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Abstract
We investigate the impact of farmers’ egocentric information network on technical efficiency and its distribution in the
network, using observational data of 600 farmers from northern Ghana. We exploit community detection algorithms to
endogenously identify homogeneous network communities with known structures to account for spatial heterogeneity, in a
spatial stochastic frontier model that controls for social selection bias. The empirical results reveal that at the global network
level, farmers’ technical efficiency strongly correlate with that of farmers in their egocentric networks. Our findings also show
that farmers who are technically less efficient tend to depend on the more efficient farmers in their networks to improve
efficiency. We further find that estimating spatial dependence of technical efficiency without accounting for spatial
heterogeneity can lead to underestimation of technical efficiency of high (efficiency score >0.6) performing farmers, while
overestimating that of medium (efficiency scores between 0.36–0.5) and low (efficiency scores between 0.1–0.35) performing
farmers. The findings suggest that identifying central farmers in egocentric networks and improving their technical knowledge
in a farmer-to-farmer extension organization, can contribute to improving the productivity of many farmers.

Keywords Egocentric information network ● Stochastic frontier analysis ● Spatial heterogeneity ● Technical efficiency ●

Technology adoption
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1 Introduction

In many industries, the production managers’ first point of
contact for information on new production technologies is
through their personal acquaintances, friends, and networks
in the same or similar industry (Chatterjee and Dutta 2016).
Personal information networks1 (or egocentric information

networks) serves as an important information channel for
diffusion and adoption of new production technologies
(Abdul Mumin and Abdulai 2022). The level of knowledge
of people who learn from their personal information net-
works is said to be correlated with the knowledge level of
persons from whom they learn (Fafchamps et al. 2021).
Yet, the influence of personal information networks on firm
productivity, in terms of technical (in)efficiency, appears to
be overlooked in the literature. In agricultural production,
inadequate information on innovative agricultural technol-
ogies continue to be a major constraint and the jinx
to low technology adoption among smallholder farmers in
developing countries (De Janvry et al. 2017; Foster and
Rosenzweig 2010; Suri 2011). The low technology adop-
tion among farmers has been identified as one of the root
causes of low productivity and high poverty incidence
among smallholder farmers (Takahashi et al. 2020; Abdulai
and Huffman 2014). Weak and ineffective extension ser-
vices due to resource constraints to employ and equip
extension agents to serve the needs of the widely dispersed
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1 An egocentric network refers to a network consisting of well-
identified focal persons (known as the egos) and members within their
personal contacts or networks (known as the alters) (Yen et al. 2016).
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smallholder farmers who constitute majority of the farming
population in many developing countries, accounts for the
inadequate information (Mohammed and Abdulai 2022;
Blum and Szonyi 2011).

The use of farmers’ personal information networks is
viewed as a potential information channel to leverage the
limited number of extension agents to aid in the diffusion of
information on improved technologies to farmers (Beaman
and Dillon 2018; Valente 1996). The process of using
personal information networks to diffuse information about
new technologies or products in order to accelerate adop-
tion, or improve organizational performance is described in
the literature as the network interventions approach
(Valente 2012). One strategy of the network interventions
approach that has become popular among development
practitioners and organizational managers is the segmenta-
tion strategy. This strategy is cost-effective and efficient, as
it relies on passing the new information to an identified
group of persons who act as change agents rather than
trying to reach individual farmers (Fafchamps et al. 2021;
Valente 2012). A major area of application of the seg-
mentation strategy of the network intervention approach in
agricultural development is the use of the lead farmer
concept in peer-to-peer agricultural extension delivery.

The potential of farmers’ networks to diffuse information
about new technologies, due to social learning have been
extensively explored in the literature within the last decade
(e.g., Bandeira and Rasul 2006; Conley and Udry 2010;
Kondylis et al. 2017; Beaman and Dillon 2018). For
instance, Kondylis et al. (2017) found that contact farmers’
personal information networks played a significant role in
the diffusion and adoption of sustainable land management
practices among farmers in central Mozambique. However,
evidence suggest that there is strong correlation of knowl-
edge gain on a given technology by farmers who learn from
their personal information networks with those from whom
they learn (Fafchamps et al. 2021). The observed correlation
between farmers’ knowledge with their personal informa-
tion networks suggests that the likelihood of farmers’
technical (in)efficiency being correlated with that of the
peers from whom they learn could be equally high. This
may be due to factors such as informational inadequacies,
willingness to share information, common shocks, and
differing absorptive capacity among individual farmers
(Kondylis et al. 2017; Bochma 2005).

A number of recent studies have considered the potential
correlation of technical efficiencies between contagious
production units in the literature. For example, among
neighboring electricity and chemical firms (e.g., Orea and
Álvarez 2019; Kutlu et al. 2020), provincial and regional
administrative units (e.g., Tsionas and Michaelides 2016;
Gude et al. 2018; de Graaff 2020), airports and transpor-
tation terminals (e.g., Pavlyuk 2019), sport teams (e.g.,

Horrace and Jung 2018) and wine industries (e.g., Fusco
and Vidoli 2013; Vidoli et al. 2016). In agricultural pro-
duction, the influence of geographical and economic
proximity on farmers’ efficiency have also been considered.
Some earlier studies of spatial dependence of technical
efficiency in agriculture include, Druska and Horrace
(2004) study on rice farmers in Indonesia, Schmidt et al.
(2009) on regional farms in Brazil, Areal et al. (2012) on
dairy farms in England and Wales. Some recent studies
include, Billé et al. (2018) study on olive farms in Italy,
Pede et al. (2018), and Areal and Pede (2021) studies on
rice farmers in the Philippines. However, the form of con-
tiguity considered by almost all these studies is based on
geographical location, position, or distance (i.e., physical
contiguity) between the production units or farms. The
physical contiguity approach is based on the assumption
that farmers embedded in social communities learn from
their peers, given the similar environmental and social
factors they face and the socio-economic relationships they
share, thus creating a local terroir effect (Vidoli et al. 2016;
Billé et al. 2018).

However, while the physical contiguity approach may
account for environmental, climatic, and edaphic factors in
the production system, it is insufficient to address the issue
of informational inadequacies among interacting farmers
that lead to learning. Despite, the voluminous literature on
the impact of the information networks on adoption of new
technologies and yields, there is paucity of knowledge on
how the network contributes to technical (in)efficiency in
the production functions of the individual farmers who
constitute the information network. This is important
because the position of farmers in a network who are first to
receive information about a new technology have distribu-
tional consequences among members in the network (e.g.,
Banerjee et al. 2013; Beaman and Dillon 2018).

The present study attempts to fill the knowledge gap on
how information networks influence farmers’ technical (in)
efficiency, by considering farmers’ relationship within a
social space separated by social distance in a social net-
work, rather than, geographical space separated by physical
distance of the farm location. Specifically, we use a unique
survey data of 600 soybean farmers to investigate the
influence of farmers personal information networks (i.e.,
the egocentric networks) on their technical (in)efficiency
and its distributive mechanisms in the network, while
controlling for social selection bias. We estimate a spatial
stochastic frontier analysis (SSFA) model that accounts for
unobserved spatial heterogeneity, which presents a potential
source of endogeneity in efficiency analysis and could bias
the estimates (Kutlu et al. 2020; Qu and Lee 2015).

Our findings show that egocentric information network
influence on technical (in)efficiency of farmers is network-
specific and heterogeneous according to the nature of the
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social ties between farmers in the network. We find that
farmers who share farming information with inefficient
farmers are more likely to be inefficient, a correlation that
suggests farmers learn from efficient peers in order to
improve their own efficiency. We observed that failure to
account for the influence of farmers’ egocentric information
networks effects in the production process, as a special case
of spatial heterogeneity, can lead to negative efficiency bias
estimates among high efficient farmers and positive effi-
ciency bias among low to medium efficient farmers.

