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Abstract
Cryptocurrencies (CCs) have become increasingly interesting for institutional investors’ strategic asset allocation and will 
therefore be a fixed component of professional portfolios in the future. However, this asset class differs from established assets 
primarily in that it has a higher standard deviation and tail risk. The question then arises whether CCs with similar statistical 
key figures exist. On this basis, a core market incorporating CCs with comparable properties enables the implementation of 
a tracking error approach. A prerequisite for this is the segmentation of the CC market into a core and a satellite, with the 
latter comprising the accumulation of the residual CCs remaining in the complement. Using a concrete example, we segment 
the CC market into these components based on modern methods from image/pattern recognition.

Keywords  Cryptocurrencies · Core–satellite identification · Market segmentation · Pattern recognition

JEL Classification  C14 · C46 · C55 · E22 · G10

Introduction

Cryptocurrencies (CCs) have gained tremendous attention 
and popularity in media and society in recent years, not 
least because of their high market volatility. Due to their 
nature, CCs are seen more as an investment object than as 
a currency (Baur et al. 2018) in the classical sense. The 
development of rising investment volumes has been a trend 
for years, and it can be assumed that CCs are gradually on 
their way to becoming an established asset class. Against 
this background, it seems plausible that CCs will become 

a fixed component of institutional investors’ portfolios in 
the future.

In professional portfolio management, one approach is to 
segment the investment universe into a core of assets with 
homogenous statistical properties and assets that differ sig-
nificantly from these properties—the so-called satellite. The 
core market can then be tracked using adequate asset picks 
with a tracking error approach. The satellite investments rep-
resent only a small proportion of the total portfolio and are 
mostly composed of actively managed sub-portfolios cover-
ing selected areas that are meant to deliver above-average 
returns and have a diversifying effect due to their low cor-
relation with the core investment (Amenc et al. 2012).

In standard portfolios, for example, satellite investments 
such as geographical regions, asset classes different from the 
core investment and the purchase of portfolios with differ-
ent management styles or strategies are suitable for enrich-
ing or diversifying the core portfolio. It is also possible to 
consider a certain asset class and differentiate between core 
investments and satellite investments. Examples include the 
sector selection of corporate bonds or the segmentation of 
stocks into “with the market” (core) and “high beta stocks” 
(satellite).

In this paper, we investigate specifically the CC asset 
class and propose a method to segment the core market 
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from the satellite based on the development of key statisti-
cal parameters.

Attempts to depict the CC market holistically for reasons 
of portfolio and risk management have already been inves-
tigated in the literature. A prominent series of studies have 
addressed the construction of an index for CCs. In this con-
text, the CC market index CRyptocurrency IndeX (CRIX) 
proposed by Trimborn and Härdle (2018) represents a well-
known example and is intended to serve as a starting point 
to address these economic questions. A similar top-down 
approach based on the 30 largest CCs by market capitaliza-
tion has been used to calculate the CC index CCi30 (Rivin 
et al. 2017).

However, instead of focusing on market capitalization and 
trading volume and thus prioritizing larger CCs, we identify 
the core market by applying a core–satellite approach based 
on the individual risk–return profile. Our approach has some 
potential advantages compared to a top-down constructed 
index. While such indices take only the largest CCs into 
account and may suffer from survivorship bias, the core–sat-
ellite approach identifies the core of the market, i.e., those 
CCs that behave similarly in statistical terms. Although we 
currently exclusively consider 27 CCs due to data gaps, 
regarding shifts in perspective as the market grows, it might 
become possible to use our method to identify the core mar-
ket from a large number of CCs. To build a portfolio, inves-
tors would then no longer need to replicate the indices but 
could deliberately buy fewer individual assets of the core of 
the CC universe and combine them with those of the satel-
lite. Since the core market could be represented with fewer 
assets in the portfolio, the monitoring costs for the portfolio 
would decrease. Moreover, potential problems in the portfo-
lio, such as price collapses, operational risk (Trimborn et al. 
2020) or the extinction of entire CCs, could be countered 
more quickly. This is a decisive advantage, especially due 
to the dynamics and speed of the market.

To identify CCs showing a comparable performance 
from 2014 to 2019, we consider returns as well as standard 
deviations proposed by modern portfolio theory (Markowitz 
1952). One general problem is that CCs are different from 
traditional asset classes, especially in terms of extreme 
tails and corresponding tail risk. Against this background, 
Majoros and Zempléni (2018) and Börner et al. (2021) show 
that the stable distribution (SDI) is well suited to statistically 
model the returns of CCs overall, especially in the tail area. 
Thus, we extend our database by including the tail parameter 
� of the SDI to specifically consider the tail risk. To identify 
similar patterns in the development of statistical parameters, 
we use the dynamic time warping (DTW) algorithm. This 
algorithm was originally developed for speech recognition 
(Sakoe and Chiba 1978) but is widely used for clustering and 
classification in various application fields today (Giorgino 
2009).

