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Abstract
Empirical analyses indicate that active and passive debt management have limited 
power to explain the financing behavior of firms. Therefore, discontinuous financing, 
as a combination of active and passive debt management, might be a more realistic 
financing strategy. However, the properties of this financing strategy for the steady 
state have not yet been sufficiently analyzed. For this reason, we investigate analyti-
cally terminal value calculation with discontinuous financing and derive adjustment 
formulas for the period-specific levered cost of equity. Since a single adjustment of 
the entire debt at the beginning of every planning phase might still not be close to 
the real financing behavior of firms, we modify discontinuous financing by intro-
ducing debt categories, which are adjusted successively and include the maturity of 
debt. For this new financing strategy, we derive valuation equations and an adjust-
ment formula for the constant cost of equity. Finally, we discuss the relevance and 
applicability of discontinuous financing with debt categories and its impact on the 
market value of a firm.

Keywords  Valuation · Terminal value calculation · Financing strategy · 
Discontinuous financing · Debt categories · Steady state

Mathematics Subject Classification  G12 · G31 · G32

1  Introduction

Terminal value calculation is based on the assumption that a firm has reached 
a steady state after an explicit forecast phase (Koller et  al. 2020,  pp.  186–188; 
Brealey et al. 2020, pp. 95–99). To realistically depict the characteristics of a firm 
in a steady state, the choice of the financing strategy is a core issue. In corporate 
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valuation practice, active or passive debt management are typically considered. 
However, empirical studies indicate that these financing strategies cannot model 
a firm’s real financing policy with sufficient accuracy (see, e.g., Lewellen and 
Emery 1986; Barclay and Smith 2005; Grinblatt and Liu 2008). Consequently, 
discontinuous financing was developed as an alternative to active and passive 
debt management (Clubb and Doran 1995; Arnold et al. 2018, 2019; Dierkes and 
de Maeyer 2020). In particular, Arnold et al. (2018) derived valuation equations 
for the use of discontinuous financing in a steady state, but the effects of this 
financing strategy on the development of the market value of a firm, financial 
risk, and the cost of equity have not yet been investigated.

The aim of the paper is to analyze and further develop discontinuous financ-
ing as a more realistic financing policy for the steady state. First, we examine the 
properties of a steady state under discontinuous financing. We show that financial 
risk is inconstant under this financing policy, analyze the risk-free part of the tax 
shield, and derive an adjustment formula for the period-specific levered cost of 
equity. Furthermore, we outline that the sole adjustment of the entire debt level at 
the beginning of every planning phase could be improved by a consecutive adjust-
ment of debt levels. Second, to model this consecutive adjustment, we develop 
a modified discontinuous financing policy, where every period a predetermined 
part of the overall debt level is adapted. Specifically, we introduce so-called debt 
categories, which include debt maturity and derive valuation equations with an 
adjustment formula for the levered cost of equity. Finally, we discuss its rele-
vance, applicability, and impact on market value of a firm.

Findings on active and passive debt management are well known in the litera-
ture on corporate valuation (see, e.g., Kruschwitz and Löffler 2020, pp. 104–109). 
However, “neither purely active nor passive debt management assumptions are 
accurate reflections of corporate financial practice” (Clubb and Doran 1995,  p. 
690). In particular, empirical research showed that firms adjust their debt levels 
slowly (Fama and French 2002) and with a time lag (Leary and Roberts 2005; 
Huang and Ritter 2009). Therefore, Clubb and Doran (1995) introduced a lagged 
debt management policy that consists of consecutive planning phases in which 
passive debt management is used. In their first approach, debt levels are derived 
by multiplying the expected market value of a firm by the debt-to-market value 
ratio. After a predetermined number of periods, that is, after a planning phase, 
debt levels are adapted to the development of the firm and are redefined deter-
ministically for the next planning phase, considering the updated expected market 
value of the firm. Despite the use of the debt ratio, debt levels are certain within 
a planning phase because they are linked to the expected and not the realized 
market value of the firm (Ashton and Atkins 1978). An extension of this mixed 
financing strategy was introduced by Arnold et al. (2018), who referred to it as 
discontinuous financing. Specifically, they pursued the second approach of Clubb 
and Doran (1995) that holds debt levels constant between rescheduling and ana-
lyzed the case of a perpetuity. Arnold et  al. (2019) enhanced the valuation for-
mula to a perpetuity with a constant growth rate, while Dierkes and de Maeyer 
(2020) examined the effects of discontinuous financing using a two-phase model.
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In this study, we identify the differences between the approaches of Clubb and 
Doran (1995) and Arnold et al. (2018) and examine the properties of a steady state 
under discontinuous financing. It is apparent that financial risk cannot be determin-
istic given that passive debt management is used during a planning phase. How-
ever, the property of constant expected financial risk does not transfer from a steady 
state under passive debt management to a steady state under discontinuous financ-
ing. We highlight that financial risk varies depending on the remaining number of 
periods until the next planning phase. Furthermore, following the line of Inselbag 
and Kaufold (1997), we derive an adjustment formula for the period-specific cost of 
equity, which is also necessary for the unlevering and relevering of beta factors. We 
show that inconstant financial risk yields an inconstant growth of the market value 
of the firm. This effect was already briefly mentioned by Clubb and Doran (1995), 
who stated that “it does illustrate an interesting point, even if expectations [...] do 
not change [...] the value of the firm will still fluctuate” (Clubb and Doran 1995, p. 
693). However, this effect has not been examined further thus far. Moreover, we out-
line that, compared to active and passive debt management, discontinuous financing 
might indeed be a more realistic depiction of a firm’s financing behavior but the 
assumption that the entire debt level is adjusted according to the development only 
at the end of each planning phase might still not be practical. In particular, we find a 
partial adjustment in every period more realistic.

We implement this partial adjustment of debt by introducing debt categories, 
which constitutes the core contribution of our study. The resulting financing strategy 
is a modification of discontinuous financing that might come closer to a firm’s real 
financing behavior. We assume that a firm adapts only a certain share of its overall 
debt in each period, requiring debt categories to be successively adjusted. That is, 
in each period, only one debt category is adjusted according to the development of 
the firm, and no other debt category is adapted to new information. In the subse-
quent period, another debt category is adjusted, and so on. Therefore, the planning 
phases overlap, and we, thus, consider debt maturity. At every point in time, a firm 
has various debt categories, characterized by different remaining maturities. First, 
we deduce a valuation equation for two debt categories and derive the adjustment 
formula for the levered cost of equity. Second, we extend the valuation and adjust-
ment formulas to an arbitrary number of debt categories. Encouragingly, independ-
ent of the number of debt categories, the expected financial risk under this modified 
discontinuous financing policy is constant. Therefore, we obtain a constant levered 
cost of equity, making the application of the Gordon-Shapiro formula (Gordon and 
Shapiro 1956) possible. Although this successive adjustment of debt levels might be 
more realistic than a sole adjustment at the beginning of each planning phase, com-
pared to discontinuous financing, its effect on the market value of the firm is small. 
Nevertheless, the analysis of this financing strategy is instructive for corporate valu-
ation theory, and the valuation approach is also applicable in valuation practice. We 
discuss the application of both versions of discontinuous financing and outline that 
standard discontinuous financing can be used as an approximation for discontinuous 
financing with debt categories.

Overall, this study contributes to the literature on valuation by examining termi-
nal value calculation with discontinuous financing and deriving a period-specific 
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adjustment formula for the levered cost of equity. Furthermore, the modification of 
standard discontinuous financing into discontinuous financing with debt categories 
yields a new financing policy with a constant levered cost of equity, which might be 
more suitable to describe the financing behavior of firms in a steady state.

The remainder of this study is organized as follows. In Sect.  2, discontinuous 
financing is analyzed, and the costs of equity under discontinuous financing are 
derived. The results are illustrated using an example. In Sect. 3, debt categories are 
introduced. First, the valuation formula for the special case of two debt categories 
is determined before generalizing it to an arbitrary number of debt categories. Sec-
ond, the example from Sect. 2 is extended to debt categories to outline the impact 
of the new financing strategy on the market value of a firm and to compare it with 
other financing strategies. Third, it is outlined how discontinuous financing with 
debt categories can be applied in a two-phase model and how the risk of default can 
be included. Finally, we summarize and discuss the contributions of the study in 
Sect. 4.

2 � Discontinuous financing

2.1 � Fundamentals of discontinuous financing

Discontinuous financing is defined via planning phases in which debt levels are 
specified deterministically. The definition of debt levels within a planning phase is 
linked to the expected market value of a firm. After a planning phase, debt levels are 
adjusted according to the development of the firm and are again deterministically 
defined for the next planning phase. Figure 1 illustrates this structure for planning 
phases of length T.

There are different approaches on how to link debt levels to the expected mar-
ket value of a firm. Initially, Clubb and Doran (1995) multiplied the debt-to-market 
value ratio by the expected market value of the firm and used a finite planning hori-
zon for analysis. A second approach that Clubb and Doran (1995) discussed was to 
hold debt constant between rescheduling. This approach was also pursued by Arnold 
et al. (2018), who extended it to a steady state without growth. Arnold et al. (2019) 
examined this concept in a steady state with a constant growth rate g, and Dierkes 
and de Maeyer (2020) included this structure in a two-phase model. Table 1 sum-
marizes the different debt level definitions, where � is the debt-to-market value ratio, 

passive debt
management

passive debt
management

. . .

refinancing refinancing

0 1 . . . T−1 T . . . 2T . . .
t

Fig. 1   Basic structure of discontinuous financing
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and �T [⋅] is the expectation depending on the available information at time T. The 
tilde represents uncertain variables. Furthermore, V�

t
 and Dt denote the market value 

of the levered firm and the debt level at time t for t ∈ {0,… , T − 1} , respectively. 
Superscript � indicates the levered firm. Note that T = 1 constitutes active debt 
management according to Miles and Ezzell (ME), T → 0 complies with active debt 
management according to Harris and Pringle (HP), and T → ∞ represents passive 
debt management (Clubb and Doran 1995, pp. 687, 690; Arnold et al. 2018, p. 165; 
Arnold et al. 2019, pp. 352–353).

For all approaches in Table  1, the financial risk of a period depends on the 
remaining number of periods until the next refinancing date. If the firm is at a refi-
nancing date, the tax shield is certain for the next T periods. However, if the firm 
will refinance at the end of the period, only the tax shield of the subsequent period is 
certain, which implies a higher financial risk. Therefore, in a steady state, in which 
the free cash flow (FCF) grows at a constant rate g, only the financial risks for peri-
ods in the same section of a planning phase coincide, being minimal at refinanc-
ing dates and increasing as the next refinancing date approaches. Such inconstant 
financial risk leads to a fluctuation in the market value of the firm even if cash flow 
expectations do not change. It follows that

for t ≠ n ⋅ T  , n ∈ ℕ . Therefore, although the concepts in Table 1 may appear iden-
tical, there exists an important difference between the first and second approach 
of Clubb and Doran (1995) for T ∉ {0, 1,∞} . If the initial approach of Clubb and 
Doran (1995) was transferred to a steady state, debt levels would not grow at the 
constant growth rate g. For this reason, Arnold et al. (2018, 2019) and Dierkes and 
de Maeyer (2020) used the second approach of Clubb and Doran (1995) for their 
analysis of a steady state. While Arnold et al. (2018) examined a steady state with-
out growth, Arnold et al. (2019) and Dierkes and de Maeyer (2020) included growth 
and allowed the debt levels to grow at the same constant growth rate as the FCFs 
within every planning phase. We build our analysis upon these results and use the 
second approach of Clubb and Doran (1995) with a constant growth of debt levels 
within planning phases.

To derive valuation equations for discontinuous financing on a clear theoretical 
basis, in a first step, we do not consider the costs of financial distress or the pos-
sibility of default. This is common in comparable basic analyses for other financing 

(1)�[Ṽ𝓁

2T+t
] = �[Ṽ𝓁

T+t
] ⋅ (1 + g)T but �[Ṽ𝓁

T+t
] ≠ �[Ṽ𝓁

T
] ⋅ (1 + g)t,

Table 1   Overview of different debt level definitions in the case of discontinuous financing with 
t ∈ {0,… ,T − 1}

1st planning phase 2nd planning phase
0,… ,T − 1 T ,… , 2T − 1

Clubb and Doran (1995) 1st appr Dt = � ⋅ �[Ṽ𝓁

t
] DT+t = � ⋅ �T [Ṽ

𝓁

T+t
]

Clubb and Doran (1995) 2nd appr. and Arnold et al. 
(2018)

D
t
= � ⋅ V𝓁

0
D

T+t = � ⋅ V𝓁

T

Arnold et al. (2019) and Dierkes and de Maeyer (2020) Dt = � ⋅ V𝓁

0
⋅ (1 + g)t DT+t = � ⋅ V𝓁

T
⋅ (1 + g)t
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strategies (see, e.g., Miles and Ezzell 1985). It follows that debt is risk-free and can 
be discounted at the risk-free interest rate r, which is constant over time. In a sec-
ond step, consequences and relaxations of this assumption are discussed in Sect. 3.5. 
Moreover, in the presented valuation equations, we do not consider an explicit fore-
cast phase, which means that the steady state phase starts at the valuation date. A 
detailed analysis on how to link standard discontinuous financing to an explicit fore-
cast phase with passive debt management can be found in Dierkes and de Maeyer 
(2020).