The present study contributes to the literature by incor-
porating social network structure into efficiency analysis,
using stochastic frontier analysis. To the best of our
knowledge, this is the first attempt to consider the impact of
social interactions in technical (in)efficiency analysis.

The rest of the paper is organized as follows; Section 2
discusses the conceptual framework and the estimation strat-
egy of the study. We then discuss the data and the empirical
results in Sections 3 and 4 respectively, while Section 5
presents the conclusions of the study.

2 Conceptual framework and estimation
strategy

In this section, we present a conceptual framework to
illustrate the mechanism by which the egocentric informa-
tion network membership could influence the farmers’
technical in(efficiency) as well as the empirical strategy
employed in this study for identification and estimation.

2.1 Socio-spatial stochastic frontier analysis with
social network dependence

We assume that farmers are homogeneous in regards to their
production technology. Let Yi denote an individual farmer’s
soybean output and Xi be a vector of production factors. The
farmer’s production function can be specified as follows;

Yi ¼ ln f Xi; βið Þð Þ þ vi � ui; and ui � 0; i ¼ 1; ¼ ; n½ �
ð1Þ

where Yi is a vector of log outputs (yield) of the farmer, X is
a vector of production factors, β is a vector of parameters of
interest, u represents the inefficiency term, and v the random
error term, assumed to be iid with; v � iid N 0; σ2vI

� �
and

u � iid Nþ 0; σ2uI
� �

, where I is an identity matrix.
The performance of farmers producing under any given

technology, without external influence on the farmers’
technical abilities can be estimated from Eq. 1. However,
when a farmer obtains technical knowledge of a given
technology from other farmers through information
exchange, the possibility of the farmer’s technical ability to

be influenced by informational inadequacies from the
farmers with whom they exchange information may increase
(Fafchamps et al. 2021; Kondylis et al. 2017). Hence, ana-
lysis of the farmer’s productivity under any technology that
ignores the influence of the informational inadequacies of
other farmers in the farmer’s production function, could
suffer a potential bias, due to the unobserved informational
inadequacies (Horrace and jung 2018).

To account for the influence of other farmers’ informa-
tional inadequacies in the production function of the farmer;
let gf represent village level farmer information network,
with gf(gf= 1,…, GFN) ∈ GF, where GF is a set of all farmer
information networks across N villages. Furthermore, let wij

represent the link that exists between farmer i and j(i ≠ j),
defined as wij= 1, if farmer i shares agricultural information
with farmer j, otherwise wij= 0, and wij ∈ Wij, where Wij is
the social contiguity matrix (or adjacency matrix). The
social contiguity matrix is assumed to be undirected (i.e.,
wij= wji) and i cannot share information with i (i.e., wii ≠ 1).
In line with Fusco and Vidoli (2013) and Vidoli et al.
(2016), we re-specify (suppressing the subscript) Eq. 1, as a
socio-spatial stochastic frontier model2 that accounts for the
interdependency of the farmer’s inefficiency on the infor-
mation network as follows;

lnY ¼ ln f X; βð Þð Þ þ v� I � ρWð Þ�1eu ð2Þ

where W is the adjacency matrix of the network, ρ is the
spatial lag parameter (ρ ∈ [0, 1]), v and eu are the random
error and latent unknown terms respectively, assumed to
be distributed as v � iid N 0; σ2vI

� �
and eu � iid N 0; σ2~uI

� �
,

respectively. The inefficiency term u in Eq. 1 is
expressed as u= (I−ρW)−1, and assumed to be distrib-
uted as u~N+(0,[(I−ρW)−1(I−ρW)−1(I−ρW′)−1]σ2eu).

This specification was first introduced by Areal et al.
(2012), but estimated using the Bayesian approach. How-
ever, the specification employed here, is the frequentist
approach developed by Fusco and Vidoli (2013) and Vidoli
et al. (2016), which is estimated using maximum likelihood
approach. This specification is more convenient, because, it
adopts a one-stage estimation procedure, which makes it
more efficient and easier to compare with the standard
stochastic frontier analysis with the spatial stochastic fron-
tier analysis for consistency, since the spatial stochastic
frontier model converges to the standard stochastic frontier
model in the absence of spatial dependence (i.e., ρ= 0).
Furthermore, because the specification limits the analysis to
only the inefficiency term in the stochastic frontier model,

2 Socio-spatial stochastic frontier model as used in this study refers to
a spatial stochastic frontier model that uses social distance of nodes
within a social network as the contiguity matrix (W), rather than,
physical distance between firms or farms within a geographical area.
We acknowledge an anonymous reviewer for suggesting this term.
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there is substantial reduction in the model’s complexity
(Vidoli et al. 2016).

2.2 Identification and endogeneity issues of spatial
heterogeneity

The spatial stochastic frontier model expressed in Eq. 2
above accounts for the unobserved spatial dependence in
the farmer’s production function and not the unobserved
spatial heterogeneity. This is because spatial hetero-
geneity arises due to unobserved structural changes
within the network structure itself and not in the model
parameters3. That is, clusters (or spatial regimes) that are
observed in reality varies in structure over geographical
or social space, resulting in the inverse problem (Anselin
2010). Spatial heterogeneity, therefore, presents a
potential source of endogeneity in efficiency analysis
(Kutlu et al. 2020; Qu and Lee 2015), which has proved
to be a challenge in empirical analysis, particularly, when
employing geographically based proximity measures as
the weighting matrix (i.e., the contiguity matrix), since
such measures do not easily change in reality. The reason
for the empirical challenge is that the identification pro-
blem tends to focus on the contiguity matrix, which
embodies the network structure rather than the observed
covariates. In a recent study, Billé et al. (2018) suggest
using a computer-based algorithm that can endogenously
identify, in a data-driven approach, spatial homogeneous
regimes or clusters from observed real-world spatial data,
as a way to account for spatial heterogeneity. Following
this approach, let eW represent the contiguity matrix of a
homogeneous specific network community that can be
identified from observed real-world information network
data. By substitution, Eq. 2 can be re-specified in terms
of the specific network community adjusted contiguity
matrix as follows;

lnY ¼ ln f X; βð Þð Þ þ v� ðI � ρð eWÞÞ�1eu ð3Þ

2.3 Impact of spatial effects on productivity
performance

To assess the benefits that farmers derive from the infor-
mation network, we employ the structural imbalance dis-
tance measure expressed in Vidoli et al. (2016), as well as

Fusco and Vidoli (2013) as follows;

d
iΔbE ¼

bESFAi � bESSFAi

bESFAi

� 100; 8i ¼ 1; ¼ ;N ð4Þ

where bESFAi and bESSFAi are the predicted efficiencies at the
standard stochastic frontier model and the spatial stochastic
frontier model for individual farmer i, respectively, and
d
iΔbE is a distance measure of efficiency difference between

the two models. A negative difference indicates improve-
ment in efficiency (the reverse is true for efficiency loss)
performance from the network, while the magnitude
measures the extent of gains or otherwise from the network
(Fusco and Vidoli 2013).

2.4 Distributive mechanisms of gains in egocentric
networks

In this section, we specify the determinants of efficiency
gains and its distribution among farmers within an infor-
mation network and across different networks. This is
important for an informed policy on agriculture extension
service delivery that employs network structures for tech-
nology information dissemination. In the spatial stochastic
frontier analysis literature, contextual environmental factors
are normally regressed on the efficiency distance measure
(i.e., d

iΔbE) and the coefficients interpreted as determinants.
The information network is highly hierarchical because it is
composed of individual farmers sampled from a cross-
section of smaller units of personal information networks
and pooled together to form the village network (see Figure
A1 in the Appendix for a sample village network). As such,
we employ the spatial effect Cox proportional hazard model
with individual level covariate adjustment, which is more
appropriate (Bai et al. 2020; Banerjee and Dey 2005).