The DTW analysis leads to DTW distances that are 
defined in pairs. The question arises if assets—CCs in the 
present case—can be grouped together in such a way that 
they are similar in the sense of short DTW distances accord-
ing to specified criteria, namely, the aforementioned statisti-
cal indicators. This would allow assets to be divided into a 
core and a satellite. The particular difficulty lies in the fact 
that sorting individual DTW distances becomes a mono-
tonically increasing function over natural numbers, and the 
possible value range [0,∞] is almost continuously covered 
in many cases. On this basis, it must be examined whether a 
specific DTW distance can be derived purely from the data, 
acting in further steps as a boundary to divide the investment 
universe into a core and a satellite. In the following, we pre-
sent a general procedure that is based on modern methods 
of pattern recognition and precisely answer these questions, 
and we systematically show the separation of core assets 
within an investment universe. The process is not restricted 
to a specific asset class and can be used wherever it is impor-
tant to separate similar from dissimilar assets.

Using the development of statistical parameters, we show 
that segmenting the CC market into a core and a satellite 
succeeds when applying our method. Furthermore, we 
answer the question of whether Bitcoin is indeed part of 
the hard core of the CC market or just a satellite. As the CC 
market becomes more professional, that is, as market capi-
talization, liquidity, and market depth increase, our method 
might become an indispensable tool for professional asset 
management.

The remainder of this paper is structured as follows: In 
Sect. 2, we describe the data used for our analysis. In Sect. 3, 
a brief overview of the DTW methodology is given. In the 
main part of our study, Sect. 4, we develop the identification 
method that separates the CC universe into a core market 
segment and a complementary segment that is an accumula-
tion of the remaining residual CCs—the satellite. The sepa-
ration procedure is shown using real data. Section 5 presents 
some robustness checks. The last section summarizes our 
most important results and gives an overview of further 
research topics.

Data

For the foundation of our analysis, we follow various studies 
by extracting the daily prices of CCs from the website coin-
marketcap.com (Fry and Cheah 2016; Hayes 2017; Brauneis 
and Mestel 2018; Caporale et al. 2018; Gandal et al. 2018; 
Glas 2019). To depict the CC market as a whole, we aim to 
include as many CCs in our analysis as possible. However, 
there is a trade-off between having the longest time series 
possible and the number of CCs in the sample because, 
on average, seven CCs die out per week (ElBahrawy et al. 
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2017). Against this background, we end up with an observa-
tion period from 2014-01-01 to 2019-06-01 taking 66 poten-
tial CCs from the CoinMarketCap Market Cap Ranking at 
the reference date of 2014-01-01 into consideration, as these 
CCs have been present throughout the entire timeframe.

As data gaps appear in the time series of most CCs, 
we exclude all CCs with five or more consecutive miss-
ing observations. By utilizing the last observation carried 
forward (LOCF) approach, as previously done in Schmitz 
and Hoffmann (2021), Trimborn et al. (2020), Börner et al. 
(2021), we are able to include all CCs with smaller data 
gaps. Hence, N = 27 CCs remain in our dataset, as depicted 
in Table 1.

In a next step, we convert the CC closing prices denoted 
in USD to EUR prices using the daily USD–EUR exchange 
rates retrieved from Thomson Reuters Eikon. To prevent 
potential weekday biases, the resulting (daily) observa-
tions are converted into weekly observations (Dorfleitner 
and Lung 2018; Aslanidis et al. 2020). Intraday data are not 
considered to further avoid biases, e.g., through pump and 
dump schemes.

As a starting point, we compute logarithmized weekly 
returns, which are referred to as returns for the sake of sim-
plicity in the following. On this basis, we calculate the aver-
age weekly returns per year as well as the standard devia-
tions and fit the tail parameter � of the SDI. Our longitudinal 
analysis from 2014 to 2019 allows us to examine the market 
dynamics of the statistical parameters herein.

Dynamic time warping

As we use three variables simultaneously, a simple cor-
relation analysis is not adequate since it would provide 
only information about the similarity of a certain statisti-
cal variable that has no valid significance for an N × N 
matrix with N = 27, with a given total of only six annual 
measuring points. Furthermore, a simple correlation 
analysis is unable to capture the dynamic character of the 

development of the statistical parameters. Therefore, we 
use the DTW algorithm to segment the market into CCs 
that show similar behavior over the investigated period.

Sigaki et al. (2019) employ this methodology, thereby 
revealing clusters of CCs with similar informational effi-
ciency. However, they consider only returns as a variable 
on a smaller time period. Although pursuing a different 
goal, we also select a DTW distance matrix, but instead 
of analyzing clusters, we implement pattern recognition to 
identify core and satellite CCs. Because the DTW algo-
rithm is well known and widely used, only a cursory over-
view of this method is given in the following, focusing on 
the features relevant to our analysis.

