑m

j=−m σ
2
j (τ)

)1/2


Bmτ :=

∑
|i|>m(X i,τ − qi(τ))

σ∞(τ)
.

Then ∑∞
i=−∞(X i,τ − qi(τ))(∑∞

i=−∞ σ
2
i (τ)

)1/2
−
∑m

i=−m(X i,τ − qi(τ))(∑m
i=−m σ

2
i (τ)

)1/2
= Amτ +Bmτ .

By the ANET property,∑
|i|≤m(X i,τ − qi(τ))(∑
|i|≤m σ

2
i (τ)

)1/2

d→ N(0, 1), τ →∞ .

Then (4.3) follows from a variant of Slutsky’s Theorem (see Billingsley 1999, Theorem 3.2),

provided that for any ε > 0,

lim
m→∞

lim sup
τ→∞

P (|Amτ | > ε) = 0 = lim
m→∞

lim sup
τ→∞

P (|Bmτ | > ε). (4.4)
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To show (4.4), write

Amτ =

∑m
i=−m(X i,τ − qi(τ))(∑m

i=−m σ
2
i (τ)

)1/2

(∑m
j=−m σ

2
j (τ))

σ2
∞(τ))

)1/2

− 1

 .

Since limτ→∞E|
∑m

i=−m(X i,τ − qi(τ))/(
∑m

i=−m σ
2
i (τ))1/2| =

√
2/π, it follows from (2.3)

that

lim sup
m→∞

lim sup
τ→∞

E(|Amτ |) ≤
√

2

π
lim sup
m→∞

lim sup
τ→∞

1−

(∑m
j=−m σ

2
j (τ))

σ2
∞(τ))

)1/2
 = 0,

implying the left-hand equality of (4.4) by Markov’s inequality. The right-hand side of

(4.4) follows similarly from (2.4), noting that

E|Bmτ | ≤
∑
|i|>mE|X i,τ − qi(τ)|

σ∞(τ)
≤
C
∑
|i|>m σi(τ)

σ∞(τ)

by (4.2).

Lemma 4.3. (a) Assume conditions (A1) and (A2). Then σ∞(τ)−1
∑

(X i,τ − qi(τ)) has

a density, denoted by rτ (x), which converges locally uniformly to the density ϕ(x) of the

standard normal distribution, as τ → ∞. Furthermore, the densities rτ are uniformly

bounded by the same constant for sufficiently large τ .

(b) Suppose that (A1) holds and that ψ and θ are as in (A3). Let c, d be positive constants.

Then there are positive constants τ0, D0, such that for any coefficient sequence in Gc,d,θ
the density rτ is bounded by D0 for any τ ≥ τ0.

Proof. (a) By (2.3), there is some m ∈ N0 such that

1

2
≤ 1

σ∞(τ)

√∑
|i|≤m

σ2
i (τ) ≤ 1 for large τ. (4.5)

Denote by gτ the density of
∑
|i|≤m(X i,τ − qi(τ))/

√∑
|i|≤m σ

2
i (τ). By the ANET-property,

gτ (x) converges locally uniformly to ϕ(x) as τ →∞, and |gτ (x)| ≤ e−|x| for large x and τ .

This implies that for any ε > 0 there are δ1,ε > 0 and τ1,ε such that

|gτ (x)− gτ (y)| ≤ ε ∀ τ ≥ τ1,ε ∀x, y ∈ R : |x− y| ≤ δ1,ε.

The density of
∑
|i|≤m(X i,τ − qi(τ))/σ∞(τ) is given by

x 7→ gτ

 σ∞(τ)√∑
|i|≤m σ

2
i (τ)

x

 σ∞(τ)√∑
|i|≤m σ

2
i (τ)

=: hτ (x).
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By (4.5) there are δ2,ε > 0 and τ2,ε such that

|hτ (x)− hτ (y)| ≤ ε ∀ τ ≥ τ2,ε ∀x, y ∈ R : |x− y| ≤ δ2,ε.

Denote by Hτ the distribution function of
∑
|i|>m(X i,τ − qi(τ))/σ∞(τ). Then∑∞

i=−∞(X i,τ − qi(τ))

σ∞(τ)
=

∑
|i|≤m(X i,τ − qi(τ))

σ∞(τ)
+

∑
|i|>m(X i,τ − qi(τ))

σ∞(τ)

has a density, say rτ (x) (since the first summand has a density), which satisfies

|rτ (x)− rτ (y)| =
∣∣∣∣∫ ∞
−∞

(hτ (x− t)− hτ (y − t)) dHτ (t)

∣∣∣∣ ≤ ∫ ∞
−∞

ε dHτ (t) = ε (4.6)

for all τ ≥ τ2,ε and x, y ∈ R such that |x − y| ≤ δ2,ε. Similarly, one obtains that the rτ

are uniformly bounded for large τ . Now assume that rτ (x) does not converge to ϕ(x) as

τ →∞ for all x ∈ R. Without loss of generality assume that

ϕ(x0) + 3ε ≤ lim sup
τ→∞

rτ (x0)

in some x0 and for sufficiently small ε > 0. Then there is a subsequence (τn)n∈N tending

to ∞ such that limn→∞ rτn(x0) = lim supτ→∞ rτ (x0). By (4.6) this implies that there is

some δ > 0 such that for sufficiently large n,

rτn(y) ≥ ϕ(y) + ε ∀ y ∈ [x0 − δ, x0 + δ].

It follows

lim
n→∞

∫ x0+δ

x0−δ
rτn(y) dy ≥

∫ x0+δ

x0−δ
(ϕ(y) + ε) dy,

contradicting Lemma 4.2. This shows that rτ (x) converges to ϕ(x) in any x ∈ R as τ →∞,

and by (4.6) we see that this convergence is locally uniform.

(b) By Proposition 3.2, there is a constant D1 > 0 such that for any (ci)i∈Z ∈ Gc,d,θ,
D1 ≤ σi0(τ)/σ∞(τ) ≤ 1 for τ ≥ 0. Denote by gτ the density of (X i0,τ − qi0(τ))/σi0(τ)

d
=

(Zci0τ
− q(ci0τ))/S(ci0τ). Since c/2 ≤ ci0 , it follows from the ANET property of ((Zτ −

q(τ))/S(τ))τ≥0 that there are τ0, D2, depending only on f , ψ and c, such that gτ is

bounded by D2 for τ ≥ τ0. The density hτ of (X i0,τ − qi0(τ))/σ∞(τ) is then bounded by

D0 := D2/D1 for τ ≥ τ0. Similarly to (4.6), this then implies that rτ is bounded by D0

for τ ≥ τ0.

