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Abstract
Predicting the number of outstanding claims (IBNR) is a central problem in actu-
arial loss reserving. Classical approaches like the Chain Ladder method rely on 
aggregating the available data in form of loss triangles, thereby wasting potentially 
useful additional claims information. A new approach based on a micro-level model 
for reporting delays involving neural networks is proposed. It is shown by extensive 
simulation experiments and an application to a large-scale real data set involving 
motor legal insurance claims that the new approach provides more accurate predic-
tions in case of non-homogeneous portfolios.

Keywords Loss reserving · Individual claim features · General insurance · 
Randomly truncated data · Expectation maximization algorithm · Mixture 
distribution

1 Introduction

One of the classical challenges in non-life insurance consists of predicting param-
eters associated with outstanding claims, commonly referred to as IBNR claims 
for incurred but not reported [30]. Conventional approaches like the Chain Ladder 
method or the Bornhuetter-Ferguson method (see  [33] for an introduction), which 
were proposed decades ago in view of the historic need for moderate computational 
costs, are based on aggregate claims data collected in so-called development trian-
gles. Such an aggregation of claims data, however, is known to result in a huge loss 
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of information, and likewise, possible computational restrictions became more and 
more superfluous due to the significant progress in technology. Therefore, many 
researchers have recently promoted the development of claims reserving methods 
that operate on individual data.

Many proposals regarding individual loss reserving rely on applications of cel-
ebrated Machine Learning (ML) techniques (see  [18, 20] for general overviews), 
see, e.g.,  [8, 10–13, 28, 37, 38], among others. Most of the proposed methods have 
in common that they aim at modeling the development of each individual claim (in 
particular, each RBNS claim, for reported but not settled) and, if at all, use a Fre-
quency-Severity or Chain Ladder based approach to estimate IBNR reserves over 
discrete time steps, usually one year. More precisely,  [37] uses neural networks to 
obtain individualized Chain Ladder factors. Reference [12] uses neural networks to 
predict sets of aggregated IBNR run-off triangles. References [10, 38] model RBNS 
reserves using ML models and feature a Chain Ladder based approach to IBNR 
reserves. References [11, 28] focus completely on predicting RBNS reserves using 
ML models. Reference [8] applies tree based methods to both parts of the reserve.

The current paper contributes to this branch of the literature by proposing a new 
method to predict IBNR claim numbers. Our approach is based on a new flexible 
parametric model for the reporting delay distribution of an incurred claim, whose 
parameters are explained in terms of observed claims features by a classical multi-
layer perceptron neural network with multiple outputs.

The new parametric model, which might be of independent interest for general 
time-to-event modeling, builds upon a mixture construction proposed in  [21] and 
involves a generalized Pareto tail, an Erlang mixture body and certain point meas-
ures. Statistical challenges to fit the model arise from the fact that observed report-
ing delays are subject to (random) truncation, which hampers a direct application 
of the classical EM algorithm [14] for mixture fitting based on (conditional) maxi-
mum likelihood (see [35] for fitting Erlang mixtures with non-random truncation). 
As a circumvent, we propose a suitable adaptation that relies on the ECME algo-
rithm [27]; note that the ECME algorithm may exhibit faster convergence properties 
than the EM algorithm.

Estimation of the neural network parameters is done using TensorFlow, an indus-
try-standard implementation framework for neural networks  [1]. Optimization is 
carried out using the Adam and Nesterov-Accelerated Adam optimizers (see  [15, 
23], respectively) and a custom loss function is developed to adapt to the problem 
of fitting a parametric distribution to (randomly) truncated data. Starting values are 
provided by the global model fit based on the ECME-algorithm. Most implementa-
tion code is written using the R language and involves the keras and tensorflow 
R packages from [2, 9], respecively, as a binding to TensorFlow. The implementa-
tions are freely available as an R package called reservr on GitHub ([34]).

Finally, once the joint model for reporting delays has been fitted, we construct 
predictors for IBNR claim numbers based on a classical model for claims devel-
opment involving a position-dependent marked Poisson processes, see [6, 31, 32]. 
Successful applications of this general idea can be found in [4, 5, 22], among others.

The new predictors are evaluated in a simulation study as well as in an appli-
cation to a large-scale real-life dataset (about 250,000 contracts) concerning motor 
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legal insurance claims. It is found that the new predictors outperform classical Chain 
Ladder approaches in simulation scenarios involving non-homogeneous portfolios 
and in the real-life example, with quite some advantage in the latter case.

The papers which are closest in spirit to the present approach are  [4, 13]. The 
authors of the first paper concentrate on claim severities rather than claim numbers, 
and also use a neural network based approach for fitting semi-parametric distribu-
tion models of mixture type. A key difference to our approach is that the authors 
rely on three neural networks for modeling the distribution parameters, while our 
approach relies on only one neural network with multiple outputs. Additionally, we 
also face the challenge of (random) truncation, which is not present in the prob-
lem studied by [13]. On the other hand, [4] explicitly model reporting delays subject 
to (random) truncation using a parametric distribution. In contrast to our approach, 
they model small numbers of subgroups to allow more claim-level features to influ-
ence the distribution, which is close to our global approach used for finding suitable 
starting values for the neural network model.

The remaining parts of this paper are organized as follows. In Sect. 2, we start 
by summarizing the notation and then make some preliminary remarks on the inte-
gration of reporting delays into the classical position-dependent marked Poisson 
process model from  [31]. We then construct both a new global model for report-
ing delays, with constant parameters not depending on individual claims features, 
and then a micro-level that incorporates the latter in terms of neural networks. 
Approaches to fit the models to (randomly) truncated data are presented in Sect. 3. 
The estimators may be transferred into predictors for IBNR claim counts, which is 
treated in Sect. 4. Results on a large-scale simulation study are presented in Sect. 5, 
and an application to a real dataset involving motor legal insurance claims is pre-
sented in Sect. 6.

2  Modelling reporting delays

2.1  Preliminaries on insurance portfolio data

Consider an insurance portfolio containing Npol independent risks. Each risk P is 
described by a coverage period C = [tstart, tend] , and by risk features x̄ ∈ �̄ , where 
�̄ is a feature space containing both discrete and continuous features; for example, 
information on the insured product and chosen options such as deductibles. Subse-
quently, we write x = (C, x̄) ∈ � = {intervals on [0,∞)} × �̄ , and assume that x is 
constant over the course of the contract. In practice, risk features do change over 
time, but not very often, whence such a contract could be modelled as two separate 
risks.

Each risk can potentially incur claims during its coverage period, formally 
modelled by a claim arrival process. If a claim occurs at a (calendar) accident 
time tacc ∈ [tstart, tend] , it will not be immediately known to the insurer. The delay 
between accident time and time of reporting ( treport ) results in incomplete informa-
tion on the insurers side and thus necessitates the assessment of incurred but not yet 
reported (IBNR) claims. Of primal importance for any subsequent analysis (e.g., on 
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cumulated claim sizes) is an accurate prediction of the number of IBNR claims, see 
below for details.

We view the reporting delay ( dreport ∶= treport − tacc ) as a mark on the claim arrival 
process. In addition to the reporting delay, there are several other claim features that 
are known to the insurer as soon as the claim is reported. We denote this feature 
space by � . It will typically include information on the type of claim and maybe on 
its severity. The individual claim arrival processes, associated with the individual 
risks in the portfolio, are assumed to be (position-dependent) marked Poisson pro-
cesses as in [31]. More precisely, following the notation in [24], we make the fol-
lowing assumption.

Model 1 (Claim Arrivals) Associated with each risk P(i) in the portfolio, with risk 
features x(i) ∈ � among which we find the coverage period C(i) , there is a position-
dependent marked Poisson process with N(i) ∼ Poi

(∫
C(i) �(x

(i), t) dt
)
 points

on [0,∞) ×� × [0,∞) with: 

 (i) Intensity �(x(i), t) ⋅ 1(t ∈ C(i)) , i.e., for all intervals [t0, t1] ⊆ [0,∞) , we have 

 (ii) Conditional claim feature distribution PY (x
(i), t) = PY|X=x(i),Tacc=t . Here, Y 

denotes a generic claim feature variable containing all claim features except 
for the reporting delay, while X and Tacc are generic risk feature and accident 
time variables, respectively.

 (iii) Conditional reporting delay distribution PD(x
(i), t, y) = PD|X=x(i),Tacc=t,Y=y . Here, 

D = Dreport denotes a generic reporting delay variable, whose distribution is 
modelled conditional on the risk-claim variable (X, Tacc, Y).

Moreover, �(1),… , �(Npol) are mutually independent.
Note that the overall intensity measure of �(i) can be written as

This paper is mainly concerned with the reporting delay Dreport . More precisely, 
in the subsequent sections, we will propose (1) a parametric model for PD that is 
both flexible and analytically tractable (Sects.  2.2 and 2.3), and (2) an estimation 
approach for the model that adequately takes care of the major nuisance that avail-
able observations are typically randomly right-truncated (Sect.  3). We impose the 
following assumption on the data-generating process.

�(i) =

N(i)∑
j=1

�(
T
(i)

acc,j
,Y

(i)

j
,D

(i)

report,j

)

N(i)∑
j=1

1(T
(i)

acc,j
∈ [t0, t1]) = ∫

t1

t0

�(i)(dt,�, [0,∞)) ∼ Poi

(
∫

t1

t0

1(t ∈ C(i))�(x(i), t) dt

)
.

�(i)(A) = ∫C(i) ∫� ∫[0,∞)

1((t, y, d) ∈ A)�
(
x(i), t

)
PD

(
x(i), t, y

)
(dd)PY

(
x(i), t

)
(dy) dt.
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Observation Scheme 1 At given calendar time � , the available dataset � = �� con-
sists of all risk features x(i) , i ∈ {1,… ,Npol} , and all reported claim data up to calen-
dar time � , i.e.