The DTW distance can be used as a shape-based dis-
similarity measure that finds the optimum warping path 
between two time series by minimizing a cost function 
(Sakoe and Chiba 1978; Aghabozorgi et al. 2015). By 
following the definition and notation of the main litera-
ture, in the first step, a so-called distance matrix between 
each pair of time series compared needs to be calculated. 
This distance matrix can be based on various metrics. For 
our analysis and for reasons of robustness, we compute 
Manhattan, Euclidean and squared Euclidean distance 
matrices. As explained in Sect. 4 in more detail, we use 
three variables per CC to determine the distance matrices 
between each pair of (multivariate) time series over the 
course of 2014–2019. We end up with a distance matrix 
for each of the three metrics and each pair of time series. 
Note that the distance matrix described thus far is made 
up of a scheme of six rows and six columns due to the six 
discrete points in time. For a specific currency pair, each 
cell in the scheme contains the distance in the respective 
metric for a specific point in time. In the literature, the lat-
ter is also referred to as the local cost matrix. The above 
scheme must be carefully distinguished from the distance 
matrix D defined in Sect. 4.

Given the distance matrix, i.e., the 6 × 6 scheme of each 
CC pair, the DTW algorithm finds the optimal alignment 
through it starting in each distance matrix at (2014, 2014) 
and finishing at (2019, 2019) (Sakoe and Chiba 1978). This 
implies that the time differences between the time series are 
eliminated by warping the time axis of one series so that 
the maximum coincidence is attained with the other (Sakoe 
and Chiba 1978). The individual distances of the DTW path 
are aggregated to total costs using a cost function. The total 
costs, referred to as the DTW distance d, reflect the mini-
mum costs between the time series compared. For clarity, 
it should be noted that the DTW distance between the same 
objects equals 0 since there is no dissimilarity. The upper-
left part of Fig. 1 shows the DTW distance dmn for each pair 
m, n = 1, ..., N of the N = 27 CCs.

We outline the underlying methodology only briefly, 
but there are several restrictions and setting options for 

Table 1   Considered CCs, data source: CoinMarketCap

CC ID CC ID CC ID

Anoncoin ANC BitBar BTB Bitcoin BTC
CasinoCoin CSC Deutsche eMark DEM Diamond DMD
Digitalcoin DGC Dogecoin DOGE Feathercoin FTC
FLO FLO Freicoin FRC GoldCoin GLC
Infinitecoin IFC Litecoin LTC Megacoin MEC
Namecoin NMC Novacoin NVC Nxt NXT
Omni OMNI Peercoin PPC Primecoin XPM
Quark QRK Ripple XRP TagCoin TAG​
Terracoin TRC​ WorldCoin WDC Zetacoin ZET
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the algorithm and the cost function. For a more detailed 
overview, see, e.g., Sakoe and Chiba (1978) and Giorgino 
(2009).

Core–satellite identification

In strategic asset allocation, a core–satellite strategy is the 
division of an investment into a portfolio consisting of a 
broadly diversified core investment that is intended to offer a 
basic return with moderate risk and several individual invest-
ments (satellites) with higher risk and higher earnings poten-
tial. The latter serves to increase the return of the overall 
investment (Methling and von Nitzsch 2019).

The returns, sample average ⟨r⟩ , standard deviation s 
and tail parameter � are examined as the essential statistical 
parameters for CCs.

A brief overview of the implemented parameterization 
and the SDI’s main features are given in Appendix 1. The 
tail parameter � plays a significant role in differentiating 
between CCs in which the returns almost obey a normal 
distribution (i.e., � → 2 ) or possess a long tail (i.e., 𝛼 ≪ 2 ) 
with correspondingly high tail risks.

Overall, we consider the dynamics of the sample vector 
(⟨r⟩, s, �)� over time from 2014 to 2019 in our analysis.

Table 2 shows an exemplary excerpt of four CCs from the 
whole dataset. The aim is to use the temporal development 
of the statistical parameters to infer CCs that can be assigned 
to a market core due to their similar statistical behavior.

Fig. 1   Shown is the procedure 
to identify and separate a core 
of some CCs within the whole 
market. The remaining CCs 
belong to a set that encloses the 
satellite

Table 2   Input data for the DTW 
distance analyses (exemplary 
excerpt)

Return ⟨r⟩ and standard deviation s in percent per week

CC Value Sample vector DTW dist.

No. ID 2014 2015 2016 2017 2018 2019 Metric d
mn

6 DMD ⟨r⟩ − 4.52 1.67 − 0.73 8.46 − 5.50 0.85 Manh.
s 28.12 22.96 9.65 20.00 14.37 16.48 6.01
� 1.81 1.18 2.00 2.00 1.30 2.00 Eucl.

11 FRC ⟨r⟩ − 7.10 − 1.62 − 0.25 5.92 − 1.97 5.05 3.10
s 18.74 20.27 59.19 44.84 29.43 104.04 sq. Eucl.
� 2.00 1.44 0.63 1.18 1.51 0.90 5.03

21 XPM ⟨r⟩ − 7.27 − 0.38 − 0.58 5.38 − 2.98 0.70 Manh.
s 15.58 24.28 8.66 26.47 22.84 13.35 1.06
� 1.67 1.65 1.79 1.63 1.76 1.57 Eucl.

