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Abstract

We address the problem of maximally selected chi-square statistics in the case of d&birzaigble
and a nominalX variable with several categories. The distribution of the maximally selected chi-square
statistic has already been derived when the best cutpoint is chosen from a continuous or atkqtolirhal
not when the best split is chosen from a nomiialln this paper, we derive the exact distribution of the
maximally selected chi-square statistic in this case using a combinatorial approach. Applications of the
derived distribution to variable selection and hypothesis testing are discussed based on simulations. As

an illustration, our method is applied to a pregnancy and birth data set.

keywords: Categorical variables, association test, contingency table, exact distribution, variable selec-

tion, selection bias.

1 Introduction

A classical problem in medical research is the study of the association between a binary clinical out-
comeY and a nominal (multicategorical) prognostic factdir having the set of unordered categories

S ={1,..., K}. Forinstance, health scientists often want their statistical consultants to find statistically
relevant binary splitting rules to predict the binary outcorhesing the nominal variabl&” as predictor.

A common approach consists of considering successively all the subsets= 1,...,2% — 2 of S and
transforming the nominal variabl¥ into a binary variable as follows:

X(S') 1 if XESj
1) =

0 otherwise

thus producing & x 2 contingency table. One can then evaluate the association bef#/éehandY” using

any association measure. In medical applications, the partition yielding the highest association measure is



often used to construct a binary prediction rule. Classification trees with binary splits, which are especially
appreciated in medical research, are an important application of such binary splittings.

The chi-square statistic is commonly used to test the association between two binary variables using a
sample ofV independent observations (see Kang and|Kim (2004) for an extensive study of association tests
in 2 x 2 contingency tables). Thevalue of the chi-square test can be used as association measure for the
problem described above. However, the miniprahlue over th@ — 2 partitions ofS must be considered
with caution. Selecting the partition 6fthat minimizes the-value of the chi-square test and claiming that
X is agood predictor for” because thig-value is low would be an inappropriate approach. Indeed, the dis-
tribution of the maximally selected chi-square statistic is different from the nominal chi-square distribution.
Numerous papers published in the last decades address the problem of maximally selected statistics under
the hypothesis of no association between two variallesdY in different situations. Minimally selected
(weighted) misclassification rates are examined by Gail and Green|(1976) in the case of a coriraunalus
a binaryY . [Miller and Siegmund (1982) show that the maximally selected chi-square statistic converges to
a normalized Brownian bridge under the null-hypothesis of no association between a confihaodsa
binaryY. The case of small samples is examined by Halgern (1982) in a simulation study, whereals Koziol
(1991) derives the exact distribution of maximally selected chi-square statistics using a combinatorial ap-
proach.| Boulestejx (2005) proposes a generalization of Koziol's approach to derive the exact distribution
of the maximally selected chi-square statistics in the case of an at least ordinally Scatetia binaryy".
Maximally selected chi-square statistics for a continu&uand a nominal” are investigated in Betensky
and Rabinowitz[ (1999). The distributions of other related optimally selected statistics such as the statistic
used in Fisher's exact test (Halpgrn, 1899) or McNemar's statistic (Rabinowitz and Be{ensky, 2000) have
also been studied in the last few years. Hothorn and Lalisen|(2003) derive a lower bound for the exact distri-
bution of maximally selected rank statistics. The problem of the asymptotic null distribution of maximally
selected statistics for binary, ordered, quantitative or censored response variables is discussed in Lausen and
Schumacheér (1992, 1996) and Lausen, Lerche and Schurhacher (2002).