We are now able to prove the first part of Theorem 2.1:
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Proof of (2.5) in Theorem 2.1(a). Using (3.1) it follows

P

(
∞∑

i=−∞

ciZi > Q(τ)

)
= E

(
e−τ

∑
Xi,τ1∑Xi,τ>Q(τ)

)
Φ(τ)

= E
(
e−τσ∞(τ)

∑
(Xi,τ−qi(τ))/σ∞(τ) 1∑(Xi,τ−qi(τ))/σ∞(τ)>0

)
e−τQ(τ)Φ(τ)

= e−τQ(τ)Φ(τ)

∫ ∞
0

e−τσ∞(τ)xrτ (x) dx.

Noting that

lim
τ→∞

τ 2q′(τ) = lim
τ→∞

τ 2

ψ′′((ψ′)←(τ))
= lim

t→∞

ψ′(t)2

ψ′′(t)
,

where the last limit was shown to equal ∞ in Balkema et al. (1993, Proposition 5.8), it

follows

lim
τ→∞

τσ∞(τ) =∞. (4.7)

Then using dominated convergence and Lemma 4.3(a) gives

τσ∞(τ)

∫ ∞
0

e−τσ∞(τ)xrτ (x) dx

=

∫ ∞
0

e−z rτ (z/(τσ∞(τ)) dz

→
∫ ∞

0

e−z
1√
2π

dz =
1√
2π
, τ →∞,

implying (2.5). �

With exactly the same proof, but now using Lemma 4.3(b) instead of (a), we get the

following uniform estimate, which will be used in Lemma 4.6:

Lemma 4.4. Suppose that (A1) holds and that ψ and θ are as in (A3). Let c, d be positive

constants. Then there are positive constants τ0, D0, such that for any coefficient sequence

(ci)i∈Z in Gc,d,θ,

P (
∞∑

i=−∞

ciZi > Q(τ)) ≤ D0

τσ∞(τ)
e−τQ(τ)Φ(τ) , τ ≥ τ0. (4.8)

In order to derive the approximation for the tail behaviour of Y0 as stated in Theo-

rem 2.1(b), we need estimates for Φ, which are derived in the following lemma:

Lemma 4.5. (a) Suppose that (A1) and (A2) hold. Then for τ ≥ 0,

d

dτ
log
(
e−τQ(τ)Φ(τ)

)
= −τσ2

∞(τ) +
∞∑

i=−∞

(EX i,τ − qi(τ)) = −τσ2
∞(τ) + o(σ∞(τ)), τ →∞.
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(b) Suppose that (A1) holds and that ψ and θ are as in (A3). Let c, d be positive constants.

Then there exists a positive constant D, such that for any coefficient sequence (ci)i∈Z in

Gc,d,θ it holds
∞∑

i=−∞

|EX i,τ − qi(τ)| ≤ Dσ∞(τ) , τ ≥ 0. (4.9)

Proof. (a) From Lemma 4.1 and (2.2) follows that for any τ ≥ 0,

d

dτ
(−τQ(τ)+log Φ(τ)) = −τQ′(τ)−Q(τ)+

∞∑
i=−∞

EX i,τ = −τσ2
∞(τ)+

∞∑
i=−∞

(EX i,τ−qi(τ)).

Let ε > 0. By (4.2) and (2.4), there exists an mε ∈ N such that

lim sup
τ→∞

E
∑
|i|>mε

∣∣∣∣X i,τ − qi(τ)

σ∞(τ)

∣∣∣∣ ≤ ε.

Furthermore, from the ANET–property of
∑mε

i=−mε(X i,τ − qi(τ))/
√∑mε

i=−mε σ
2
i (τ) follows

lim sup
τ→∞

∣∣∣∣∣E
∑mε

i=−mε(X i,τ − qi(τ))

σ∞(τ)

∣∣∣∣∣ ≤ lim sup
τ→∞

∣∣∣∣∣∣E
∑mε

i=−mε(X i,τ − qi(τ))√∑mε
i=−mε σ

2
i (τ)

∣∣∣∣∣∣ = 0.

Since ε > 0 was arbitrary, the assertion follows.

(b) From (4.2) follows that there is a positive constant C, depending only on the

density f and ψ, such that |EX i,τ − qi(τ)| ≤ Cσi(τ) for τ ≥ 0. By (3.5), there exists a

constant C1, depending only on ψ and θ, such that for any coefficient sequence in Gc,d,θ,
∞∑

i=−∞

σi(τ) ≤
√
C1

∞∑
i=−∞

c
1−θ/2
i c

θ/2−1
i0

ci0
√
q′(ci0τ) ≤

√
C1 d (c/2)θ/2−1σi0(τ), τ ≥ 0,

giving (4.9).

Now we are able to complete the proof of Theorem 2.1:

Proof of (2.6) in Theorem 2.1. By (2.5) and Lemma 4.5(a), there is a function ζ(τ) =

o(σ∞(τ)), τ →∞, such that

P

(
∞∑

i=−∞

ciZi > Q(τ)

)
∼ 1

2πτσ∞(τ)
exp

(
−
∫ τ

0

(uQ′(u) + ζ(u)) du

)
, τ →∞. (4.10)

Setting t = Q(τ) and ρ(τ) := ζ(τ)/σ2
∞(τ) = o(1/σ∞(τ)), τ →∞, (2.6) follows from∫ Q←(t)

0

(
uQ′(u) +

ζ(u)

Q′(u)
Q′(u)

)
du =

∫ t

t0
∑
ci

(Q←(v) + ρ(Q←(v))) dv.