Thus far, to investigate the market value of a firm under discontinuous financing, 
the adjusted present value (APV) approach has been theoretically analyzed. As for 
all financing strategies, it is instructive to also analyze other discounted cash flow 
(DCF) methods (for DCF approaches, see, e.g., Kruschwitz and Löffler 2020). We 
start by citing existing results, which we then use to analyze the adjustment formula 
for the cost of equity in Sect. 2.2, which is required for the FCF and the Flow to 
Equity (FtE) approach. Dierkes and de Maeyer (2020) used a recursive procedure 
to derive the valuation equation for a steady state and derived for the terminal value 
(Dierkes and de Maeyer 2020, p. 1327)

where � denotes the corporate tax rate and �u the cost of equity of an unlevered firm. 
Superscript u indicates the unlevered firm. The market value of the firm in the first 
planning phase is computed in the first and second terms by calculating the values 
of the unlevered firm and of the tax shields separately. As tax shields are certain 
over the planning phase, they can be discounted using the risk-free interest rate. The 
value of the levered firm at the beginning of the second planning phase is added 
in the third term. Dierkes and de Maeyer (2020, pp. 1327–1328) used the relation 
�[Ṽ𝓁

T
] = V𝓁

0
⋅ (1 + g)T , solved the circularity problem, and deduced the expression

where

for k ∈ {�u, r} , determines the present value of a growing annuity. Therefore, there 
exists a valuation equation for discontinuous financing that can be used to calculate 
the terminal value at the valuation date without circularity problems.

2.2 � Cost of equity derivation

A thorough analysis of a financing strategy does not only consist of a valuation 
formula based on the APV approach but includes also an analysis of the levered 

(2)V𝓁

0
=

T
∑

t=1

�[F̃CF1] ⋅ (1 + g)t−1

(1 + �u)t
+

T
∑

t=1

� ⋅ r ⋅ � ⋅ V𝓁

0
⋅ (1 + g)t−1

(1 + r)t
+

�[Ṽ𝓁

T
]

(1 + �u)T
,

(3)V𝓁

0
=

�[F̃CF1] ⋅ PVA(�
u, g, T)

1 − � ⋅ r ⋅ � ⋅ PVA(r, g, T) −
(1+g)T

(1+�u)T

,

(4)PVA(k, g, T) =
1

k − g
⋅

(

1 −
(1 + g)T

(1 + k)T

)

,
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cost of equity. In particular, an adjustment formula for the levered cost of equity 
is necessary to apply other DCF approaches. Therefore, in this section, we first 
extend existing research by calculating the market value of a firm within a plan-
ning phase. Second, we use this result to derive an adjustment formula for period-
specific levered costs of equity. Moreover, this analysis functions as a theoretical 
foundation for the extension of discontinuous financing in Sect. 3.

We identified that financial risk is inconstant under discontinuous financing, 
which yields inconstant levered costs of equity. Furthermore, since the debt-to-
market value ratios vary with the development of the firm, they generally are ran-
dom variables. Consequently, to calculate the levered cost of equity, we need to 
determine the market value of the firm between refinancing dates. As in Eq. (2), 
we compute the market values of the firm in the first planning phase by partition-
ing it into the planning phase value and the value of the firm at the end of the 
planning phase. For t ∈ {0,… , T − 1} , the market value of the firm is given by

The market value of the firm of the current planning phase can be divided into the 
value of the unlevered firm and that of the tax shields. The planning phases con-
sist of T periods, which implies that the firm will refinance in T − t periods. The 
computation of the tax shield includes the market value of the firm at the valuation 
date. This value is known in period t so that we can use the risk-free interest rate 
as discount rate. The market value of the firm at the end of the first planning phase 
is added in the third term. The equity value can be derived by subtracting the debt 
level of period t, that is,

Note that t = 0 results in valuation Eq. (2) for the levered firm at the valuation date. 
By the following proposition, we derive an adjustment formula for the levered cost 
of equity and the weighted average cost of capital (WACC).

Proposition 1  Under the assumption of discontinuous financing, the levered cost of 
equity is given by

where

(5)

�[Ṽ𝓁

t
] =

T−t
∑

k=1

�[F̃CF1] ⋅ (1 + g)t+k−1

(1 + �u)k
+

T−t
∑

k=1

� ⋅ r ⋅ � ⋅ V𝓁

0
⋅ (1 + g)t+k−1

(1 + r)k

+
�[Ṽ𝓁

T
]

(1 + �u)T−t

= �[F̃CF1] ⋅ (1 + g)t ⋅ PVA(�u, g, T − t) + � ⋅ r ⋅ � ⋅ V𝓁

0

⋅ (1 + g)t ⋅ PVA(r, g, T − t) + V𝓁

0
⋅

(1 + g)T

(1 + �u)T−t
.

(6)�[Ẽ𝓁

t
] = �[Ṽ𝓁

t
] − � ⋅ V𝓁

0
⋅ (1 + g)t.

(7)�𝓁
t
= �u + (�u − r) ⋅ (1 − � ⋅ r ⋅ PVA(r, g, T − t)) ⋅ Lt ,
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is the leverage in period t for t ∈ {0,… , T − 1} . Furthermore, the WACC is given by

where �t =
Dt

�[Ṽ�

t ]
 is the debt-to-market value ratio in period t.

Note that the leverage is defined as a quotient of a deterministic quantity and an 
expectation of a random variable. Thereby, we use a similar definition of the lever-
age as for passive debt management. However, due to Jensen’s inequality, the lever-
age is generally not equal to the expression �

[

Dt

Ẽ�

t

]

 since the equity value is a random 
variable. The same argumentation holds for the debt-to-market value ratio.

In the proof of Proposition 1, we derive the WACC by using the definition of the 
cost of capital. We define the cost of capital as the amount by which the expected 
value of the sum of the FCF and the market value of the firm at the end of the period 
is to be discounted to obtain the expected market value of the firm at the beginning 
of the period:

Note that the expectations are not conditioned on the level of information, that is, we 
consider the cost of capital at the valuation date. Subsequently, deducing the cost of 
equity is straightforward. A detailed computation is provided in the Appendix.

Proposition 1 shows that the formula for the derivation of the costs of equity under 
discontinuous financing has a similar structure as that for the levered cost of equity 
under other financing strategies (for the adjustment formulas under active or pas-
sive debt management, see, e.g., Miles and Ezzell 1985; Inselbag and Kaufold 1997; 
Kruschwitz and Löffler 2020). The first term is the unlevered cost of equity and 
depicts operational risk. To consider the financial risk that results from debt financ-
ing, a risk premium is added, which depends on the difference between the unlev-
ered cost of equity and the risk-free interest rate. The term � ⋅ r ⋅ PVA(r, g, T − t) 
considers that the tax shields are certain until the end of the planning phase, that 
is, for T − t periods. The risk premium increases linearly with leverage. For T = 1 , 
the formula simplifies to the adjustment formula for active debt management of 
Miles and Ezzel [see Inselbag and Kaufold 1997, Eq. (10)] and T → ∞ results in 
the adjustment formula for passive debt management [see Inselbag and Kaufold 
1997, Eq. (7)]

(8)Lt =
Dt

�[Ẽ�

t ]

(9)
k�
t
= (1 − � ⋅ r ⋅ �t ⋅ PVA(r, g, T − t)) ⋅ �u − � ⋅ r ⋅ �t ⋅ (1 − r ⋅ PVA(r, g, T − t)) ,

(10)k�
t
=

�[F̃CF1] ⋅ (1 + g)t + �[Ṽ𝓁

t+1
]

�[Ṽ𝓁

t ]
− 1.

(11)�𝓁
t
= �u + (�u − r) ⋅

Dt − VTSt

�[Ẽt]
.
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Following the line of Inselbag and Kaufold (1997) and adapting the adjustment for-
mula of passive debt management is another possibility to derive the adjustment for-
mula of Proposition 1. In a steady state with passive debt management, all future tax 
shields are certain such that the value of the tax shield is calculated as VTSt =

�⋅r⋅Dt

r−g
 . 

For discontinuous financing, the tax shield is only certain for the next T − t periods. 
The value of the risk-free part of the tax shields VTSR

t
 , that is, the part that can be 

discounted at the risk-free interest rate, amounts to

see Eq. (5). The remaining part of the value of the tax shield is uncertain and, there-
fore, discounted at the unlevered cost of equity (Miles and Ezzell 1985). The value 
of the risk-free part of the tax shield lowers the risk premium that is added to the 
business risk in the formula for the levered cost of equity. We conclude

Plugging VTSR
t
 , see Eq. (12), into Eq. (13) yields the adjustment formula from Eq. 

(7). It follows that the basic structure of the adjustment formula does not change, but 
the share of the risk-free tax shield is adjusted (for similar observations, see Inselbag 
and Kaufold 1997). The factor that displays the risk-free part of the tax shield can be 
expressed in percentage of V�

0
.

Similar observations can be conducted for the formula of the WACC. In the case 
of passive debt management, the WACC can be computed as [Inselbag and Kaufold 
1997, Eq. (8)]

To derive the WACC for discontinuous financing we can again replace the value of 
the tax shield VTSt by the risk-free part of the value of the tax shield VTSR

t
 , see Eq. 

(12), to obtain the WACC from Eq. (9).
At t = T − 1 , the firm is in the last period of the first planning phase and will refi-

nance in the next period. Therefore, the tax shield is only certain for the subsequent 
period, which complies with an active debt management according to ME. Note that 
Eq. (7) and (9) indeed simplify to the cost of equity and WACC under active debt 
management with leverage LT−1 for t = T − 1 , respectively (Miles and Ezzell 1985). 
At the valuation date, that is, t = 0 , the leverage L0 complies with the specified ratio 
L =

�

1−�
 . It follows that the cost of equity is exceptionally a deterministic variable 

during this period. Furthermore, for t = 0 , Eq. (7) is in line with the formula for 
unlevering � in Arnold et al. (2018). However, in their analysis, it remains unclear 
how to adjust � or the cost of equity in the other periods of a planning phase. Inso-
far, we extend the study of Arnold et al. (2018) by analyzing periodic-specific costs 
of equity and by deriving the corresponding adjustment formulas.

(12)
VTSR

t
= � ⋅ r ⋅ � ⋅ V𝓁

0
⋅ (1 + g)t ⋅ PVA(r, g, T − t)

= � ⋅ r ⋅ Dt ⋅ PVA(r, g,T − t) ,

(13)�𝓁
t
= �u + (�u − r) ⋅

Dt − VTSR
t

�[Ẽt]
.

(14)k�
t
= �u ⋅

(

1 −
VTSt

V𝓁

t

)

+ r ⋅
VTSt − � ⋅ Dt

V𝓁

t

.
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As outlined above, the debt-to-market value ratio in period t differs from the 
specified ratio � , and the adjusted leverage Lt needs to be used. This ratio depends 
on the equity value at time t. It follows that the computation of both the levered cost 
of equity and the WACC contains a circularity problem. They cannot be computed 
without determining first the debt level and expected market value of the firm at 
time t. However, solving circularity problems is a common and recurring procedure 
in corporate valuation practice. It is usually addressed using a spreadsheet software.

Since we derived a closed-form solution for the levered costs of equity and corre-
sponding WACCs within the first planning phase, we can compute the levered costs 
of equity for all periods. We have shown that financial risk coincides for periods in 
the same section of a planning phase, which implies �𝓁

n⋅T+t
= �𝓁

t
 for n ∈ ℕ.

2.3 � Example

To illustrate the findings of the previous subsections, we present an example. We 
assume a steady state in which the input parameters grow at a constant rate of 
g = 1.5% . The FCF of period one is 1000, and the debt-to-market value ratio is 
� = 60%.1 The risk-free interest rate, unlevered cost of equity, and tax rate amount to 
r = 4% , �u = 10% , and � = 30% , respectively. We use Eq. (3) to compute the market 
value of the firm V�

0
 and deduce

By multiplying this value by the debt-to-market value ratio, we obtain the debt level 
D0 = 7840.02 , and by subtracting this from the market value of the firm, we obtain 
the equity value E�

0
= 5226.68 at the valuation date. Given that the firm is situated 

in a steady state, we assume that the debt level grows at the constant growth rate of 
g = 1.5% . To calculate the market values of the firm within the first planning phase, 
we use Eq. (5). In period five, refinancing is carried out so that the financial risk 
for this period coincides with the financial risk at the valuation date. Therefore, we 
obtain

Furthermore, by applying Eq. (8), we obtain the debt-to-market value ratios of peri-
ods 1 to 4, and, by using Eq. (7), we then derive the levered costs of equity.

Although the differences in the costs of equity are small, this example illustrates 
that financial risk differs depending on the remaining number of periods until the 
next refinancing date. At a refinancing date, the tax shield is certain for the next five 

V𝓁

0
=

1000 ⋅ 3.90

1 − 30% ⋅ 4% ⋅ 60% ⋅ 4.58 −
(1+1.5%)5

(1+10%)5

= 13, 066.70.