Equivalently, we observe, for each i ∈ {1,… ,Npol} , the risk feature x(i) and the 
restriction �(i)

r
(⋅) = �(i)( ⋅ ∩ R�) , where R� = {(t, y, d) ∶ d + t ≤ �} and where the 

lower index r stands for ‘reported’. Note that the observations in (1) are randomly 
right-truncated, which requires additional care when estimating the model.

Note that the ultimate objective of claims reserving is to obtain good (aggre-
gate) predictions for characteristics that depend on the partly unobserved paths of 
�(i) across different time and feature sections, based on reported observations �(i)

r
 as 

in Observation Scheme 1. Details are provided in Sect. 4, where explicit predictors 
are derived that depend on the (fitted) reporting delay models described in the next 
two sections.

2.2  A Global Parametric Model based on Blended Distributions

Reporting delays exhibit some stylized facts that appear to be present in many 
empirical data sets:

• First, in the lower tail, they are non-negative with very short reporting delays 
(such as 0, 1, 2,… days) being quite common. Short reporting delays may further 
be influenced by certain calendar effects (e.g., across weekends), whence rather 
flexible models are needed for the lower tail.

• On an intermediate timescale (the body of the distribution), reporting delays can 
be considered quasi-continuous and only exhibit small specific patterns. How-
ever, the general shape of the distribution differs significantly between clusters of 
similar claims, suggesting the use of mixture type models for large heterogene-
ous portfolios.

• Finally, in the upper tail, very long reporting delays may exist depending on the 
line of business, suggesting some heavy tailed behaviour.

Models for each of the three parts of the distribution are described below, to be 
merged later into an appropriate mixture model.

First, in the interest of maximizing flexibility, we propose to model the discrete 
lower tail by a mixture of Dirac-components (see also [4]), i.e., by 

∑n

i=1
p
(�)
i
�i−1 , 

where �i denotes the Dirac measure at i, where p(�)
i

 are mixture weights, and where 
the choice of n is driven by a case-specific analysis of the data, a reasonable starting 
value being n = 8 corresponding to one week.

Next, consider modeling the body of the reporting delay distribution. A good 
choice for a flexible continuous model is provided by a (translated) Erlang Mixture, 
because the latter family is dense in the space of positive distributions with respect 
to weak convergence  [26], and hence provides sufficient flexibility for adapting 

(1)
{
(x(i), t

(i)

acc,j
, y

(i)

j
, d

(i)

report,j
) || t(i)report,j ∶= d

(i)

report,j
+ t

(i)

acc,j
≤ �

}
.
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to real-life distributions. For combining (mixing) the Erlang Mixture component 
with the discrete lower tail, we propose to translate the Erlang Mixture component 
by n − 1

2
 such that its support does not intersect with the discrete components but 

additionally the smallest possible observation that does not belong to the discrete 
components, namely dreport = n , is in the interior of the support of the continuous 
component. If we translated by n or n − 1 instead, observations from the data would 
touch the boundary of the support, leading to numerical instability.

Next, consider the tail model, whose need is motivated by the fact that the tail 
behaviour of Erlang Mixtures is, as they are mixtures of Gamma Distributions, fixed 
to exponential decay (i.e., the extreme value index is 0, see [16]). In order to better 
capture possible heavy tail behaviour, we chose to attach to the Erlang Mixture body 
a Generalized Pareto Distribution with non-negative shape parameter. The latter 
family satisfies our need for flexibility in the heaviness of the tail and for a parsimo-
nious parametrization, and may further be motivated by the Pickands-Balkema-de 
Haan theorem ([16]). Recall that the Generalized Pareto Distribution GPD (�, �, �) 
has cumulative distribution function (cdf)

with parameters � ∈ ℝ (location), 𝜎 > 0 (scale), and � ≥ 0 (shape). Practically the 
reporting delay should have finite expectation, so we constrain the GPD component 
to have shape parameter 0 ≤ 𝜉 < 1 , where � = 0 degenerates to an Exponential dis-
tribution which is also a member of the Erlang Mixtures.

Classical approaches of attaching a heavy-tailed distribution to a body distribu-
tion use hard cut-off thresholds that result in jump discontinuities in the resulting 
density. This jump can be avoided at little extra computational cost by using what 
we call blended distributions below. The construction goes back to [21, Section 2], 
and relies on gradually mixing two cumulative distribution functions in a blending 
interval A centered at some (high) threshold � , eventually yielding a smooth density. 
We follow up on their ideas but, in the interest of increased flexibility, allow � to be 
a parameter of the family instead of being determined by the blended component 
distributions.

Definition 1 (Blended Distribution family) Given two distributions P,  Q on ℝ 
with cdfs F(⋅) = P((−∞, ⋅]) and G(⋅) = Q((−∞, ⋅]) , respectively, and parameters 
� ∈ ℝ, � ∈ ℝ+, p ∈ [0, 1]2, p1 + p2 = 1 such that F(𝜅) > 0 and G(𝜅) < 1 , we define 
the Blended Distribution B = Blended (P,Q;p, �, �) of P and Q with blending inter-
val [� − �, � + �] and mixture probabilities p via its cdf FB:

(2)G�,�,�(x) = 1 −
(
1 + �

x − �

�

)−1∕�

, x ≥ �,
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See the right panel in Fig. 1 for the graph of p�,� and q�,�.
Given two families F,G of distributions on ℝ , and parameters � ∈ ℝ, � ∈ ℝ+ 

(where F  or G are allowed to depend on � and � ), we define the Blended Distribu-
tion family as the family of Distributions

Note that FB defined in (3) is a mixture of two distributions, say P′ and Q′ , that 
are obtained from a certain truncation-like transformation applied to input distri-
butions P and Q, respectively, in such a way that P′ is supported on a subset of 
(−∞, � + �] , while Q′ is supported on a subset of [� − �,∞) . The transformed cdfs 
and densities are illustrated for P = N(−1, 1) and Q = Exp (1) in Fig. 1, alongside 
with respective curves for the distributions obtained by plain upper or lower trun-
cation at � . Note that, in practice, the choice of a suitable blending region defined 
by � and � is similar to the choice of the cut-off threshold in conventional tail 
modelling problems. Throughout the applications in this paper, we experimented 

(3)

p�,�(x) =

⎧
⎪⎨⎪⎩

x , x ∈ (−∞, � − �],
1

2
(x + � − �) + �

�
cos

�
�(x−�)

2�

�
, x ∈ (� − �, � + �],

� , x ∈ (� + �,∞),

q�,�(x) =

⎧
⎪⎨⎪⎩

� , x ∈ (−∞, � − �],
1

2
(x + � + �) − �

�
cos

�
�(x−�)

2�

�
, x ∈ (� − �, � + �],

x , x ∈ (� + �,∞),

FB(x) = p1
F(p�,�(x))

F(�)
+ p2

G(q�,�(x)) − G(�)

1 − G(�)
.

(4)
Blended (F,G;�, �) ∶= {Blended (P,Q;p, �, �) ∣ P ∈ F,Q ∈ G, p ∈ [0, 1]2, ‖p‖1 = 1}.
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Fig. 1  Illustration of the mixture components in relation to the original families for 
Blended (N(−1, 1), Exp (1);0, 1) . Depicted are the density and the cdf from the original, plain trun-
cated and blended component distributions. Plain truncation refers to truncation from above at � = 0 for 
N(−1, 1) and truncation from below at � = 0 for Exp (1) ; note that the latter coincides with the original 
Exp (1) distribution. The right panel shows the corresponding blending functions, p�,� and q�,� . Irrelevant 
regions, where the corresponding components have no mass, are dotted. Compare [21, Figure 1]
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with blending regions that are defined by different empirical quantiles close to 1. 
By doing so, we eventually control the number of observations used for fitting the 
tail.

If the families F  and G in (4) are parameterized by sets ΘF and ΘG , then the 
mixture component families making up Blended (F,G;�, �) are defined by their 
cdfs

which are naturally parameterized by the same parameter space. Care 
must be taken to preserve identifiability of the parametrization as 
‘ �1 ≠ �2 ⇒ F�1

≠ F�2
 ’ does not necessarily imply the same property for F′ . For 

an example where this in not the case, consider the family of uniform distributions 
U = {Ub = Unif(0, b) ∶ b ∈ ΘU = (0,∞)} . If taken as the left side ( F  ) of a blended 
distribution, the blended components U′

b
 will be the same distribution for all b ≥ � . 

Note that a simple sufficient condition for identifiability is 
⋃

𝜃∈ΘF
suppF𝜃 ⊆ (−∞, 𝜅] 

and 
⋃

𝜃∈ΘG
suppG𝜃 ⊆ [𝜅,∞).

The final distribution model that we employ for modelling reporting delays is 
as follows.

Definition 2 (Blended Dirac-Erlang-Generalized Pareto family) Given parameters 
n,m ∈ ℕ0 , and �, � ∈ (0,∞) , we define the Blended Dirac-Erlang-Generalized 
Pareto family as the family of Distributions

A specific distribution from BDEGP (2, 3, 10, 3) is illustrated in Fig. 2.

This distribution family has 2m + n + 3 degrees of freedom due to the con-
straints placed on the mixture parameters p(�), p(e) , and p(b) . Note that due to 
the restriction of 𝜉 < 1 , all members of this family are guaranteed to have finite 
expectation, though higher moments may not exist.