That 1/σ∞(τ) = o(τ), τ →∞, follows from (4.7). �

In Section 5 we will need uniform estimates for the tail behaviour, which are derived

in the following lemma:
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Lemma 4.6. Suppose that (A1) holds and that ψ and θ are as in (A3). Let c, d be

positive constants. Then there are positive constants D1, D2, t1 such that for any coefficient

sequence (ci)i∈Z in Gc,d,θ,

P (
∞∑

i=−∞

ciZi > t) ≤ D1 exp

(
−
∫ t

t0
∑
ci

(
Q←(v)− D2

σ∞(Q←(v))

)
dv

)
, t ≥ t1. (4.11)

Furthermore, for any fixed sequence (ci)i∈Z in Gc,d,θ, there exist positive constants D3, D4, t2

such that

P (
∞∑

i=−∞

ciZi > t) ≥ D3 exp

(
−
∫ t

t0
∑
ci

(
Q←(v) +

D4

σ∞(Q←(v))

)
dv

)
, t ≥ t2. (4.12)

Proof. Similar to (4.10), but now using Lemma 4.4 and Lemma 4.5(b), there are τ0, D0 > 0

such that

P

(
∞∑

i=−∞

ciZi > Q(τ)

)
≤ D0

τσ∞(τ)
exp

(
−
∫ τ

0

(uQ′(u) + ζ(u)) du

)
, (4.13)

for τ ≥ τ0 and any coefficient sequence (ci)i∈Z in Gc,d,θ. Further, |ζ(τ)| ≤ Dσ∞(τ) for

τ ≥ 0, with D from Lemma 4.5. Choosing τ1 ≥ τ0 such that q(cτ1) ≥ 0 and using the

monotonicity of q, it follows that for t ≥ t1 := d q(cτ1),

t ≥ d q(cτ1) ≥
∞∑

i=−∞

ciq(cτ1) ≥
∞∑

i=−∞

ciq(ciτ1) = Q(τ1). (4.14)

This shows that (4.13) holds for any t = Q(τ) ≥ t1, and t1 is independent of the specific

coefficient sequence in Gc,d,θ. Since τ 2σ2
∞(τ) ≥ τ 2c2

i0
q′(ci0τ), it follows as in the proof of

(2.5) that (4.7) holds uniformly for the sequences in Gc,d,θ, hence D0/(τσ∞(τ)) in (4.13)

can be replaced by some D1. Then (4.11) follows as in the proof of (2.6).

For the proof of (4.12), for a fixed coefficient sequence, note that (4.10) implies that

the inequality in (4.13) can be reversed, by replacing D0 by 1/3 < 1/
√

2π. Once it is

shown that for large τ ,

τσ∞(τ) ≤ exp

(∫ τ

0

σ∞(v) dv

)
, (4.15)

relation (4.12) follows similarly to (4.11). From (3.4) and the dominated convergence

theorem follows that there is a C > 0 such that σ∞(τ) ∼ C
√
q′(ci0τ), τ → ∞. Now if

β ∈ (−1,∞], i.e. q′ ∈ RVβ′ with β′ ∈ [−1,∞), then τσ∞(τ)/
∫ τ

0
σ∞(u) du → 1 + β′/2,

τ →∞, by Karamata’s Theorem (see e.g. Bingham et al. 1987, Theorem 1.5.11), clearly

implying (4.15) for large τ . If ψ′′ ∈ RV−1, then q′ ∈ RV∞, and by Proposition 3.2,

τσ∞(τ) ≤ (q′(ci0τ))2/3 for large τ . For simplicity, assume that ci0 = 1. With s := q(τ)
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it follows for large s that q←(s)σ∞(q←(s)) ≤ (q′(q←(s))2/3 = (1/ψ′′(s))2/3, and the latter

function is in RV2/3. On the other hand,∫ q←(s)

0

σ∞(v) dv ≥
∫ q←(s)

0

√
q′(v) dv =

∫ s

t0

1√
q′(q←(u))

du =

∫ s

t0

√
ψ′′(u) du,

which (as a function in s) is in RV1/2. But this then clearly implies (4.15) for large

s = q(τ).

Now we are able to show that the iid sequence associated with Y0 is in MDA(Λ):

Proof of Theorem 2.2. Once (2.7) has been shown, it follows readily that

lim
n→∞

nP

(
Y0 > bn +

x

an

)
= lim

n→∞

P (Y0 > bn + x
Q←(bn)

)

P (Y0 > bn)
= e−x , x ∈ R,

showing that the associated iid sequence is in MDA(Λ) with norming constants an and bn,

see e.g. Embrechts et al. (1997, Proposition 3.3.2). Thus, it only remains to show (2.7).

Let

τ := Q←(t) and τ ∗ := Q←(t+
x

Q←(t)
).

Then by (2.5),

lim
t→∞

P (Y0 > t+ x
Q←(t)

)

P (Y0 > t)
= lim

t→∞

P (Y0 > Q(τ ∗))

P (Y0 > Q(τ))
= lim

t→∞

τσ∞(τ)

τ ∗σ∞(τ ∗)

e−τ
∗Q(τ∗)Φ(τ ∗)

e−τQ(τ)Φ(τ)
.

Thus (2.7) will follow once we have shown that

lim
t→∞

Q←(t)

Q←(t+ x/Q←(t))
= 1 = lim

t→∞

Q′(Q←(t))

Q′(Q←(t+ x/Q←(t)))
(4.16)

and

lim
t→∞

∫ τ∗

τ

d

du
log
(
e−uQ(u)Φ(u)

)
du = −x. (4.17)

By (2.3), for any ε > 0 there is m = mε in N and uε ∈ R such that

P ′m(u) ≤ Q′(u) ≤ (1 + ε)P ′m(u) ∀ u ≥ uε, (4.18)

where Pm(u) :=
∑
|i|≤m ciq(ciu). But in Balkema et al. (1993, Theorem 1.1) it is shown that√

P ′m(P←m ) is self-neglecting. By Lemma 3.1(e) this implies that 1/
√
P ′m is self-neglecting.