Given that the distribution of benefits within a social
network is assumed to be nonlinear within the framework of
social proximity and social embeddedness theory (Bochma
2005). We follow the approach of Bai et al. (2020), which
estimates a generalized additive spatial effect Cox model by
employing a spatial smoothing function to adjust for indi-
vidual farmer and network characteristics. Specifically, we
estimate a spatial survival time-event Cox model, which is
more appropriate for smaller number of units (Banerjee and
Dey 2005). In addition, the interpretation of the sign of the
distance measure of benefit d

iΔbE, makes it amenable to
survival analysis. We convert d

iΔbE to a binary event
occurrence variable in which the negative sign indicating
positive gains on efficiency performance is equal to 1
(implies the farmer benefits from efficiency gain due to the
network) and 0, otherwise. Next, the individual farmer
predicted mean efficiency score from the SSFA model (i.e.,
bESSFAi ) representing the efficiency level then becomes the

3 The spatial heterogeneity being refer to in this study arises due to the
differences in the social network structures of the individual egocentric
networks in which farmers belong. Since our data is not panel, we are
unable to estimate a spatial panel model to account for individual
farmer heterogeneity, in addition to the network structural hetero-
geneity, a limitation we acknowledge in this study.
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survival time variable in the estimation. That is, the level of
technical efficiency at which the individual farmer is said to
have benefited as a result of being a member of the infor-
mation network. In line with Bai et al. (2020), the gen-
eralized additive spatial effect Cox model for individual
farmer i in information network gf is specified as follows;

λi gf
� � ¼ λ0 gf

� �
exp Xiβi þ sif g ¼ ηi ¼ Xiβi þ si ð5Þ

where λi(.) is the benefit hazard function of farmer i in
network gf, X is a vector of observed factors that determine
the farmer’s spatial efficiency gains and its distribution
across individual networks, s is a network-specific structural
property. However, because the network-specific structural
property has been accounted for in the adjusted weighting
matrix (i.e., eW), in order to ensure identification, we assume
si in Eq. (5) to be equal to zero in the estimation.

2.5 Estimation strategy

We estimate both Eqs. 2 and 3 using maximum likelihood
estimation procedure implemented in the R software (R Core
Team 2017), by combining the packages offered by Fusco
and Vidoli (2013) and Pavlyuk (2019). Equation 5 is esti-
mated using partial likelihood estimation approach also in the
R package offered by Bai et al. (2020). To ensure identifi-
cation within the framework of the social network analysis,
we account for social selection bias in all the models esti-
mated by controlling for correlated peer effects and con-
textual effects (Manski 1993)4. A parsimonious empirical
model we estimate can be specified as follows;

yi;gf ¼ xiβi þ γp þ θc þ τd þ εi ð6Þ

where y is the outcome variable (in this case, log yields and
spatial efficiency performance gains) of farmer i in network
gf, x is a vector of observed farm characteristics, p, c and d
denote farmer’s peers, community/village and district level
indicators, respectively, β is a parameter of interest, γ, θ,
τ are vector of peer, community, as well as district level
network fixed-effects, respectively that may correlate with
the observed characteristics of the farmer and ε is a
composite error term, defined as (ε ¼ v� I � ρWð Þ�1eu).
The efficiency calculation for each farmer follows the

approach of Jondrow’s et al. (1982) as expressed in Fusco
and Vidoli (2013)5.

3 Context and data

3.1 Study context

The study context is northern Ghana, where over the last
decade scientific research organizations such as the Inter-
national Institute of Tropical Agriculture (IITA) and the
Council for Scientific and Industrial Research-Savannah
Agricultural Research Institute (CSIR-SARI) and their
partner organizations employed Farmer Based Organiza-
tions (FBOs) concept to disseminate a new agricultural
technology (known as the Rhizobia inoculant) to small-
holder grain-legume farmers. The organizations used con-
ventional extension approaches (e.g., field visits, on-farm
and off-farm demonstrations, etc) as well as innovative
communication channels such as Radio Listening Clubs
(RLCs) and Video Documentaries (VDs) to disseminate and
offer technical training to farmers through the FBOs in three
regions (Northern, Upper East and Upper West) of northern
Ghana. After the training, members of the FBOs became the
initial farmers to disseminate or share their knowledge with
other farmers in their communities to facilitate the adoption
of the new inoculant technology. Thus, the dissemination
program sought to use the farmers’ personal information
networks (i.e., the egocentric social network) to diffuse and
promote adoption of the Rhizobia inoculant technology.
This dissemination approach is likely to result in unob-
served spatial heterogeneity in the performance of the
technology across the population, due to differences in
individual disseminating farmers’ cognitive proximity
(Bochma 2005) and willingness to share knowledge on the
new technology (Di Falco et al. 2018).

3.2 Survey of farm households

Our data is from a recent survey of farm households in the
northern region of Ghana. The survey was conducted from
June to August, 2018. The sample was drawn using a
multistage sampling technique. Based on the proportion of
beneficiary communities (78%) in the inoculant dis-
semination program and intensity of soybean production in
Ghana, northern region was purposively selected. Cluster
sampling technique was employed to zone the region into
two clusters, consisting of eastern corridor zone (ECZ) and
western corridor zone (WCZ). Based on participation status
of districts in the dissemination program and intensity of

4 Peer effect (or correlated effect) refers to a situation whereby
farmers with similar characteristics tend to behave the same. Con-
textual effect (or exogenous effect) refers to the situation whereby
farmers’ behavior varies due to exogenous characteristics or factors.
Endogenous effect arises due to joint occurrence of the individual
farmer’s own outcome and that of the peers’ or neighbors’ outcomes in
the same model specification resulting in the reflection problem of
Manski (1993). The endogenous effect does not arise in the context of
this study, since the study is not estimating a spatially lagged (or
spatial autocorrelation – SAR) model.

5 We refer readers interested in the likelihood specifications to the
relevant references cited in this paper for details.
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soybean production at the district level within the clusters,
eight (8) districts, comprising of four (4) from each cluster
were purposively sampled. From the ECZ, Yendi, Saboba,
Chereponi and Karaga districts were selected, while in the
WCZ, East Mamprusi, East Gonja, Savelugu and Kum-
bungu districts were selected. In consultation with the field
officers and agriculture extension agents (AEAs) in the
selected districts, 5–7 communities were proportionately
sampled, based on dissemination program participation and
the extension channel employed, as well as farmer popu-
lation. One farmer-based organization (FBO) was randomly
selected from a list of FBOs that participated in the dis-
semination program and another randomly selected from a
list of FBOs that did not participate in the program, to
compose the observed intervention network pool. We then
employed a two-stage random sampling technique, which is
detailed in the next section below, to sample 600 farm
households used for this analysis.

3.3 Data on egocentric networks

An egocentric network sampling technique is employed to
sample members of Ego-Alter networks (see Krivitsky and
Morris 2017; Schweinberger et al. 2020)6. Similar approa-
ches have been employed in the literature (e.g. Badham
et al. 2021; Yen et al. 2016; Cai et al. 2015) to sample real
world networks in empirical studies. A two-stage random
sampling technique is employed to sample members of the
egocentric networks. In stage one, using a lottery approach,
we randomly drew five farmers (as the Egos—seed or focal
farmers) from each FBO in the observed intervention net-
work pool. Following an initial interview with the Egos,
using computer assisted personal interview (CAPI), a list of
each farmer’s information network members (INMs) was
compiled as the Alters. In the second stage, the CAPI ran-
dom number generator used farmers’ unique identification
numbers to randomly sample three Alters from each Ego’s
Alter list for interview. The total number of Egos and Alters
for each village is 20, resulting in 20 × 20 undirected social
contiguity matrix (i.e. Wij = Wji) for each sampled village or
community. In order to avoid missing links due to missing
information, a major problem confronting studies that
employ sampled social networks, the data used for this
analysis is restricted to five villages per district, totaling 30
villages across six districts (East Mamprusi, East Gonja,
Savelugu, Kumbungu, Yendi and Karaga), where we have

full data on both the Egos and the Alters. A total undirected
social contiguity matrix size for this analysis is 600 × 600
block matrix, representing the aggregate village networks
for the sampled farm households.