Returning to the context of Sect. 2, in a simplified parametric global model we 
assume that, for some fixed hyperparameters n, m, � , and � , the reporting delay 

(5)F� =
{
F� ||| F

� =
F◦p�,�

F(�)
for some F ∈ F

}
,

(6)G� =
{
G� ||| G

� =
G◦q�,� − G(�)

1 − G(�)
for some G ∈ G

}
,

BDEGP (n,m, 𝜅, 𝜀)

∶=
{ n∑

i=1

p
(𝛿)
i
𝛿i−1 + p

(𝛿)
n+1

Blended
( m∑

i=1

p
(e)

i
(Γ𝛼i,𝜃

+ n −
1

2
), GPD 𝜇=𝜅,𝜎,𝜉 ;p

(b), 𝜅, 𝜀
)

||| p
(𝛿) ∈ [0, 1]n+1, p(e) ∈ [0, 1]m, p(b) ∈ [0, 1]2,

∑
p
(𝛿)
i

=
∑

p
(e)

i
= p

(b)

1
+ p

(b)

2
= 1,

𝛼 ∈ ℕ
m, 𝛼1 < ⋯ < 𝛼m, 𝜃 ∈ ℝ+, 𝜎 ∈ ℝ+, 𝜉 ∈ [0, 1)

}
.
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distribution for each claim lies in BDEGP (n,m, �, �) . Here, ‘global’ refers to the 
fact the reporting delay distribution does not depend on accident time or risk and 
claim features.

Model 2 (Parametric Global Model) Next to the assumptions made in Model 1 
assume that, for some given (known) parameters n,m, � , and � , we have

for some B𝜃 ∈ BDEGP (n,m, 𝜅, 𝜀) . Here, all free parameters of the BDEGP (n,m, �, �)
-model are collected in a vector 𝜃 = (p(𝛿), p(e), p(b), 𝛼, 𝜃, 𝜎, 𝜉) with respective param-
eter space Θ ⊂ [0, 1]n+1 × [0, 1]m × [0, 1]2 × ℕ

m ×ℝ+ ×ℝ+ × [0, 1) ⊂ ℝ
2m+n+6 with 

effective dimension 2m + n + 3.

Despite its simplicity, the global model will prove useful for finding good starting 
values for a fitting algorithm for the micro-level model introduced next.

2.3  A micro‑level model based on neural networks

Quite naturally, the micro-level model is based on an extension of the global model 
by allowing 𝜃 = g(x, t, y) to depend on claim and risk features. More precisely, we 
assume that g is a neural network of some predefined architecture.

Model 3 (Micro-Level Model) Next to the assumptions made in Model  1 assume 
that, for some given (known) parameters n,m, � , and � , we have

for some g ∈ G , where G denotes a set of neural networks g ∶ � ×ℝ ×� → Θ such 
that Bg(x,t,y) ∈ BDEGP (n,m, �, �) for all (x, t, y) ∈ dom (g).

(7)PD(x, t, y) ≡ B𝜃 for all x, t, y

PD(x, t, y) ≡ Bg(x,t,y) for all x, t, y
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Fig. 2  BDEGP (2, 3, 10, 3) distribution. Parameters: p(�) = (0.15, 0.1, 0.75) , p(b) = (0.7, 0.3) , 
p(e) = (0.2, 0.5, 0.3) , � = 2 , � = (1, 2, 3) , � = 0.4 , � = 0.2 . left: density, middle: component densities, 
right: cdf. Note how the component densities are smoothed over (7,  13) in comparison to truncated 
Erlang distributions or GPD �=10,�=0.4,�=0.2
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Remark 1 Instead of postulating G to be a family of neural networks, it is also pos-
sible to consider alternative functional relationships g ∶ � ×ℝ ×� → Θ . For the 
sake of brevity, we limit ourselves to neural networks in this paper, which have 
proven useful in numerous applications due to their great flexibility and the efficient 
fitting algorithms. Likewise, neural networks may be combined with other paramet-
ric global models such as the Dirac-Weibull-mixture model from [4]. The latter was 
found to provide less efficient predictors in preliminary experiments, whence we 
restrict attention to the BDEGP family.

It remains to explain the class of neural networks G ; see [18] for a good introduction 
to neural networks. We chose a classical multilayer perceptron (MLP) neural network 
with Ndense hidden layers of dimension n1,… , nNdense

 . Discrete data were incorporated 
using embedding layers, and the final dense layer was mapped to the parameter space 
Θ via canonical transformations (softmax for probability weights, softplus for posi-
tive parameters, sigmoid for interval-bounded parameters, and identity for unbounded 
parameters). We call this canonical mapping fadaptor ∶ ℝ

ntail → Θ where ntail is the out-
put dimension of the final dense layer. A more detailed description of the neural net-
work architecture can be found in Appendix A in the supplementary material.

The neural network construction is not valid for integer components in Θ . For this 
reason, we must fix the shape parameters of the erlang components in the micro-level 
BDEGP-model. In the interest of maximizing flexibility, one could argue to fix the 
shapes to 1,… ,M for some large integer M, such that F  contains all erlang mixtures 
with shapes at most M. However, this heuristically results in overparametrization, 
whence we propose to fix the shapes to the values obtained from estimating the global 
model instead, say � = (�1,… , �m) . In addition to that, we have found the parameter 
� , although real-valued, to pose numerical challenges. Individual-level parameter esti-
mates of � quickly converged to 1 leading to poor performance and instability. There-
fore, � was replaced by the (fixed) initial value obtained from fitting Model 2. Formally, 
this means that BDEGP (n,m, �, �) in Model 3 will be replaced by

This family leads to ntail = n + m + 5 and the concrete defini-
tion fadaptor(x) = (�, �, p(�), p(e), p(b)) = (sp(x1), sp(x2), smℝn+1(x3∶n+3), 
sm

ℝm(xn+4∶n+m+3), smℝ2(xn+m+4∶n+m+5))
� where xi∶j = (xi, xi+1,… , xj)

� denotes vector 
slices and where sp = sof tplus and sm = sof tmax.

BDEGP fix(n,m, �, �, �, �)

∶=
{ n∑

i=1

p
(�)
i
�i−1 + p

(�)
n+1

Blended
( m∑

i=1

p
(e)

i
(Γ�i,�

+ n −
1

2
), GPD �=�,�,�=� ;p

(b), �, �
)

||| p
(�) ∈ [0, 1]n+1, p(e) ∈ [0, 1]m, p(b) ∈ [0, 1]2,

∑
p
(�)
i

=
∑

p
(e)

i
= p

(b)

1
+ p

(b)

2
= 1, � ∈ ℝ+, � ∈ ℝ+

}
.
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3  Fitting the reporting delay model to truncated data

In this section, we describe a conditional maximum-likelihood-based approach for fit-
ting Model 3 in detail. We will start by deriving the conditional likelihood function 
for observed reporting delays from Observation Scheme  1 under the general setting 
of Model 1, see Sect.  3.1. We then proceed by considering the global model from 
Model 2, and describe an estimation approach based on a modified EM-Algorithm, see 
Sect. 3.2. Once we have an estimate for the global parameters, we can use them as start-
ing values for an estimation procedure for the micro-level model from Model 3, see 
Sect. 3.3. Not using good starting values for the micro-level model proved detrimental 
to convergence of the estimation routine to the point of becoming unusable.

3.1  The conditional likelihood for truncated reporting delays

In this section we derive a conditional likelihood function for observed reporting delays 
from Observation Scheme 1 under the general setting of Model 1. It is worthwhile to 
mention that the resulting conditional likelihood is not bound to the case of reporting 
delays, but applies in any setting involving a parametric model for randomly truncated 
data, provided the model is dominated by a �-finite measure and some (conditional) 
independence assumptions are met.

It follows from Model 1 that the reporting delays are conditionally independent 
given the claim features as well as the accident time, i.e.,

for some distribution PD(x
(i), t, y) depending only on x(i), t, y . While Models 2 and 3 

are based on specific parametric assumptions, it is instructive to keep things uni-
versal, and only make the assumption that PD(x

(i), t, y) has cumulative distribution 
function Fg(x(i),t,y) ∈ {Fg(x(i),t,y) ∶ g ∈ G} for some suitable family F = {F� ∶ � ∈ Θ} 
of distributions that is dominated by some �-finite measure � (the �-densities are 
denoted by f� ), and for some family G of functions g ∶ � × (0,∞) ×� → Θ (in a 
global model, G would be the class of all constant functions g ≡ � with � ∈ Θ ). Note 
that a natural dominating measure for the BDEGP family is � = Leb +

∑n−1

i=0
�i.

To see how the data �� observed by an insurer at calendar time � can be described 
as a truncated sample, consider points from � = �(i) (for the sake of readability, we omit 
the upper index i for the moment). They contain (tacc,j, dreport,j) , and are observed by 
the insurer if tacc,j + dreport,j ≤ � . Hence, every observed reporting delay is truncated to 
the interval dreport,j ∈ [0, � − tacc,j] . As a consequence, the likelihood of every observed 
reporting delay must be calculated conditional on the event Dj ∈ [0, � − Tacc,j] , i.e.,

(D
(i)

j
|X(i) = x(i), T

(i)

acc,j
= t, Y

(i)

j
= y) are independent with distribution PD(x

(i), t, y),
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where (x, tacc,j, yj, dj) = (x(i), t
(i)

acc,j
, y

(i)

j
, d

(i)

j
) . This leads to the following conditional 

log-likelihoods for Models 2 and 3, respectively:

Strategies to efficiently calculate the maximum of these functions are presented in 
the next two sections.

3.2  Estimating the global model

In this section, we describe how to maximize � ↦ �
G(�|��) from  (8). In view of 

the fact that the underlying BDEGP family is essentially a mixture family, a natural 
approach consists of using a suitable version of the EM algorithm [14]. In fact, the pro-
cedure for fitting a BDEGP family to data is divided into subproblems which maximize 
conditional likelihoods on subsets of the parameter space. These building blocks need 
slight adaptations for blended distributions and Erlang mixture distributions, but are 
largely similar.