27 ZET ⟨r⟩ − 5.74 0.16 0.51 2.88 − 3.73 1.11 0.53
s 28.72 24.63 16.39 35.35 20.14 24.01 sq. Eucl.
� 1.65 1.68 1.72 1.74 1.83 1.80 0.13
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The three-dimensional vector (⟨r⟩, s, �)� is examined 
over the course of six years, and the DTW distance dmn is 
determined in pairs, with m, n = 1, ..., N. The DTW dis-
tance is calculated in three different metrics: Manhattan, 
Euclidean and squared Euclidean. This allows three matrices 
�Metric ∈ ℝ

N×N for the CCs to be determined, each for a spe-
cific metric, with elements dmn;Metric . These square matrices 
are symmetrical dnm = dmn , the entries on the diagonal are 
zero dmm = 0 , and the off-diagonal elements are all positive.

For the two pairs of CCs in the last column of Table 2, 
the calculated DTW distances in each metric can be com-
pared. Note that the number in the first column corre-
sponds to the numbering in Table 3.

The first pair (Diamond (DMD) and Freicoin (FRC)) 
admirably exhibits a considerable distance in each met-
ric. A detailed analysis of the vectors over time shows 
the reason for this great distance. On the one hand, clear 

differences can be observed with regard to the absolute 
level and the sign (same year) of the returns. On the other 
hand, there are strong differences in the standard deviation 
and in the tail parameter (same year). While the standard 
deviation of the CC Diamond remains almost the same 
at a high level, the scattering of the returns of the FRC 
increases dramatically in 2019. For both CCs, it is remark-
able that the underlying return distribution changes from 
almost normal to a heavy-tailed distribution. This can be 
clearly seen in the year-to-year change in the tail parameter 
� . Since this change does not occur at the same time (same 
year) for the two CCs, the DTW analysis results in large 
distances. Furthermore, we observe this changing distribu-
tion behavior with other CCs. At this point, we recommend 
that a potentially time-varying and hence nonstationary 
distribution warrants closer examination to control the risk 
for institutional investors if CCs represent a significant 
component of the assets being allocated.

Table 3   Analysis of the DTW 
distances for the different 
metrics

Identification of the core (C) and the satellites (S)

CC Name Metric Core

No. ID Manhattan Euclidean Sq. Eucl. Intersection

Threshold 0.554 0.564 0.357

1 ANC Anoncoin 1 1 1 C
2 BTB BitBar 1 1 1 C
3 BTC Bitcoin 1 1 1 C
4 CSC CasinoCoin 0 0 0 S
5 DEM Deutsche eMark 1 1 1 C
6 DMD Diamond 0 1 0 S
7 DGC Digitalcoin 1 1 1 C
8 DOGE Dogecoin 1 1 0 S
9 FTC Feathercoin 1 1 1 C
10 FLO FLO 1 1 1 C
11 FRC Freicoin 0 0 0 S
12 GLC GoldCoin 1 1 1 C
13 IFC Infinitecoin 0 0 0 S
14 LTC Litecoin 1 1 1 C
15 MEC Megacoin 1 1 1 C
16 NMC Namecoin 1 1 1 C
17 NVC Novacoin 1 1 1 C
18 NXT Nxt 1 1 1 C
19 OMNI Omni 1 1 1 C
20 PPC Peercoin 1 1 1 C
21 XPM Primecoin 1 1 1 C
22 QRK Quark 1 1 1 C
23 XRP Ripple 0 0 0 S
24 TAG​ TagCoin 1 1 0 S
25 TRC​ Terracoin 1 1 1 C
26 WDC WorldCoin 0 0 0 S
27 ZET Zetacoin 1 1 1 C
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The second pair of CCs (Primecoin (XPM) and Zetacoin 
(ZET)) illustrates two CCs behaving very similarly. Overall, 
comparatively small DTW distances can be observed here. 
The returns, the standard deviations and the tail parameters 
are closely related. It is also worth noting that the form of the 
underlying distribution of returns hardly changes; the vari-
ability of the tail parameter is likely to derive from statistical 
errors based on the small database.

The upper-left part of Fig. 1 shows the distance matrix 
�SE for the DTW distances in the squared Euclidean metric 
as a surface plot for all CCs. The ordering descends from 
the numbers given in the first column of Table 3. The colors 
indicate the value of the DTW distance from small (white) to 
large (black), i.e., in this example, from 0 to approximately 
5. The entries with zero DTW distance are marked white.

The problem of identifying groupings in the set of CCs 
leads to the problem of finding structures in the distance 
matrix �Metric . One possibility to carry out this structural 
analysis of the distance matrices is to apply methods that 
have been used for a long time in the investigation of hierar-
chical matrices (Liu et al. 2012; Hackbusch 2015). Similar to 
image recognition, these methods aim to recognize patterns 
in matrices.

In the first step, the CCs are rearranged in such a way 
that the CC displaying the greatest distance to all others on 
average is depicted on the right. In a descending order, the 
CCs with successively smaller distances are arranged to the 
left.1 As a result, we gain an ordered set of CCs, and the 
resulting surface plot changes, as shown in the upper-right 
part of Fig. 1. The similarity of different CCs with regard 
to the dynamics of the statistical key figures is given when 
the DTW distance is small and tends toward zero. This is 
the case for CCs in the upper-left white corner in the sorted 
matrix. Starting from the top-left corner in the direction of 
the main diagonal up to a certain distance dbound , the CCs 
thus delimited represent the market core of similar CCs.