In this paper, we investigate the case of a birfdrgnd a nominal (multicategoricalj. The chi-square
statistic obtained for the binary variabl&sand X (%) is denoted as@j. In this context, the maximally

selected chi-square statistic is defined as

2 2
) . — max X
Xmaz S,e8 XS;’

whereS denotes the set of the non-empty strict subsetS.ofrhe present paper proposes a novel com-
binatorial method to compute the exact distribution of the maximally selected chi-square sigijstic

under the null-hypothesis of no association betwé&eandY. The term(x;,y;)r=1,.. ~ denotesN in-

dependent identically distributed realizations of the variableandY. N; and N, denote the numbers
of observations withy; = 1 andy; = 2, respectively andny, £k = 1,..., K the number of observations
with z; = k. The distribution ofy?, .. is derived givenNy, Na, m1, ..., mxg. The focus of the paper is on

the chi-square statistic. However, our approach might be easily generalized to other association measures

satisfying a specific convexity property, such as the cross-entropy criterion (also called deviance) used in



machine learning.

The paper is organized as follows. Our novel approach to derive the distributigh,ofin the context
of a binaryY and a nominal (multicategoricaly is presented in Section 2. Section 3 discusses possible
applications of the new approach to variable selection and hypothesis testing based on two simulation studies
and compares it to other related approaches. The new method is illustrated through an application to a birth

data set.

2 Method

2.1 Framework and notations
For a given partitioq{.S;, S, } of S, let us consider the contingency table

X8 =0 x5 =1

Y =1 1.5, ni,s, Ny
Y=2 nz’gj na.s Ng
NSJ Ng, N

The chi-square statistbg%j may be computed as

_ . 2
N(nl,SjnlSj n1,s; n27Sj)

Xs; =

NiN2Ns, N3,
and reformulated ag, = A% , where:
N N, N, N 1 1
AS- AV TL2 o S S S; ),
i N Ny Ny

The rest of this section presents a novel method to comp(té, . < d) under the null-hypothesis of
no association betweek andY and givenNy, Ny, m1, ..., mg. For simplification, we use the notation

F(d) = Py, (x2,.. < d) in the rest of the paper. In our approadhy, (x2,.. < d) is developed into an

ordinal framework as follows. Lei,, k = 1,..., K be defined as the empirical proportion of observations
of classY = 2 within categoryX = k:
n
P = 2.{k}
mg

Let Z denote the set of the permutations{af. . ., K'}:
Z={(o1,...,0x)Vk=1,... K, o € {1,..., K} andVk; # ko, 0k, # Ok, }
andZ = (74, ..., Zk) the element of satisfying
Pz, = 2 Pzg,

for the sampldz;,y;):=1.... n. Since some of thg, might be equal, one needs a further convention for the

thenZz; < ZiJrl .

,,,,,

random vectoZ to be defined uniquely: we make the convention thatif= 5, .,



ThenF(d) = Pg,(x2,,.. < d) can be decomposed as

Pry(Xpaz <d) = 1= Pry(Xpaw > d) 1)

= 1— > Py >dNZ=(01,...,0k)). 2)

(01,...,0K)EZ

As shown by Shih (2001), Z = (o4, ..., 0k ), theny?2, . is obtained as

2

_ 2
Xmam - kzll’)l}?.}[((il X{Ulguw("k}.

Sincep,, > -+ > po,, Wehaved, o3>0, forallk=1,..., K —1. Thus,

anax > d ~ ( ”E.DI({_lA{Ulwak}) > \/&

In the rest of this section, we address the problem of computing

Py, ( max A{al ____ o} >\/E ﬂZ:(O’l,...,UK)> 3)
k=1,...,.K—1
for any {oy,...,0x} € Z, given Ny, Ny,mq,...,mg. Our exact and computationally efficient novel
method is based on binomial coefficients. For a fiked ...,o0x) € Z,letB;, k= 1,..., K — 1 denote

the number of ways to choose simultaneouSlyobservations from a sample &f observations such that

Z:(O'l,...,O'K>7 (4)
V] <k, A{01 ..... o;} <d, (5)
and A¢y, oy > d (6)

The probability[(B) may then be obtained as

K—1
Py, (k—f??)élA{“l ,,,,, oy > Vd NZ = (017...,(7;()) - ; Bk/( o ) @)

The combinatorial derivation of thBy, is given in the appendix. The computation®f, (x?2,,. < d) can

be summarized as follows:
1. ForeacHoy,...,0x} € Z,

e theBy, k=1,..., K — 1, are computed as described in the appendix,

o Py, (maxkzly__wK_l Afoyony > Vd NZ = (o1,.. .,oK)) is obtained from formulﬂ?).