�[Ẽ𝓁

5
] = E𝓁

0
⋅ (1 + g)5 = 5226.68 ⋅ (1 + 1.5%)5 = 5630.62.

1  The calculations can be easily adjusted if the debt level, rather than the debt-to-market value ratio, is 
defined deterministically. Then the debt-to-market value ratio is obtained by dividing the debt level by 
the market value of the firm. This ratio is used in the subsequent periods, see Dierkes and de Maeyer 
(2020) for further explanations.
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periods so that the cost of equity is lower than that in the subsequent period in which 
the tax shield is only certain for the next four periods. In the fourth period, financial 
risk is maximal, since only the tax shield of the subsequent period is certain. Fur-
thermore, note that

It follows that the equity value, and therefore the market value of the firm, grows at 
a smaller rate than g = 1.5% from period 0 to period 1, since financial risk increases. 
In terms of the equity value, this growth rate amounts to g1 = 1.32% . Conversely, for 
example, from period 4 to period 5, financial risk decreases so that the equity value 
grows at a higher rate, g5 = 1.70% . However, from period 0 to period 5, from period 
1 to period 6, and so on, the growth rate is exactly g = 1.5% for both the market 
value of the firm and equity value. Since the growth rate is inconstant, the debt-to-
market value ratio varies. On the one hand, at the beginning of a planning phase, the 
debt levels grow faster than the market value of the firm, which yields an increase 
in the debt-to-market value ratio. On the other hand, at the end of a planning phase, 
the market value of the firm grows faster than the debt levels, resulting in a decreas-
ing debt-to-market value ratio. In period 5, the second planning phase starts, and the 
structure is repeated.

In Table 2, we also included the expected tax shield �[T̃St] , expected total cash 
flow �[T̃CFt] (as the sum of FCF and tax shield), expected value of the tax shield 
�[ṼTSt] , and risk-free part of the value of the tax shield VTSR

t
 . As outlined in the 

previous subsection, the latter can alternatively be used to compute the levered cost 
of equity.

This example illustrates that, in a steady state under discontinuous financing, 
financing risk is inconstant, which yields inconstant costs of equity and market value 
fluctuations. In summary, the operating, investing, and financing activities yield a 
constant growth of every relevant quantity, but the financing activities still do not 

E𝓁

0
⋅ (1 + g) = 5, 226.68 ⋅ (1 + 1.5%) = 5, 305.08 ≠ 5, 295.81 = �[Ẽ𝓁

1
].

Table 2   Illustration of discontinuous financing

t = 0 t = 1 t = 2 t = 3 t = 4 t = 5

�[F̃CFt]
1000.00 1015.00 1030.23 1045.68 1061.36

�[Ṽ�

t
] 13, 066.70 13, 253.43 13, 447.02 13, 648.20 13, 857.75 14, 076.55

Dt 7840.02 7957.62 8076.99 8198.14 8321.11 8445.93

�[Ẽ�

t
] 5226.68 5295.81 5370.04 5450.06 5536.64 5630.62

�[T̃St]
94.08 95.49 96.92 98.38 99.85

�[T̃CFt]
1094.08 1110.49 1127.15 1144.06 1161.22

�[ṼTSt]
1302.00 1312.25 1326.73 1346.10 1371.12 1402.62

VTSR
t

431.08 354.24 272.92 186.91 96.01 464.40
�t 60.00% 60.04% 60.07% 60.07% 60.05% 60.00%

��
t

18.51% 18.61% 18.72% 18.82% 18.91% 18.51%

gt 1.32% 1.40% 1.49% 1.59% 1.70%
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result in a constant financial risk. This setting is the result of the sole and, therefore, 
big refinancing every T periods. It follows that discontinuous financing provides an 
opportunity to depict a broad range of financing behaviors of firms, but might still 
not come close to the real financing behavior. It might be more practical and more 
realistic to adjust a certain part of the debt level in every period. After every T peri-
ods, the entire debt level has still been adjusted, but the refinancing is partitioned 
into several periods. This motivates the analysis of debt categories.

3 � Discontinuous financing with debt categories

3.1 � Derivation of a valuation formula for two debt categories

In this section, we introduce a modification of discontinuous financing as follows. 
We consider a firm that has various debt categories, which are adjusted successively. 
In each period, some debt category is adjusted by multiplying the debt-to-market 
value ratio by the market value of the firm, and no other category is adjusted. Since 
we examine this financing strategy in a steady state, these other debt categories grow 
at the same constant growth rate g as the FCF. In the subsequent period, another 
category is adjusted according to the updated market value of the firm, and so on. 
Consequently, at each point in time, the debt categories reflect shares of the overall 
debt that have different remaining maturities. We obtain an overlapping sequence of 
bonds with an identical time to maturity, each of which is prolonged at an adjusted 
level every year. Therefore, instead of consecutive planning phases, this financing 
strategy incorporates overlapping planning phases and includes the maturity of debt. 
In particular, active and passive debt management is mixed in every period.2 The 
successive adjustment of proportions of the overall debt in each period seems more 
practical than the sole adjustment of the entire debt level at the valuation date or at 
the beginning of a planning phase. It follows that the assumption of discontinuous 
financing with debt categories might come closer to a firm’s financing behavior as 
opposed to the assumption of standard discontinuous financing.

In this subsection, we examine a steady state of a firm that has two debt cat-
egories. Thus, compared to Miles and Ezzell (1980), we introduce one additional 
layer of debt. If � is the pursued debt-to-market value ratio, we define �(2) ∶= 1

2
� . 

Superscript (2) refers to the number of debt categories. Furthermore, let Dj

t be the 
amount of debt in category j ∈ {0, 1} over period t. Category 0 is adjusted in period 
0, 2, 4,… , and category 1 is adjusted in period 1, 3, 5,… . Figure 2 illustrates the con-
cept of two debt categories.

2  A mix of active and passive debt management in every period can also be found in Dierkes and Schäfer 
(2017). In their study, the mix of active and passive debt management can be arbitrarily determined in 
each period. Furthermore, they define a deterministic part of the overall debt for all future periods at the 
valuation date, which is different from our study. We adjust the deterministic part successively according 
to the debt-to-market value ratio.
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At the valuation date, the entire debt level has to be specified, but the part D1

0
 

should have been defined in the previous period. If the assumption of debt catego-
ries is used in a two-phase model and an explicit forecast phase is planned before 
the steady state, the debt level that results from an explicit planning could be used. 
Since we want to concentrate on the valuation formulas for the steady state phase, 
we exclude this detailed planning in our derivations and discuss possible links in 
Sect. 3.4. It follows that, at the valuation date, the firm exceptionally adjusts both 
debt categories, that is 0 and 1, according to �(2) , which yields D0 = � ⋅ V𝓁

0
 . The 

expected total amount of debt, �[D̃t] , at some time t ≠ 0 can be derived by adding 
the two debt categories:

We use a backward inductive approach to derive the valuation formula, which is sim-
ilar to the approaches of Miles and Ezzell (1980), Inselbag and Kaufold (1997) and 
Dierkes and Schäfer (2017). First, we assume a finite time horizon of T < ∞ peri-
ods to derive valuation equations. Afterwards, we extend the formulas for T → ∞ . 
We start with the valuation formula in period T − 1 . To calculate the value of the 
levered firm, we use the concept of value-additivity and compute the values of the 
unlevered firm and of the tax shield separately. We derive the former by discounting 
the firm’s expected FCF at time T at the unlevered cost of equity. The value of the 
tax shield can be computed by discounting the tax savings due to both debt catego-
ries. In period T − 1 , the firm alters one of its debt categories. The other has already 
been adjusted in period T − 2 and grows at the constant growth rate g. Therefore, the 
value of the levered firm in period T − 1 depends on the market value of the firm in 
period T − 2 . Since the market value of the firm in periods T − 2 and T − 1 is certain 
in period T − 1 , the amount of debt for both categories is certain, and it can be dis-
counted at the risk-free interest rate r. Again, we begin with a theoretical framework 
and assume risk-free debt to concentrate on the derivation of the valuation equations 
and adjustment formulas. For a discussion of the integration of the risk of default, 
we refer to Sect. 3.5. We obtain

Solving the circularity (i.e., solving for the value of the levered firm in period T − 1 ) 
yields

(15)�[D̃t] = �(2) ⋅ �[Ṽ𝓁

t−1
] ⋅ (1 + g) + �(2) ⋅ �[Ṽ𝓁

t
] .

(16)V𝓁

T−1
=

�T−1[F̃CFT ]

1 + �u
+

� ⋅ r ⋅ �(2) ⋅ V𝓁

T−2
⋅ (1 + g)

1 + r
+

� ⋅ r ⋅ �(2) ⋅ V𝓁

T−1

1 + r
.

D0
0 = θ(2) · V �

0

D1
0 = θ(2) · V �

0

D0
1 = D0

0 · (1 + g)

E[D̃1
1] = θ(2) · E[Ṽ �

1 ]

E[D̃0
2] = θ(2) · E[Ṽ �

2 ]

E[D̃1
2] = E[D̃1

1] · (1 + g)

. . .

0 1 2 . . .
t

Fig. 2   Discontinuous financing with two debt categories
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where

To derive the value of the levered firm in period T − 2 , we consider that one debt 
category has been adjusted in period T − 3 . Furthermore, we have to include the 
value of the levered firm in period T − 1 . Therefore, the market value of the firm in 
period T − 2 is

The amount of debt for both debt categories in period T − 2 is again certain, and it 
can be discounted at the risk-free interest rate r. Since the appropriate discount rate, 
d, of the value of the levered firm in period T − 1 is not apparent, we can again apply 
the value-additivity principle and divide the last term into its components to obtain

The FCF reflects the cash flow of an unlevered firm and can, thus, be discounted 
using the unlevered cost of equity. Since the market value of the firm in period T − 2 
is certain, we discount it at the risk-free interest rate r. Solving for the market value 
of the firm in period T − 2 yields

where

With these calculations, a general formula can be deduced for the sequence (�(2)
k
)k∈ℕ . 

For k > 1 , we define

(17)V𝓁

T−1
=

�T−1[F̃CFT ]

(1 + �u) ⋅ �
(2)

1

+
� ⋅ r ⋅ �(2) ⋅ V𝓁

T−2
⋅ (1 + g)

(1 + r) ⋅ �
(2)

1

,

(18)�
(2)

1
∶= 1 −

� ⋅ r ⋅ �(2)

1 + r
.

(19)
V𝓁

T−2
=

�T−2[F̃CFT−1]

1 + �u
+

� ⋅ r ⋅ �(2) ⋅ V𝓁

T−3
⋅ (1 + g)

1 + r
+

� ⋅ r ⋅ �(2) ⋅ V𝓁

T−2

1 + r

+
�T−2[Ṽ

𝓁

T−1
]

1 + d
.

(20)

V𝓁

T−2
=

�T−2[F̃CFT−1]

1 + �u
+

� ⋅ r ⋅ �(2) ⋅ V𝓁

T−3
⋅ (1 + g)

1 + r
+

� ⋅ r ⋅ �(2) ⋅ V𝓁

T−2

1 + r

+
�T−2[F̃CFT ]

(1 + �u)2 ⋅ �
(2)

1

+
� ⋅ r ⋅ �(2) ⋅ V𝓁

T−2
⋅ (1 + g)

(1 + r)2 ⋅ �
(2)

1

.

(21)

V𝓁

T−2
=

�T−2[F̃CFT−1]

(1 + �u) ⋅ �
(2)

2

+
�T−2[F̃CFT ]

(1 + �u)2 ⋅ �
(2)

2
⋅ �

(2)

1

+
� ⋅ r ⋅ �(2) ⋅ V𝓁

T−3
⋅ (1 + g)

(1 + r) ⋅ �
(2)

2

,

(22)�
(2)

2
∶= 1 −

� ⋅ r ⋅ �(2)

1 + r
−

� ⋅ r ⋅ �(2) ⋅ (1 + g)

(1 + r)2 ⋅ �
(2)

1

.
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This sequence considers that the tax shield of a specific period depends not only on 
the debt level of this period but also on thatof the previous period. To derive a valu-
ation equation for a perpetuity, we need to show that this sequence converges to a 
limit �(2) for k → ∞ , which we do in Corollary 1, see the Appendix.

From these results, we can derive a valuation formula for the levered firm at 
the valuation date. Since we exclude an explicit planning of debt levels, we use 
D1

0
= �(2) ⋅ V𝓁

0
 and deduce a valuation formula for the market value of the firm for a 

perpetuity.

Proposition 2  If g < k∗ , the market value of the firm for two debt categories is given 
by

where k∗ ∶= (1 + �u) ⋅ �(2) − 1 and r∗ ∶= (1 + r) ⋅ �(2) − 1.