Since the height profile above the sorted distance matrix 
has a peaked, rough structure, cf. Fig. 3 in the Appendix, the 
set of CCs belonging to the core cannot be delimited reliably. 
Therefore, modeling is carried out first, yielding a smoother 
height profile. We use a modeling method comparable to the 
analysis of hierarchical matrices, cf., e.g., Hackbusch (2015) 
and the corresponding literature cited therein.

There is a certain basic structure of the matrix that sim-
plifies the modeling problem. The sorted distance matrix 
is square, symmetrical and has only positive elements. The 
entries become larger on average toward the right and lower 
edge of the sorted distance matrix, essentially revealing a 
concave structure. In addition, we look only for a certain 

block in the sorted matrix, which starts in the upper-left 
corner and is itself square.

The surface’s concave structure can be modeled well with 
radial basis functions, which have their center points—simi-
lar to a frame—in the outer area of the edges of the sorted 
distance matrix. A brief overview of the radial basis function 
model class used is given in Appendix 2. If the individual 
elements of the distance matrix are normalized between 0 
and 1, the modeling leads to an area whose height profile can 
be seen in the lower-right part of Fig. 1.

In the next step, we define the boundary condition dbound , 
which delimits the set of CCs belonging to the core. The 
distance matrix incorporates solely positive elements, but it 
is not positive definite in all cases; thus, some eigenvalues 
can be negative, and an analysis of the eigenvalue spectrum 
does not lead to the definition of a suitable threshold dbound.

Instead of this consideration, we analyze the empirical 
distribution function over the elements of the upper trian-
gular matrix normalized between 0 and 1 and delimit an 
area that contains p percent of the smallest distances, cf. 
the lower-left part of Fig. 1. In practice, the p value will be 
somewhere between 60 and 90% (dotted lines), where the 
steep slope of the empirical distribution function merges 
into the flatter area. This represents the tail area of the 
empirical distribution function in which the empirically 
measured DTW distances increase rapidly. If small values 
are found for dbound , the associated core is more homogene-
ous. The larger the values are, the more heterogeneous the 
core becomes with regard to the statistical parameters. In 
our example, we find the inflection point at p ≈ 75% . The 
associated threshold dbound = 0.357 is used to draw a contour 
(white) in the modeled height profile on the right, which 
delimits an upper block matrix.

This block matrix describes the market core if the squared 
Euclidean metric is used. In Table 3, the penultimate column 
shows the CCs belonging to the core if this metric is utilized 
(a Boolean value of 1 indicates belonging to the core).

In our analysis, we examine the DTW matrices for all 
metrics in the same way. The CCs belonging to the core 
according to the respective metric are shown in Table 3. 
Note that this method can also be used to find very similar 
CCs with almost the same statistical behavior if the lower 
inflection point is identified in the empirical distribution 
function and the bound dbound is thus determined. We have 
also examined this path of segmentation (not explicitly 
shown here). This segmentation leads to the delimitation 
of five CCs in the white upper-left corner of the lower-right 
part in Fig. 1, which behave almost identically considering 
the statistical key figures over a long period of time.

Table 3 shows that the number of CCs belonging to the 
core depends on the metric. In portfolio management, it 
might be predicated on a decision of practicability regard-
ing which metric to use and which dependency to accept. 

1  This form of ordering is the same as sorting according to maximum 
rows or the column total.
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However, this dependency can be avoided by considering all 
metrics and selecting those CCs as the market core that are 
contained in the intersection of all metrics. This approach 
is illustrated in the last column of Table 3. In this column, 
all CCs belonging to the core according to all metrics are 
marked with C. This knowledge provides a decisive advan-
tage in asset management when integrating a certain share 
of CCs in a portfolio.

Table 2 shows examples of CCs as representatives of the 
identified core CCs (XPM and ZET) and the identified sat-
ellite CCs (DMD and FRC). In practice, a simple portfolio 
could be constructed as follows. For example, 5–10 CCs 
with high liquidity and market depth similar to XPM/ZET 
that belong to the core are selected from the entire dataset. 
These CCs form the core investment. Individual CCs can 
then be selected from among the satellites, which can be 
expected to offer a higher return if the risk is higher. In the 
first case, the tracking error can be determined in relation to 
the core, and that in the second case can be determined in 
relation to the overall market. In any case, the composition is 
optimized taking a specified limitation of the tracking error 
into account. Continuous control of the tracking error and 
tactical readjustment of the weights leads to tracking of the 
core (first case) or the overall market (second case), whereby 
the tracking error specified by the institutional investor is 
followed.

Robustness

Core–satellite identification using correlations

Our developed segmentation process takes into account the 
specifics of the CC market. This is achieved by explicitly 
considering the dynamics of the statistical parameters and 
by simultaneous utilizing the return, the standard deviation 
and especially the tail parameter.