3.4 Network community detection ( eW)

Based on network ecology theory and in line with Billé
et al. (2018), we employ three computer software algo-
rithms (i.e., Clauset et al. 2004; Newman and Girvan 2004;
Pons and Latapy 2006) to identify three homogeneous
virtual network communities with known structural prop-
erties, from observed real-world egocentric network data.
The virtual network community approach is often employed
as a pseudo experimental design in the network intervention
literature to overcome data challenges that threaten identi-
fication and valid statistical inferences. Recent applications
of this approach in the social network literature include;
Simpson (2020), who use observed real-world egocentric
network data of Cai et al. (2015;) in Stochastic Actor-
Oriented Models (SAOM—a simulation based algorithm),
to study the relationship between farm size and social ties
formation among rice farmers in China. In the technology
adoption literature, Valente and Yon (2020) used a similar
approach as in the current paper, to study diffusion of health
practices in social networks, while others employed purely
simulation studies based on observed real-world network
data to study network structure on adoption behavior,
knowledge transfer and productivity (see e.g., Badham et al.
2021; Beaman et al. 2021). Though not in the context of
social network but in productivity analysis, Billé et al.
(2018), employed geographical weighting and adaptive
weight smoothing algorithms (Cleveland and Devlin 1988;
Polzehl and Spokoiny 2000) to study spatial regimes in
olive farm technologies in Italy.

In this study, we denote the three virtual network com-
munities constructed as T0, T1 and T2, each using a specific
algorithm. The algorithms employed are based on mod-
ularity7 maximization procedure, which optimizes a global
criterion over all possible clustering in the network for
community detection (Li et al. 2021; Geng et al. 2019).
Clauset’s et al. (2004) algorithm is employed to detect T1
communities. The algorithm identifies virtual network
communities around farmers (or edges) with high eigen-
vector centrality measure (i.e., a measure of social impor-
tance in the network community) from the observed real-
world network data. Intuitively, the T1 is assumed to cor-
respond to choosing a lead farmer in a community based
on the farmer’s social importance. Newman and Girvan
(2004) algorithm is employed to detect T2 communities.

6 The egocentric sampling design probabilistically generates a sample
of nodes along with their edges who constitute the network. The
network data generated consist of the egos and their alters. The egos
are the focal persons (or nodes) of the network. The alters are the
personal acquaintances, friends, etc, who share specific relationship or
tie (in this study farming information) with the egos (see Yen et al.
2016; Krivitsky and Morris 2017; Schweinbberger et al. 2020).

7 Modularity, is defined as a natural division of network nodes into
densely connected subgroups (Newman and Girvan 2004).

114 Journal of Productivity Analysis (2022) 58:109–128



This algorithm identifies virtual network communities
around farmers with high betweeness centrality (i.e., a
measure of power based on being a bridge for other farmers
to pass through for information in the network) measure in
the observed real-world network data. Intuitively, the T2 is
assumed to correspond to choosing a lead farmer in a
community based on the farmer’s power derived from being
a bridge to access information. The edge-eigenvector and
edge-betweeness community structures have received wide
empirical application in the literature (e.g., Beaman and
Dillon 2018; Beaman et al. 2021; Fafchamps et al. 2021),
due to their importance in information diffusion required
for technology adoption. In order to identify the effects of
network community structure on the economic outcomes of
interest, we employed the algorithm of Pons and Latapy
(2006) to construct a third network community T0, which
assumes a randomly distributed centrality measure in the
network, as the virtual control community for comparison.
This algorithm provides an iid situation for comparison,
since it identifies virtual network communities based on the
assumption that, the virtual communities observed in the
network are randomly formed, and do not necessarily form
around any influential farmer (or node) within the network.
Intuitively, the T0 is assumed to correspond to randomly
choosing any farmer in the community to be a lead farmer
for the community. After identifying homogeneous network
communities with known network structural properties
around influential farmers in the network, we then construct
a network-specific contiguity matrices ( eW) for each net-
work community. The influence of three network char-
acteristics or properties namely; transitivity, degree-
centrality and eccentricity, are analyzed for each detected
network community8. These social ties are chosen based on
their importance and wider application in technology
adoption studies using social networks in the literature (e.g.,
Beaman et al. 2021; Fafchamps et al. 2021; Simpson 2020;
Beaman and Dillon 2018). Table 1 presents the layout of
the adjusted matrices and the social ties.

By iterative substitution, each adjusted matrix ( eW) is
then employed in the estimation of Eq. 3 of the empirical
specifications to account for spatial heterogeneity
effect, while the global contiguity matrix (W) from the
observed real-world network data is used to account

for spatial dependence at the global network level, as
expressed in Eq. 2.

3.5 Descriptive statistics

Table 2 presents descriptive statistics of the data9. Average
soybean yield of a farmer is 830 kg/ha, cultivating on
average 5 ha of land to soybean and using an average labor
of 8 worker days/ha. About 51% of the farmers used
inoculant, averaging 14 g/ha, of which 70% of the farmers
also used improved soybean seed variety. Average age of
farmers in the sample is 42 years, who are predominantly
male farmers (71%), with average years of schooling of
3 years, living in an average of 6 member households.

Table 2 also presents the average network structural
properties. Note that because the algorithms employed to
construct the virtual network communities are based on the
modularity maximization procedure, they are interpreted as
modularity measures of the respective network commu-
nities. The three virtual communities are therefore described
in terms of their modularity measures. The table shows that,
average modularity of T1 communities is 0.324, indicating
that at least 32% of links in the information network is
formed around an agriculturally important (i.e., successful
farmer or past award winning farmer) farmer in the network.
Average modularity of T2 communities, is 0.332, indicating
that at least 33% of links in the information networks is
formed around powerful farmers (i.e., farmers serving as
bridges for others to pass through for information). Average
modularity of T0 communities is 0.318, suggesting that
about 32% of links in the network may be formed around
any randomly chosen farmer within the networks.
Although, the average modularity across the treatment arms
look similar, graphical visualization of their full distribution
in Fig. 1 shows that the treatment arms are heterogenous.

Table 2 further shows that, average transitivity (which
measures the structural strength of ties or links in the net-
work or cohesion) of the global network is 0.471, sug-
gesting that at least 47% of farmers (or adjacent vertices) are

Table 1 Adjusted weighting matrices

Network Community Structure

Centrality
Measure

T0 (Random) T1 (Edge-
eigenvector)

T2 (Edge-
betweeness)

Transitivity eW1 eW2 eW3

Degree-
Centrality

eW4 eW5 eW6

Eccentricity eW7 eW8 eW9

eW denotes the adjusted weighting matrix for the respective community

8 Transitivity refers to ties among connected triple nodes in social
network graph. It measures cohesiveness in the structure and social ties
among farmers (or nodes) within a network (Wasserman and Faust
1994). Degree-centrality is a measure of the number of direct ties that
a given farmer (or node) has in a given network (Marsden 2002). The
degree centrality is an important index measuring the communicative
activity of a node in a network (Freeman 1979). Eccentricity of a node
refers to the largest geodesic distance between that node and any other
node. It measures how far a node is from the node most distant from it
in a network graph (Wasserman and Faust 1994).

9 See Table A1 in the Appendix for the full descriptive statistics of
the data.
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connected together. Average eccentricity, which measures
the shortest path distance (or geodesic) from the farthest
node to any other node within a network is 2.7, meaning on
average a farmer in the network need to take 3 steps to reach
the farthest farmer within the network, which is very short
and easier for information flow within the network. Average
degree-centrality of a network is 0.242, implying that at
least a randomly chosen farmer in the network is connected
to 24% of the farmers within the network.