Proposition 2 exemplifies that the FCFs are discounted at the adjusted cost of 
capital, k∗ , which we deduced by solving the emerging circularity problems. We add 
the tax shield that results from the amount of debt D1

0
 of the category that is again 

adapted in period 1. By using the relation D1

0
= �(2) ⋅ V𝓁

0
 , we can rewrite the expres-

sion and deduce a circularity-free valuation formula for two debt categories. Mul-
tiplying the market value of the firm by the debt-to-market value ratio yields the 
equity value. For a detailed derivation of Eq. (24), see the Proof of Proposition 2 in 
the Appendix.

As mentioned in Sect. 2, in corporate valuation practice, it is common to use the 
FCF or the FtE approach. To do so, we need to derive an adjustment formula for the 
levered cost of equity and deduce the WACC to be able to apply a valuation formula 
of the form

with k� = (1 − �) ⋅ �𝓁 + r ⋅ (1 − �) ⋅ � . The adjustment formula and the expression 
for the WACC are captured in the following proposition.

Proposition 3  Under the assumption of two debt categories, the levered cost of 
equity can be obtained by

where L =
�

1−�
 is the leverage. Furthermore, the WACC is given by

(23)�
(2)

k
∶= 1 −

� ⋅ r ⋅ �(2)

1 + r
−

� ⋅ r ⋅ �(2) ⋅ (1 + g)

(1 + r)2 ⋅ �
(2)

k−1

.

(24)V𝓁

0
=

E[F̃CF1]

k∗ − g
+

� ⋅ r ⋅ D1

0

1 + r∗
=

E[F̃CF1]

k∗ − g
⋅

(

1 −
� ⋅ r ⋅ �(2)

1 + r∗

)−1

,

(25)V�

0
=

�[F̃CF1]

k� − g
,

(26)�𝓁 = �u + (�u − r) ⋅

(

1 −
� ⋅ r

1 + r
−

1

2
⋅
� ⋅ r ⋅ (1 + g)

(1 + r)2 ⋅ �(2)

)

⋅ L ,
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A proof is provided in the Appendix. Proposition 3 clarifies that the derivation of 
the levered cost of equity can again be divided into the operational risk �u and a risk 
premium that depends on the difference of the unlevered cost of equity and the risk-
free interest rate. This difference is multiplied by a factor that incorporates the finan-
cial risk due to both debt categories. Compared to the adjustment formula for active 
debt management according to HP, where all tax shields are uncertain and this factor 
equals 1, we subtract two terms to depict the smaller financial risk. Both debt cate-
gories are certain in the subsequent period, which corresponds to active debt man-
agement of ME and yields the subtraction of �⋅r

1+r
 . Additionally, half of the debt level 

is certain in the period after next; that is, it can be discounted at the risk-free interest 
rate for two periods. The effect of this additional certainty of the tax shield is 
reflected in the term 1

2

�⋅r⋅(1+g)

(1+r)2⋅�(2)
 . The WACC is also similar to the WACC for active 

debt management (for the WACC of active debt management, see e.g., Miles and 
Ezzell 1980, Eq. (20); Kruschwitz and Löffler 2020, p. 105). In addition to the one 
half of the debt that is adjusted in the next period, we must consider the effects of 
the other debt category.

For a comparison to passive debt management, we compute the value of the risk-
free part of the tax shields at the valuation date, as we have done for standard dis-
continuous financing. It can be derived by similar recursive steps as above, which 
yields

It displays that the entire debt level is certain for one period and half of the debt 
level is certain for two periods. Inserting this into the adjustment formula derived 
by Inselbag and Kaufold (1997) see Eq. (13), yields the adjustment formula from 
Eq. (26). This alternative derivation of the adjustment formula for the cost of equity 
highlights that the value of the tax shield compared to passive debt management is 
again decreased by a factor that depends on V�

0
.

The same holds for the WACC compared to the WACC under passive debt man-
agement, see Eq. (14). It becomes clearer, if we rearrange Eq. (27) to

The value of the risk-free part of the tax shields, see Eq. (28) can again be inserted 
into the formula for the WACC, see Eq. (14), to derive the expression from Eq. (29).

Note that the levered cost of equity is, generally, a random variable. In each 
period, the debt-to-market value ratio of the debt category that is not adjusted 
depends on the development of the firm. An exception displays the debt-to-market 

(27)k� = �u − � ⋅ r ⋅ � ⋅
(1 + �u)

1 + r
− (�u − r) ⋅

1

2
⋅
� ⋅ r ⋅ � ⋅ (1 + g)

(1 + r)2 ⋅ �(2)
.

(28)VTSR
0
=

� ⋅ r ⋅ � ⋅ V𝓁

0

1 + r
+

1

2
⋅
� ⋅ r ⋅ � ⋅ V𝓁

0
⋅ (1 + g)

(1 + r)2 ⋅ �(2)

(29)
k� = �u ⋅

(

1 −
� ⋅ r ⋅ �

1 + r
−

1

2
⋅
� ⋅ r ⋅ � ⋅ (1 + g)

(1 + r)2 ⋅ �(2)

)

+ r ⋅

(

� ⋅ r ⋅ �

1 + r
+

1

2
⋅
� ⋅ r ⋅ � ⋅ (1 + g)

(1 + r)2 ⋅ �(2)
− � ⋅ �

)

.
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value ratio at the valuation date since, in this period, both debt categories are 
adjusted. However, the expected financial risk is constant for all periods. In every 
period, half of the tax shield is certain for two periods and the other half is certain 
for one period. Consequently, the construction of debt categories is similar to that 
of standard discontinuous financing. The difference is that by partially adjusting the 
debt level, we obtain a financial risk that does not vary depending on the remaining 
number of periods in the planning phase. It follows that this financing policy could 
be more suitable to model the financing behavior and financial risk of a firm. Since 
we were able to derive a closed-form solution for the levered cost of equity, the mar-
ket value of the firm for two debt categories can be easily calculated using the Gor-
don–Shapiro formula (Gordon and Shapiro 1956).

3.2 � Derivation of a valuation formula for an arbitrary number of debt categories

While the previous analysis was based on a firm with two debt categories, it is now 
of interest to derive a valuation formula for a firm with various debt categories. 
Their number can be company specific. First, we consider three debt categories. In 
some period t, one category is adjusted according to the debt-to-market value ratio 
�(3) ∶=

1

3
� , and the amount of debt for the other two debt categories depends on the 

market value of the firm in periods t − 1 and t − 2 , respectively. At the valuation 
date, we again assume that categories 1 and 2 are exceptionally adjusted according 
to the specified ratio �(3).3 The expected total amount of debt in some period t ≥ 2 is

It follows that, to derive a valuation formula for this setting, the sequence (�(2)
k
)k∈ℕ 

needs to be adjusted. By repeating the above backward iteration for three debt cat-
egories, we obtain

for k > 2 . This sequence considers that one third of the overall debt is certain only 
in the subsequent period, one part is certain for two periods, and one part is certain 
for three periods. The latter is displayed in the last term of �(3)

k
 . Since deriving an 

analytic solution for the limit �(3) of the sequence (�(3)
k
)k∈ℕ is difficult, a spreadsheet 

software or other programs should be used to calculate the limit numerically.

(30)�[D̃t] = �(3) ⋅ �[Ṽ𝓁

t−2
] ⋅ (1 + g)2 + �(3) ⋅ �[Ṽ𝓁

t−1
] ⋅ (1 + g) + �(3) ⋅ �[Ṽ𝓁

t
] .

(31)

�
(3)

1
∶= 1 −

� ⋅ r ⋅ �(3)

1 + r
,

�
(3)

2
∶= 1 −

� ⋅ r ⋅ �(3)

1 + r
−

� ⋅ r ⋅ �(3) ⋅ (1 + g)

(1 + r)2 ⋅ �
(3)

1

and ,

�
(3)

k
∶= 1 −

� ⋅ r ⋅ �(3)

1 + r
−

� ⋅ r ⋅ �(3) ⋅ (1 + g)

(1 + r)2 ⋅ �
(3)

k−1

−
� ⋅ r ⋅ �(3) ⋅ (1 + g)2

(1 + r)3 ⋅ �k−1 ⋅ �
(3)

k−2

,

3  In accordance with our analysis in the previous subsection, in a first step, we only consider the steady 
state phase and refer to Sect. 3.4 for possible links to the explicit forecast phase.
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With these observations, we can now deduce a valuation formula for a firm with 
T debt categories. Let �(T) ∶= 1

T
� . We exclude a detailed planning of debt levels and 

adjust all debt levels according to �(T) at the valuation date. Thereafter, in period one, 
category one is adjusted and so on. For an illustration of T debt categories, see Fig. 3. It 
follows that the expected total amount of debt in some period t ≥ T − 1 is

In this setting, the total amount of debt in period t depends on the market values of 
the firm in periods t − (T − 1) to t. Accordingly, the sequence (�(T)

k
)k∈ℕ must be 

derived. Following the structure for two and three debt categories, respectively, we 
define �(T)

1
∶= 1 −

�⋅r⋅�(T)

1+r
 . For k > 1 , we derive

The sequence (�(T)
k
)k∈ℕ considers the dependencies of the debt levels on the market 

value of the firm of the previous k − (T − 1) periods.
As in the case of two debt categories, we can show that the sequence (�(T)

k
)k∈ℕ con-

verges to �(T) ∶= limk→∞ �
(T)

k
 (see Lemma 3). For the limit holds

We cannot derive a closed-form solution for this limit, but it can be computed using 
a spreadsheet software or other programs.

The general valuation formula for a perpetuity has the same structure as Eq. (24), 
where we assumed a perpetual annuity for two debt categories. If g < k∗ , we can apply 
Lemma 2 and derive for an arbitrary number of debt categories

where k∗ ∶= (1 + �u) ⋅ �(T) − 1 and r∗ ∶= (1 + r) ⋅ �(T) − 1 . The expression DT−j

0
 , 

j ∈ {1,… , T − 1} , represents the amount of debt of category T − j that should not 
be adjusted in period 0, but in period T − j . These debt levels have to be excep-
tionally adjusted simultaneously at the valuation date. They are risk-free and can be 

(32)�[D̃t] =

T−1
∑

s=0

�(T) ⋅ �[Ṽ𝓁

t−s
] ⋅ (1 + g)s.

(33)�
(T)

k
∶= 1 −

� ⋅ r ⋅ �(T)

1 + r
−

min{k,T}−1
�

t=1

� ⋅ r ⋅ �(T) ⋅ (1 + g)t

(1 + r)t+1 ⋅
∏t

s=1
�
(T)

k−s

.

(34)�(T) ∶= 1 − � ⋅ r ⋅ �(T) ⋅

T−1
∑

t=0

(1 + g)t

(1 + r)t+1 ⋅ (�(T))t
.

(35)V𝓁

0
=

E[F̃CF1]

k∗ − g
+

T−1
∑

s=1

s
∑

j=1

� ⋅ r ⋅ D
T−j

0
⋅ (1 + g)T−s−1

(1 + r∗)T−s
,

D0
0 = θ(T ) · E[Ṽ �

0 ]

D1
0 = θ(T ) · E[Ṽ �

0 ]
...

DT−1
0 = θ(T ) · E[Ṽ �

0 ]

D0
1 = D0

0 · (1 + g)

E[D̃1
1] = θ(T ) · E[Ṽ �

1 ]
...

DT−1
1 = DT−1

0 · (1 + g)

. . . D0
T−1 = D0

0 · (1 + g)T−1

E[D̃1
T−1] = E[D̃1

1] · (1 + g)T−2

...

E[D̃T−1
T ] = θ(T ) · E[Ṽ �

T−1]

E[D̃0
T ] = θ(T ) · E[Ṽ �

T ]

E[D̃1
T ] = E[D̃1

1] · (1 + g)T−1

...

E[D̃T−1
T ] = E[D̃T−1

1 ] · (1 + g)

. . .

0 1 . . . T − 1 T . . .
t

Fig. 3   Discontinuous financing with T debt categories



1225

1 3

Terminal value calculation with discontinuous financing…

discounted at the risk-free interest rate. The value of the tax shield of these debt cat-
egories is computed in the second term. In period zero, these are T − 1 categories; in 
period one, these are T − 2 categories; until in period T − 1 , it is only one debt cat-
egory. Thereafter, starting in period T, every debt category has been adjusted once 
according to the ratio �(T) , see Fig. 3.

Since we exclude the link to an explicit planning of the debt levels, we adjust all 
debt categories according to the market value of the firm at the valuation date, that 
is, Dj

0
= �(T) ⋅ V𝓁

0
 for j ∈ {0,… , T − 1} . Plugging this in, we can simplify valuation 

Eq. (35) as we do in the following proposition.

Proposition 4  If g < k∗ , the market value of the firm for T debt categories can be 
computed by

where

As in the case of two debt categories, the FCFs are discounted at the adjusted 
cost of capital k∗ . Compared to Eq. (35), we inserted the relation Dj

0
= �(T) ⋅ V𝓁

0
 

and solved the circularity problems to deduce a circularity-free valuation formula. 
Multiplying the market value of the firm by the debt-to-market value ratio yields 
the equity value. For detailed calculations, see the Proof of Proposition 4 in the 
Appendix.