Before describing the algorithms, it is instructive to consider the underlying basics 
of a generic version of the EM algorithm that may be applied to samples of (both upper 
and lower) randomly truncated observations from a mixture model. Here, the generic 
mixture model shall be defined in terms of given parametric families F1,… ,Fk , where 
the jth component family Fj has �-density fj,�j with parameter �j ∈ Θj , for some com-
mon dominating sigma-finite measure � (often the sum of the Lebesgue measure on ℝ 
and the counting measure on some subset of ℤ ). The mixture model, denoted F  , is then 
given by the family of �-densities that are of the form

for some mixture weights p ∈ (0, 1)k (with 
∑k

j=1
pj = 1) and some 

� = (�1,… , �k) ∈ Θ =
⨂k

j=1
Θj.

The fact that observations are truncated can be modelled as follows: let (X, L, U) 
denote a random vector, where X is the variable of interest that is supposed to have a 
mixture density f(p,�) as in (10). The pair (L, U) is assumed to be independent of X and 

fD|D∈[0,�−Tacc],X=x,Tacc=tacc,j,Y=yj (dj) =
fg(x,tacc,j,yj)(dj)

Fg(x,tacc,j,yj)
(� − tacc,j)

,

(8)�
G(�|��) =

∑
(x,t,y,d)∈��

log f�(d) − logF�(� − t),

(9)�
M(g|��) =

∑
(x,t,y,d)∈��

log fg(x,t,y)(d) − logFg(x,t,y)(� − t).

(10)f(p,�)(x) =

k∑
j=1

pjfj;�j (x)
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shall satisfy L ≤ U , with L possibly equal to −∞ and U possibly equal to +∞ . Further, 
(L, U) shall have a density f(L,U) with respect to some dominating sigma-finite measure 
� . A sample of interval truncated observations from (X, L, U) consists of independent 
observations (xi,�i, ui) that we only happen to see if �i ≤ xi ≤ ui . As a consequence, 
any observed value can be regarded as being drawn from the (𝜇 ⊗ 𝜈)-density

Subsequently, we write (Xt, Lt,Ut) for a random vector following the above density, 
i.e,

Estimating (p, �) based on plain maximum likelihood requires specifying a distribu-
tion for (L, U) (which can be regarded as a nuisance parameter) and calculating the 
denominator in (11). This (major) nuisance can be avoided by instead considering 
conditional maximum likelihood [3], which is known to produce consistent estima-
tors as well. In our case, we rely on considering the density of Xt conditional on the 
value of (Lt,Ut) = (�, u) , which is given by

for � ≤ x ≤ u , where F(p,�)([�, u]) = ∫
[�,u]

f(p,�)(z) d�(z) . As can be seen, the condi-
tional density/likelihood is independent of the distribution of (L, U), and hence eas-
ily accessible.

For later purposes, it is helpful to attach a weight wi to each observation 
(�i, xi, ui) (one might think of wi = 1 for the moment). Denote the resulting sample 
by ℑ = ℑw = {(xi,�i, ui,wi)|�i ≤ xi ≤ ui}, with sample size N = |ℑ| . Based on the 
motivation in the previous paragraph, we aim at maximizing

which is akin to maximizing �G(�|��) from (8), after identifying � = 0 , x = dreport , 
u = � − tacc and w = 1 . An approximate maximizer of (12), say (p̂, �̂�) , may be 
obtained by Algorithm 1. 

(11)f(X,L,U)∣L≤X≤U(x,�, u) =
f(L,U)(�, u)f(p,�)(x)

Pr(L ≤ X ≤ U)
1(� ≤ x ≤ u).

f(Xt ,Lt ,Ut)(x,�, u) = f(X,L,U)∣L≤X≤U(x,�, u).

fXt ∣Lt=�,Ut=u(x) =
f(Xt ,Lt ,Ut)(x,�, u)

f(Lt ,Ut)(�, u)

=
f(X,L,U)∣L≤X≤U(x,�, u)

∫
[�,u]

f(X,L,U)∣L≤X≤U(z,�, u) dz
=

f(p,�)(x)

F(p,�)([�, u])

(12)𝓁(p, �|ℑ) =
∑

(x,𝓁,u,w)∈ℑ

w ⋅

[
log f(p,�)(x) − logF(p,�)([𝓁, u])

]
,
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The algorithm can be motivated by the ECME principle (see [14, 27, 29]), and 
is derived in great detail in the supplementary material. The function CML used 
in line 11 of Algorithm 1 is defined as follows: for some given family H consisting 
of densities h� parametrized by � ∈ Θ and given a truncated and weighted sample 
ℑ , possibly utilizing a starting value �0 ∈ Θ for assessing the following maximum 
numerically, let

where H� is the corresponding distribution. Note that calculating the argmax can 
itself be based on applying an instance of an ECME algorithm if H is a mixture fam-
ily (which is the case when applying Algorithm 1 to the BDEGP family from Defini-
tion 2). Furthermore, the densities fj;�j used for computing the posterior probability 
matrix P in line 7 need to be with respect to the dominating �-finite measure of F  , 
which may differ from the natural dominating measure of Fj . This essentially leads 
to a separate treatment of discrete and continuous components since for each xi for 
which there exists a component j such that {xi} has positive probability over Fj , Pi,j 
will be zero for all components with zero probability of {xi} even if xi is in their sup-
port and has positive (Lebesgue) density.

Adaptations for blended distributions. In view of the fact that a blended distribu-
tion family (Definition 1) is of mixture type with k = 2 , we could in principle directly 
use the general ECME algorithm to calculate a maximizer of the associated weighted 
conditional log-likelihood. However, this would require working with transformed 
versions of the original blended families, see  (5) and  (6). Alternatively, in each 
ECM-step, one may optimise the weighted conditional log-likelihood with respect to 
the original families by transforming the data ℑ to the scale of the original families. 

(13)CML(H,ℑ, �0) ∶= argmax �∈Θ

∑
(x,�,u,w)∈ℑ

w
[
log h�(x) − logH�([�, u])

]
,
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More precisely, consider the first ECM step: if F1 = {f1;�1 ∶ �1 ∈ Θ1} denotes the 
first component of the blended family Blended (F1,F2;�, �) , then, in view of (5), the 
contribution of an observation (x,�, u,w) ∈ ℑ1 ∩ {(x,�, u,w) ∶ x < 𝜅 + 𝜀} to the 
objective function is

where p = p�,� . Hence, instead of calculating CML(F�
1
,ℑ1, �1) (line 11 

of Algorithm  1) we may equivalently calculate CML(F1, ℑ̃1, 𝜃1) , where 
ℑ̃1 ∶= {(p(x), p(�), p(u),w) ∣ (x,�, u,w) ∈ ℑ1} is the transformed dataset. An analo-
gous result can be obtained for the second component F2 , where the transforma-
tion uses q = q�,� . Note that the associated transformed sample ℑ̃2 is a left-truncated 
sample, truncated at � = � − � . Overall, we obtain Algorithm 2, where we define 
b1(x) ∶= p�,�(x) and b2(x) ∶= q�,�(x) for notational convenience. 

Adaptations for Erlang Mixtures. Erlang Mixture families 
F = {

∑k

i=1
pi ⋅ Γ𝛼i,𝜃

∶ p ∈ (0, 1)k, ‖p‖1 = 1, 𝜃 ∈ (0,∞), 𝛼 ∈ ℕ
k, 𝛼1 < … < 𝛼k} do 

not satisfy the definition of a mixture-type family because they possess the additional 
constraint that each of the Erlang components has the same scale parameter. This pre-
vents fitting Erlang mixtures based on direct applications of the EM or the ECME algo-
rithm, see also [19, 25, 35] for related problems with no or constant truncation bounds. 
For our current setting of truncation bounds that may vary with each observation, we 
need to adapt ideas from these papers. In particular, we rely on a version of the ECME 
algorithm when treating the (integer) shape parameters as fixed, and then propose a 
shape search algorithm to solve the remaining integer optimization problem. Details are 

log f �
1;�1

(x) − logF�
1;�1

([𝓁, u]) = log
f1;�1(p(x)) ⋅

d

d x
p(x)

F1;�1
(�)

− log
F1;�1

([p(𝓁), p(u)])

F�(�)

= log f1;�1 (p(x)) + log
d

d x
p(x) − logF1;�1

([p(𝓁), p(u)]),
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provided in Section C in the supplementary material, where we also explain the choice 
of starting values.

3.3  Estimating neural networks

In this section we describe our approach to fitting a neural network model G as 
described in Sect. 2.3 based on maximization of (9) under Model 3 with the BDEGP fix 
adaptation, i.e., holding � and � fixed as obtained from fitting the global model. As a 
consequence, the loss function is −�M(g ∣ �) , which is a rather complex loss in com-
parison to standard losses used in ML. Training of the neural network was performed 
with the Adam algorithm [23] ( lr = 0.05, �1 = �2 = 0 ) and stepsize reduction on pla-
teau ( factor = 0.5, patience = 2,min_lr = 10−4, min_delta = 10−6 ). TensorFlow  [1] 
was used as the runtime for performing all necessary computations.

Once a specific network architecture G and a specific optimization routine have been 
chosen, fitting the neural network requires network initialization, i.e., choosing starting 
values for all free parameters of the model. The most common approach, introduced by 
Ref. [17], consists of global random initialization, where all free matrix parameters are 
i.i.d. uniform with mean zero and range dependent on the layer dimensions, and all free 
bias parameters are initialised to 0, which is then possibly applied repeatedly to poten-
tially find better local optima. Such an approach, however, implies that the starting 
value of the distribution parameters feeding into the log-likelihood  (9) is essentially 
random, and in view of the fact that the network is trained by direct optimization of the 
loss function, one may expect poor convergence (the latter has been confirmed in exten-
sive preliminary experiments with simulated and real data). To alleviate this problem, 
we propose to only randomly initialise the free parameters of the embedding and hid-
den layers according to [17], while the output layer weights are chosen in such a way 
that the network output g(x,  t, y), for each observation (x,  t, y), is close to some pre-
specified value, for instance the global estimate �̂� from Sect. 3.2. This may be achieved 
by choosing the weights A and the bias b in the output layer in such a way that A ≈ 0 
has sufficiently small entries (see below) and b = f −1

adaptor
(�̂�) , where f −1

adaptor
∶ Θ → ℝ

ntail 
is an inverse of the output layer link function fadaptor defined in Sect. 2.3.