In particular,

lim
u→∞

P ′m(u+ x/
√
P ′m(u))

P ′m(u)
= 1,

uniformly on bounded x-intervals. But

1

1 + ε

P ′m(u+ x/
√
Q′(u))

P ′m(u)
≤
Q′(u+ x/

√
Q′(u))

Q′(u)
≤ (1 + ε)

P ′m(u+ x/
√
Q′(u))

P ′m(u)
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uniformly in bounded x for large u by (4.18) and (4.7). Since P ′m ≤ Q′ and 1/
√
P ′m is

self-neglecting, we estimate

1

1 + ε
≤ lim inf

u→∞

Q′(u+ x/
√
Q′(u))

Q′(u)
≤ lim sup

u→∞

Q′(u+ x/
√
Q′(u))

Q′(u)
≤ 1 + ε

uniformly in bounded x-intervals, showing that 1/
√
Q′ is self-neglecting and hence so

is σ∞(Q←) by Lemma 3.1(e). But this then implies the right-hand side of (4.16), since

1/Q←(t) is smaller than σ∞(Q←(t)) for large t by (4.7). The left-hand side of (4.16) follows

from Resnick (1987, Lemma 1.3), noting that d
dt

1
Q←(t)

= −(Q←(t))−2 σ−2
∞ (Q←(t))→ 0 as

t→∞ by (4.7). For the proof of (4.17), note that by Lemma 4.5 and (4.7),

d

du
log
(
e−uQ(u)Φ(u)

)
= −uσ2

∞(u) + o(uσ2
∞(u)), u→∞.

Now∫ τ∗

τ

uσ2
∞(u) du =

∫ Q←(t+x/Q←(t))

Q←(t)

uQ′(u) du =

∫ t+x/Q←(t)

t

Q←(v) dv =
x

Q←(t)
Q←(ξ)

with some ξ between t and t + x/Q←(t). As t → ∞, the last expression converges to x

since τ ∗/τ → 1 and by monotonicity of Q. This implies (4.17), completing the proof. �

5 Proof of Theorem 2.3

In this section we will prove Theorem 2.3, stating that the extremal behaviour of the

moving average process is the same as the behaviour of the associated iid process. This

will be achieved by verifying Leadbetter’s D(un) and D′(un) conditions. For definitions

and results we refer to Embrechts et al. (1997, Section 4.4) or Leadbetter et al. (1983,

Chapter 3). The condition D(un) is a mixing condition, D′(un) can be interpreted as

an anti-clustering condition. We shall show that both conditions hold for (Yn)n∈N, which

implies then that its extremal behaviour is exactly as for the associated iid sequence. We

need the following result of Rootzén (1986, Lemmas 3.1 and 3.2):

Proposition 5.1. Suppose that the iid sequence associated with (Yn)n∈N, given by (1.1),

is in MDA(Λ) with norming constants an and bn, and that un := x/an + bn.

(a) If EZ2 < ∞, |ci| = O(|i|−ϑ) for some ϑ > 1 as |i| → ∞, and an = O((log n)α) for

some α > 0 as n→∞, then D(un) holds.

(b) If in addition to the conditions of (a) for some constant γ0 ∈ (0, 1] for n′ := bnγ0c as

n→∞ it holds

n

2n′∑
m=1

P (Y0 + Ym > 2un)→ 0, (5.1)
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n2P

(
an

∞∑
i=n′+1

ciZi > 1

)
→ 0, n2P

(
an

−n′−1∑
i=−∞

ciZi > 1

)
→ 0, (5.2)

an

∞∑
i=n′+1

ciZi
P→ 0, an

−n′−1∑
i=−∞

ciZi
P→ 0, (5.3)

then D′(un) holds.

In order to verify (5.1) under conditions (A1) and (A4) we shall need Lemma 5.3. We

shall see that we have to consider two different regimes, one corresponding to the case

β = ∞, i.e. ψ′′ ∈ RV∞, which implies ψ ∈ RV∞, the other case being β ∈ [−1,∞); i.e.

ψ ∈ RVα for some α ∈ [1,∞). We split up the proof into the cases β ∈ [−1,∞) and

β =∞, and for the latter case we need some preparation:

Lemma 5.2. Suppose (A1), that ψ′′ is ultimately absolutely continuous on compacts and

that limt→∞
d
dt

ψ′(t)
ψ′′(t)

= 0. Then there is a constant τ1 ≥ 0 and a C1-function p : [0,∞)→
(0,∞) which is (almost everywhere) twice differentiable, satisfies

p(τ) = q(τ) , τ ≥ τ1,

p′(τ) > 0 for all τ ≥ 0, p′′(τ) ≤ 0 for τ ≥ 0 (a.e.), and for any constants c2 ≥ c1 ≥ 0 it

holds

c1p(c1τ) + c2p(c2τ)− (c1 + c2)p(
c1 + c2

2
τ) ≥ 3(c2 − c1)2

32
τ p′((

c1

4
+

3c2

4
)τ) ≥ 0 , τ ≥ 0.

(5.4)

Proof. From Lemma 3.1(c) and its proof it follows that q′ is in NRV−1 and that q′′(τ) ∼
−q′(τ)/τ as τ →∞ (where q′′ exists a.e.). In particular, there is τ1 such that q′′(τ1) exists

and that

−3

4
q′(τ) ≥ τq′′(τ) ≥ −5

4
q′(τ) , τ ≥ τ1 (a.e.).

Set µ := −τ1q
′′(τ1)/q′(τ1). Then 3/4 ≤ µ ≤ 5/4. Define the function p through

p(τ) :=

q(τ) for τ ≥ τ1,

q(τ1)− q′(τ1)eµ
∫ τ1
τ
e−µt/τ1 dt for 0 ≤ τ < τ1.

Then p is C1 and (almost everywhere) twice differentiable, and for 0 ≤ τ ≤ τ1,

p′(τ) = q′(τ1)eµe−µτ/τ1 , p′′(τ) = −µ p′(τ)/τ1 ,

hence for 0 ≤ τ ≤ τ1 it holds

τp′′(τ) = −µ τ
τ1

p′(τ) ≥ −µp′(τ) ≥ −5

4
p′(τ).
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Thus p satisfies p′(τ) > 0 for τ ≥ 0, and p′′(τ) < 0 as well as τp′′(τ) ≥ −5/4 p′(τ) for

τ ≥ 0 (a.e.). For the positivity of p, note that p(0) ≥ q(τ1)−eµτ1q
′(τ1), which is positive for

large enough τ1, since limτ→∞ τq
′(τ)/q(τ) = 0 by Karamata’s theorem, see e.g. Bingham

et al. (1987, p. 26).