To be able to apply the FCF approach in conjunction with the Gordon–Shap-
iro formula, see Eq. (25), we need to determine the levered cost of equity and the 
WACC. The formulas are captured in the following proposition.

Proposition 5  Under the assumption of T debt categories, the levered cost of equity 
can be obtained by

Furthermore, the WACC is given by

(36)V𝓁

0
=

�[F̃CF1]

k∗ − g
⋅

(

1 −
� ⋅ r ⋅ �(T)

1 + r
⋅
(1 + x)t − Tx − 1

x2

)−1

,

(37)x =
1 + g

(1 + r) ⋅ �(T)
− 1.

(38)�𝓁 = �u + (�u − r) ⋅

(

1 − � ⋅ r ⋅

T−1
∑

s=0

(

1 −
s

T

)

⋅
(1 + g)s

(1 + r)s+1 ⋅ (�(T))s

)

⋅ L

(39)= �u + (�u − r) ⋅

(

1 −
� ⋅ r

1 + r
⋅
(1 + x)T+1 − (T + 1) ⋅ x − 1

T ⋅ x2

)

⋅ L.

(40)k� = �u − (�u − r) ⋅
� ⋅ r

1 + r
⋅
(1 + x)T+1 − (T + 1) ⋅ x − 1

T ⋅ x2
⋅ � − r ⋅ � ⋅ �.
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See the Appendix for a proof. While Eq. (39) can be used for computation, we 
can obtain a better interpretation from Eq. (38): We can again divide the deriva-
tion of the levered cost of equity into the operational risk �u and a risk premium 
that depends on the difference of the unlevered cost of equity and the risk-free 
interest rate. The factor that incorporates the financial risk due to all debt catego-
ries can be interpreted as follows. Compared to active debt management accord-
ing to HP, we have a reduced risk. The first term of the sum in Eq. (39) is �⋅r

1+r
 and 

reflects that the entire debt is certain in the subsequent period. The second term is 
(

1 −
1

T

)

⋅
1+g

(1+r)2⋅�(T)
 and represents that the entire debt, except the part that is 

adjusted in the next period (i.e., a share of 1 − 1

T
 of the overall debt), is certain for 

two periods. This continues until, in the last term, only 1
T
 of the overall debt is 

considered, which is the debt category that is defined in the current period, and 
is, therefore, certain for T periods.

To compare these equations to passive debt management, we compute the risk-
free part of the value of the tax shield. It is

Compared to passive debt management, the risk-free part of the tax shield is 
reduced. As explained above, only parts of the overall debt level are deterministic, 
which is expressed in the sum. Inserting Eq. (41) into Eqs. (13) and (14) is an alter-
native way to derive the adjustment formula for the cost of equity and the WACC, 
respectively.

With these findings, it becomes clear that the expected financial risk is constant. 
In each period, a proportion of 1

T
 of the overall debt is certain for T periods, another 

proportion is certain for T − 1 periods, and so on. It follows that it is possible to use 
Eq. (25) to calculate the market value of the firm. Therefore, we have determined 
a formula for the levered cost of equity and the WACC, which is easy to apply to 
calculate the market value of a firm with an arbitrary number of debt levels with the 
Gordon–Shapiro formula. Note that, for T = 2 , the formula simplifies to the above 
derived formulas for two debt categories (see Proposition 3). Furthermore, T = 1 
complies with active debt management according to ME since the firm has only one 
debt category that is adjusted every period.

Compared to standard discontinuous financing, we considered the maturity of 
debt and constructed debt categories in a way that yields a partial adjustment of the 
debt level. Thus, discontinuous financing with T debt categories might be more suit-
able to model the financing behavior of a firm. For more than two debt categories, 
the limit � has to be computed numerically. However, with the help of a spread-
sheet software or other programs, this does not pose a problem. Overall, the results 
allow for a deep theoretical understanding not only of this new financing strategy 
but also of standard discontinuous financing. The following subsection illustrates 
the approach of discontinuous financing with debt categories using an example.

(41)
VTSR

0
= � ⋅ r ⋅ � ⋅ V𝓁

0
⋅

T−1
∑

s=0

(

1 −
s

T

)

⋅
(1 + g)s

(1 + r)s+1 ⋅ (�(T))s

= � ⋅ r ⋅ � ⋅ V𝓁

0
⋅
(1 + x)T+1 − (T + 1) ⋅ x − 1

T ⋅ x2 ⋅ (1 + r)
.
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3.3 � Illustration and comparison with other financing policies

We use the above example, see Sect. 2.3, to illustrate discontinuous financing with 
debt categories and to compare it with other financing strategies. We consider a firm 
with five debt categories and the same input parameters as above. To compute the 
market value of the firm under this assumption of five debt categories, we use the 
definition of �(T) from Eq. (34) and numerically obtain �(5) ≈ 0.993 . Furthermore, 
we assume that all debt categories Dj

0
 , j ∈ {1,… , 4} , are adjusted at the valua-

tion date by multiplying the debt ratio �(5) by the market value of the firm, that is, 
D

j

0
= �(T) ⋅ V𝓁

0
= 12% ⋅ V𝓁

0
 . Therefore, we can apply the FCF approach and compute 

the WACC according to Eq. (40). To do so, we calculate x = −0.017 , see Eq. (37), 
and obtain for the WACC​

For the value of the levered firm, we can use the Gordon–Shapiro formula, see Eq. 
(25), and obtain

with a total amount of debt of

where DC denotes the assumption of debt categories. For the equity value follows

Since the firm is in a steady state, the expected market value of the firm, equity 
value, and debt levels grow at the constant growth rate g (see Tables 3, 4, and 5, 
respectively). Moreover, we can derive the levered cost of equity according to Eq. 
(39), which amounts to �� = 18.70% and is constant in every period (see Table 6).

(42)
k� = 0.1 − (0.1 − 0.04) ⋅

0.3 ⋅ 0.04

1 + 0.04
⋅
(1 − 0.017)6 − 6 ⋅ 0.017 − 1

5 ⋅ 0.0172
⋅ 0.6

− 0.04 ⋅ 0.3 ⋅ 0.6

= 9.16%.

(43)V
�,DC

0
=

1000

9.16% − 1.5%
= 13,057.81 ,

DDC

0
= � ⋅ V𝓁,DC

0
= 60% ⋅ 13,057.81 = 7834.69 ,

E
𝓁,DC

0
= V

𝓁,DC

0
⋅ (1 − �) = 13,057.81 ⋅ 40% = 5,223.13.

Table 3   Market values of the firm under different financing strategies

Financing strategy t = 0 t = 1 t = 2 t = 3 t = 4 t = 5

Unlevered firm 11,764.71 11,941.18 12,120.29 12,302.10 12,486.63 12,673.93
Debt categories 13,057.81 13,253.68 13,452.49 13,654.27 13,859.09 14,066.97
Discontinuous financing 13,066.70 13,253.43 13,447.02 13,648.20 13,857.75 14,076.55
Active debt management 12,922.47 13,166.30 13,313.05 13,512.74 13,715.43 13,921.17
Passive debt management 16,523.46 16,771.32 17,022.88 17,278.23 17,537.40 17,800.46
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The cost of equity can alternatively be derived by computing the value of the 
risk-free part of the tax shields according to Eq. (41) and applying Eq. (13). We 
included the value of the risk-free part of the tax shields in Table 7.

Table 4   Equity values under different financing strategies

Financing strategy t = 0 t = 1 t = 2 t = 3 t = 4 t = 5

Unlevered firm 11,764.71 11,941.18 12,120.29 12,302.10 12,486.63 12,673.93
Debt categories 5223.13 5301.47 5380.99 5461.71 5543.64 5626.79
Discontinuous financing 5226.68 5295.81 5370.04 5450.06 5536.64 5630.62
Active debt management 5168.99 5246.52 5325.22 5405.10 5486.17 5568.47
Passive debt management 6609.39 6708.53 6809.15 6911.29 7014.96 7120.19

Table 5   Debt levels under different financing strategies

Financing strategy t = 0 t = 1 t = 2 t = 3 t = 4 t = 5

Unlevered firm 0.00 0.00 0.00 0.00 0.00 0.00
Debt categories 7834.69 7952.21 8071.49 8192.56 8315.45 8440.18
Discontinuous financing 7840.02 7957.62 8076.99 8198.14 8321.11 8445.93
Active debt management 7753.48 7869.78 7987.83 8107.65 8229.26 8352.70
Passive debt management 9914.08 10,062.79 10,213.73 10,366.94 10,522.44 10,680.28

Table 6   Levered costs of equity under different financing strategies

Financing strategy t = 0 t = 1 t = 2 t = 3 t = 4 t = 5

Unlevered firm 10.00% 10.00% 10.00% 10.00% 10.00% 10.00%

Debt categories 18.70% 18.70% 18.70% 18.70% 18.70% 18.70%

Discontinuous financing 18.51% 18.61% 18.72% 18.82% 18.91% 18.51%

Active debt management 18.90% 18.90% 18.90% 18.90% 18.90% 18.90%

Passive debt management 14.68% 14.68% 14.68% 14.68% 14.68% 14.68%

Table 7   Value of the risk-free part of the tax shield under different financing strategies

Financing strategy t = 0 t = 1 t = 2 t = 3 t = 4 t = 5

Unlevered firm 0.00 0.00 0.00 0.00 0.00 0.00
Debt categories 264.97 268.94 272.97 277.07 281.23 285.44
Discontinuous financing 431.08 354.24 272.92 186.91 96.01 464.40
Active debt managements 89.46 90.81 92.17 93.55 94.95 96.38
Passive debt managements 4758.76 4830.14 4902.59 4976.13 5050.77 5126.53
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In the following, we compare the equity value in the case of discontinuous financ-
ing with debt categories to that under the assumption of other financing strategies. 
In Sect. 2.3, we have already calculated the equity value in the case of standard dis-
continuous financing and obtained

where DF denotes discontinuous financing. This value is slightly higher than the 
market value of the firm in the case of debt categories. We derive a negligible devia-
tion of

The deviation occurs because, under standard discontinuous financing, at the valu-
ation date, the tax shield is certain for five periods. Under debt categories, at the 
valuation date, only one fifth of the tax shield is certain for five periods. However, 
under discontinuous financing, in periods 1, 2, 3, and 4, the tax shield is only cer-
tain for 4, 3, 2, and 1 periods, respectively, which yields a value advantage of debt 
categories (see Table  3). This characteristic can also be observed for the costs of 
equity. Due to the lower financial risk, the cost of equity under standard discontinu-
ous financing is lower than the cost of equity under debt categories at the valuation 
date, but this relation changes in periods 2, 3, and 4. Looking at a complete planning 
phase, the differences almost cancel each other out.

To compare the equity value under debt categories with that under the assump-
tion of pure financing strategies, we first use the FCF approach to calculate the mar-
ket value of the firm in the case of active debt management according to ME, which 
yields a levered cost of equity of �� = 18.90% . We deduce k� = 9.24% and calculate 
thereby

where ADM denotes active debt management. The equity value is lower than in the 
case of discontinuous financing and debt categories, since the tax shields are only 
certain in the period of their occurrence and uncertain in all preceding periods. This 
can also be observed in the higher levered cost of equity, which implies that finan-
cial risk is higher. We deduce a deviation of the equity value of 1.05% and 1.12% 
for debt categories and standard discontinuous financing, respectively. For a higher 
T, the differences will become larger. In period 4, the levered cost of equity under 
standard discontinuous financing is nearly the same as under active debt manage-
ment. In this period, the tax shield under discontinuous financing is also only certain 
for one period. However, the value remains slightly higher for discontinuous financ-
ing since the expected debt-to-market value ratio is 60.05% (see Table 2), which is 
higher than the debt-to-market value ratio of 60% under active debt management.

E
�,DF

0
= 5226.68,

E
�,DF

0
− E

�,DC

0

E
�,DC

0

=
5226.68 − 5223.13

5223.13
= 0.07%.

(44)E
𝓁,ADM

0
=

�[F̃CF1]

k� − g
⋅ (1 − �) =

1000

9.24% − 1.5%
⋅ 40% = 5.168,99,
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For passive debt management we also assume a debt-to-market value ratio of 
60% , which yields a WACC of 7.55% . For the equity value, we obtain

where PDM denotes passive debt management. Unsurprisingly, the equity value 
under passive debt management is considerably higher than the other equity values. 
We derive deviations to discontinuous financing and debt categories of more than 
25% because, for passive debt management, all tax shields are certain and can be 
discounted at the risk-free interest rate r, rather than the unlevered cost of equity 
�u . Hence, the levered cost of equity is also lower. For a higher T, the deviations 
decrease since the planning phases, and, therefore, the maturity of debt becomes 
longer.

For every financing strategy, a comparison of Tables  7 and 8 illustrates that 
for active debt management, discontinuous financing, and debt categories, only a 
small portion of the value of the tax shield comes from risk-free debt. For passive 
debt management, all future debt levels are risk-free such that the value of the 
risk-free part of the tax shields coincides with the value of the tax shield.

