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Abstract

We address the problem of maximally selected chi-square statistics in the case of a binaryY variable

and a nominalX variable with several categories. The distribution of the maximally selected chi-square

statistic has already been derived when the best cutpoint is chosen from a continuous or an ordinalX, but

not when the best split is chosen from a nominalX. In this paper, we derive the exact distribution of the

maximally selected chi-square statistic in this case using a combinatorial approach. Applications of the

derived distribution to variable selection and hypothesis testing are discussed based on simulations. As

an illustration, our method is applied to a pregnancy and birth data set.

keywords: Categorical variables, association test, contingency table, exact distribution, variable selec-

tion, selection bias.

1 Introduction

A classical problem in medical research is the study of the association between a binary clinical out-

comeY and a nominal (multicategorical) prognostic factorX having the set of unordered categories

S = {1, . . . ,K}. For instance, health scientists often want their statistical consultants to find statistically

relevant binary splitting rules to predict the binary outcomeY using the nominal variableX as predictor.

A common approach consists of considering successively all the subsetsSj , j = 1, . . . , 2K − 2 of S and

transforming the nominal variableX into a binary variable as follows:

X(Sj) =

1 if X ∈ Sj

0 otherwise,

thus producing a2×2 contingency table. One can then evaluate the association betweenX(Sj) andY using

any association measure. In medical applications, the partition yielding the highest association measure is
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often used to construct a binary prediction rule. Classification trees with binary splits, which are especially

appreciated in medical research, are an important application of such binary splittings.

The chi-square statistic is commonly used to test the association between two binary variables using a

sample ofN independent observations (see Kang and Kim (2004) for an extensive study of association tests

in 2 × 2 contingency tables). Thep-value of the chi-square test can be used as association measure for the

problem described above. However, the minimalp-value over the2K−2 partitions ofS must be considered

with caution. Selecting the partition ofS that minimizes thep-value of the chi-square test and claiming that

X is a good predictor forY because thisp-value is low would be an inappropriate approach. Indeed, the dis-

tribution of the maximally selected chi-square statistic is different from the nominal chi-square distribution.

Numerous papers published in the last decades address the problem of maximally selected statistics under

the hypothesis of no association between two variablesX andY in different situations. Minimally selected

(weighted) misclassification rates are examined by Gail and Green (1976) in the case of a continuousX and

a binaryY . Miller and Siegmund (1982) show that the maximally selected chi-square statistic converges to

a normalized Brownian bridge under the null-hypothesis of no association between a continuousX and a

binaryY . The case of small samples is examined by Halpern (1982) in a simulation study, whereas Koziol

(1991) derives the exact distribution of maximally selected chi-square statistics using a combinatorial ap-

proach. Boulesteix (2005) proposes a generalization of Koziol’s approach to derive the exact distribution

of the maximally selected chi-square statistics in the case of an at least ordinally scaledX and a binaryY .

Maximally selected chi-square statistics for a continuousX and a nominalY are investigated in Betensky

and Rabinowitz (1999). The distributions of other related optimally selected statistics such as the statistic

used in Fisher’s exact test (Halpern, 1999) or McNemar’s statistic (Rabinowitz and Betensky, 2000) have

also been studied in the last few years. Hothorn and Lausen (2003) derive a lower bound for the exact distri-

bution of maximally selected rank statistics. The problem of the asymptotic null distribution of maximally

selected statistics for binary, ordered, quantitative or censored response variables is discussed in Lausen and

Schumacher (1992, 1996) and Lausen, Lerche and Schumacher (2002).