Although correlation analysis is a common tool for 
determining similar and dissimilar assets (see, e.g., 

Heaney and Hooper (2001), Bekaert et  al. (2011) and 
the corresponding literature cited therein), it is not pos-
sible to use several parameters simultaneously (e.g., the 
three-dimensional vector (⟨r⟩, s, �)� ) and to consider their 
dynamics. This is exactly the problem: we lose important 
information that is necessary for the successful segmenta-
tion process, which we illustrate below.

At the beginning, we calculate the correlations of the 
returns over the entire period and end up with a 27 × 27 
matrix. Here, we use Kendall’s correlation coefficient 
because it is robust to a violation of the normal distri-
bution assumption. Based on the correlation matrix, the 
steps of the segmentation process described in Sect. 4 are 
carried out. The unsorted and sorted correlation matrices 
(not shown here) entail the problem that the pairwise cor-
relations with values of one are located on the diagonal. 
First, we perform the segmentation process without pre-
processing the diagonals and find that no analysis is pos-
sible due to their highly peaked structure. Nevertheless, to 
enable carrying out the procedure, for the second step, we 
replace the entries on the diagonal by the mean values of 
the neighboring cells (a kind of presmoothing step). This 
at least succeeds in smoothing the peaked structure by the 
radial basis functions so that an evaluation is possible. 
Figure 2 shows the smoothing of the modified correla-
tion matrix, with the correlations ranging from 0.0491 to 
0.5981 in the left part, whereby they are normalized for 
modeling reasons in the right part. A brighter area indi-
cates a lower correlation and vice versa.

Note that higher DTW distances are associated with 
greater dissimilarity, whereby a higher correlation indi-
cates greater similarity. In this respect, the core of the CC 
market is now located in the corner opposite to the “DTW 
core,” i.e., in the upper-right corner of the right part of 
Fig. 2. However, Fig. 2 clearly shows that the identification 
of a core is not possible at high correlations because no 
“plateau” of similar CCs emerges. Rather, the smoothed 
area falls continuously, so a suitable threshold dbound can-
not be reliably determined.

Fig. 2   Critical step of the mod-
eling process for the segmenta-
tion of the CC market using 
correlations
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Return correlations of the core and satellites

Another issue to be discussed comprises the correlations 
of CCs within the core, the correlations of CCs among the 
satellites and the potential differences between them. These 
correlations can provide important insights into whether the 
intended market segmentation has been achieved. Note that 
we analyze the correlations of the core and satellite CCs 
determined using our segmentation process with DTW 
distances.

Although we consider three parameters and their dynam-
ics over six years and do not base the market segmentation 
on correlations, the correlations of the core CCs should be 
higher than those of the satellite CCs. This is the intended 
result, and it would provide evidence for successful market 
segmentation because we expect statistically homogeneous 
CCs in the core that are heterogeneous to the satellites.

While CCs are less correlated with traditional asset 
classes (Brière et al. 2015; Kuo Chuen et al. 2017; Liu and 
Tsyvinski 2021), the correlation of CCs is more pronounced 
(Dorfleitner and Lung 2018), which is also confirmed by our 
correlation analyses, as shown in Table 4.

For the whole sample, we report a range of correlations 
from 0.0491 to 0.5981 with a mean of 0.2223 and a median 
of 0.218. The average p value is 0.0227, and the median is 
0.0002, which implies statistical significance at least at the 
5% significance level.

With regard to considering the core and satellite CCs, 
the calculated correlations provide evidence for the intended 
segmentation of the CC market. The core CC correlations 
range from 0.078 to 0.5981 with a mean of 0.2416 and a 
median of 0.2308. The p value is 0.0097 on average and 
0.0001 at the median, so it is statistically significant at least 
at the 1% significance level. In contrast, the correlations of 
the satellite CCs show a range from 0.0491 to 0.3731 with 
a mean of 0.1751 and a median of 0.148. The p value is 
0.0638 at the mean and 0.0129 at the median, which indi-
cates statistical significance at least at the 10% level. The ini-
tial assessment indicates a higher correlation range of CCs 
in the core compared to those among the satellites, which is 
our desired result.

Furthermore, we check whether the correlations between 
the core CCs differ significantly from those between the sat-
ellite CCs. This is accomplished by using Welch’s parametric 

t test and the nonparametric Mann–Whitney U test. We per-
form one-sided tests because we assume the correlations 
between the core CCs are higher than those between the 
satellite CCs. The first test proves the null hypothesis that 
the means of the correlations of the core CCs and satellite 
CCs are equal, whereas the second test examines this for the 
central tendencies. The alternative hypothesis states that the 
mean or central tendencies of the correlations of the core 
CCs are higher than those of the satellite CCs. The respec-
tive null hypothesis is rejected at the 1% significance level 
for both tests, with a p value of 0.0007 for Welch’s t test and 
0.0002 for the Mann–Whitney U test.

Thus, we can conclude that the correlations of the core 
CCs are higher than those of the satellite CCs. This finding 
provides evidence for the intended segmentation of the CC 
market.