From period 5 onward, the structure is repeated. For discontinuous financing, 
the next planning phase starts, which implies a debt-to-market value ratio of 60% 
in period 5. For every other financing strategy, the equity value, market value of 
the firm, debt levels, value of the tax shield, and value of the risk-free part of the 
tax shields continue to grow at the growth rate g.

In this example, we always defined the debt-to-market value ratio deterministi-
cally since we excluded an explicit planning of debt levels. Thereby, we followed 
the line of the example in Clubb and Doran (1995, pp. 690–692). One could also 
define coinciding debt levels for every financing strategy and include an explicit 
forecast phase. Consequently, the debt-to-market value ratios would vary, but 
interpretations would be similar.

We conclude that the financing behavior of a firm should be carefully ana-
lyzed for choosing the most suitable financing strategy. The terminal value cal-
culation with standard discontinuous financing shows shortcomings that can be 
rectified by debt categories. However, in the presented example, the value differ-
ences between standard discontinuous financing and discontinuous financing with 

(45)E
𝓁,PDM

0
=

E[F̃CF1]

k� − g
⋅ (1 − �) =

1, 000

7.55% − 1.5%
⋅ 40% = 6609.39,

Table 8   Value of the tax shield under different financing strategies

Financing strategy t = 0 t = 1 t = 2 t = 3 t = 4 t = 5

Unlevered firm 0.00 0.00 0.00 0.00 0.00 0.00
Debt categories 1293.11 1312.51 1332.19 1352.18 1372.46 1393.04
Discontinuous financing 1302.00 1312.25 1326.73 1346.10 1371.12 1402.62
Active debt managements 1157.76 1175.13 1192.75 1210.64 1228.80 1247.24
Passive debt managements 4758.76 4830.14 4902.59 4976.13 5050.77 5126.53
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debt categories are negligible. For other input parameters, similar results can be 
expected. An advantage of standard discontinuous financing is that the market 
value of the firm and, therefore, the equity value at the valuation date can be 
calculated without circularity problems. For debt categories, this is only possible 
for the special case of two debt categories. For more debt categories, the limit � 
has to be computed numerically. However, to calculate market values within a 
planning phase, the application of standard discontinuous financing also involves 
circularity problems. Since a spreadsheet software is usually used for valuation, 
the application of both financing strategies can be conducted easily. Overall, the 
assumption of debt categories seems more realistic since the shares of the overall 
debt are adjusted successively, instead of all at once every T periods. If standard 
discontinuous financing is used, it can be interpreted as an approximation of debt 
categories.

3.4 � Application of debt categories in a two‑phase model

In the previous subsections, we excluded an explicit forecast phase and specified the 
entire debt level according to the debt-to-market value ratio at the valuation date. 
In this section, we analyze the possibilities of a link to a detailed planning of debt 
levels. This explicit planning is typically based on deterministic debt levels such 
that we assume passive debt management in the explicit forecast phase. Thereaf-
ter, we mix active and passive debt management by applying discontinuous financ-
ing with T debt categories in the steady state phase. We assume that the explicit 
forecast phase consists of S periods. As for every other combination of financing 
strategies in a two-phase model, it can be distinguished between an abrupt and a 
successive transition from the explicit forecast phase to the steady state (Koller et al. 
2020, pp. 259–260).

In case of an abrupt change of financing strategies, all debt categories are 
adjusted according to �(T) at the beginning of the steady state phase; that is, the 
debt level of period S is computed as D̃S = � ⋅ Ṽ𝓁

S
 . Thus, at the beginning of the 

steady state phase, exceptionally, all debt categories are adjusted in the same 
period according to �(T) , see Fig. 4. This approach does not directly consider the 
debt level DS−1 that results from the last period of the explicit forecast phase, 
but yields a refinancing. However, the debt ratio and the associated refinancing 
is planned together with the explicit debt levels and, therefore, does not con-
stitute a problem. To calculate the market value of the firm at the beginning of 
the steady state phase, the adjustment formulas from Proposition 5 can be used. 
This approach of an abrupt change of financing strategies is very similar to the 
assumption of a steady state with active debt management, which is a common 
approach in corporate valuation practice. When active debt management is used 
for a steady state after an explicit forecast phase with passive debt management, 
the firm has to refinance according to the specified debt ratio (see also stud-
ies on hybrid financing, e.g., Kruschwitz et al. 2007; Dierkes and Gröger 2010; 
Dierkes and de Maeyer 2020).
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It is also possible to adjust the debt-to-market value ratio � such that the 
expected debt level at the end of the explicit forecast phase, �[D̃S] = � ⋅ �[Ṽ𝓁

S
] , 

coincides with an explicitly planned debt level DS . This can, for example, be 
conducted by using a spreadsheet software. The debt levels are then adjusted 
exactly as in the first approach: In the first period of the steady state, all debt cat-
egories are adjusted according to the specified debt ratio. Whether DS or �[D̃S] is 
used has no effect on the market value of the firm at the beginning of the steady 
state phase (for a more detailed analysis, see, Dierkes and de Maeyer 2020) such 
that it can again be computed with the help of Proposition 5.

Alternatively, a successive transition from passive debt management to debt 
categories can be assumed by including a convergence phase. To apply such an 
approach, the debt level D∗

S
 of period S must be explicitly planned. However, 

the resulting debt level D̃S of this period S does not coincide with D∗
S
 since debt 

category 0 is adjusted according to the debt-to-market value ratio. All other 
debt categories are defined as a fraction of 1

T
 of the fixed level D∗

S
 , see Fig.  5. 

In period S + 1 , category 1 is adjusted according to the defined debt-to-market 
value ratio �(T) . All other categories grow at the specified growth rate. In the sec-
ond period after the end of the explicit planning, category 2 is adjusted accord-
ing to this ratio and so on. In period S + T − 1 , all categories have been adjusted 
once according to �(T) such that this corresponds to the first period of the steady 
state phase. It follows that the convergence phase consists of T periods, after 
which the steady state with debt categories begins. To calculate the market value 
of the firm Ṽ�

S
 at the of the explicit forecast phase, Eq. (35) can be used. For the 

debt levels DT−j

S
 , the debt levels that result from an explicit planning have to be 

inserted. The example from Sect. 3.3 can be adjusted accordingly.

3.5 � Risk of default for discontinuous financing and debt categories

In the above analysis, we concentrate on the derivation of the valuation equations 
and adjustment formulas, as well as their consequences for a steady state. We 
abstained from the integration of the risk of default to keep this focus. This is a 
common procedure when analyzing new financing strategies. However, the risk of 
default and the potential losses in value due to costs of financial distress should be 
taken into account (see, e.g., Almeida and Philippon 2007; Korteweg 2007; Lah-
mann et al. 2018). These costs consist of, for example, legal fees, costs due to cus-
tomer losses and qualified employees leaving the firm in a crisis (Korteweg 2007, 
footnote 3; Lahmann et al. 2018, pp. 80–81). The consideration of the risk of default 
in corporate valuation has already been extensively analyzed, but is still intensively 
discussed (see, e.g., Sick 1990; Kruschwitz et  al. 2005; Friedrich 2016; Lahmann 
et al. 2018). The most pragmatic solution, which is often applied, is to use a risk-
adjusted cost of capital, rather than the risk-free interest rate for calculating the tax 
shields and discounting the risk-free part of the tax shields. This was, for exam-
ple, performed in the analysis of active and passive debt management in Inselbag 
and Kaufold (1997), and the implementation of discontinuous financing of Clubb 
and Doran (1995) and Arnold et al. (2018). Accordingly, our analysis can be easily 
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adapted by inserting the cost of debt rD for the risk-free interest rate r. The discount 
rate rD depends on assumptions regarding the tax treatment (for different possibili-
ties of considering taxes in the case of default and the cost of debt, see, e.g., Sick 
1990; Kruschwitz et al. 2005; Rapp 2006; Krause and Lahmann 2016; Baule 2019).

For a more explicit analysis of the risk of default in the case of discontinuous 
financing, we refer to Lahmann et  al. (2018) and Arnold et  al. (2019). They ana-
lyze the connection between the probability of default and the length of the planning 
phases T (Arnold et al. 2019, pp. 356–358). In particular, they consider a continuous 
time model with a geometric Brownian motion with drift-rate � and volatility � for 
the changes in the value of the unlevered firm and analyze the probability of default 
at refinancing dates. Lahmann et al. (2018) distinguish between an endogenous and 
an exogenous insolvency trigger (Lahmann et  al. 2018,  pp. 87–88). They outline, 
for example, that the longer the planning phases (the higher T) and the higher the 
debt-to-market value ratio, the higher the probability of default (Lahmann et  al. 
2018, pp.109–110). Furthermore, Arnold et al. (2019) discuss other possibilities of 
considering the risk of default in the case of discontinuous financing. Overall, they 
develop a framework that displays well the consequences of the integration of the 
risk of default for discontinuous financing.

The argumentation of Lahmann et  al. (2018) and Arnold et  al. (2019) can be 
transferred to debt categories. Since only parts of the overall debt level are adjusted 
according to a debt-to-market value ratio, the geometric Brownian Motion may drive 
down the value of the unlevered firm Ṽu

t
 at some period t so low that it is less than 

the debt level D̃t in this period. The corresponding probability might be very low, 
but this should trigger a default. Furthermore, the fact that the probability of default 
increases for a higher T and a higher debt-to-market value ratio, as is the case with 
standard discontinuous financing, is also true for discontinuous financing with debt 
categories.

These fundamental considerations form an overview of the integration of the risk 
of default in the case of debt categories. However, analyses on how exactly the risk 
of default can be integrated into the valuation equations are beyond the scope of this 
study. We laid the groundwork for an investigation of financing with debt categories 
by obtaining valuation equations under the assumption of risk-free debt and leave 
additional analyses for further research. For the application of this financing strategy 
in corporate valuation practice, we recommend the common approach to use of the 
cost of debt, instead of the risk-free interest rate, which can be easily implemented. 
After all, the sound integration of the risk of default is not a specific problem of 
discontinuous financing with debt categories but applies to all financing strategies.

4 � Conclusions

The choice of a financing strategy is a central issue for terminal value calculation. 
Since the terminal value accounts for a large part of the equity value, the financ-
ing strategy should accurately reflect the real financing behavior of a firm. We 
addressed this problem and introduced debt categories as a suitable financing strat-
egy in a steady state. Under this assumption, different layers of debt were adjusted 
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successively. We obtained valuation equations and an adjustment formula for the 
cost of equity.

The foundation for this new financing strategy is standard discontinuous financ-
ing. As a mix of active and passive debt management, it provides the opportunity 
to depict a broad range of firm financing strategies with a slow adjustment of debt 
levels toward a fixed debt ratio. In this study, we clarified the differences between 
the approaches of discontinuous financing of Clubb and Doran (1995), Arnold et al. 
(2018, 2019), and Dierkes and de Maeyer (2020). We followed the approach of a 
perpetuity with growth of Arnold et al. (2019) and Dierkes and de Maeyer (2020), 
and showed that it results in an inconstant financial risk and, thus, an inconstant 
levered cost of equity. Moreover, we derived an adjustment formula for the period-
specific levered cost of equity. The adjustment formula has a similar form to those 
for active and passive debt management. The knowledge of the adjustment formula 
offers the possibility to unlever and relever beta factors, as well as to calculate the 
market value of the firm using the FCF or FtE approach with period-specific costs 
of capital. Since the sole adjustment of the entire debt level after a planning phase 
and the associated consequences for financial risk might still not be close to the real 
financing behavior of firms, we introduced debt categories.

For discontinuous financing with debt categories, we assumed that a specified 
share of the overall debt is adapted in every period. The resulting debt categories 
were successively adjusted while considering the maturity of debt. First, we derived 
a valuation formula for two debt categories and an adjustment formula for the lev-
ered cost of equity. We showed that discontinuous financing with debt categories 
results in a constant expected financial risk and a constant levered cost of equity. 
Second, we extended the approach to an arbitrary number of debt categories. Inde-
pendent of the number of debt categories, we obtain a financing policy for the steady 
state with the property of constant financial risk. Consequently, the Gordon-Shapiro 
formula can be applied.

Additionally, we presented an example to illustrate the theoretical findings and 
analyzed the value effects of the different financing strategies. When comparing 
standard discontinuous financing to active debt management, we obtained a small 
deviation. The difference is much larger when standard discontinuous financing is 
compared to passive debt management. The same results hold for discontinuous 
financing with debt categories. Moreover, we found that the deviation between the 
market value of the firm under standard discontinuous financing and discontinu-
ous financing with debt categories is small. Consequently, despite the advantage of 
discontinuous financing with debt categories of depicting a broader range of real 
financing strategies of firms, valuation with standard discontinuous financing can 
still be applied. The latter can be interpreted as an approximation for the assumption 
of discontinuous financing with debt categories.