In this paper, we investigate the case of a binaryY and a nominal (multicategorical)X. The chi-square

statistic obtained for the binary variablesY andX(Sj) is denoted asχ2
Sj

. In this context, the maximally

selected chi-square statistic is defined as

χ2
max = max

Sj∈S
χ2

Sj
,

whereS denotes the set of the non-empty strict subsets ofS. The present paper proposes a novel com-

binatorial method to compute the exact distribution of the maximally selected chi-square statisticχ2
max

under the null-hypothesis of no association betweenX andY . The term(xi, yi)I=1,...,N denotesN in-

dependent identically distributed realizations of the variablesX andY . N1 andN2 denote the numbers

of observations withyi = 1 andyi = 2, respectively andmk, k = 1, . . . ,K the number of observations

with xi = k. The distribution ofχ2
max is derived givenN1, N2,m1, . . . ,mK . The focus of the paper is on

the chi-square statistic. However, our approach might be easily generalized to other association measures

satisfying a specific convexity property, such as the cross-entropy criterion (also called deviance) used in



machine learning.

The paper is organized as follows. Our novel approach to derive the distribution ofχ2
max in the context

of a binaryY and a nominal (multicategorical)X is presented in Section 2. Section 3 discusses possible

applications of the new approach to variable selection and hypothesis testing based on two simulation studies

and compares it to other related approaches. The new method is illustrated through an application to a birth

data set.

2 Method

2.1 Framework and notations

For a given partition{Sj , Sj} of S, let us consider the contingency table

X(Sj) = 0 X(Sj) = 1

Y = 1 n1,Sj
n1,Sj

N1

Y = 2 n2,Sj
n2,Sj

N2

NSj
NSj

N .

The chi-square statisticχ2
Sj

may be computed as

χ2
Sj

=
N(n1,Sj

n2,Sj
− n1,Sj

n2,Sj
)2

N1N2NSj NSj

and reformulated asχ2
Sj

= A2
Sj

, where:

ASj =
N

N1

(
n2,Sj

N2
−

NSj

N

)
/

√
NSj

N

(
1−

NSj

N

) (
1

N1
+

1
N2

)
,

The rest of this section presents a novel method to computeP (χ2
max ≤ d) under the null-hypothesis of

no association betweenX andY and givenN1, N2,m1, . . . ,mK . For simplification, we use the notation

F (d) = PH0(χ
2
max ≤ d) in the rest of the paper. In our approach,PH0(χ

2
max ≤ d) is developed into an

ordinal framework as follows. Let̂pk, k = 1, . . . ,K be defined as the empirical proportion of observations

of classY = 2 within categoryX = k:

p̂k =
n2,{k}

mk
.

LetZ denote the set of the permutations of{1, . . . ,K}:

Z = {(σ1, . . . , σK)|∀k = 1, . . . ,K, σk ∈ {1, . . . ,K} and∀k1 6= k2, σk1 6= σk2}

andZ = (Z1, . . . , ZK) the element ofZ satisfying

p̂Z1 ≥ · · · ≥ p̂ZK
,

for the sample(xi, yi)i=1,...,N . Since some of thêpk might be equal, one needs a further convention for the

random vectorZ to be defined uniquely: we make the convention that ifp̂Zi
= p̂Zi+1 , thenZi < Zi+1.



ThenF (d) = PH0(χ
2
max ≤ d) can be decomposed as

PH0(χ
2
max ≤ d) = 1− PH0(χ

2
max > d) (1)

= 1−
∑

(σ1,...,σK)∈Z

PH0(χ
2
max > d ∩ Z = (σ1, . . . , σK)). (2)

As shown by Shih (2001), ifZ = (σ1, . . . , σK), thenχ2
max is obtained as

χ2
max = max

k=1,...,K−1
χ2
{σ1,...,σk}.

Sincep̂σ1 ≥ · · · ≥ p̂σK
, we haveA{σ1,...,σk} > 0, for all k = 1, . . . ,K − 1. Thus,

χ2
max > d ⇔ ( max

k=1,...,K−1
A{σ1,...,σk}) >

√
d.