We have experimented with three different approaches to initialise A: either A ≡ 0 (then 
g(x, t, y) ≡ �̂� deterministically), or A initialised by the default initialization [17], or A initial-
ised with small random parameters on the same scale as b, i.e. Ai,j ∼ U[−0.1, 0.1] ⋅ bi for 
all rows i = 1,… , ntail and columns j = 1,… , nNdense

 where nNdense
 is the dimension of the 

final hidden layer in the MLP architecture. The latter method, called scaled uniform initializa-
tion, proved most efficient in practice, see Sect. 5.2 for more details. The method is summa-
rized in Algorithm S.1 in the supplementary material.

4  Claims count prediction

The objective of claims reserving is to obtain good (aggregate) predictions for char-
acteristics that depend on the partly unobserved paths of �(i) across different time 
and feature sections, based on reported observations �(i)

r
 as in Observation Scheme 1. 
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Among such characteristics is for instance the afore-mentioned total number of 
IBNR claims at calendar time � , i.e.,

where S𝜏 ∶= {(t, y, d) ∶ t ≤ 𝜏, t + d > 𝜏} . A further object, of primal interest for 
insurance pricing, is given by the total number of claims in a given time period 
[t0, t1] , for instance an occurence year that is not necessarily related in any specific 
way to � , and for a certain class of risk feature �′ ⊂ � and claim features �′ ⊆ � , 
i.e.,

The specific problems in the previous paragraph are special cases of the following 
task: for sets of interest �′ ⊂ � and S = {(t, y, d) ∶ t ∈ [t0, t1], y ∈ ��, d ∈ It} with 
[t0, t1] ⊂ [0,∞) , some �′ ⊂ � and some It ⊂ [0,∞) , predict the unobserved individ-
ual (and/or aggregated) claim counts in S, i.e.,

based on a sample � as in Observation Scheme 1. We will next discuss how such 
predictors may be derived based on knowledge of PD only, given some suitable 
homogeneity constraints are met. In practice, PD may be replaced by some estimate 
P̂D , for instance the neural network estimator from Sect. 3.3.

4.1  Predictions under local homogeneity assumptions

We start by simplifying the prediction problem by restricting attention to predic-
tors that depend on � = �� through the reported numbers N(i)

r
(S) = �(i)

r
(S) only. 

Let �(i)
nr

= �(i) − �(i)
r

= �(i)( ⋅ ∩ Rc
�
) denote the claim arrivals that are not reported by 

calendar time � . By the restriction theorem (Theorem 5.2 in  [24]), �(i)
nr

 and �(i)
r

 are 
independent Poisson processes with intensity measures �(i)( ⋅ ∩ Rc

�
) and �(i)( ⋅ ∩ R�) , 

respectively. As a consequence, the best L2-predictor for N(i)(S) in terms of N(i)
r
(S) is 

given by

and it remains to calculate the unconditional expectation on the right-hand side. 
Since

Npol∑
i=1

N(i)∑
j=1

1(T
(i)

acc,j
≤ 𝜏, T (i)

acc,j
+ D

(i)

report,j
> 𝜏) =

Npol∑
i=1

𝜉(i)(S𝜏),

∑
i∶x(i)∈��

N(i)∑
j=1

1(T
(i)

acc,j
∈ [t0, t1], Y

(i)

j
∈ ��) =

∑
i∶x(i)∈��

�(i)([t0, t1] ×�� × [0,∞)).

N(i)(S) = �(i)(S) and/or N(�� × S) =
∑

i∶x(i)∈��

�(i)(S)

(14)N̂(i)(S) = �[N(i)(S) ∣ N(i)
r
(S)] = N(i)

r
(S) + �[N(i)

nr
(S)],

(15)

�[N(i)
nr
(S)] = �(i)(S ∩ Rc

�
) = ∫S∩C(i)∩Rc

�

�(x(i), t)PD(x
(i), t, y)(dd)PY (x

(i), t)(dy) dt
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by Campbell’s theorem, the latter boils down to calculating a complicated high-
dimensional integral. The fact that calculation of this integral must be feasible in 
practice is a major demand when designing models for the distributions involved in 
Model 1, i.e., for �,PY and PD . Under the following local homogeneity assumption, 
the calculation simplifies significantly.

Assumption 1 (Local homogeneity of claims developement) For a given interval 
T ⊂ [0,∞) and �′ ⊂ �:

• t ↦ 𝜆(x, t) =∶ 𝜆(x) > 0 is constant on T for any x.
• t ↦ PY (x, t)(�

�) =∶ PY (x)(�
�) > 0 is constant on T for any x.

• (t, y) ↦ PD(x, t, y) =∶ PD(x) is constant on T ×�� for any x.

Even if the global claims process is highly inhomogeneous, these assumptions 
are approximately met for sufficiently small intervals T and sufficiently similar 
sets of claims �′ (for continuity reasons, this particularly applies for the distribu-
tions PD from Model 3). For instance, [4] implicitly imposes Assumption 1 for all 
subsequent intervals of length corresponding to one month and for �′ represent-
ing either material or injury claims. Under Assumption 1, we can simplify

and likewise

As a consequence of (17), the predictor in (14) greatly simplifies, with only univari-
ate integrals to be calculated for each i. Moreover, the previous equations may be 
manipulated in such a way that one obtains a natural estimator for the expectation on 
the right-hand side of (14) that does not depend on �(x(i)) or PY (x

(i))(��) . Indeed, by 
Eqs. (16) and (17),

provided the denominator is positive. Replacing �(i)(S ∩ R�) by its (unbiased) empir-
ical analogue, N(i)

r
(S) , and then replacing the expectation on the right-hand side 

of (14) by the obtained expression, we finally obtain the predictor

�(i)(S) = ∫T∩C(i) ∫�� ∫It

�(x(i), t)PD(x
(i), t, y)(dd)PY (x

(i), t)(dy) dt

= �(x(i))PY (x
(i))(��)∫T∩C(i)

PD(x
(i))(It) dt,

(16)�(i)(S ∩ R�) = �(x(i))PY (x
(i))(��)∫T∩C(i)

PD(x
(i))(It ∩ [0, (� − t)+]) dt,

(17)�(i)(S ∩ Rc
�
) = �(x(i))PY (x

(i))(��)∫T∩C(i)

PD(x
(i))(It ∩ ((� − t)+,∞)) dt.

�(i)(S ∩ Rc
�
) = �(i)(S ∩ R�) ⋅

∫
T∩C(i) PD(x

(i))(It ∩ ((� − t)+,∞)) dt

∫
T∩C(i) PD(x

(i))(It ∩ [0, (� − t)+]) dt
,
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where P̂D is a suitable estimate of PD . Note that, for the important special case of 
S = T ×�� × [0,∞) , i.e., It = [0,∞) , the numerator further reduces to Leb(T ∩ C(i)).

Throughout the remaining parts of this paper, we will impose the homo-
geneity assumption from Assumption 1 for all intervals ((𝓁 − 1) ⋅ p,𝓁 ⋅ p] 
with � = 1,… , ⌈�∕p⌉ , and for all sufficiently small neighborhoods of points 
y ∈ � . Note that the parameter p allows to control the restrictiveness of 
the local homogeneity assumption, which is less restrictive for smaller val-
ues of p. Given a set of features and accident times to be evaluated, say 
A = �� × [t0, t1] ×�� ⊂ � × [0, 𝜏] ×� , we aim at predicting the number of 
claims in A that are reported within a given (calendar) time interval (�0, �1] with 
0 ≤ 𝜏0 < 𝜏1 ≤ ∞ , i.e.,

with S𝜏0∶𝜏1 = {(t, y, d) ∶ t ∈ [t0, t1], y ∈ ��, 𝜏0 < t + d ≤ 𝜏1} . Note that N0∶∞(A) cor-
responds to the ultimate number of claims in A, while N�∶�+q(A) , is the number of 
claims in A that are reported within a period of length q > 0 after calendar time � . 
The argumentation that lead to (18) suggests the following predictor for N�0∶�1

(A) 
based on observed values ��:

where P̂D(x, t, y) ≈ PD(x, t, y) is the estimated reporting delay distribution and 
Ip(x, t) = C(x) ∩ (p ⋅ ⌊t∕p⌋, p ⋅ (⌊t∕p⌋ + 1)] with C(x) the coverage period of policy x 
and (p ⋅ ⌊t∕p⌋, p ⋅ (⌊t∕p⌋ + 1)] the interval containing accident time t on which �(i) is 
assumed homogeneous.

Note that the predictor in  (19) can be updated continuously with the passing 
of time, either by reestimating P̂D and then recalculating the predictor (which is 
computationally expensive), or by just updating the predictor with the estimated 
model P̂D held fixed/updated only once in a while (which is less expensive). The 
main computational cost for predictor updates with fixed P̂D lies in evaluation of 
the univariate integral in (19).

4.2  Evaluating claim count predictors

For comparing different methods we define evaluation metrics that measure pre-
diction errors in a standardized way. These evaluation metrics will be used in case 
studies to compare model performance, as well as to perform model selection in a 
backtesting context. All methods will be supplied with a sample �� as in Obser-
vation Scheme 1.