Now let 0 ≤ c1 < c2, set c := c1 + c2 and c0 := 3
4
c1 + 1

4
c2. For fixed τ > 0 define the

function

k : [0, c]→ R, a 7→ k(a) := a p(aτ) + (c− a) p((c− a)τ).

Then

k′(a) = aτp′(aτ) + p(aτ)− p((c− a)τ)− (c− a)τp′((c− a)τ),

k′′(a) = τ [aτp′′(aτ) + 2p′(aτ) + (c− a)τp′′((c− a)τ) + 2p′((c− a)τ)]

≥ 3/4 τ [p′(aτ) + p′((c− a)τ)] > 0 (a.e.).

This shows that k′ is strictly increasing on [0, c]. Since k′(c/2) = 0, it follows that k has

an absolute minimum at a = c/2. To estimate k(c1) − k(c/2), note that c1 < c0 <
1
2
c <

1
4
c1 + 3

4
c2 < c. Using the mean value theorem, we see that

k(c1)− k(c/2) ≥ k(c1)− k(c0) = (c0 − c1)|k′(ξ)| ≥ c2 − c1

4
|k′(c0)|,

where ξ is between c1 and c0. Using k′(c/2) = 0, we proceed

|k′(c0)| =

∫ c/2

c0

k′′(a) da

≥ 3

4
τ

∫ c/2

c0

(p′(aτ) + p′((c− a)τ)) da

=
3

4

(
p(
c

2
τ)− p(c0τ)− p( c

2
τ) + p((c− c0)τ)

)
.

Using the mean value theorem and the fact that p′ decreases, it then follows that

k(c1)− k(c/2) ≥ 3(c2 − c1)

16
[p((c− c0)τ)− p(c0τ))] ≥ 3(c2 − c1)2τ

32
p′((c− c0)τ),

which proves the assertion.

The following lemma is the crucial step in showing (5.1). If below m0 can be chosen

to be equal to 1, then (5.6) is redundant and the stronger assertion (5.5) holds for all

positive m:

Lemma 5.3. Suppose that (A1) and (A4) hold. Then there is a constant γ0 ∈ (0, 1], a

positive integer m0, a constant t3 ≥ t0 and a family (Bt)t≥t3 of non-negative real numbers,
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tending to zero as t→∞, such that

P (
∑∞

i=−∞
1
2
(ci + ci−m)Zi > t)

(P (
∑∞

i=−∞ ciZi > t))1+γ0
≤ Bt ∀ t ≥ t3 ∀m ≥ m0, (5.5)

lim
t→∞

P (
∑∞

i=−∞
1
2
(ci + ci−m)Zi > t)

P (
∑∞

i=−∞ ciZi > t)
= 0 ∀m ∈ {1, . . . ,m0 − 1}. (5.6)

Proof. Define c := ci0 = max{ci : i ∈ Z}. Choose θ ∈ [0, 2 − 2/ϑ) such that θ + β′ > 0.

For any m ∈ N0, define the sequence (ci,m)i∈Z by ci,m := (ci + ci−m)/2. Then ci,0 = ci for

all i. The corresponding quantities associated with the sequence (ci,m)i∈Z will be denoted

by Qm and σ∞,m, respectively. In particular,

Qm(τ) =
∞∑

i=−∞

ci + ci−m
2

q(
ci + ci−m

2
τ).

For m = 0 we usually omit the index m = 0, so that Q0 = Q and σ∞,0 = σ∞.

By assumption, it follows that there is d > 0 such that (ci,m)i∈Z ∈ Gc,d,θ for all m ∈ N0.

Then it follows from (4.11) and (4.12) that there are positive constants t3, D1, . . . , D4 such

that for every m ∈ N0, γ ≥ 0 and t ≥ t3,

P (
∑∞

i=−∞ ci,mZi > t)

(P (
∑∞

i=−∞ ciZi > t))1+γ

≤ D1

D1+γ
3

exp

(
−
∫ t

t0
∑
ci

(
Q←m (v)− (1 + γ)Q←(v)− D2

σ∞,m(Q←m (v))
− D4(1 + γ)

σ∞(Q←(v))

)
dv

)
.

The assertion will then follow once we have shown that there are m0 ∈ N and γ0 ∈ (0, 1]

such that

lim
t→∞

inf
m≥m0

∫ t

t0
∑
ci

(Q←m (v)− (1 + γ0)Q←(v)) dv = ∞, (5.7)

lim
v→∞

sup
m≥m0

σ−1
∞,m(Q←m (v)) + σ−1

∞ (Q←(v))

Q←m (v)− (1 + γ0)Q←(v)
= 0, (5.8)

lim
t→∞

∫ t

t0
∑
ci

(Q←m (v)−Q←(v)) dv = 0 ∀m ∈ {1, . . . ,m0 − 1}, (5.9)

lim
v→∞

σ−1
∞,m(Q←m (v)) + σ−1

∞ (Q←(v))

Q←m (v)−Q←(v)
= 0 ∀m ∈ {1, . . . ,m0 − 1}. (5.10)

For showing (5.7) – (5.10), we will distinguish between the cases where β = ∞ and

β ∈ [−1,∞). Note that (5.9) and (5.10) are redundant if m0 can be chosen to be 1.

(a) Suppose that β =∞, i.e. β′ = −1. Setm0 := 1. Since modifications of q on bounded

intervals can be compensated by the function ν appearing in (A1), we can assume that q

has already the properties of p as stated in Lemma 5.2. In particular, q is strictly positive
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on [0,∞), and from the definitions of Q and Qm we see that Q(τ) ≤ Qm(2τ) for τ ≥ 0

and m ∈ N. Furthermore, it is easy to see that for any m ∈ N there is j = j(m) ∈ Z
such that infm∈N(cj(m) − cj(m)−m) > 0. It then follows from (5.4) that there are positive

constants b1, b2, such that

Q(τ)−Qm(τ) ≥ b1τq
′(b2τ) ∀ τ ≥ 0 ∀ m ∈ N.

Thus we have

Q←(t) ≤ Q←m (t) ≤ 2Q←(t) ∀ t ≥ t0
∑

ci ∀ m ∈ N. (5.11)

Using the mean value theorem, for fixed t we find some ξm ∈ [t, Q(Q←m (t))] such that

Q←m (t)−Q←(t) = Q←(Q(Q←m (t)))−Q←(t)

=
Q(Q←m (t))−Qm(Q←m (t))

Q′(Q←(ξm))
≥ b1Q

←
m (t)q′(b2Q

←
m (t))

Q′(Q←(ξm))
.