In the rest of this section, we address the problem of computing

PH0

(
max

k=1,...,K−1
A{σ1,...,σk} >

√
d ∩ Z = (σ1, . . . , σK)

)
(3)

for any {σ1, . . . , σK} ∈ Z, given N1, N2,m1, . . . ,mK . Our exact and computationally efficient novel

method is based on binomial coefficients. For a fixed(σ1, . . . , σK) ∈ Z, let Bk, k = 1, . . . ,K − 1 denote

the number of ways to choose simultaneouslyN2 observations from a sample ofN observations such that

Z = (σ1, . . . , σK), (4)

∀j < k, A{σ1,...,σj} ≤ d, (5)

and A{σ1,...,σk} > d. (6)

The probability (3) may then be obtained as

PH0

(
max

k=1,...,K−1
A{σ1,...,σk} >

√
d ∩ Z = (σ1, . . . , σK)

)
=

K−1∑
k=1

Bk/
(

N

N2

)
. (7)

The combinatorial derivation of theBk is given in the appendix. The computation ofPH0(χ
2
max ≤ d) can

be summarized as follows:

1. For each{σ1, . . . , σK} ∈ Z,

• theBk, k = 1, . . . ,K − 1, are computed as described in the appendix,

• PH0

(
maxk=1,...,K−1 A{σ1,...,σk} >

√
d ∩ Z = (σ1, . . . , σK)

)
is obtained from formula (7).

2. PH0(χ
2
max ≤ d) is computed as

PH0(χ
2
max ≤ d) = 1−

∑
{σ1,...,σK}∈Z

PH0

(
max

k=1,...,K−1
A{σ1,...,σk} >

√
d ∩ Z = (σ1, . . . , σK)

)
.



3 Applications and simulations

3.1 Introduction

In this section, we discuss several applications of the derived exact distribution and their advantages and

inconveniences over two other approaches based on the chi-square statistic. Here, we give a short summary

of the considered approaches.

3.1.1 The ’naive’ approach based onχ2
max

The naive approach consisting of (i) selecting the partition ofX that yields the maximal chi-square statistic,

(ii) performing the chi-square association test for the resulting2×2 contingency table and (iii) rejecting the

null-hypothesis of no association based on the obtainedp-value is formally incorrect. In this approach, the

p-value is computed from the nominal chi-square distribution with one degree of freedom, which is different

from the distribution of the considered ’test statistic’χ2
max. This contradiction makes it inappropriate, as

discussed in Section 3.3.

3.1.2 The usual chi-square test fork × 2 contingency tables

The chi-square association test might be performed fork × 2 contingency tables, wherek > 2. In Section

3.2, this test is compared to our new approach.

3.1.3 Our novel approach based onF (χ2
max)

The distribution functionF of the maximally selected chi-square statistic provides a statistical association

criterion. To measure the association between a binaryY and a nominalX, one has to (i) computeχ2
max

for the available sample(xi, yi)i=1,...,N , (ii) computeF (χ2
max) givenN1, N2,m1, . . . ,mK . The quantity

1−F (χ2
max) may be seen as thep-value of a test testing the null-hypothesis of no association betweenX and

Y . Under the null-hypothesis, the distribution function of the test statisticχ2
max is F . N1, N2,m1, . . . ,mK

are parameters of the distributionF .

3.2 Our novel approach vs. the chi-square statistics fork × 2 contingency tables

Our method to derive the exact distribution of the maximally selected chi-square statistic may be extended

to any association criterion for2 × 2 contingency tables satisfying specific convexity properties given in

Shih (2001). Thus, our combinatorial method solves a general problem, with applications e.g. in machine

learning. However, in the special case of the chi-square statistic examined in this paper,k × 2 tables are

explicitly allowed. Hence, a natural question from the point of view of statisticians is ’what is the difference

between the novel approach and the chi-square test fork × 2 contingency tables ?’. This topic is addressed

in this section.



The first obvious difference between our approach and the chi-square test fork × 2 tables is that, as

an exact procedure, our approach is also valid for very small sample sizes, which are common in clinical

studies or in the branches of classification trees. In return, it becomes computationally expensive for very

large sample sizes or large numbers ofX categories.