(18)Ñ(i)(S) = N(i)
r
(S) ⋅

∫
T∩C(i) P̂D(x

(i))(It) dt

∫
T∩C(i) P̂D(x

(i))(It ∩ [0, (𝜏 − t)+, ]) dt
,

N�0∶�1
(A) =

∑
i∶x(i)∈��

�(i)(S�0∶�1)

(19)

N̂
p
𝜏0∶𝜏1

(A;�𝜏) ∶=
∑

(x,t,y,d)∈(A×ℝ+)∩�𝜏

∫
Ip(x,t)∩[t0,t1]

P̂D(x, t, y)((𝜏0 − s, 𝜏1 − s]) ds

∫
Ip(x,t)∩[t0,t1]

P̂D(x, t, y)([0, 𝜏 − s]) ds
,



74 A. Bücher, A. Rosenstock 

1 3

A generic predictor for N�0∶�1
(A) based on observations �� is denoted 

by N̂𝜏0∶𝜏1
(A;�𝜏) . For simplicity, we only consider (�0, �1) = (0,∞) and 

(�0, �1) = (�, � + q) , which correspond to the ultimate number of claims 
and to the number of claims reported within the next period of length 
q ∈ {365, 365∕4, 365∕12} (measured in days), respectively. For evaluating the 
predictor, we restrict attention to sets

where � ∈ {1,… , �∕q} denotes the � th period and �′ ⊂ � . Root-mean-squared-
error performance measures are then used to evaluate the performance, i.e.,

considered for (�0, �1) = (0,∞) and for (�0, �1) = (�, � + q) . Note that other error 
measures were examined as well, but the subsequent presentation is restricted to the 
above choices. In a real world scenario, RMSE�0∶�1

 is computable from ��1
 at calen-

dar time �1 , enabling use of error measures with 𝜏1 < ∞ outside of laboratory set-
tings where the ground truth is known.

5  Simulation study

To demonstrate the effectiveness of the micro-level approach compared to a clas-
sical Chain Ladder based approach, we compare predictors arising from the two 
methods on simulated data from Model 1. Apart from a homogeneous portfolio 
with constant exposure, we also examine how the methods perform in the pres-
ence of smooth or abrupt changes in the claim arrival process.

5.1  Simulating car insurance portfolios

The portfolios considered throughout the simulation study build upon the car 
insurance data set described in Appendix A in [36]. The latter data set provides 
claim counts for 500,000 insurance policies, where each policy is associated with 
the risk features

(���, ��, �����, ���, �����, ����, ����, ��),

which correspond to age of driver, age of car, power of car, fuel type of car, 
brand of car, and area code, respectively; see also (A.1) in [36] for further details. 
Next to that, the data set also provides the variable truefreq, which corre-
sponds to the claim intensity �(x) in our model. Note that the precise functional 
relationship x ↦ �(x) has not been published by the authors.

In the following, we describe how the above data set was used to define nine dif-
ferent portfolios meeting the model assumptions described in Model 1 (in particu-
lar, we need to introduce a dynamic component, claim features as well as reporting 

Aq,𝓁,�� = � × [(𝓁 − 1) ⋅ q,𝓁 ⋅ q) ×��,

(20)RMSE𝜏0∶𝜏1
(��, q) ∶=

(
q

𝜏
⋅

𝜏∕q∑
𝓁=1

(
N̂𝜏0∶𝜏1

(Aq,𝓁,�� ;�𝜏) − N𝜏0∶𝜏1
(Aq,𝓁,�� )

)2) 1

2

,
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delays). Each portfolio is considered over ten periods of 365 days, that is, the port-
folio coverage period is the interval [0, 3650]. We start with a baseline setting that 
corresponds to the classical homogeneous portfolio.

5.1.1  Scenario 1: a homogeneous portfolio

The homogeneous portfolio is characterized by a homogeneous exposure as well as 
position-independent claim intensity, occurrence process, and reporting process. 
It may be considered the vanilla portfolio that practitioners often aim at by care-
ful selection of considered risks and suitable transformations, e.g., adjustment for 
inflation.

Exposure. New risks arrive according to a homogeneous Poisson process with 
intensity 50, 000∕365 ≈ 137 and contracts are assumed to run for exactly one year 
(the latter could be extended to some non-trivial annual churn rate; however, the fact 
that some of the considered claim features depend on calendar time and we do not 
know the true functional from of x ↦ �(x) prevent us from doing this). Moreover, 
the portfolio starts with exactly 50,000 policies with tstart = 0 and with remaining 
contract duration that is uniform on [0, 365]. As a consequence, the total exposure 
is constant in expectation and we have Npol ∼ 50, 000 + Poi (500, 000) . Finally, for 
each risk in the portfolio we randomly draw (with replacement) risk features from 
the aforementioned data set from [36].

Claim Intensity. The claim frequency �(t, x) = �(x) is independent of t and tstart 
and given by the variable truefreq that belongs to the risk selected in the previ-
ous paragraph.

Occurrence Process. The occurrence process is position-independent, i.e., 
PY (x, t) = PY (x) . In view of the fact that the original data set from [36] does not con-
tain any individual claim variables, we employed a simple but realistic process that 
fits into the setting of motor liability claims. More precisely, we choose to work with 
two claim variables, y = (��, ��������) , with claims code �� ∈ {injury,material} , 
and claim size �������� ∈ ℝ+ . The claim feature distribution of cc is chosen to be 
a function of the policy features ac, power, and dens in such a way that material 
damages are more likely to occur in densely populated areas and with low-powered 
and newer cars (see Appendix D in the supplement for details on the precise rela-
tionship). The claim severity distribution of severity is log-normal with � con-
stant and with � depending on cc, brand, ac and power in such a way that injury 
claims, especially with older high-powered cars, are more severe. Moreover, mate-
rial damages for certain premium brands are also more severe. Again, details are 
provided in Appendix D in the supplement.

Reporting Process. The reporting process is position-inde-
pendent, i.e, PD(x, t, y) = PD(x, y) . We choose to work with 
PD(x, y) ∈ BDEGP (n = 1,m = 3, � = 3 ⋅ 365, � = 365∕2) as a basic family, with 
fixed erlang shapes � = (1, 3, 6) that do not depend on x and y. The remaining 7 param-
eters (i.e., the four mixture weights of �0,Γ(1, �),Γ(3, �),Γ(6, �) , and GPD (�, �, �) , 
as well as �, � , and � ) are chosen to depend on age, dens, ac (only if cc is mate-
rial), cc, and severity in such a way that more severe claims, material claims with 
new cars, and claims with younger drivers in populated areas will be reported sooner, 
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while low-severity injuries will be reported later; see Appendix D in the supplement 
for details.

A simulated portfolio from the baseline setting is illustrated in Fig. 3.

5.1.2  Scenarios 2a and 2b: changes in the exposure

The baseline setting from Scenario 1 is modified in such a way that the exposure is 
not constant, but either changes smoothly or abruptly in time.

In practice, smooth changes may result from a shift in the risk class distribu-
tion within the portfolio, for instance due to the fact that a competitor introduces 
a new product which is more attractive than the insurers own product for some 
risk class. In such a case, adverse selection would cause a shift in the newly writ-
ten risks as the competitor product gains more visibility in the market. On the 
other hand, abrupt changes in the exposure may be caused by the introduction of 
a new risk class within the portfolio, for instance as a consequence of the intro-
duction of a completely new product to the market, or the addition of a new sales 
channel reaching a new target group. Likewise, abrupt removal of an existing risk 
class may occur if underwriting policies change such that a product is no longer 
sold to a certain group, or if external factors such as OEM-provided insurance 
make the product obsolete for some risks.

For the simulation study, a smooth shift in exposure is realized by gradually 
reducing the proportion of new cars insured ( �� ≤ 5 ); see Appendix D in the sup-
plement for details. Over the course of the simulation, the expected proportion of 
contracts with new cars reduces gradually from the starting value of 51.15–9.48% . 
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Fig. 3  A path simulated from the baseline scenario. Left: exposure by time t (i.e. active policies; 
#{t ∈ C(i)|i ∈ {1,… ,Npol} ) Center: claims frequency by accident time t (i.e. mean number of claims per 
policy and year). Reported claims (dashed) and occurred claims (solid). Right: monthly summary statis-
tics of reporting delay D by accident time t 
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An abrupt change is introduced in the same way, by abruptly lowering the expected 
proportion of new cars insured to 9.48% halfway through the simulation.

5.1.3  Scenarios 3a and 3b: changes in the claim intensity

The baseline setting from Scenario 1 is modified in such a way that the claim 
intensity is not constant, but either changes smoothly or abruptly in time.

In practice, smooth shifts in the claim intensity may result from improved 
security devices reducing the risk of accidents by prevention. Preventive meas-
ures could also be implemented by the insurer, e.g. by rewarding safer driving 
styles in insurance telematics products  [7]. On the other hand, abrupt changes 
may be caused by the introduction of a product with extended coverage or by 
external factors such as reduced traffic volume and thus decreased risk of traffic 
accidents, for instance due to COVID-19 related lockdown measures.

For the simulation study, a smooth shift of the claim intensity is realized by 
reducing the individual claim frequencies by 20% over the course of the simula-
tion. Note that this also implies non-uniform occurrences. A shock is introduced 
by abruptly lowering the individual claim frequencies by 20% halfway through 
the simulation.

5.1.4  Scenarios 4a and 4b: changes in the occurrence process

The baseline setting from Scenario 1 is modified in such a way that the occur-
rence process is not constant, but either changes smoothly or abruptly in time.

In practice, smooth shifts in the claim feature distribution can be caused by a 
gradual macroeconomic or social change such as developments on the labor market. 
Abrupt changes in the claim feature distribution can be caused by external factors 
such as highly publicized events covered by the insurance in question. A practical 
example for legal insurance would be the Volkswagen emissions scandal 2015.