Conclusion

In our study, we show how a general, purely data-driven 
process can be utilized successfully to separate an invest-
ment universe into similar assets (core) and dissimilar assets 
(satellites). We verify the feasibility of this approach and 
outline the necessary sequence of steps for the segmentation 
in detail. Using the example of the modern CC asset class, 
we separate the investment universe into similar CCs (core) 
and dissimilar CCs (satellites) as the residual share. In addi-
tion, we discern interesting results specifically concerning 
the CCs.

The results in Table 3 show that of the 27 CCs studied, 
19 CCs belong to the core, whereas 8 CCs represent the 
satellites. The question raised at the beginning of whether 
Bitcoin actually represents the “hard core” of the CC mar-
ket can be answered in a differentiated manner. It turns out 
that Bitcoin is part of the core, but not in its center. Recall 
that the threshold dbound = 0.357 is used to draw a contour 
(white) in the modeled height profile on the lower-right part 
of Fig. 1, which delimits an upper block matrix. This block 
matrix represents the core of the CC market, wherein Bit-
coin lies just inside and thus narrowly belongs to the core. 
Therefore, it is not part of the “hard core” of very similar 
CCs with low normalized DTW distances but is compara-
tively dissimilar to other core CCs. Thus, a dominant role 

Table 4   Correlation analysis of 
the entire period

Kendall’s correlation coefficient is used, and the calculated p values are based on a two-sided significance 
test

CCs Range Mean Median Mean p value Median p value

Complete 27 0.0491–0.5981 0.2223 0.2180 0.0227 0.0002
Core 19 0.0780–0.5981 0.2416 0.2308 0.0097 0.0001
Satellites 8 0.0491–0.3731 0.1751 0.1480 0.0638 0.0129
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within the CC market, as appears in other analyses, cannot 
be confirmed by our findings.

Although our paper presents a methodological approach 
that aims to explain our proposed segmentation process, we 
nevertheless briefly discuss an exemplary use case of the 
results. In general, the market segmentation result can be 
used in portfolio management by institutional investors to 
track the core market with a few selected CCs in a track-
ing error approach, as described in more detail in Sect. 4. 
For example, 5–10 CCs of the core with high liquidity and 
market depth are selected to form the core investment. To 
increase returns, a higher-level management approach can 
then be used to build up individual positions in CCs that 
belong to the satellite, thus implementing a core–satellite 
portfolio.

One potential challenge for this approach might lie in 
liquidity problems, especially in the case of smaller alt-
coins (other than Bitcoin). However, studies indicate that 
CCs typically make up a smaller component of a portfolio 
of traditional assets, mitigating this issue (Dorfleitner and 
Lung 2018; Schmitz and Hoffmann 2021). In addition, meth-
ods such as the liquidity bounded risk–return optimization 
(LIBRO) approach by Trimborn et al. (2020) exist that can 
be used to optimize portfolios under liquidity constraints. 
Furthermore, it is conceivable that liquid CCs are incor-
porated into the core so that they can be purchased anyway 
without the fear of liquidity restrictions. Beyond that, it can 
be assumed that the development of the CC market will 
make it suitable for larger investment volumes in the future.

As already mentioned, the proposed method is not limited 
to CCs. A suitable market segmentation in other asset classes 
is conceivable, as well. The advantages of the product-based 
implementation of a topic-centered, combined ‘core–satel-
lite & tracking-error’ strategy in the private or institutional 
investor segment is reserved for further studies.

Appendix 1: Stable distribution—the tail 
parameter ̨

The analyses in Börner et al. (2021) show that a family of 
SDIs is the most promising option for modeling the distribu-
tion of the returns of CCs. Therefore, this family of functions 
is also used in the present study and is introduced here in 
detail. Several different parametrizations exist for the SDI. 
In the following formulation, we follow the presentation and 
the parametrization of the SDI described in Nolan (2020, 
Def. 1.4 therein). SDIs are a class of probability distributions 
suitable for modeling heavy-tailed and skewed distributions. 
A linear combination of two independent, identically dis-
tributed stable random variables has the same distribution 
as the individual variables. A random variable X has the SDI 
S(�, �, � , �) if its characteristic function is given by:

The first parameter 0 < 𝛼 ≤ 2 is called the shape param-
eter and describes the tail of the distribution. Sometimes 
this parameter is also denoted as the tail parameter, index 
of stability or characteristic exponent. The second param-
eter −1 ≤ � ≤ +1 is the skewness parameter. If � = 0 , then 
the distribution is symmetric; otherwise, it is left-skewed 
( 𝛽 < 0 ) or right-skewed ( 𝛽 > 0 ). When � is small, the 
skewness of � is significant. As � increases, the effect of 
� decreases. Further, � ∈ ℝ

+ is called the scale parameter, 
and � ∈ ℝ is the location parameter. For the special case of 
� = 2 , the characteristic function given by Eq. (1) reduces 
to E

[
exp (itX)

]
= exp

(
i�t − (�t)2

)
 and becomes independ-

ent of the skewness parameter � , and the SDI is equal to 
a normal distribution with mean � and standard deviation 
� =

√
2� . This is an important property for portfolio theory, 

for example, when considering multivariate distributions. 
The rationale is that it is basically possible to model the 
normally distributed components of a random vector with 
the same function class. In the main part, the tail parameter 
� is estimated for each year under consideration on a weekly 
return basis and used as input data for the DTW distance 
analysis.