The power of both approaches can be examined via simulations. Intuitively, one expects our novel

approach to perform comparatively better if the conditional probabilitiespk = P (Y = 2|X = k), k =

1, . . . ,K, form two well-separated clusters. It is expected to perform comparatively worse if thepk are

approximately equidistantly spread over an interval included in[0, 1]. In the rest of this section, the power

of both tests in these two extreme situations is examined via simulations.

Nrun = 1000 data sets containingN = 100 independent observations of a binary variableY and

nominal variableX are simulated as follows. The number of categories ofX is set toK = 3 andK = 4.

Two different distributions ofY givenX corresponding to the two situations described above are examined

successively.

• Case A:Thepk = P (Y = 2|X = k), k = 1, . . . ,K, form two distinct clusters.

p1 = 0.3, p2 = p3 = 0.6,

for K = 3 and

p1 = p2 = 0.3, p3 = p4 = 0.6,

for K = 4.

• Case B:The pk = P (Y = 2|X = k), k = 1, . . . ,K, are equidistantly spread over an interval

included in[0, 1]:

p1 = 0.3, p2 = 0.5, p3 = 0.7,

for K = 3 and

p1 = 0.3, p2 = 0.4, p3 = 0.5, p4 = 0.6,

for K = 4.

The empirical distributions of the logarithmizedp-values obtained with both tests are displayed in Figure

1 for the four examined situations (K = 3 or K = 4, Case A or B). Whereas the two distributions merge

for Case B, the empirical distribution function of thep-value obtained for our novel approach lies above

the one obtained for the usual chi-square statistic in Case A. In Case A, thep-values are significantly lower

with our approach than with the usual chi-square test: for bothK = 3 andK = 4, Wilcoxon’s (paired and

two-sided) rank sum test rejects the hypothesis of equality of the medians at significance level< 10−12. In

a word, our novel test and the usual chi-square test fork × 2 contingency tables have approximately equal

power if thepk = P (Y = 2|X = k) are equidistantly spread over an interval included in[0, 1], but our test

performs better if thepk form two clusters.
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Figure 1: Empirical distribution of the logarithmizedp-values obtained using our approach (plain) and the

usual chi-square statistic fork × 2 tables (dashed) withK = 3 (top) andK = 4 (bottom) in Case A (left)

and Case B (right).



3.3 Our novel approach vs. the ’naive approach’

3.3.1 Selection bias

A classical approach in recursive partitioning algorithms with binary splittings such asCART(Breiman

et al., 1984) is to search through all possible partitions generated by the candidate predictor variables. An

association criterion is computed for each of these partitions and the one maximizing the criterion is selected

for splitting. However, this approach is biased towards predictor variables with many possible partitions, see

e.g. Shih (2004) for a discussion of this problem in the case of continuous predictors with different numbers

of missing values. Shih (2004) suggests an alternativep-value criterion based on the distribution of the

maximally selected chi-square statistic. In the case of nominal predictors, the selection is biased towards

variables with many categories (Kim and Loh, 2001), since the number of possible partitions for a given

predictor variable increases exponentially with its number of categories. The distribution of the maximally

selected chi-square statistic under the null-hypothesis of no association betweenX andY derived in Section

2 provides graphical evidence for this selection bias. As an example, Figure 2 (top) shows the distribution

function of the maximally selected chi-square statistic forN1 = N2 = 30 andm1 = m2 = m3 = 20

(K = 3, dashed),m1 = m2 = m3 = m4 = 15 (K = 4, dotted) orm1 = m2 = m3 = m4 = m5 = 12

(K = 5, plain). It can be seen from Figure 2 thatF (x) increases withK for a givenx. Thus, variable

selection based on the maximally selected chi-square statistic is expected to be biased towards variables

with largeK. In the next section, a simulation study is performed to quantify this selection bias and to

check that variable selection based onF (χ2
max) instead ofχ2

max eliminates the selection bias.