4 Empirical Results

This section presents estimates based on Eqs. 2–5 in the
empirical specifications, representing spatial dependence,
spatial heterogeneity, efficiency gains from spatial hetero-
geneity, as well as determinants of efficiency gains and the
distribution of the efficiency gains among farmers within
the social space. For brevity, we focus the discussion on the

parameter estimates that are germane to the objective set
out in this study10. Thus, to save space, we present the rest
of the estimates in the appendix (see the supplementary
online materials). However, we will refer to these estimates
in the discussion.

4.1 Spatial dependence of efficiency

In Fig. 2, Panels (a) and (b) present the global Moran’s I
plot of the residuals in the SFA and SSFA models,
respectively. This is a correlation test for spatial depen-
dence between the individual farmer’s inefficiency and the
inefficiency of the farmers in the information network, as
expressed in Eq. 2 of the empirical specifications. This test

Table 2 Definition and summary statistics

Variable Definition Mean SD Min Max

Panel A: Farmer and Farm Level Factors

Yield Soybean yield per hectare (Kg/ha) 829.64 888.24 32.41 5703.87

Age Age of farmer (years) 41.56 13.32 18 87

Gender 1 If farmer is male, 0 for female 0.71 0.46 0 1

Edu Years of schooling 2.79 4.69 0 21

Hhsize Number of people in a household 5.79 3.05 1 27

Land Total area of land planted with soybean (ha) 5.05 4.37 1 22

Labor Total labor used in soy cultivation (Worker-days/ha) 7.81 24.23 0.20 274.73

Agrochem Total amount of active ingredient in chemical used (kg/ha) 4.00 7.19 0 87.22

Chemdumy 1 If farmer uses agrochemical, Otherwise = 0 0.03 0.16 0 1

Amtinouse Total amount of inoculant used (kg/ha) 13.91 18.35 0 118.93

Inodumy 1 If farmer uses agrochemical, Otherwise = 0 0.51 0.50 0 1

Improvar 1 If farmer uses improve seed variety, Otherwise = 0 0.70 0.46 0 1

Creditconst 1 If farmer is not credit constrained, Otherwise = 0 0.83 0.38 0 1

Extcont Number of extension contacts 1.37 1.22 0 5

Distmkt Distance to nearest market (km) 2.36 4.14 0.10 50.10

Soil 1 If soil quality is good, Poor soil quality = 0 0.51 0.50 0 1

Rain Amount of rainfall in (%) 61.63 16.24 20 100

Elgrid 1 If community is connected to the national grid for electricity
supply, Otherwise= 0

0.51 0.50 0 1

Panel B: Network Structural Characteristics

Random Structure (T0) Average modularity of intervention communities 0.324 0.059 0.197 0.404

Edge-eigenvector Centrality (T1) Average modularity of intervention communities 0.318 0.053 0.160 0.397

Edge-betweeness Centrality (T2) Average modularity of intervention communities 0.332 0.067 0.151 0.424

Transitivity Average transitivity of a network 0.471 0.034 0.391 0.530

Eccentricity Average shortest path distance from the farthest nodes in the network 2.718 0.063 2.5 2.75

Degree-Centrality Average centrality of the network based on degree connections 0.242 0.059 0.137 0.421

SD is standard deviation; Min and Max are minimum and maximum values respectively (See Appendix Table A5).

10 Since the estimates are based on a relatively small sample size (600)
of soybean farmers from one region of the country (i.e., the northern
region of Ghana), the external validity cannot be guaranteed. As such,
we interpret the estimates with caution and dot not seek to generalize
the results to all crops, settings or countries.
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is performed, using the residuals obtained from estimating
Eq. 2 with the adjacency matrix (Wij) that defines the social
contiguity or proximity of a farmer to other farmers in the
observed real-world network. Panel (a) of Fig. 1 shows a
Moran’s plot of the residuals from the SFA model,
assuming no spatial dependence between the farmer’s
inefficiency and the inefficiency of farmers in their
information network (i.e., ρ= 0). As reported below in
Panel (a), the Moran’s statistic (Moran’s I= 0.092,
p-value= 0.0001) is positive and statistically significant at
the 1% level, indicating that the assumption of no spatial
dependence as implied by the SFA model is rejected, in
favor of SSFA. Figure 1 also shows a dense distribution of
the residuals in the first quadrant of the Moran’s plot in
Panel (a), suggesting that highly inefficient farmers are
more likely to be connected to highly inefficient farmers.
The intuition is that inefficient farmers seek farming advice
from peers who themselves are inefficient, thus, low quality
advice leading to low performance. This finding is in line
with Fafchamps et al. (2021), who found that knowledge of
farmers tend to correlate with their peers from whom they
seek farming advice. The rejection of no spatial depen-
dence means that we have to estimate a SSFA model to
account for the dependence. Panel (b) of Fig. 1 presents the
Moran’s plot for the SSFA model accounting for spatial
dependence. As shown in Panel (b), the presence of spatial
dependence (i.e., ρ= 0) is rejected (ρ= 0.188, LR= 57.74,
p-value= 0.000) at 1% level of significance. The rho is
positive and statistically significant, suggesting that at
global level, 19% of the farmer’s inefficiency depends on

the efficiency of the farmers from whom they seek farming
advice. In terms of model fit, the LR (likelihood ratio)
shows that the SSFA model outperformed the standard
SFA, indicating that accounting for spatial dependence
significantly improves the fit of the farmer’s production
function. The corresponding Moran’s statistic (Moran’s
I= 0.018, p-value= 0.220) is not statistically significant at
any conventional level, indicating that the SSFA model has
sufficiently accounted for the spatial dependence. The
distribution of the residuals in Panel (b) also shows that, the
gap between the mean plot (i.e., the solid line) is now very
close to the line of origin (i.e., the dash line), compared to
Panel (a), suggesting that spatial dependence has been
sufficiently addressed.

4.2 Spatial Heterogeneity in Efficiency

In Table 3, we present estimates based on Eq. 3 of the
empirical specifications in three panels B, C, and D,
representing transitivity, degree-centrality and eccentricity
interventions, respectively, assigned to the three virtual
network communities (i.e., T0, T1 and T2). Each panel
contains three models, with each model representing a
specification with a different network-specific structure
used to construct the adjusted weighting matrix (i.e., eW)
employed in the estimation of the model. The criteria for
identification is that, after accounting for spatial hetero-
geneity, the spatial dependence structure as captured by
ρ should vary according to the changing network structure
(Anselin 2010). In addition, after accounting for spatial

Fig. 1 Comparing the
heterogeneity of average
modularity across the virtual
treatment arms. T0, T1, and T2
are the virtual network
communities detected base on
random walk, network
eigenvector centrality, and
network betweenness centrality
algorithms, respectively that
forms the treatment arms. The
distribution shows all the
treatments are heterogenous not
withstanding the closeness of
the means
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heterogeneity the local level spatial dependence as captured
by the local11 Moran’s I statistic becomes statistically zero,
such that the SSFA and the SFA models’ parameters con-
verge and the model is consistently estimated (Fusco and
Vidoli 2013, Vidoli et al. 2016).

Panel A in Table 3 presents the global model for com-
parison. The global model only accounts for spatial
dependence (as discussed in the previous section above) and
not spatial heterogeneity. Hence, serves as a benchmark for
detection of observed changes in the spatial dependence
structure due to changes in the network-specific structure.
We also present the local Moran’s and kernel density plots
of the model residuals, as well as the efficiency scores
predicted at the production frontier in Figs. 2 and 3,
respectively. The local Moran’s plot illustrates the effect of
spatial heterogeneity on the distribution of the model resi-
duals, while the kernel density plot illustrates the effect of
accounting for spatial heterogeneity on the estimated
farmers’ technical efficiency. In the interest of brevity, we
report only the model parameters that are common to this

discussion, and place the full estimates of all the models in
Table A2 in the Appendix.