Since Q←(ξ) ∈ [Q←(t), Q←m (t)], it follows from (3.4) and the fact that q′ is decreasing that

there are b3, b4 > 0 such that

Q′(Q←(ξm)) ≤ b3q
′(b4Q

←(ξm)) ≤ b3q
′(b4Q

←(t)).

Since q′ ∈ RV−1 it follows from (5.11) that there are d1, d2, t4 > 0 such that

d1 ≤
q′(b2Q

←
m (t))

q′(b4Q←(t))
≤ d2 ∀ t ≥ t4 ∀ m ∈ N.

Then it follows from the previous estimates and (5.11) that there is d3 > 0 such that

Q←m (t)−Q←(t) ≥ d3 Q
←(t) ∀ t ≥ t4 ∀ m ∈ N.

This then clearly implies (5.7) with γ0 := min{d3/2, 1}. For the proof of (5.8), observe

that with the same arguments as above, there are constants t5 > 0, b5 > 0 such that for

any m ∈ N0 and v ≥ t5,

(Q←(v))2σ2
∞,m(Q←m (v)) ≥ c2

i0,m
(Q←(v))2q′(ci0,mQ

←
m (v)) ≥ b5(Q←(v))2q′(Q←(v)),

and the latter tends to ∞ by (4.7).

(b) Now suppose that β ∈ [−1,∞), i.e. β′ ∈ (−1,∞]. Again, it is no restriction to

modify q such that q(0) = t0 > 0. Firstly, we show that there are constants 0 < A1 < A2,

and τ2 > 0, such that

Qm(τ) ≤ A1q(ci0τ) < A2q(ci0τ) ≤ Q(τ) ∀ τ ≥ τ2 ∀ m ≥ 1, (5.12)



Extremes of MA processes 25

and if β′ =∞ that additionally there is m0 ≥ 1, τ3 ≥ 0 and a constant c′ < c = ci0 such

that

Qm(τ) ≤ A1q(c
′τ) ∀ τ ≥ τ3 ∀ m ≥ m0. (5.13)

To show (5.12), note that

Q(τ) =
∞∑

i=−∞

ciq(ciτ) ∼
∞∑

i=−∞

(
ci
ci0

)2+β′

ci0q(ci0τ), τ →∞,

by dominated convergence. Here,
∑

(ci/ci0)2+β′ has to be interpreted as card {i ∈ Z : ci =

ci0} if β′ =∞. Similarly,

Qm(τ) ∼
∞∑

i=−∞

(
ci,m
ci0

)2+β′

ci0q(ci0τ), τ →∞,

if β′ 6= ∞, or if β′ = ∞ and cim,m = ci0 , where im is defined to be an index such that

cim,m = max{ci,m : i ∈ Z}. It is easy to check (e.g. with methods similar to those used in

the proof of Lemma 5.2) that

A3 := ci0 sup
m∈N

∑
i∈Z

(
ci,m
ci0

)2+β′

< ci0
∑
i∈Z

(
ci
ci0

)2+β′

=: A4.

Let M ⊂ Z be a finite subset such that
∑

i/∈M ci ≤ (A4 − A3)/4, and put Mm := M ∪
(M +m). Then

∑
i/∈Mm

ci,mq(ci,mτ) ≤ (A4−A3)q(ci0τ)/4. Furthermore, since M is finite,

it follows from the uniform convergence theorem for RV-functions (see e.g. Bingham et

al. 1987, Theorems 1.5.2 and 2.4.1) that

lim
τ→∞

∑
i∈Mm

(
ci,mq(ci,mτ)

ci0q(ci0τ)
−
(
ci,m
ci0

)2+β′
)

= 0,

uniformly in m ∈ N. Thus there is τ2, such that for any m ∈ N, and any τ ≥ τ2,

Qm(τ) ≤ A4 − A3

4
q(ci0τ) +

(
A3 +

A4 − A3

4

)
q(ci0τ) =

A4 + A3

2
q(ci0τ).

(5.12) then follows with A1 := (A4 +A3)/2 and A2 := 1/4A3 +3/4A4. The proof of (5.13)

is similar, choosing m0 and c′ such that

sup
m≥m0

cim,m < c′ < ci0 . (5.14)

Since Qm(τ) ≤
∑
ciq(ci0τ) for any τ ≥ 0, we have Q←m (t) ≥ 1

ci0
q←( t∑

ci
), which as t→∞

converges uniformly in m to ∞. Thus we can invert (5.12) uniformly in m and obtain a

constant t6 > 0 such that

Q←(t) ≤ 1

ci0
q←(

t

A2

) <
1

ci0
q←(

t

A1

) ≤ Q←m (t) ∀ t ≥ t6 ∀m ≥ 1.
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If β′ 6=∞, i.e. β 6= −1, set m0 := 1 and choose γ0 ∈ (0, 1] such that there is A5 ∈ (A1, A2)

such that (1 + γ0)ψ′(t/A2) ≤ ψ′(t/A5) for t ≥ t6. Then for t ≥ t6 and m ∈ N,

Q←m (t)− (1 + γ0)Q←(t) ≥ 1

ci0

(
ψ′(

t

A1

)− ψ′( t

A5

)

)
=

1

ci0

(
1

A1

− 1

A5

)
tψ′′(ξ) , (5.15)

where ξ ∈ [t/A5, t/A1]. If β′ = ∞, set m0 as in (5.14), and A5 := A2. Then there is a

constant t7 such that

Q←m (t)−Q←(t) ≥ 1

ci0

(
1

A1

− 1

A5

)
tψ′′(ξ) ∀ t ≥ t7 ∀m ∈ {1, . . . ,m0 − 1}, (5.16)

with ξ ∈ [t/A5, t/A1]; choosing 0 < γ0 < min{ ci0
c′
− 1, 1}, it follows by inversion of (5.13)

that there is a constant t8 such that for t ≥ t8 and m ≥ m0,

Q←m (t)− (1+γ0)Q←(t) ≥ 1

c′
ψ′(

t

A1

)− 1 + γ0

ci0
ψ′(

t

A5

) ≥ 1 + γ0

ci0

(
1

A1

− 1

A5

)
tψ′′(ξ) , (5.17)

ξ ∈ [t/A5, t/A1]. Since ψ′′ ∈ RVβ where β ≥ −1, we have limt→∞ t
2ψ′′(t) = ∞, and (5.7)

and (5.9) are then implied by (5.15) – (5.17). To show (5.8) and (5.10), note that for

m ≥ 0,

Q′m(Q←m (t)) ≥ c2
im,mq

′(cim,mQ
←
m (t)) , t ≥ t0.