3.3.2 Simulations

Nrun = 1000 data sets containing a binary ’response’ variableY and nominal ’predictor variables’X1, X2, X3

are simulated as follows. Each data set contains eitherN = 50 or N = 100 independent identically dis-

tributed observations of the binary variablesY and of the nominal predictorsX1, X2, X3. The number of

categories is set toK = 3 for X1, K = 4 for X2 andK = 5 for X3. All four variables are assumed

mutually independent and uniformly distributed. Thus, a reliable variable selection criterion is expected to

selectX1, X2 andX3 with equal probability1
3 . For each of theNrun data sets, variable selection is per-

formed using successivelyχ2
max andF (χ2

max) as selection criterion. The obtained frequencies of selection

are collected in Table 1. Strong selection bias are observed whenχ2
max is used as a selection criterion.

In contrast, theF (χ2
max) criterion selects all three variables with approximately equal frequency. Another

advantage of theF (χ2
max) based method is that, as an exact procedure, it provides validp-values even for

very small samples.

3.3.3 Comparison of thep-values

The performance of the two testing approaches may be visualized via a ’p-value/p-value’ plot representing

thep-values obtained with our new approach against thep-values obtained with the naive approach which
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Figure 2: Example:N1 = N2 = 30 andm1 = m2 = m3 = 20 (K = 3, dashed),m1 = m2 = m3 =

m4 = 15 (K = 4, dotted) orm1 = m2 = m3 = m4 = m5 = 12 (K = 5, plain). Top: Distribution

function ofχ2
max. Bottom: p-value/p-value plot.

Criterion N X1 X2 X3

χ2
max 50 17 35 50

F (χ2
max) 50 32 34 34

χ2
max 100 17 32 51

F (χ2
max) 100 35 32 34

Table 1: Frequencies of selection (in%) of X1,X2 andX3 for N = 50 (top) andN = 100 (bottom) with

χ2
max andF (χ2

max).



may be denoted as minimally selectedp-values. As an example, Figure 2 (bottom) displays thep-value/p-

value plot forN1 = N2 = 30 andm1 = m2 = m3 = 20 (K = 3, dashed),m1 = m2 = m3 = m4 = 15

(K = 4, dotted) orm1 = m2 = m3 = m4 = m5 = 12 (K = 5, plain). Unsurprisingly, for a givenχ2
max,

the p-value obtained with our method increases withK. All three graphs are above the line of equation

y = x when the minimally selectedp-values are large enough, which can be interpreted as a multiple

comparisons effect. However, when the minimally selectedp-value is low (e.g.< 0.1 for K = 3), the

p-value obtained using our new approach is lower than thep-value yielded by the naive approach. In a

word, our new testing approach makes largep-values even larger and lowp-values even lower, which is of

course a desirable property in terms of power. This feature is illustrated in the next section through a real

data example.

3.3.4 A real data example

This section illustrates the novel method through an application to a birth data set introduced by Boulesteix

(2005). In developed countries, the proportion of cesarean births has considerably increased in the last

decades. The factors influencing the probability to undergo a cesarean section have been the subject of

numerous publications, e.g., Cnattingius, Cnattingius and Notzon (1998) and Liebermann et al. (1997).

Beside obvious factors such as previous cesarean section(s), fetal-pelvic disproportion or unusual fetal

presentation (for instance breech), the way the delivery begins might also influence the probability to need a

cesarean section. There are basically three possible scenarios: (i) the woman feels natural contractions, (ii)

the membranes rupture or (iii) labor is medically induced, for instance because of fetal distress or overdue

pregnancy. If the membranes rupture before the first contractions, most women will go into labor naturally.

However, if the amniotic sac has ruptured but labor has not started within 24-48 hours, contractions are

often induced medically. Here, we consider 566 singleton births of primiparous women who tried to have

a vaginal delivery. The binary variable of interest is whether an emergency cesarean section had to be

performed. The considered nominal variable has four categories:

X = 1 : Labor started naturally and before the membranes ruptured.

X = 2 : Labor started naturally but after the membranes ruptured.