Panel B of Table 3 contains three models 1, 2, and 3,
each representing estimates obtained from Eq. 3, based on
the adjusted matrices (fW1, fW2, and fW3, respectively) for
virtual communities T0, T1 and T2, respectively, char-
acterized by high transitivity. The results in Panel B show
that the coefficient of the spatial dependence parameter ρ,
across all the three models are negative, compared to the
positive coefficient in the global model. The negative
coefficient suggests that changes in the network-specific
structure results in changes in the spatial dependence
structure. In particular, the Moran’s I statistic is also
negative and not statistically significant, implying that all
forms of observed and unobserved spatial heterogeneity
have been addressed. The models (i.e., Models 1–3) that
account for spatial heterogeneity in terms of the LR also
perform better than the global model. The negative signs in
all the models of both the SFA and SSFA indicate that the
parameters are also consistently estimated. The implication
of the negative spatial dependence structure suggests that
less technically efficient (or highly inefficient) farmers are
more likely to depend on more technically efficient (or less
inefficient) farmers in their information network for farming

(a) SFA Model 

(Moran’s I = 0.092, p-value = 0.000, LR = 51.96,
p-value = 0)

(b) SSFA Model  

(Moran’s I = 0.018, p-value = 0.220, , 

LR = 57.74, p-value = 0) 

Fig. 2 Comparing the effect of
spatial dependence on
correlations of residuals
distribution. SFA and SSFA
represent stochastic frontier
analysis and spatial stochastic
frontier analysis models,
respectively; LR represents the
statistic of the likelihood
ratio test

11 The local Moran’s I statistic converges to the Local Indicators for
Spatial Association (LISA) statistic after accounting for local or net-
work level spatial dependence structure (Anselin 2010).
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advice. Intuitively, inefficient farmers tend to seek farming
advice from highly efficient peers, since quality advice
contributes to better performance. This finding is consistent
with the lead farmer concept employed in farmer-to-farmer
extension delivery systems (see Kondylis et al. 2017; Shi-
kuku et al. 2019). We also observe that all the network
communities have similar effects on the spatial dependence
structure, meaning that no matter the nature of influence
(i.e., social importance or power) of the most central farmer
in the network community, the effect will be the same, as
long as there is social cohesion (i.e., high transitivity)
among farmers in the network community.

However, in terms of the proportion of the individual
farmer’s inefficiency variance (i.e., σ2eu) that is attributable to
the inefficiency of the farmers in their information network,
the randomly chosen network communities (i.e., Model 1),
account for higher variance (0.3%), compared to Models 2
and 3, respectively. The finding is an indication that

randomly chosen lead farmers increase the level of ineffi-
ciency within the network, compared to those chosen on the
basis of social importance or power within the network
community. This observation may be due to the fact that
randomly chosen lead farmers, unlike others who have
social importance or recognition to maintain, may require
some material motivation in order to spend time to share
quality information with peers, hence, the higher ineffi-
ciency observed among farmers in that network community.
This observation is also in line with Shikuku’s et al. (2019)
finding that information sharing of randomly chosen lead
farmers with their peers is weak, because of the absence of a
private motivating factor, compared to lead farmers chosen
based on the farmers’ social importance in the village.

In terms of average efficiency score, all the models have
similar efficiency scores with Model 2 being marginally
higher, compared to Models 1 and 2. This indicates that the
lead farmers chosen on the basis of social importance of the

(A). Base Model ( ) (B). Model 1 ( )

(C). Model 2 ( ) (D). Model 3 ( )

Fig. 3 Comparing the effect of
spatial heterogeneity on the
distribution of residuals. The
Base Model accounts for spatial
dependence, while Models 1–3
account for spatial heterogeneity
using the adjusted social
contiguity matrices eW1, eW2 and
eW3, representing matrices
constructed using the pairing of
the random walk modularity
(i.e., Modwalk) and transitivity,
the eigenvector modularity (i.e.,
Modledeigen) and transitivity, as
well as the betweeness
modularity (i.e., Modbetwn) and
transitivity in the adjusted social
contiguity matrix
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farmer may slightly increase efficiency among farmers in
the village. Intuitively, choosing best performing or award-
winning farmers within a community as lead farmers for
extension delivery could marginally enhance learning and
performance by other farmers, a finding that is in line with
Shikuku et al. (2019) and Fafchamps et al. (2021).

Panel C in Table 3 also presents the results of Models 4,
5, and 6, each representing estimates based on the matrices
(fW4, fW5, and fW6, respectively) for virtual communities T0,
T1, and T2, respectively, characterized by farmers with high
degree-centrality. The results show similar negative rho
coefficients and statistically insignificant Moran’s I statistic
across all the three models, compared to the global model,
indicating that changes in the network-specific structures
lead to changes in the spatial dependence structure. The
negative spatial dependence emphasizes the earlier findings
that less efficient farmers learn from more efficient farmers
in order to improve their performance.

In terms of its impact on extension delivery organiza-
tion, the choice of the lead farmer is important. For
example, we observe that Model 4, which assumes
choosing the lead farmer randomly, gives higher average
efficiency (i.e., bEssfa) of 66%, compared to any other
model, suggesting that choosing a lead farmer randomly in
a network community characterized by high proportion of
popular farmers (i.e., degree-centrality) leads to higher
performance. This observation highlights synergies in
information sharing among farmers, needed for tacit social
learning at the local level. The finding that the proportion
of popular farmers within the network community struc-
ture has positive effect on efficiency is consistent with the
social theory in diffusion studies, whereby the proportion
of adopters of a new technology or behavior in a network
influences the adoption decisions of other network mem-
bers (see, Granovetter 1973).

Also informative is the positive sign of the local Moran’s
I statistic in Model 5, which chooses a lead farmer based on
social importance within the network community. The
positive sign suggests that highly efficient farmers also
share agricultural information or farming advice with peers
who are equally technically efficient, to maintain their
performance level (Kondylis et al. 2017). This observation
is an indication of mutual relationship in information
sharing among farmers in an information network.

Panel D of Table 3 presents the results of Models 7, 8,
and 9, representing estimates based on the matrices
(fW7, fW8, and fW9 respectively) for virtual communities T0,
T1, and T2, respectively, characterized by high eccentricity
(i.e., shorter social distances or close proximity). The results
in Panel D are consistent with that of panels B and C, in
terms of the negative coefficients in the spatial dependence
structure, compared to the global model. The results of
Model 9 show that, average efficiency score of farmers in

high betweeness-centrality communities is 67%, suggesting
that in network communities characterized by powerful
farmers, shorter social distances among all network mem-
bers increase efficiency. This indicates that close social
proximity in farmers’ information networks may have high
influence on members’ efficiency, due to effective com-
munication. However, in terms of inefficiency variance, it
also accounts for higher (0.3%) variation of the inefficiency
among farmers in the network community, suggesting that
increasing proximity could equally have greater con-
sequences on inefficiency, in case the network is dominated
by highly inefficient farmers.

We also observed a positive coefficient of the local
Moran’s I statistic in Models 8 and 9 respectively, sug-
gesting that network communities formed around socially
important and powerful farmers that maintain shorter social
distance to all farmers within the network community
generate more mutual information sharing among farmers,
compared to randomly structured network communities.

Furthermore, Fig. 3 shows that the residual distributions
in the SSFA models that account for spatial heterogeneity
are now more even (i.e., Panels B, C and D), compared to
the residual distribution in the global model (i.e., Panel A).
We explore the effects of accounting for spatial hetero-
geneity on average efficiency score of the farmer. Figure 4
presents a kernel density plot of average efficiency scores
predicted from all the nine models (i.e., Models 1–9),
compared to the efficiency scores from the global model.
The results in Fig. 4 reveal that, in estimating spatial
dependence of technical efficiency, failure to account for
spatial heterogeneity can lead to underestimation of the
efficiency of high (i.e., efficiency score >0.6) performing
farmers, while overestimating that of medium (i.e., effi-
ciency scores ranging 0.36–0.5) and low (i.e., efficiency
scores ranging 0.1–0.35) performing farmers.