For the simulation study, a shift in the occurrence process is realized by making 
the probability P(�� = material) depend on the accident time. More precisely, the 
probability is chosen to increase from 58.73 to 77.51% ( +0.9 on a logit scale for 
each risk). In addition, the severity distribution for material claims gets an increase 
by 1 in log-� whereas injuries have a decrease of 0.5 in log-� and an increase of 0.5 
in log-� . A shock is introduced in the same way, by abruptly increasing the probabil-
ity of material claims and the severity distributions halfway through the simulation.

5.1.5  Scenarios 5a and 5b: changes in the reporting process

The baseline setting from Scenario 1 is modified in such a way that the reporting 
process is not constant, but either changes smoothly or abruptly in time.

In practice, smooth shifts in the reporting delay distribution could be caused by 
adaption of a new optional method for reporting claims, such as a customer portal. 
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An abrupt change in the reporting delay distribution could be caused by introducing 
a new product with specific requirements for the claims reporting process, or by a 
legislative change in the definition of accident occurrence.

For the simulation study, a shift in the reporting process is realized by gradually 
increasing the probabilities p0 and p1 of the �0 and Γ(1, �) components by 2 on the 
logit scale, linearly with the accident time. The Γ(3, �) component is also shifted 
such that the equation p2 = (1 − p1) ⋅ p1 still holds, see Appendix D in the supple-
ment for details. A shock is introduced in the same way, by abruptly changing these 
probabilities halfway through the simulation.

Simulated portfolios from the eight non-homogeneous scenarios are illustrated 
in Fig. 4. Note that Scenarios 2a–3b do not yield large changes in the monthly sum-
mary statistics of the reporting delays, which suggests that IBNR prediction in these 
scenarios is simpler than in Scenarios 4a–5b.
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Fig. 4  Overview of all drift (left column) and shock (right column) scenarios applied to the various com-
ponents (rows). The plots are explained in Fig. 3
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5.2  Details on neural network predictors

Recall the generic predictor from  (19), which depends on an estimated reporting 
delay distribution P̂D(x, t, y) and a homogeneity parameter p. When employing the 
neural network estimator from Sect. 3.3, we denote the resulting predictor by N̂NNet,p

𝜏0∶𝜏1
.

For computational reasons, we choose the correct BDEGP model specifica-
tion (i.e., the BDEGP (n = 1,m = 3, � = 3 ⋅ 365, � = 365∕2) family with unknown 
parameters) throughout the simulation study, as additional model selection is not 
feasible within a large scale simulation experiment. Note however that model selec-
tion was successfully applied in the real data application in Sect. 6.

A number of further choices have to be made for modelling and estimating PD , 
the most crucial ones concerning the neural network architecture, the activation 
function and the weight initialization. In view of the fact that a case-by-case choice 
based on training and validation sets is computationally too demanding for a large-
scale simulation study, we chose to fix one particular choice based on the results of a 
preliminary experiment in the baseline setting. The results are presented in Table 1; 
they concern the RMSE0∶∞(�, 365)-performance measure each evaluated in 5000 
simulation runs (50 portfolios with 100 initial weights), and suggest to use the 
sof tplus activation function, the scaled uniform initialization strategy and the neural 
network architecture with Ndense = 1 hidden layer of size n1 = 5.

Next, in view of the well-known nuisance that neural network training crucially 
depends on the initial network weights, a procedure is needed to choose among fits 
calculated from various initial weights. A natural approach consists of choosing the fit 
with the smallest loss. However, extensive experiments not shown in detail for the sake 
of brevity suggest that the following approach, partly tailored to the prediction problem 
at hand, yields substantially better results: among all candidate predictors (we use 100 
initial weights for each data set), keep the one which minimizes the yearly backtesting 
error

R̂MSE0:∞(N̂0:∞;�, 365): =
(

1
9
⋅

9
∑

�=1

(

N̂0:∞(A365,�,�;��−365) − N̂0:∞(A365,�,�;�� )
)2
)

1
2
,

Table 1  Median from 5000 runs of RMSE0∶∞(�, 365) for different hyperparameter choices, after 2000 
epochs in the baseline setting. The Adam optimizer was used with 2000 epochs and parameters hand 
tuned to lr = 0.05 , �1 = �2 = 0 . Hyperparameters are tuned one-by-one, the other parameters being held 
at sof tplus , Ndense = 1 , n1 = 5 , and scaled uniform initialization

Activation function Architecture Weight initialisation

RMSEu RMSEu RMSEu

Relu 69.638 5 68.398 A ← 0 68.414
Softplus 68.398 10 69.382 Ai ← U[−0.1, 0.1]⊗nNdense ⋅ bi 68.398

10,5 71.600 A ← [17] 69.377
15,10,5 73.687
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which is obtained from RMSE0∶∞(�, 365) in Eq. (20) by plugging in N̂0∶∞(… ;�𝜏) 
for N0∶∞(… ) and evaluating on N̂0∶∞(… ;�𝜏−365) . Note that the selection does not 
involve any data unseen by time �.

5.3  Details on Chain Ladder predictors

Similar to the NNet predictor, the Chain Ladder method was used with different discre-
tization periods p ∈ {365, 365∕4, 365∕12} . Based on cumulative link ratios fj = fj(p) 
for development period j ∈ {1,… , �∕p − 1},

the Chain Ladder predictors, for A ⊂ � ×ℝ+ ×� , are given by

Note that, unlike the neural network predictors, the Chain Ladder method can only 
be updated in discrete time steps which are multiples of the discretization period.

In view of the fact that cc is the main feature causing the perturbations in 
the non-homogeneous scenarios, we also applied Chain Ladder separately for 
cc ∈ {material, injury} , resulting in the predictors

where the Chain Ladder factors {f c
j
}j are calculated as in (21), but with �� replaced 

by �� ∩ {�� = c}.

5.4  Results

Throughout this section we highlight important findings from the simulation study.

(21)fj =
#{(x, t, y, d) ∈ �� ∶ ⌊ t+d

p
⌋ ≤ ⌊t∕p⌋ + j ≤ �∕p}

#{(x, t, y, d) ∈ �� ∶ ⌊ t+d

p
⌋ + 1 ≤ ⌊t∕p⌋ + j ≤ �∕p}

,

N̂
CL,p

0∶∞
(A) =

3650∕p∑
i=1

N̂
CL,p

0∶∞
(A ∩ Ap,i,�)

=

3650∕p∑
i=1

Nr(A ∩ Ap,i,�) ⋅

𝜏∕p−1∏
j=𝜏∕p−i+1

fj

N̂
CL,p

𝜏∶𝜏+365
(A) =

3650∕p∑
i=1

N̂
CL,p

𝜏∶𝜏+365
(A ∩ Ap,i,�)

=

3650∕p∑
i=1

Nr(A ∩ Ap,i,�) ⋅

((𝜏+365)∕p−i∧𝜏∕p−1∏
j=𝜏∕p−i+1

fj − 1

)
.

N̂
CLcc,p

0∶∞
(A) =

3650∕p∑
i=1

∑
c∈{material,injury}

Nr(A ∩ Ap,i,{c}×ℝ+
) ⋅

𝜏∕p−1∏
j=𝜏∕p−i+1

f c
j
,

N̂
CLcc,p

𝜏∶𝜏+365
(A) =

3650∕p∑
i=1

∑
c∈{material,injury}

Nr(A ∩ Ap,i,{c}×ℝ+
) ⋅

((𝜏+365)∕p−i∧𝜏∕p−1∏
j=𝜏∕p−i+1

f c
j
− 1

)
,
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We start by providing a general overview of the performance across scenarios. 
For the sake of illustration, we restrict attention to three predictors only, namely 
N̂

CL,365

0∶∞
, N̂

CLcc,365

0∶∞
 and N̂NNet,365

0∶∞
 , and to the evaluation metric RMSE0∶∞(�, q) with 

q = 365 (other predictors and evaluation periods lengths q will be considered 
below). The results are summarized in Fig. 5, where we depict, for each scenario 
described in Sect. 5.1, boxplots of the evaluation metric obtained from 50 simula-
tion runs each. We observe that, for the baseline setting as well as for Scenarios 
3a and 3b (Intensity), both Chain Ladder methods exhibit a slightly smaller over-
all error than the neural network predictor. This behavior may have been expected, 
since the global reporting delay distribution and thus the development pattern which 
Chain Ladder relies on is essentially constant over time in the two scenarios, as 
can be seen from Figs. 3 and 4. Within Scenarios 2a and 2b (Exposure), the global 
Chain Ladder predictor performs slightly worse that the neural network predictor, 
while CLcc performs best. The latter may be explained by the fact that the introduced 
inhomogeneities have rather little influence on the frequency of the injury claims 
(see Fig. 4), whence restricted Chain Ladder performs well on that subset. The neu-
ral network predictor shines in Scenarios 4 and 5 (Occurrence and Reporting Delay, 
respectively), which both exhibit rather large inhomogeneities in the reporting pro-
cess (see Fig. 4). These two scenarios greatly deteriorate the performance of Chain 
Ladder, while the neural network is able to adapt to the changes. Summarizing the 
findings, we find that the neural network predictor works reasonably well in all situ-
ations under consideration, with rather minor disadvantages in some scenarios, and 
substantial advantages in others.
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Fig. 5  Boxplots of the overall error measure RMSE0∶∞(�, 365) , each based on n = 50 simulated paths
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Next, in Fig.  6, we report analogous results separately by claims code for 
the performance measures RMSE0∶∞(�m, 365) and RMSE0∶∞(�i, 365) , where 
�m ∶= {material} ×ℝ+ and �i ∶= {injury} ×ℝ+ are the subsets of � restricted to 
a single claims code. The message is simple: for all scenarios under considera-
tion, the plain Chain Ladder predictor is unable to provide accurate, competitive 
predictions on the subsets defined by �� = material and �� = injury . When com-
paring the neural network predictor with CLcc , we observe the same qualitative 
behavior as in Fig. 5. It is, however, important to mention that the latter method 
requires prior identification of the relevant features (which might not be pos-
sible), while the neural network approach is universal, and can be applied with 
ease to any evaluation set of interest.