Since
ci0
2
q(cim,mτ) ≤ Qm(τ) ≤

∞∑
i=−∞

ciq(cim,mτ) , τ ≥ 0,

it follows that
1

cim,m
q←(

t∑
ci

) ≤ Q←m (t) ≤ 1

cim,m
q←(

2t

ci0
) , t ≥ t0.

Thus, there is ηm ∈ [ t∑
ci
, 2
ci0
t] such that cim,mQ

←
m (t) = q←(ηm), implying

Q′m(Q←m (t)) ≥
(ci0

2

)2

q′(q←(ηm)) =
(ci0

2

)2 1

ψ′′(ηm)
.

Then (5.15) – (5.17) imply (5.8) and (5.10), since limt→∞ t
2 (ψ′′(ξ))2

ψ′′(ηm)
=∞ uniformly in m,

using regular variation of ψ′′.

Now we can use Proposition 5.1 to show Theorem 2.3.

Proof of Theorem 2.3. Set un := x/an + bn. By (4.7), (4.11) and (4.12),

P (
∞∑

i=−∞

ciZi > t) = exp

(
−
∫ t

t0
∑
ci

Q←(v) dv + o

(∫ t

t0
∑
ci

Q←(v) dv

))
, t→∞.



Extremes of MA processes 27

Since bn is such that P (
∑
ciZi > bn) ∼ n−1 as n→∞, this implies

log n =

∫ bn

t0
∑
ci

Q←(v) dv + o

(∫ bn

t0
∑
ci

Q←(v) dv

)
, n→∞.

Dividing by
∫ bn
t0
∑
ci
Q←(v) dv gives

(∫ bn
t0
∑
ci
Q←(v) dv

)
/(log n) → 1 as n → ∞. Since

an = Q←(bn), i.e. bn = Q(an), there exists τ2 > 0 and C1 > 0 such that for large n,∫ bn

t0
∑
ci

Q←(v) dv =

∫ an

0

uQ′(u) du

≥
∫ an

0

c2
i0
u3/2q′(ci0u)u−1/2 du

≥ C1

∫ an

τ2

u−1/2du = 2C1(
√
an −

√
τ2),

since limu→∞ u
3/2q′(ci0u) =∞ since β′ ≥ −1. But this shows that an/(log n)2 is bounded

as n→∞, showing that D(un) holds by Proposition 5.1.

For the proof of D′(un), we will verify conditions (5.1) – (5.3). Let γ0, m0 and (Bt)t≥t3
be as in Lemma 5.3 and set n′ := bnγ0c. Since limn→∞ nP (Y0 > un) = e−x, it follows from

(5.6) that

n

m0−1∑
m=1

P (Y0 + Ym > 2un) ∼
m0−1∑
m=1

P (Y0 + Ym > 2un)

P (Y0 > un)
e−x → 0, n→∞.

On the other hand, (5.5) gives for large n

n
2n′∑

m=m0

P (Y0 + Ym > 2un) ≤ (e−x + 1)1+γ0

nγ0

2n′∑
m=m0

P (Y0 + Ym > 2un)

P (Y0 > un)1+γ0
≤ (e−x + 1)1+γ0 2Bun ,

and the latter converges to 0 as n→∞, showing (5.1).

Consider the exponential families (Zτ )τ≥0 and (X i,τ )τ≥0 as defined in Section 3.1. By

(3.2), EX i,τ = ciEZciτ . Since |ci| ≤ C2|i|−ϑ for i 6= 0, with some constant C2, it follows

that for any n ∈ N,

|ciτ | ≤ C2 for τ ≤ nϑ and |i| ≥ n.

Since [0, C2]→ R, s 7→ EZs is a continuous function, it follows that there is some constant

C3 > 0 such that

|EX i,τ | ≤ ciC3 for all τ ≤ nϑ and |i| ≥ n.

This implies for any τ ≤ nϑ,

∞∑
i=n+1

|EX i,τ | ≤ C2C3

∞∑
i=n+1

|i|−ϑ ≤ C4n
1−ϑ (5.18)
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for some constant C4 > 0. Let Φn be the moment generating function of
∑∞

i=n+1 ciZi. As

in the proof of Lemma 4.1 follows

d

dτ
log Φn(τ) =

∞∑
i=n+1

EX i,τ , τ ≥ 0,

implying

Φn(τ) = exp

(∫ τ

0

∞∑
i=n+1

EX i,v dv

)
,

since Φn(0) = 1. Using (5.18), we have

Φn(τ) ≤ exp
(
C4n

1−ϑτ
)

for τ ≤ nϑ.

Using Markov’s inequality and replacing n by n′ and setting τ := (n′)ϑ, we obtain

P

(
∞∑

i=n′+1

ciZi > 1/an

)
≤ Φn′((n

′)ϑ) exp(−(n′)ϑ/an)

≤ exp(C4n
′ − (n′)ϑ/an) = o(n−2), n→∞,

since an = O((log n)2). This is the left hand side of (5.2). The right hand side of (5.2), as

well as (5.3) are obtained similarly. Thus it follows that D′(un) holds, giving the assertion,

see e.g. Embrechts et al. (1997, Theorem 4.4.6) or Leadbetter et al. (1983, Theorem 3.5.2).

�

6 Applications to financial time series

Financial variables such as stock returns are often modeled using a stochastic volatility

process. Prominent models are ARCH and GARCH models as introduced by Engle (1982)

and Bollerslev (1986), stochastic volatility models as in Taylor (1986) or the EGARCH

model by Nelson (1991). GARCH models have generally heavy tails, so we shall concen-

trate on stochastic volatility and EGARCH models.