4.3 Impact on efficiency gains and distributive
mechanisms

We now examine the impact of information networks on
farmers’ productivity, in terms of technical efficiency
improvement (or otherwise) in the production process.
Figure 5 presents the productivity gains in classes of
(both inter-class and intra-class) percentiles across all the
models (i.e., Models 1–9), in comparison to the global
model that accounts for spatial dependence and not spa-
tial heterogeneity. Generally, Fig. 5 reveals strong het-
erogeneity in both inter-class and intra-class distribution
of productivity gains among farmers within and across
each information network, suggesting that farmers’ ben-
efits differ according to individual influence in the net-
work, as well as the structural characteristics of the
network community.
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In particular, the figure shows that when the informa-
tion network is characterized by high transitivity (i.e.,
social cohesion) productivity gains are higher (10th to 60th

percentiles) in eigenvector centrality communities (i.e.,
dW2), compared to the betweeness centrality communities
(10th to 50th) (i.e., dW3). However, the productivity gains
are much lower (10th to 30th) in random communities (i.e.,
dW1), compared to the edge-eigenvector and betweeness
centrality communities, respectively, suggesting that
benefits differ according to the network structure (Beaman
and Dillon 2018).

Also, the intra-class distribution of productivity gains
follows similar patterns within the network community,
suggesting that farmers’ benefits differ according to indi-
vidual influence or position within the network. This
observation is also consistent with the literature on the
distribution of economic benefits in embedded social rela-
tionships (Tan and Reddy 2021; Beaman and Dillon 2018).
The highest population of farmers are within the (10th

percentile) productivity class across all network commu-
nities, with the population of farmers decreasing as the
productivity class size increases, suggesting that pro-
ductivity gains may be higher among smaller groups of
farmers, compared to larger groups. This finding is in line
with Vidoli et al. (2016) and Di Falco et al. (2018), who

found an inverse relationship between productivity gains
and size of the farmer’s network.

On the other hand, in high degree-centrality (i.e., high
popularity) networks, productivity gains are higher (10th to
60th percentile) in random communities (i.e., dW4), com-
pared to betweeness-centrality (i.e., dW6) and eigenvector-
centrality (i.e., dW5) communities, respectively. This find-
ing suggests that in random communities, the distribution of
benefits may depend more on the individual farmer’s
characteristics than the structure of the information network.
By intuition, in communities with high number of influen-
tial farmers, productivity gains from the information net-
work could be evenly distributed among farmers with at
least a weakest link to the influential farmer, compared to
other network communities. This finding is consistent with
Beaman and Dillon (2018), who found high compositing
knowledge in randomly structured network communities of
male farmers, with high centrality influence in the network,
compared to other farmer network structures in Mali.

Furthermore, Fig. 5 reveals that in high eccentricity
(i.e., shortest distance) networks, productivity gains are
higher (10th–70th percentiles) in betweeness centrality
communities (i.e., dW9), compared to eigenvector cen-
trality (i.e., dW8) and random (i.e., dW7) communities,
respectively. This finding indicates that in high eccen-
tricity network communities, an individual farmer’s ben-
efits from the network depends on their close proximity to
farmers who serve as the information bridges to other
farmers in the network community. This observation is
intuitive as farmers with more knowledge on a technology
are more likely to devote more attention to very close
relations during information sharing, compared to any
other farmers. Hence, effective communication occurs
leading to high efficiency gains (Beaman and Dillon
2018; Akerlof 1997).

In addition, Fig. 5 reveals that failure to account for
spatial heterogeneity confounds farmers’ productivity gains,
as the global model (i.e., dW0) suggests equal productivity
gains (10%) for all farmers in the information network,
contrary to the heterogeneous classes of gains observed
across all models. This finding supports recent literature
(e.g., Shikuku and Melesse 2020; Shikuku et al. 2019;
Kondylis et al. 2017) criticizing the lead farmer concept of
extension delivery, where all farmers in the community are
assumed to benefit equally from the lead farmer, which
thus, implicitly overlook the fact that benefits may differ
according to the lead farmer’s social influence in the com-
munity and the mode by which the lead farmer was chosen
for the community12.

Fig. 4 Effect of spatial heterogeneity on farmers technical efficiency
scores. SSFA represents spatial stochastic frontier analysis model,
while the Ws represent the social contiguity matrices used in the
estimation of the models to account for spatial effects. So, SSFA_W
presents the base model estimated using W; SSFA_W1 represents
model 1 estimated using the adjusted matrix eW1, SSFA_W2 for model
2 using eW2, SSFA_W3 for model 3 using eW3, SSFA_W4 for model 4
using eW4, SSFA_W5 for model 5 using eW5, SSFA_W6 for model 6
using eW6, SSFA_W7 for model 7 using eW7, SSFA_W8 for model 8
using eW8, SSFA_W9 for model 9 using eW9

12 See Appendix 7 for more discussion on the distributive
mechanisms.
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4.4 Determinants of productivity gains in farmer
information networks

In this section, we discuss the control variables from the
Spatial Cox survival model specified in Eq. 5, showing the
factors that influence the likelihood of farmers’ information
network to contribute to productivity of members of the
network. The coefficients discussed here are log hazard
ratios from the spatial survival model. We therefore
interpret coefficients that are close to 1 as non-contribution
to productivity gains, far less than 1 as positive contribu-
tion to productivity gains and greater than 1, means
negative contribution to productivity gains (i.e. pro-
ductivity losses) (Sullivan 2021). It is significant to note
that the estimates discussed here are not determinants of
(in)efficiency as in the spatial stochastic frontier analysis
(SSFA) model. Due to space constraints, we attach the
estimates of the SSFA models in the appendix (see Table
A2 in the Appendix), since their contribution to explaining
the aggregate network behavior in this context is less
important. The purpose of this discussion is to identify

factors influencing productivity gains from farmers’ ego-
centric networks, in order to inform extension delivery
policies that leverage on such networks for technology
transfer and diffusion to farmers.

Table 4 reports estimates from the spatial Cox pro-
portional hazard model. The table presents estimates from
all the nine models (Models 1–9), compared to the global
model. For brevity, we focus the discussion on the net-
work level (i.e., the village level) factors that determine
productivity gains from the network, since that is the
target unit for policy action. We report the individual
farmer level factors and district fixed effects in Table A3
in the Appendix.

Table 4 shows that the coefficient of average age
(Vage) of farmers in all models is far less than 1 and
statistically significant for Models 1–5 and global model,
suggesting that age density at the network level con-
tributes positively to explaining productivity gains from
the network. This implies that benefits distribution in
egocentric networks is mutual for all ages of farmers, who
constitute the network. This observation is intuitive, as
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people who share information tend to benefit from each
other’s pool of diverse experiences.

The results in Table 4 also show that the coefficient of
average education (Vedu) of farmers in the network is
negative (i.e., far less than 1) across all models and statis-
tically significant (at 1% level), suggesting that density of
educated persons in egocentric networks contributes posi-
tively to productivity gains of members of the network. The
implication is that, the more educated persons in the farm-
er’s egocentric network, lead to more productive networks
and vice versa. This is intuitive, as a network with high
density of educated farmers means high cognitive proximity
among members, a major requirement needed for accurate
communication and effective information sharing in
embedded social networks (Bochma 2005).

In Table 4, gender (i.e., male= 1) distribution in the
network shows a mixed effect. For instance, in network
communities with high transitivity (i.e., Models 1–3), the
density of male farmers in the egocentric networks does not
contribute to explaining productivity gains of members in
the network, compared to the individual farmer level. A
similar observation is made in high degree-centrality net-
works, particularly, in random and edge-betweeness net-
work communities. However, in high eccentric network
communities, the coefficient of gender is negative and sta-
tistically significant, suggesting that male farmers are more
likely to obtain productivity improvement in the network,
compared to female farmers in the network. This implies
that the distribution of gender in information networks may
have distributional inequalities, due to difference in social
distances between male and female farmers, which is likely
to affect the close proximity required for effective com-
munication and information sharing.