Our analysis focused on the consequences for a steady state. In particular, in the 
main part, we excluded an explicit forecast phase. Thereafter, we discussed possi-
bilities of linking the assumption of a steady state with debt categories to a detailed 
planning of debt levels. The derived valuation equations can be easily adjusted 
to one of these models. This enables the application of debt categories in a two-
phase model. Furthermore, we excluded the risk of default and the costs of financial 
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distress in our basic analysis in order to derive the valuation equations und adjust-
ment formulas on a clear theoretical basis for our new financing policy, as it is com-
mon in comparable analyses for other financing policies. Nevertheless, it is impor-
tant to analyze the additional incorporation of risk of default, such that we discussed 
limitations and possible solutions of this assumption afterwards. We pointed out that 
the application of the cost of debt can be easily implemented and laid out fundamen-
tal characteristics of an explicit analysis, but left a more detailed analysis to further 
research. Overall, by introducing discontinuous financing with debt categories, we 
presented a new possibility to depict the financing behavior of firms in a steady state 
and contribute to the ongoing discussion on terminal value calculation.

Appendix

Proof of Proposition 1  First, we deduce the formula for the WACC. To do so, we 
introduce additional notation to simplify the calculations. Let

Since the function PVA does always depend on g in our setting, we denote it as a 
function of C and s, where C ∈ {R,K} and s ∈ ℕ . It is

We use this new defined notation to rewrite the definition of the cost of capital, see 
Eq. (10), and the claim

Furthermore, we can rewrite the computation of the market value of the firm at time 
t, see Eq. (5), as

To prove the claim, we note that

and

G = 1 + g, R = 1 + r, K = 1 + �u .

f (C, s) = PVA(C − 1,G − 1, s) =
1

C − G
⋅

(

1 −
Gs

Cs

)

.

(46)
1 + k�

t
∶=

�[F̃CF1] ⋅ G
t + �[Ṽt+1]

�[Ṽ𝓁

t ]

!
= (1 − � ⋅ r ⋅ �t ⋅ f (R,T − t)) ⋅ K − � ⋅ r ⋅ �t ⋅ (1 − R ⋅ f (R,T − t)).

(47)

�[Ṽ𝓁

t
] = �[F̃CF1] ⋅ G

t
⋅ f (K, T − t) + � ⋅ r ⋅ � ⋅ V0 ⋅ G

t
⋅ f (R,T − t) + V0 ⋅

GT

KT−t
.

(48)f (C, s − 1) = f (C, s) −
Gs−1

Cs

(49)
(

1 −
Gs

Cs

)

= f (C, s) ⋅ (C − G).
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By using these relations, we can rearrange the numerator of Eq. (46) to obtain

We add and subtract K ⋅ � ⋅ r ⋅ � ⋅ V0 ⋅ G
t
⋅ f (R,T − t) and use again Eq. (47), which 

yields

Since the debt-to-market value ratio is inconstant, we need to calculate the debt-to-
market value ratio of period t. It is

We can use this relation and the modified expression of the numerator, see Eq. (50), 
to compute

Rearranging and inserting the definition of k�
t
 , see Eq. (46), yields

By inserting the original notation, we obtain

which yields Eq. (9).

�[F̃CF1] ⋅ G
t + �[Ṽ𝓁

t+1
]
(47)
= �[F̃CF1] ⋅ G

t
⋅ (1 + G ⋅ f (K, T − t − 1))

+ � ⋅ r ⋅ � ⋅ V0 ⋅ G
t
⋅ G ⋅ f (R,T − t − 1)

+ K ⋅ V0 ⋅
GT

KT−t

(48)
= �[F̃CF1] ⋅ G

t
⋅

(

1 + G ⋅ f (K, T − t) −
GT−t

KT−t

)

+ � ⋅ r ⋅ � ⋅ V0 ⋅ G
t
⋅

(

G ⋅ f (R,T − t) −
GT−t

RT−t

)

+ K ⋅ V0 ⋅
GT

KT−t

(49)
= �[F̃CF1] ⋅ G

t
⋅ K ⋅ f (K, T − t)

+ � ⋅ r ⋅ � ⋅ V0 ⋅ G
t
⋅ (R ⋅ f (R,T − t) − 1)

+ K ⋅ V0 ⋅
GT

KT−t
.

(50)
�[F̃CF1] ⋅ G

t + �[Ṽ𝓁

t+1
] = K ⋅ �[Ṽt] + � ⋅ r ⋅ � ⋅ V0 ⋅ G

t
⋅ ((R − K) ⋅ f (R,T − t) − 1).

� ⋅ V0 ⋅ G
t

�[Ṽt]
=

D0 ⋅ G
t

�[Ṽt]
=

Dt

�[Ṽt]
= �t.

�[F̃CF1] ⋅ G
t + �[Ṽt+1]

�[Ṽ𝓁

t ]
= K + � ⋅ r ⋅ �t ⋅ ((R − K) ⋅ f (R,T − t) − 1).

1 + k�
t
= K ⋅ (1 − � ⋅ r ⋅ �t ⋅ f (R,T − t)) − � ⋅ r ⋅ �t ⋅ (1 − R ⋅ f (R,T − t)).

1 + k�
t
= �u ⋅ (1 − � ⋅ r ⋅ �t ⋅ PVA(r, g, T − t)) − � ⋅ r ⋅ �t ⋅ (1 − r ⋅ PVA(r, g, T − t))

+ 1 − � ⋅ r ⋅ �t ⋅ PVA(r, g,T − t) + � ⋅ r ⋅ �t ⋅ ⋅PVA(r, g,T − t) ,
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It remains to deduce the formula for the cost of equity. The computation is straight-
forward. By using the definition of the WACC, k�

t
= �𝓁 ⋅ (1 − �t) + r ⋅ (1 − �) ⋅ �t , 

and equating it to Eq. (9), we obtain

Dividing both sides by (1 − �t) and defining Lt ∶=
�t

1−�t
 yields the levered cost of 

equity. 	�  ◻

Proof of Proposition 2  From the results in Sect. 3.1, we deduce

To show that the first sum converges, we want to apply Lemma 2. To do so, we 
define

For k → ∞ , follows ak ↘ a with

since �k ↘ � , see the proof of Lemma 1. By assumption holds a > 1 . It follows that, 
by applying Lemma 2, Eq. (51) simplifies to

Solving the circularity problem, that is, solving for the market value of the firm, 
yields the claim. 	�  ◻

Proof of Proposition 3  In this proof, we forgo the labeling of the case of two debt 
categories in the exponent of the adjustment sequence and write � instead of �(2) . 
The formula for the computation of the value of the levered firm in Eq. (24) must be 
equal to Eq. (25). Solving for the WACC yields

Applying the relation k� = �𝓁 ⋅ (1 − �) + r ⋅ (1 − �) ⋅ � , equating Eq. (52) and this 
expression, and solving for �𝓁 ⋅ (1 − �) yields

�𝓁 ⋅ (1 − �t) = k�
t
− r ⋅ (1 − �) ⋅ �t

= �u − (�u − r) ⋅ � ⋅ r ⋅ �t ⋅ PVA(r, g, T − t) − � ⋅ r ⋅ �t

− r ⋅ (1 − �) ⋅ �t

= �u ⋅ (1 − �t) + (�u − r) ⋅ (1 − � ⋅ r ⋅ PVA(r, g,T − t)) ⋅ �t.

(51)V𝓁

0
= lim

T→∞

T
�

t=1

E[F̃CFt]
∏t

s=1
(1 + �u) ⋅ �

(2)

T−s+1

+
� ⋅ r ⋅ D1

0

(1 + r) ⋅ �
(2)

T

.

ak ∶= �k ⋅
1 + �u

1 + g
.

a ∶= � ⋅
1 + �u

1 + g
,

V𝓁

0
=

�[F̃CF1]

k∗ − g
+

� ⋅ r ⋅ D1

0

1 + r∗
=

�[F̃CF1]

k∗ − g
+

� ⋅ r ⋅ �(2) ⋅ V𝓁

0

1 + r∗
.

(52)k� = k∗ − (k∗ − g) ⋅
� ⋅ r ⋅ �(2)

1 + r∗
.
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By plugging in the definition of k∗ and r∗ , we obtain

By using that � is a fixed point of the sequence (�k)k∈ℕ , see Eq. (23), we obtain

Adding and subtracting �u ⋅ � results in

Dividing both sides by (1 − �) and defining L ∶=
�

1−�
 as the leverage yields the cost 

of equity.
The expression of k� can be derived by applying the definition of the WACC and 

inserting �� . We obtain

which proves the claim. 	�  ◻

Proof of Proposition 4  Note that

�𝓁 ⋅ (1 − �) = k∗ − (k∗ − g) ⋅
� ⋅ r ⋅ �(2)

1 + r∗
− r ⋅ � + � ⋅ r ⋅ �.

�𝓁 ⋅ (1 − �) = (1 + �u) ⋅ � − 1 − � ⋅ r ⋅ �(2) ⋅
(1 + �u) ⋅ � − 1 − g

(1 + r) ⋅ �
− r ⋅ � + � ⋅ r ⋅ �

= (1 + �u) ⋅ � − 1 − � ⋅ r ⋅ �(2) ⋅

(

1 + �u

1 + r
−

1 + g

(1 + r) ⋅ �

)

− r ⋅ �

+ � ⋅ r ⋅ �.

�𝓁 ⋅ (1 − �) = (1 + �u) ⋅

(

1 −
� ⋅ r ⋅ �(2)

1 + r
−

� ⋅ r ⋅ �(2) ⋅ (1 + g)

(1 + r)2 ⋅ �

)

− 1

− � ⋅ r ⋅ �(2) ⋅

(

1 + �u

1 + r
−

1 + g

(1 + r) ⋅ �

)

− r ⋅ � + � ⋅ r ⋅ �

= (1 + �u) ⋅

(

1 − 2 ⋅
� ⋅ r ⋅ �(2)

1 + r
−

� ⋅ r ⋅ �(2) ⋅ (1 + g)

(1 + r)2 ⋅ �

)

− 1

+ (1 + r) ⋅

(

� ⋅ r ⋅ �

1 + r
+

� ⋅ r ⋅ �(2) ⋅ (1 + g)

(1 + r)2 ⋅ �

)

− r ⋅ �.

�𝓁 ⋅ (1 − �) = (�u − r) ⋅

(

� −
� ⋅ r ⋅ �

1 + r
−

1

2
⋅
� ⋅ r ⋅ � ⋅ (1 + g)

(1 + r)2 ⋅ �

)

+ �u ⋅ (1 − �).

k� = (1 − �) ⋅ �𝓁 + r ⋅ (1 − �) ⋅ �

= (1 − �) ⋅ �u + (�u − r) ⋅

(

1 −
� ⋅ r

1 + r
−

1

2
⋅
� ⋅ r ⋅ (1 + g)

(1 + r)2 ⋅ �

)

⋅ � + r ⋅ �

− r ⋅ � ⋅ �

= �u − (�u − r) ⋅

(

� ⋅ r

1 + r
−

1

2
⋅
� ⋅ r ⋅ (1 + g)

(1 + r)2 ⋅ �

)

⋅ � − (1 + r) ⋅
r ⋅ � ⋅ �

1 + r

= �u − � ⋅ r ⋅ � ⋅
(1 + �u)

1 + r
− (�u − r) ⋅

1

2
⋅
� ⋅ r ⋅ � ⋅ (1 + g)

(1 + r)2 ⋅ �
,
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Using this result, inserting Dt
0
= �(T) ⋅ V𝓁

0
 , and solving the circularity problem in Eq. 

(35) yields

We can simplify this expression using Lemma 4 to

where x is defined as in Eq. (37), which shows the claim. 	�  ◻

Proof of Proposition 5  The proof of the adjustment formula has the same structure 
as the proof of Proposition 3. The formula for the computation of the value of the 
levered firm, see Eq. (53) must be equal to Eq. (25). Solving for the WACC yields

Note that we again forgo the labeling of the case of T debt catego-
ries and write � instead of �(T) in the following. Applying the relation 
k� = �𝓁 ⋅ (1 − �) + r ⋅ (1 − �) ⋅ � , equating it to the above equation, and solving for 
�𝓁 ⋅ (1 − �) yields

Using that � is a fixed point of the sequence (�k)k∈ℕ , see Eq. (33), results in

T−1
∑

s=1

s
∑

t=1

(1 + g)T−s−1

(1 + r∗)T−s
=

T−1
∑

s=1

(T − s) ⋅ (1 + g)s−1

(1 + r∗)s
.

(53)V𝓁

0
=

�[F̃CF1]

k∗ − g
⋅

(

1 − � ⋅ r ⋅ �(T) ⋅

T−1
∑

s=1

(T − s) ⋅ (1 + g)s−1

(1 + r∗)s

)−1

.

V𝓁

0
=

�[F̃CF1]

k∗ − g
⋅

(

1 −
� ⋅ r ⋅ �(T)

1 + r
⋅
(1 + x)T − Tx − 1

x2

)−1

,

k� = (k∗ − g) ⋅

(

1 − � ⋅ r ⋅ �(T) ⋅

T−1
∑

s=1

(T − s) ⋅ (1 + g)s−1

(1 + r∗)s

)

+ g

= k∗ − (k∗ − g) ⋅ � ⋅ r ⋅ �(T) ⋅

T−1
∑

s=1

(T − s) ⋅ (1 + g)s−1

(1 + r∗)s
.