X = 3 : Labor was induced medically before the membranes ruptured.

X = 4 : Labor was induced medically after the membranes ruptured.

Our new approach, the ’naive’ approach and the usual chi-square test fork × 2 tables yieldp-values of

10−4, 3 · 10−4 and3 · 10−5, respectively, and3 · 10−4, 4 · 10−4 and2 · 10−4 if categoriesX = 2 andX = 4

(both corresponding to scenario (ii)) are merged. In both cases, the new approach yields lowerp-values than

the naive approach, but the difference is greater forK = 4 than forK = 3, which corroborates Figure 2

as well as the simulation results . Thep-values of the usual chi-square test fork × 2 tables are lower than

thep-values of our test. It indicates that the probabilitiespk = P (Y = 2|X = k) do not form two clearly

separated clusters, which can be confirmed by considering the corresponding empirical probabilities

p̂1 = 0.18, p̂2 = 0.10, p̂3 = 0.33, p̂4 = 0.28.



Thus, althoughX andY are associated, a binary splitting ofX might be somewhat artificial. This topic

could be investigated more precisely in future research.

4 Discussion and Perspectives

In this paper, we proposed a combinatorial exact method to compute the distribution of the maximally

selected chi-square statistic in the context of a binaryY and a nominal (multicategorical)X. The same

approach could be generalized to other association measures satisfying a specific convexity property (Shih,

2001) such as the deviance (also called cross-entropy), the Freeman-Tukey or the Cressie-Read criteria.

Since the distribution of the maximally selected chi-square statistic is different from the nominal chi-

square distribution, performing a chi-square test from the2× 2 contingency table corresponding to the best

partition of the variableX is an incorrect approach. In particular, it leads to strong selection bias towards

X variables with more categories when used for variable selection. In contrast, our approach avoids this

selection bias.

The derived distribution function can be used to construct a test of association competing with the usual

chi-square test fork × 2 contingency tables. In simulation studies, we found that our new test has a higher

power than the usual chi-square test when the conditional probabilitiesP (Y = 2|X = k), k = 1, . . . ,K,

form two distinct clusters. A further advantage of our new exact and distribution-free test is that it is

also applicable to very small sample sizes. Our method might be employed to prevent biased reporting of

artificially low p-values in the context of a “drop-the-losers” design (Sampson and Sill, 2005), where only

the most effective treatments are selected for continuation into the subsequent phase of a biopharmaceutical

clinical trial, as described by Wittes (2005).

In future work, our approach could be interestingly applied to recursive partitioning algorithms. In

recent papers, maximally selected statistics and their associatedp-values have been successfully applied to

the problem of variable and cutpoint selection in classification and regression trees (Schlittgen, 1999; Shih,

2004; Lausen et al., 2004). Thep-value based association measure proposed in the present paper might also

be used as a selection criterion for choosing the best nominal predictor variable and the best binary partition.

Since it allows the comparison of nominal predictor variables with different numbers of categories and can

be used in the case of small sample sizes, we expect it to perform better than the usual criteria in some cases.

Together with the method for at least ordinally scaled predictors developed in Boulesteix (2005), it forms

an homogeneous class of selection criteria for predictor variables of different types (nominal, ordinal).

Alternative exact procedures for ordinal predictors are discussed in Berger (1998). In further research,

one could also work on a generalization of our approach based on the minimally selectedp-value rather

than on the maximally selected statistic itself. Approaches using the minimalp-value as test statistic are

developed, e.g., in Berger and Ivanova (2002). Such a modification of our approach would potentially allow

the comparison of more complicated splits of various forms, even if thep-values are computed in completely

different ways.