Finally, the results presented in Fig. 7 allow to compare the predictors with 
development period p ∈ {365, 365∕4, 365∕12} with respect to performance 
measures with evaluation period q ∈ {365, 365∕4, 365∕12} . For the sake of brev-
ity, we restrict attention to the baseline setting; qualitatively similar results were 
obtained for the other scenarios. We observe that, if the development period 
is larger than the evaluation period, the errors tend to increase drastically, in 
particular for the Chain Ladder method. On the other hand, if the development 
period is smaller than the evaluation period, the error increases slightly show-
ing reduced stability. Overall it seems preferable to choose the smallest devel-
opment period that still yields stable results as the period of choice. Another 
observation that can be made is that the difference between Chain Ladder and 
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neural network based approaches gets smaller for shorter evaluation periods. In 
other words, the stability advantage of Chain Ladder with its comparatively few 
parameters diminishes as the number of Chain Ladder parameters (link ratios to 
be estimated) increases—even in the optimal setting for chain ladder where the 
portfolio and the occurrence process is homogeneous.

6  Application to real data

Throughout this section, we compare our new approach with Chain Ladder in an 
application to a large real dataset containing motor legal insurance claims provided 
by a German insurance company. Details on the dataset are provided in Sect. 6.1. 
The methods and results, including strategies applied for model selection (which 
have been omitted in Sect. 5), are discussed in Sect. 6.2. In a nutshell, the results 
show that the neural network predictors robustly provide more efficient predictions 
than Chain Ladder.
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Fig. 7  Boxplots of error measure RMSE0∶∞(�, q) for different evaluation periods 
q ∈ {365, 365∕4, 365∕12} in the baseline setting
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6.1  The dataset

The dataset contains a portfolio of about 250,000 motor legal insurance contracts 
with exposure information available monthly from 31st January 2014 to 31st 
December 2020. Information on the claims of this portfolio is available up to 31st 
December 2020. as well. In total, there are about 65,000 reported claims.

The policy features considered for modelling reporting delays are
(������, ������, ������, ���),

where

• tstart is the start date of the contract.
• cstart is the start date of the customer relationship.
• tariff gives information on the tariff (regular, public service, self-employed).
• dob contains the date of birth of the customer (accurate to months, contains 

missing values). Missing values were imputed using the median observed age at 
contract start (tstart) as a reference. An indicator variable to show missing-
ness was also added.

In addition, several low-cardinality claim features available at time of reporting, as 
well as the accident time were included:

(����, ��, �������, �������, ��������),

where

• tacc is the accident date. The dataset contains inaccurate data, where the true 
accident time is unknown. These are encoded as January 1st and flagged with an 
indicator variable. Moreover, some rare claims have ���� = ������ (which, for 
instance, is due to legal consulting regarding claims that have happened before 
the contract has started); these claims are identified with an additional indicator 
variable.

• cc is the claims code, a rough categorization of the type of claim. It has five dif-
ferent categories numbered from 1 to 5.

• covered is the coverage status of the claim. It has four different categories, 
but is almost binary (covered, not covered, partially covered, coverage status 
unknown), with ‘covered’ and ‘not covered’ making up the majority of cases.

• channel is the channel by which the claim was reported. It has six different 
categories (mail, e-mail, fax, online, in person, telephone).

• reporter denotes the reporter of the claim. It has six different categories, but 
is almost binary (policyholder, additional insured, lawyer, intermediary, other, 
unknown). Most claims are reported by the policyholder or filed directly by a 
lawyer.

The rationale for including tacc as a feature in the neural network predictors is to 
help identify drifts in the reporting process.

Due to the extreme shock the COVID-19 pandemic had on the dataset, we chose 
to only consider data available up to 31st December 2019 for model evaluation, 
since none of the prediction methods provided remotely acceptable results when 
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validating the predicted number of claims given data up to 31st December 2019 
compared to the actual numbers observed in 2020.

6.2  Results

Predictions were calculated based on a conventional Chain Ladder approach as well 
as on various neural network predictors (among which a final, data-adaptive choice 
was made as described below). To reduce the effect of a single calendar year on our 
studies, we examined two artificial truncation points, � = 31st December 2017 and 
� = 31st December 2018 , and evaluated the methods using the one-year-ahead vali-
dation error RMSE�∶�+365(�, q = 365) for both truncation points.

Regarding Chain Ladder, we chose to separately apply it to the five datasets 
defined by the different claims code (which corresponds to CLcc from the previous 
section, and could be regarded as common actuarial practice). A visualization of the 
different reporting delay distributions by cc can be found in Fig. 8. Note that further 
subdivision may severely impact the stability of Chain Ladder methods, due to the 
combinatorial explosion of the number of different link ratio sequences that would 
have to be estimated.

Regarding the neural network predictors, the underlying BDEGP family was 
specified as follows: first, we held � = 160 and � = 90 fixed; mainly for computa-
tional reasons. Next, we chose to consider all combinations of n ∈ {7, 14, 21, 30} 
and m ∈ {3, 5, 10, 15} . After computing global fits for all these families, we 
proceeded to repeatedly train a neural network model with fixed architecture 
n1 = 10, n2 = 5 for 2000 epochs, each ten times with different random starting 
values. During training, the available data were split into a training and a valida-
tion set in a ratio of 75% ∶ 25% . The loss, i.e., the mean negative log-likelihood, 
was monitored for both datasets and logged for each epoch. This process was 
repeated for both data truncation points �.

In an effort to reduce computational cost, only the six best families accord-
ing to the mean backtesting error RMSE�−365∶�(�, q = 365) over both years were 
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Fig. 8  Empirical reporting delay distributions by cc. Logarithmic axis. Vertical lines mark the chosen 
blending region � and � ± �
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trained for additional 3000 epochs with the same method. The selected families 
correspond to (n,m) ∈ {(30, 10), (30, 3), (7, 10), (7, 15), (7, 3), (7, 5)} . The training 
and validation loss as a function of the epochs is exemplarily illustrated in Fig. 9 
for the final selected models (n,m) = (30, 3) with � = 31st December 2017 and 
(n,m) = (30, 10) with � = 31st December 2018 , which shows big loss improve-
ments after 2000 epochs and a final loss close to convergence after 5000 epochs. 
Remarkably, the training loss is larger than the validation loss, which is due to a 
fortunate selection of the validation set.

Next, in order to select a final unique model, we performed model selection 
as follows: first, the best model per family (i.e, the best of ten random seeds for 
parameter initialization) was selected based on validation loss. Next, the overall 
model among the six remaining candidates was selected based on the backtesting 
error RMSE�−365∶�(�, q = 365) . Note that the latter evaluates the trained model 
on data it has already partially seen during training, which is readily available, 
and that it is a selection criterion which, unlike the final log-likelihood, allows for 
comparison across different architectures.

The results for the six models that were trained 5000 epochs, as well as the 
final selection and the Chain Ladder benchmark, are summarized in Fig.  10, 
where the 10 runs per model and year ( � ) are illustrated by a boxplot. Horizontal 
lines show the corresponding values for Chain Ladder and for the final selected 
model.

It can be seen that, irrespective of the model or the random seed used for 
parameter initialization, the neural network predictors outperform Chain Lad-
der, with very few exceptions for 2017 and huge improvements for most cases. 
In view of the fact that the final selected models show a substantially different 
performance for 2017 and 2018, the model selection procedure should be taken 
with some care. Nevertheless, even a random choice would provide a viable selec-
tion criterion, which shows that the neural network approach is quite robust with 
respect to model selection.

2017: BDEGP(n = 30,m = 3, κ = 160, ε = 90) 2018: BDEGP(n = 30,m = 10, κ = 160, ε = 90)
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Finally, predicted distributions for two exemplary claims in the training set are 
shown in Fig. 11 for � = 31st December 2017 . The claims have claim codes 1 and 2 
respectively and show the flexibility of the BDEGP (30, 3, 160, 90) family underly-
ing the neural network model.
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Fig. 10  Comparison of RMSE�∶�+365(�, q = 365) for all runs with 5000 epochs. Horizontal lines show 
the corresponding values for CLcc and the final selected model
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7  Conclusion

A new, flexible micro-level model for reporting delays has been developed and 
applied to predict IBNR claim counts. It was demonstrated that the approach per-
forms well in comparison to classical actuarial methods in both simulation studies 
and on real world data. Strengths of the micro-level approach particularly emerge in 
the presence of heterogeneity in the data generating process, as is often the case in 
real world examples, and in the presence of complex relationships involving many 
features. Incorporating many features into classical methods becomes prohibitively 
difficult with an ever-increasing amount of available information. Another advantage 
of the newly developed method is the ability to continuously update predictions as 
new data becomes available, reducing critical information delay for stakeholders.

There are ample opportunities for further development on the approach: 

1. The BDEGP family, while very flexible, might not be suitable for all applications. 
Future work could examine the choice of different families.

2. While Model 3 assumes a neural network functional relationship between report-
ing delay distribution and predictors, different functional relationships could be 
examined. The non-trivial nature of the conditional likelihood under study makes 
finding alternative functional forms with corresponding estimation techniques an 
interesting task.

3. The chosen MLP architecture is rather simple. Other architectures could be exam-
ined for their performance for the problem at hand.

4. The proposed claim count predictors are based on the the number of reported 
claims. This leads to the prediction becoming identical to zero if, in a particular 
portfolio, no claims were yet observed. By developing methods for estimating 
PY and � , access to a predictor based on (15) would allow to overcome this dis-
advantage.
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