Furthermore, Table 4 shows that the density of average
number of extension contacts (Vextcont) of farmers has less
positive contribution to explaining productivity gains at the
network level, compared to the number of contacts at the
individual farmer level (see Panel A in Table A3 in the
Appendix). This is intuitive, as farmers may not have to
depend on the information network for farming advice, once
all farmers have equal access to extension services.

The results in Table 4 also show that, the coefficient of
farmers using improved technologies such as improved crop
variety (Vimpvar) and yield enhancement inputs (e.g., rhi-
zobia inoculant–Vinouse) are far less than 1 (being negative
in almost all models) and statistically significant, suggesting
the density of farmers using improved technologies in the
farmers’ egocentric information networks have positive
contribution to productivity gains for farmers in the net-
work. This observation suggests that targeting egocentric
networks in technology adoption programs will not only
enhance diffusion of the technology, but will also improve
the performance of the technology, due to the potential of

farmers to learn from the experiences of other farmers in
their network communities.

In Table 4, the coefficient of farm size is negative across
all models (also statistically significant in most models),
suggesting that at the network level, farm size tends to
have positive impact on productivity gains from the net-
work. This observation is in line with Simpson (2020),
who also observed positive relationship between farm size
and productivity gains among rice farmers in egocentric
networks in China.

On the other hand, Table 4 also shows that, the coeffi-
cient of soil quality (i.e., Vsoil) and lack of amenities such
as availability of electricity (i.e., Velgrid) at the village level
far exceed 1 (also statistically significant in most models),
suggesting that poor soil conditions as well as lack of social
amenities such as lack of electricity connectivity negatively
impact on productivity gains (i.e., productivity losses)
across the network communities.

Furthermore, the bottom row of Table 4 also reports the
mean population of farmers that will be affected, in terms of
productivity gains, due to extension policy based on each of
the network community and the centrality measure, com-
pared to the global model. The results in the table reveal that
in network communities characterized by high transitivity
(i.e., Models 1–3), eigenvector-centrality communities have
larger (65%) impacts, compared to betweeness-centrality
54% and random (45%) communities, respectively. These
findings suggest that in egocentric networks with high
social cohesion among farmers, organizing extension
delivery program around farmers with high eigenvector-
centrality (i.e., most successful farmers) in the community
will be more beneficial to majority of farmers in the com-
munity, compared to high betweeness-centrality farmers
(i.e., powerful farmers). However, randomly chosen farmers
in the community for extension delivery program will be
less beneficial to majority of farmers in the community,
compared to the two centrality measures.

In network communities with high degree-centrality (i.e.,
Models 4–6), the impact is larger in random communities
(68%), compared to betweeness-centrality communities
(60%) and eigenvector-centrality communities (54%),
respectively. This finding suggests that in egocentric net-
works with highly popular farmers, organizing extension
delivery program around randomly chosen farmers in the
community will be more beneficial to majority of farmers in
the community, compared to the two centrality measures.
However, choosing either farmers with high betweeness-
centrality or eigenvector-centrality will still benefit more
than half of the population of farmers in the community.

However, the largest (72%) impact occurs in betweeness-
centrality communities characterized by high eccentricity,
compared to all network communities. This finding suggests
that in egocentric networks of farmers with shorter social
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distances, organizing extension delivery program around
farmers with high betweeness-centrality may provide higher
outreach to almost all farmers in the community, compared
to both eigenvector-centrality and random farmers. How-
ever, choosing farmers either randomly or based on
eigenvector-centrality will still benefit about half of the
population of farmers in the community.

4.5 Robustness checks

As robustness checks for the spatial heterogeneity observed
in this study, we ignore the assumption that the information
network is structured around either farmers with high
eigenvector-centrality or betweeness-centrality in the
community and assume a random community structure.
Panels E and F of Table A4 in the Appendix present the
results of two models (i.e., Models 10 and 11) as robustness
checks. Panel E reports estimates of Model 10, which
accounts for spatial heterogeneity based on adjusted
weighting matrix (gW10), focusing on transitivity and
degree-centrality, while Panel F reports that of Model 11
estimated based on (gW11), focusing on degree-centrality
and eccentricity of a random community structure. The
results show that our findings are robust, as both the
coefficient of the spatial dependence structure and the
LISA statistic both have the negative signs, which is con-
sistent with the random communities in Models 1, 4, and 7
of panels B, C and D, respectively. The LR statistics are
also statistically significant at the 1% level, suggesting that
the SSFA models accounting for spatial heterogeneity
provide better fit of the farmers’ production function.

In Figure A2, we present kernel density plots of average
efficiency scores predicted from models 10 and 11 (i.e.,
Models 10–11), compared to the efficiency scores from the
global model, as robustness check of the effects of failure to
account for spatial heterogeneity on farmers’ efficiency
scores as observed in this study. The results in Figure A2
reveal the same patterns of underestimating high performing
farmers, while overestimating that of low and medium
performing farmers. Indicating that the findings as observed
in this study is consistent and robust. In the interest of
brevity, estimates on the robustness checks are reported in
the appendix (see the online supplementary materials).

5 Conclusions

In this study, we examined the impact of farmers’ ego-
centric information networks on technical efficiency in the
production functions of farmers and its distributive
mechanisms in the networks. Using community detection
algorithms in a data-driven approach, based on observed
real-world egocentric networks data of 600 soybean farmers

from Ghana, we estimate spatial dependence of farmers’
technical efficiency on their egocentric information net-
works, while accounting for unobserved spatial hetero-
geneity in the network structures of the information
networks, within the social network space.

The empirical results generally revealed that farmers’
technical (in)efficiency strongly correlate with that of
farmers in their egocentric networks, suggesting that
farmers who share farming information with inefficient
farmers are more likely to be inefficient, compared to those
who share information with highly efficient farmers. This
finding is consistent with the notion that farmers tend to
learn from high performing peers in their egocentric net-
works in order to improve their own performance.

The results also showed that the egocentric network
level of influence on technical (in)efficiency of farmers is
network-specific and differ according to the nature of the
social ties or influence between farmers in the network.
We also found that network communities formed around
farmers with social importance increases efficiency among
farmers in the community through information sharing
with highly efficient farmers in the network. Another quite
interesting result is the finding that in networks of farmers
with high degree-centrality, randomly structured rela-
tionship in the network have greater impact on efficiency,
compared to any other network community. These net-
work communities generate synergies in information
sharing among farmers, needed for tacit social learning at
the local level.

In terms of organizing extension delivery around farm-
ers’ egocentric networks, the findings from this study show
that in highly social cohesive networks, organizing exten-
sion delivery around farmers with high eigenvector-
centrality in the community will increase the efficiency of
majority of farmers, compared to farmers with high
betweeness-centrality. Furthermore, we find that organizing
extension delivery around randomly chosen farmers in
highly cohesive networks decreases the number of farmers
that will benefit from the network.

The findings further reveal that in egocentric networks
with highly popular farmers, organizing extension delivery
around randomly chosen farmers’ increases efficiency of
majority of the farmers in the community, though choosing
either betweeness-centrality or eigenvector-centrality farm-
ers still benefits more than half of the population of farmers
in the community.

Finally, we find that in egocentric networks of farmers
with shorter social distances, organizing extension delivery
programs around farmers with high betweeness-centrality
increases the efficiency of almost the entire population of
farmers in the community, though choosing farmers either
randomly or based on eigenvector-centrality also benefits
about half of the population of farmers in the community.
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The study concludes that identifying central farmers’ in
egocentric networks and improving their technical
knowledge in a farmer-to-farmer extension organization
can leverage the limited extension agents to improve
productivity of many farmers.
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