Appendix 2: Modeling with radial basis 
functions

In many scientific fields (Powell 1977; Poggio and Girosi 
1990; Sahin 1997; Biancolini 2017), radial basis functions 
are used to carry out a function approximation of the fol-
lowing form:

where y(�) is a one-dimensional function depending on 
� ∈ ℝ

n . The function y(�) is modeled as a sum of M radial 
basis functions, each centered at a different center �m and 
weighted with an appropriate coefficient �m . The real value 
of every radial basis function is strictly positive and depends 
only on the distance between the point x and the center �m . 
The distance r = ‖� − �m‖ is determined in a previously 
defined norm. We only use the Euclidean distance as the 
norm in our analyses. To model and reconstruct the height 
profile over the distance matrix � in Sect. 4, we use radial 
basis functions of Gaussian type:

(1)

E
�
exp (itX)

�
=

⎧⎪⎨⎪⎩

exp
�
i�t − ��t��

�
1 + i�sign(t) tan

�
��

2

����t�1−� − 1
���

� ≠ 1

exp
�
i�t − ��t�

�
1 + i�sign(t)

2

�
ln (��t�)

��
� = 1

(2)y(�) =

M�
m=1

�m �(‖� − �m‖)
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with infinite support and a positive shape parameter a. The 
latter can also be interpreted as the effective range of the 
radial basis function. If R denotes the distance between two 
different centers and 0 < p < 1 denotes the desired residual 
effect at the next center, then the area of effect can be set by 
a due to a = −R−2 ln p . The parameter vector � is determined 
using a least squares approach. In some applications, we 
find that least squares fit encounters problems with ill-condi-
tioned matrices. Therefore, we extend our Lagrange function 
to be minimized by a regularization term. The latter term 
is also referred to as cost-functional and takes into account 
the costs of the deviation from a smooth function. The theo-
retical foundations of this approach can be traced back to 
earlier work by Tikhonov (1943, 1963). The implemented 
regularization procedure is currently standard (Poggio and 
Girosi 1990), cf. also Sahin (1997); Biancolini (2017) and 
the substantial amount of literature cited therein. Hence, we 
set the Lagrange function

where �2 is the squared error between the modeled ( ̂yi ) and 
sample ( yi ) values for i = 1,… ,N  with sample length N. 
Furthermore, � is a positive real number called the regulari-
zation parameter. If � → 0 , the problem is unconstrained, 
and the resulting model can be completely determined from 
the sample. On the other hand, if � → ∞ , the a priori desired 
smoothness of the resulting model dominates and leads to 
a highly smooth function, nearly flat in the limit and almost 
independent of the measured sample. Finally, the solution 
to the minimization problem given by Eq. 4 is

Abbreviating �im = �(‖�i − �m‖) as the value of the mth 
radial basis function at the sample point �i for i = 1,… ,N 
and given the output yi , then the vector � =

�⟨yi�im⟩
�
m=1,…,M

 
and matrix � =

�⟨�ik�im⟩
�
k,m=1,…,M

 , where ⟨⋅⟩ denotes the 

(3)�(r) = exp
(
−ar2

)

(4)L = �2 + ���
�

(5)� =

(
� +

�

N
�

)−1

�.

sample average. Further, E denotes the identity matrix in 
ℝ

M×M . In practice, in very few applications do we assign 
successively increasing values 0 ≤ 𝛼 < 100 to the regulari-
zation parameter until the observable local roughness or 
heavily peaked structure of the modeled surface vanishes. 
We observe that the height profile of the distance matrix D 
remains well reconstructed, but modeling the absolute height 
worsens with the increasing influence of regularization. The 
modeling properties improve if a constant term is incremen-
tally added to the model given in Eq.  (2). The solution 
expressed by Eq. (5) does not change if the number of radial 
basis functions is increased only by 1, M → M + 1 , and the 
value identical to 1 is assigned to the first radial basis func-
tion, �1 = 1 for all � ∈ ℝ

n , while the changes are considered 
in the elements of the vector v and matrix � . The majority 
of the analyses could be carried out with � = 0 and led with-
out regularization procedures to very good results. For the 
results shown in the main part, we do not apply the regulari-
zation procedure. In Fig. 3, an example of the modeling pro-
cess with radial basis functions and � = 0 is shown. The left 
figure shows the rough and peaked height structure dmn 
above the DTW distance matrix �SE calculated in Sect. 4. It 
is the three-dimensional counterpart of the upper-right panel 
of Fig. 1 viewed from the upper-left corner along the main 
diagonal. The graphic on the right shows the surface of the 
standardized height structure d̂mn modeled with radial basis 
functions. Some contour lines (dashed white) are also 
shown, each with a distance of 0.2 units. The contour of the 
threshold dbound = 0.357 for the squared Euclidean metric is 
shown in light gray, cf. Sect. 4. The bullet points and the 
corresponding vertical dashed lines illustrate the centers and 
positions of the radial basis functions, respectively.
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