Another potential application of our approach is the search for complex binary splits of ordinal variables

of the type{{X ≤ a ∪ X > b}, {a ≤ X < b}}. In medical applications, such binary splits may be used

e.g. whenX is a blood value that has to be neither too high nor too low andY is a binary variable of the

type ’healthy/not healthy’.
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Appendix

To compute theBk, k = 1, . . . ,K − 1, we consider the graph representing the points of coordinates

(N{σ1,...,σj}, n2,{σ1,...,σj}) for j = 1, . . . ,K − 1. After simple computations, one obtains that for a subset

S ∈ S of sizeNS

AS >
√

d ⇔ n2,S > fχ(NS),

wherefχ denotes the function

fχ(x) =
N2x

N
+

N1N2

√
d

N

√
x

N
(1− x

N
)(

1
N1

+
1

N2
). (8)



For conditions (5) and (6) to be satisfied, the graph(N{σ1,...,σj}, n2,{σ1,...,σj}) must lie below or on the

boundary of equation (8) forj = 1, . . . , k − 1 and above it forj = k:

(5) ⇔ ∀j < k, n2,{σ1,...,σj} ≤ fχ(N{σ1,...,σj})

⇔ ∀j < k, n2,{σj} ≤ fχ(N{σ1,...,σj})− n2,{σ1,...,σj−1},

(6) ⇔ n2,{σ1,...,σk} > fχ(N{σ1,...,σk})

⇔ n2,{σk} > fχ(N{σ1,...,σk})− n2,{σ1,...,σk−1}.

Condition (4) can be interpreted in terms of concavity of the graph(N{σ1,...,σj}, n2,{σ1,...,σj}) and rewritten

as
∀j = 2, . . . ,K, n2,{σj} <

n2,{σj−1}

mσj−1
mσj

if σj−1 > σj

≤
n2,{σj−1}

mσj−1
mσj

otherwise.

Let upper(n2,{σj−1},mσj−1 ,mσj
, σj , σj−1) denote the greatest allowed value forn2,{σj} corresponding to

condition (4).

To sum up,Bk, k = 2, . . . ,K − 1, is the number of ways to chooseN2 observations from a sample of

N observations such thatn2,{σj} ∈ I
(Bk)
j , for all j = 1, . . . ,K − 1, with

I
(Bk)
1 = [0,min(fχ(mσ1),mσ1 , N2)],

I
(Bk)
j = [0,min(fχ(N{σ1,...,σj})− n2,{σ1,...,σj−1}, upper(n2,{σj−1},mσj−1 ,mσj

, σj , σj−1))]

for j = 2, . . . , k − 1,

I
(Bk)
k = ]fχ(N{σ1,...,σk})− n2,{σ1,...,σk−1}, upper(n2,{σk−1},mσk−1 ,mσk

, σk, σk−1)],

I
(Bk)
j = [0, upper(n2,{σj−1},mσj−1 ,mσj , σj , σj−1)]

for j > k.

Fork = 1, the intervalsI(B1)
j are simply given as

I
(B1)
1 = ]fχ(mσ1),min(mσ1 , N2)] for j = 1,

I
(B1)
j = [0, upper(n2,{σj−1},mσj−1 ,mσj , σj , σj−1)] for j > 1.

Using these notations,Bk is then obtained as

Bk =
∑

i1∈I
(Bk)
1

(
mσ1
i1

)
·

. . .

 ∑
iK−1∈I

(Bk)
K−1

(
mσK−1
iK−1

)
·
(

mσK

N2 −
PK−1

q=1 iq

)
 . (9)

The computational efficiency can be considerably improved by noticing thatp̂σ1 ≥ · · · ≥ p̂σK
implies

n2,{σj}

mσj

≥
N2 − n2,{σ1,...,σj−1}

N −N{σ1,...,σj−1}
,

for j = 1, . . . ,K. If n2,{σ1,...,σk} > fχ(N{σ1,...,σk}), then we even have

n2,{σj}

mσj

≥
fχ(N{σ1,...,σk})− n2,{σ1,...,σj−1}

N{σ1,...,σk} −N{σ1,...,σj−1}
,

for j = 1, . . . , k− 1. Computation time can be spared by replacing 0 by the corresponding lower bounds in

the intervalsI(Bk)
j .
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