An example of a (discrete time) stochastic volatility model (ξn)n∈Z with volatility

process (σn)n∈Z is given by

ξn = σnηn, n ∈ Z, (6.1)

log σ2
n =

∞∑
i=1

αiZn−i, n ∈ Z. (6.2)

Here, (Zi)i∈Z is a sequence of iid rvs, the coefficient sequence (αi)i∈N is such that the sum

in (6.2) converges absolutely almost surely, and (ηn)n∈Z is independent of (Zi)i∈Z, hence
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of (σn)n∈Z. Typically, η0 is Gaussian and Z0 has light left and right tails, or is assumed

to be Gaussian. Extreme value theory for such stochastic volatility models (ξn)n∈Z with

Gaussian noise has been carried out by Breidt and Davis (1998). Much information is

already contained in the volatility process (σn)n∈Z, and Theorems 2.1 – 2.3 provide extreme

value theory for the process (log σ2
n)n∈Z under mild conditions on Z0 and non-negative

coefficient sequences. A simple monotone transformation then yields extremal results for

the volatility process (σn)n≥0. In particular, from Theorem 2.2 follows that log σ2
0 and

hence σ0 are in MDA(Λ), and Theorem 2.3 shows that extremes of the log-volatility

process and hence of the volatility process do not cluster. The restriction of the coefficients

being non-negative can be relaxed to a great extent, as follows from Theorems 7.1 and 7.2

and their discussion in the next section.

The EGARCH model (ξn)n∈Z has a similar structure, given by

ξn = σnZn, n ∈ Z, (6.3)

log σ2
n = µ+

∞∑
i=1

αig(Zn−i), n ∈ Z.

Here, µ is a real constant, the coefficient sequence (ai)i∈N is as before, g is typically a deter-

ministic piecewise affine linear function (allowing for asymmetry in negative and positive

innovations), and (Zn)n∈Z is an iid innovation sequence, typically Gaussian. The main dif-

ference to the stochastic volatility model considered before is that ξn is defined in terms

of the innovation sequence (Zn)n∈Z only, while the stochastic volatility model is defined

in terms of a second independent driving noise sequence (ηn)n∈Z. For the extreme value

theory of (log σ2
n)n∈Z and hence (σn)n∈Z, however, this is irrelevant, and Theorems 2.1 –

2.3 can be applied for fairly general light noise terms, similar to the stochastic volatility

model discussed before. The extreme value behaviour of the price process (ξn)n∈Z itself for

Gaussian innovations and a finite coefficient sequence (αi)i=1,...,N has been investigated in

Lindner and Meyer (2002).

7 Extensions

The proofs of Theorems 2.1 and 2.2 can be easily generalized to cover independent fi-

nite sums of infinite moving average processes. Let K ∈ N. For k = 1, . . . , K, let Z(k)

be a generic rv which satisfies (A1) with ν(k), ψ(k) and t
(k)
0 . Suppose that for each k,

(Z
(k)
i )i∈Z is iid with the distribution of Z(k), and that (Z

(k)
i )i∈Z,k=1,...,K is independent. Let

(c
(k)
i )i∈Z,k=1,...,K be a summable sequence of non-negative coefficients and define

Y0 :=
K∑
k=1

∞∑
i=−∞

c
(k)
i Z

(k)
n+i. (7.1)
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Set q(k)(τ) := (ψ(k))′←(τ), (σ
(k)
i )2(τ) := (c

(k)
i )2(q(k))′(c

(k)
i τ),Q(τ) :=

∑K
k=1

∑∞
i=−∞ c

(k)
i q(k)(c

(k)
i τ),

and σ2
∞(τ) := Q′(τ). Instead of (A2) suppose that

lim
m→∞

lim sup
τ→∞

∑K
k=1

∑
|j|>m(σ

(k)
j )2(τ)

σ2
∞(τ)

= 0,

lim
m→∞

lim sup
τ→∞

∑K
k=1

∑
|j|>m σ

(k)
j (τ)

σ∞(τ)
= 0.

Denote by Φ the moment generating function of Y0. Then we have the following extension

of Theorems 2.1 and 2.2:

Theorem 7.1. Under the assumptions and with the notations above, the assertions of

Theorems 2.1 and 2.2 hold, with Y0 as in (7.1) replacing
∑∞

i=−∞ ciZi in (2.5) and (2.6),

and
∑K

k=1 t
(k)
0

∑∞
i=−∞ c

(k)
i replacing the lower integration limit t0

∑
ci in (2.6).

Theorem 7.1 can be used to cover infinite moving average processes with negative

and positive coefficients. This can be achieved by splitting the sum in (1.1) up into Yn =∑
ci≥0 ciZn+i +

∑
ci<0(−ci)(−Zn+i). If then (A1) and (A2) are valid for each of the two

sums (posing conditions on the left as well on the right tail behaviour of the density f of

Z), then Theorems 2.1 and 2.2 hold.

Theorem 7.1 can also be used to derive further results for the stochastic volatility

model and EGARCH model of the previous section. Not only does it allow for positive

and negative terms in the coefficient sequence, but from (6.1) and (6.3) follows that

log ξ2
n = log σ2

n + log η2
n and log ξ2

n = log σ2
n + logZ2

n, respectively. Then log ξ2
0 has the

general form (7.1), and Theorem 7.1 allows to derive the tail behaviour of log ξ2
0 (and

hence of |ξ0|) and to show that log ξ2
0 ∈ MDA(Λ), under mild conditions on the light tail

behaviour of the noise sequences.

There is also an extension of Theorem 2.3 to moving average processes with negative

and positive coefficients; its proof follows by slight modifications of the proof of Theo-

rem 2.3:

Theorem 7.2. Suppose that Z as well as −Z satisfy (A1) and (A4) with functions ψ+

and ψ− and regular (rapid) variation index β+ and β−, respectively. Define β′+ and β′− as

in (A3), and suppose that the real coefficient sequence (ci)i∈Z satisfies |ci| = O(|i|−ϑ) as

|i| → ∞, for some ϑ > max{1, 2/(2 + β′+), 2/(2 + β′−)}. Suppose that β+ 6= β−, or that

ψ+ = ψ−. Then the assertion of Theorem 2.3 holds for (Yn)n∈Z as defined in (1.1).
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