�𝓁 ⋅ (1 − �) = k∗ − (k∗ − g) ⋅ � ⋅ r ⋅ �(T) ⋅

T−1
∑

s=1

(T − s) ⋅ (1 + g)s−1

(1 + r∗)s
− r ⋅ (1 − �) ⋅ �

= (1 + �u) ⋅ � − 1 − ((1 + �u) ⋅ � − (1 + g)) ⋅ � ⋅ r ⋅ �(T)

⋅

T−1
∑

s=1

(T − s) ⋅ (1 + g)s−1

(1 + r∗)s
− r ⋅ (1 − �) ⋅ �.
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which can be written as

Dividing both sides by (1 − �) yields

Inserting the leverage L =
�

1−�
 yields Eq. (38). As in the Proof of Proposition 4, we 

can simplify the sum using Lemma 4, which results in

where x is defined as in Eq. (37). This proves Eq. (39)
Inserting this expression for �� in the definition of the WACC yields

�𝓁 ⋅ (1 − �) = (1 + �u) ⋅

(

1 −
� ⋅ r ⋅ �(T)

1 + r
−

T−1
∑

t=1

� ⋅ r ⋅ �(T) ⋅ (1 + g)t

(1 + r)t+1 ⋅ �t

)

− 1

− (1 + �u) ⋅ � ⋅ r ⋅ �(T) ⋅

T−1
∑

s=1

(T − s) ⋅ (1 + g)s−1

(1 + r)s ⋅ �s−1

+ (1 + r) ⋅ � ⋅ r ⋅ �(T) ⋅

T−1
∑

s=1

(T − s) ⋅ (1 + g)s

(1 + r)s+1 ⋅ �s
− r ⋅ �

+ (1 + r) ⋅
� ⋅ r ⋅ �(T) ⋅ T

1 + r
,

�𝓁 ⋅ (1 − �) = (1 + �u) ⋅

(

1 − � ⋅ r ⋅ �(T) ⋅

( T−1
∑

t=0

(1 + g)t

(1 + r)t+1 ⋅ �t
− 1

+

T−1
∑

s=0

(T − s − 1) ⋅ (1 + g)s

(1 + r)s+1 ⋅ �s

))

+ (1 + r) ⋅ � ⋅ r ⋅ �(T) ⋅

T−1
∑

s=0

(T − s) ⋅ (1 + g)s

(1 + r)s+1 ⋅ �s

− r ⋅ � + �u ⋅ � − �u ⋅ �

= (�u − r) ⋅

(

� − � ⋅ r ⋅ �(T) ⋅

T−1
∑

s=0

(T − s) ⋅ (1 + g)s

(1 + r)s+1 ⋅ �s

)

+ �u ⋅ (1 − �).

�u = �u + (�u − r) ⋅

(

1 − � ⋅ r ⋅
1

T
⋅

T−1
∑

s=0

(T − s) ⋅ (1 + g)s

(1 + r)s+1 ⋅ �s

)

⋅
�

1 − �

= �u + (�u − r) ⋅

(

1 − � ⋅ r ⋅

T−1
∑

s=0

(

1 −
s

T

)

⋅
(1 + g)s

(1 + r)s+1 ⋅ �s

)

⋅
�

1 − �
.

�𝓁 = �u + (�u − r) ⋅

(

1 −
� ⋅ r

1 + r
⋅
(1 + x)T+1 − (T + 1) ⋅ x − 1

Tx2

)

⋅
�

1 − �
,
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which shows the claim. 	�  ◻

Lemma 1  Let a > 0 , b > 0 , and a2 > b . We define (�k)k∈ℕ as a recursive sequence, 
with �1 ∶= 2a and

for k > 1 . Then, this sequence converges to

Proof  We show that (�k)k∈ℕ is monotonously decreasing and bounded from below. 
We can show the former by induction. Since a > 0 and b > 0 , it follows that 𝛾2 < 𝛾1 . 
For k ∈ ℕ , we assume that 𝛾k < 𝛾k−1 and conclude

Next, we show that it is bounded from below by

If �k = � + � for 𝜀 > 0 , that is, �k is greater than � , we show that the next term is also 
greater than � : Since 𝛾 > 0 , we have

Additionally, since a > 0 and b > 0 , it follows that 𝛾1 = 2a > 𝛾 . Hence, the sequence 
(�k)k∈ℕ is monotonously decreasing and bounded from below by � which implies that 
(�k)k∈ℕ converges. The limit follows from

which yields

k� = �u ⋅ (1 − �) + (�u − r) ⋅

(

1 −
� ⋅ r

1 + r
⋅
(1 + x)T+1 − (T + 1) ⋅ x − 1

Tx2

)

⋅ �

+ r ⋅ (1 − �) ⋅ �

= �u − (�u − r) ⋅
� ⋅ r

1 + r
⋅
(1 + x)T+1 − (T + 1) ⋅ x − 1

Tx2
⋅ � − r ⋅ � ⋅ � ,

�k ∶= 2a −
b

�k−1

� = a +
√

a2 − b.

𝛾k+1 = 2a −
b

𝛾k
< 2a −

b

𝛾k−1
= 𝛾k.

� ∶= a +
√

a2 − b.

𝛾k+1 = 2a −
b

𝛾k
= 2a −

b

𝛾 + 𝜀
= 2a −

b

𝛾
+

b

𝛾
−

b

𝛾 + 𝜀

= 𝛾 +

(

b

𝛾
−

b

𝛾 + 𝜀

)

> 𝛾 .

lim
k→∞

�k+1 = 2a −
b

limk→∞ �k
,

lim
k→∞

�k = a +
√

a2 − b = � .
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	�  ◻

Corollary 1  Let �, r, � ∈ [0, 1], �(2) ∶=
1

2
� , and

In the case T = 2 , that is, for two debt categories, the sequence (�(2)
k
)k∈ℕ with 

�
(2)

1
∶= 1 −

�⋅r⋅�(2)

1+r
 and

converges to �(2) for k → ∞ , where

Proof  We want to apply Lemma 1. To do so, we define

It remains to show that the assumptions of Proposition 1 are valid. Since 
𝜏 ⋅ r ⋅ 𝜃(2) < 1 and 1 + r > 1 , it follows a > 0 . Moreover, b > 0 holds by assumption. 
To check a2 > b , note that

	�  ◻

Lemma 2  Let (an)n∈ℕ be a sequence that converges from above to a > 1 for n → ∞ . 
It follows

Proof  We define

−1 < g <
1

4
⋅
(1 + r − 𝜏 ⋅ r ⋅ 𝜃(2))2

𝜏 ⋅ r ⋅ 𝜃(2)
− 1.

�
(2)

k
= 1 −

� ⋅ r ⋅ �(2)

1 + r
−

� ⋅ r ⋅ �(2) ⋅ (1 + g)

(1 + r)2 ⋅ �

�(2) =
1 + r − � ⋅ r ⋅ �(2)

2 ⋅ (1 + r)
+

1

2 ⋅ (1 + r)

⋅

√

(1 + r)2 − 2 ⋅ (1 + r) ⋅ � ⋅ r ⋅ �(2) + (� ⋅ r ⋅ �(2) − 4 ⋅ (1 + g)) ⋅ � ⋅ r ⋅ �(2) .

a ∶=
1

2
⋅

(

1 −
� ⋅ r ⋅ �(2)

1 + r

)

and b ∶=
� ⋅ r ⋅ �(2) ⋅ (1 + g)

(1 + r)2
.

g <
1

4
⋅
(1 + r − 𝜏 ⋅ r ⋅ 𝜃(2))2

𝜏 ⋅ r ⋅ 𝜃(2)
− 1

⇔
1

4
⋅

(

1 −
𝜏 ⋅ r ⋅ 𝜃(2)

1 + r

)2

>
𝜏 ⋅ r ⋅ 𝜃(2) ⋅ (1 + g)

(1 + r)2
.

lim
T→∞

T
�

t=1

1
∏t

s=1
aT−s+1

=

∞
�

t=1

1

at
=

1

a − 1
.

ST ∶=

T
�

t=1

1
∏t

s=1
aT−s+1

.
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By assumption holds at ≥ a > 1 , which implies ST ≤
1

a−1
 . Furthermore, by defini-

tion, we have

It follows ST+1 ≥ ST . Thus, the sequence (ST )T∈ℕ is monotonously increasing and 
bounded from above. Hence, the sequence converges. For the limit holds

Since limT→∞ at = a , the claim follows. 	�  ◻

Lemma 3  Let �, r, � ∈ [0, 1] , and �(T) ∶= 1

T
� . For an arbitrary number of T debt cat-

egories, the sequence (�(T)
k
)k∈ℕ with �(T)

1
∶= 1 −

�⋅r⋅�(T)

1+r
 and

converges to �(T) for k → ∞ if T is even,

and

or if g > −1 and T is uneven.

Proof  The proof is similarly structured to the proof of Lemma 1. First, we need to 
show that the function

has at least one real root. For T odd, this is a well-known result (see e.g., Kriz and 
Pultr 2013, p. 9). For T even, note that f (x) > 0 for x ∈ {0, 1} . If we can show that 
there exists an x ∈ (0, 1) with f (x) < 0 , it follows that f has a root x ∈ (0, 1) . We 
want to show

From the assumptions follows

ST+1 =
1

aT+1
⋅ (1 + ST ).

lim
T→∞

ST+1 =
1

limT→∞ aT+1
⋅

(

1 + lim
T→∞

ST

)

.

�
(T)

k
∶= 1 −

� ⋅ r ⋅ �(T)

1 + r
−

min{k,T}−1
�

t=1

� ⋅ r ⋅ �(T) ⋅ (1 + g)t

(1 + r)t+1 ⋅
∏t

s=1
�
(T)

k−s

−1 ≤ g ≤ (1 + r) ⋅
(

1

T2
⋅

1 + r

� ⋅ r ⋅ �(T)

)

1

n−1

⋅
T − 1

T
− 1 ,

� ⋅ r ⋅ �

1 + r
≤

1

T
,

f (x) = xT − xT−1 +
� ⋅ r ⋅ �(T)

1 + r
⋅

T−1
∑

j=0

(1 + g)j

(1 + r)j
⋅ xT−1−j

(54)f
(

T − 1

T

)

< 0.
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for x = T−1

T
 . We obtain

which implies that Eq. (54) is true. We conclude that �(T)
k

 has at least one fixed point 
� ∈ ℝ.

Let �∗ be the largest real fixed point. We want to show that the sequence con-
verges to �∗ . To do so, we show that (�(T)

k
)k∈ℕ is monotonously decreasing and 

bounded from below. The former assumption is proven by induction. Note that 
�
(T)

1
≥ �

(T)

2
≥ ⋯ ≥ �

(T)

T
 holds. We now assume that �(T)

k−T+1
≥ �

(T)

k−T+2
≥ ⋯ ≥ �

(T)

k
 for 

k ≥ T  and conclude

It remains to show that (�(T)
k
)k∈ℕ is bounded from below by �∗ . We assume that 

�
(T)

k
≥ �∗ and show �(T)

k+1
≥ �∗ . The inequality �(T)

k
≥ �∗ implies �(T)

k−1
,… , �

(T)

k+2−T
≥ �∗ , 

which yields

We conclude that (�(T)t )k∈ℕ converges to the largest real fixed point �∗ . By defining 
�(T) ∶= �∗ , the claim follows. 	�  ◻

Lemma 4  For T ∈ ℕ and x > 0 holds

Proof  For a proof see Gradshteyn and Ryzhik (2007, Eq. 0.113). 	�  ◻

� ⋅ r ⋅ �(T)

1 + r
⋅ T ⋅

(

max

{

1 + g

1 + r
, x

})T−1

≤ xT−1 ⋅ (1 − x) ,

� ⋅ r ⋅ �(T)

1 + r
⋅

T−1
∑

j=0

(1 + g)j

(1 + r)j
⋅ xT−1−j ≤ xT−1 ⋅ (1 − x) ,

�
(T)

k+1
= 1 −

� ⋅ r ⋅ �(T)

1 + r
−

T−1
�

t=1

� ⋅ r ⋅ �(T) ⋅ (1 + g)t

(1 + r)t+1 ⋅
∏t

s=1
�
(T)

k+1−s

≤ 1 −
� ⋅ r ⋅ �(T)

1 + r
−

T−1
�

t=1

� ⋅ r ⋅ �(T) ⋅ (1 + g)t

(1 + r)t+1 ⋅
∏t

s=1
�
(T)

k−s

= �
(T)

k
.

�
(T)

k+1
= 1 −

� ⋅ r ⋅ �(T)

1 + r
−

T−1
�

t=1

� ⋅ r ⋅ �(T) ⋅ (1 + g)t

(1 + r)t+1 ⋅
∏t

s=1
�
(T)

k+1−s

≥ 1 −
� ⋅ r ⋅ �(T)

1 + r
−

T−1
�

t=1

� ⋅ r ⋅ �(T) ⋅ (1 + g)t

(1 + r)t+1 ⋅ (�∗)t

= �∗ .

T−1
∑

s=0

(T − s) ⋅ (1 + x)s =
(1 + x)T+1 − (T + 1) ⋅ x − 1

x2
.
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