2. Pu,(x2,.. < d)is computed as

PHo (X?na;c < d) =1 Z PHU (k_lmaK—lA{Ul’m’ak} > \/E N7z = (0’1, ey O’K)> .
(o1, merez ...

s



3 Applications and simulations

3.1 Introduction

In this section, we discuss several applications of the derived exact distribution and their advantages and
inconveniences over two other approaches based on the chi-square statistic. Here, we give a short summary

of the considered approaches.

3.1.1 The 'naive’ approach based oné? .

The naive approach consisting of (i) selecting the partitioX adhat yields the maximal chi-square statistic,

(ii) performing the chi-square association test for the resuftin@ contingency table and (iii) rejecting the
null-hypothesis of no association based on the obtairesdue is formally incorrect. In this approach, the
p-value is computed from the nominal chi-square distribution with one degree of freedom, which is different
from the distribution of the considered 'test statisti¢, . This contradiction makes it inappropriate, as
discussed in Sectidn 3.3.

3.1.2 The usual chi-square test fok x 2 contingency tables

The chi-square association test might be performed fer2 contingency tables, whede> 2. In Section

[3.2, this test is compared to our new approach.

3.1.3 Our novel approach based o (x2,,,)

The distribution functionF' of the maximally selected chi-square statistic provides a statistical association
criterion. To measure the association between a billaand a nominalX, one has to (i) computg?, ...

for the available samplér;, y;)i—1.... ., (ii) computeF (x2,,,) given N1, Na, mq, ..., mg. The quantity
1-F(x2,,,) may be seen as thevalue of a test testing the null-hypothesis of no association betWesd

Y. Under the null-hypothesis, the distribution function of the test statigtic, is . N1, Na,m1, ..., mx

are parameters of the distributién

3.2 Our novel approach vs. the chi-square statistics fok x 2 contingency tables

Our method to derive the exact distribution of the maximally selected chi-square statistic may be extended
to any association criterion f& x 2 contingency tables satisfying specific convexity properties given in
Shih (2001). Thus, our combinatorial method solves a general problem, with applications e.g. in machine
learning. However, in the special case of the chi-square statistic examined in thisfpap2tables are
explicitly allowed. Hence, a natural question from the point of view of statisticians is 'what is the difference
between the novel approach and the chi-square test o2 contingency tables ?'. This topic is addressed

in this section.



The first obvious difference between our approach and the chi-square téskf@rtables is that, as
an exact procedure, our approach is also valid for very small sample sizes, which are common in clinical
studies or in the branches of classification trees. In return, it becomes computationally expensive for very
large sample sizes or large numbersXotategories.

The power of both approaches can be examined via simulations. Intuitively, one expects our novel
approach to perform comparatively better if the conditional probabilities= P(Y = 2|X = k), k =
1,..., K, form two well-separated clusters. It is expected to perform comparatively worse jif, thee
approximately equidistantly spread over an interval includ€@,in]. In the rest of this section, the power
of both tests in these two extreme situations is examined via simulations.

N,., = 1000 data sets containingy = 100 independent observations of a binary variableand
nominal variableX are simulated as follows. The number of categorieXa$ set toK = 3 andK = 4.
Two different distributions o¥” given X corresponding to the two situations described above are examined

successively.
e Case A:Thep, =P(Y =2|X =k),k=1,..., K, form two distinct clusters.
p1 =03, p2=p3 =06,

for K = 3 and
p1 =p2=03, p3=ps=0.0,

for K = 4.

e Case B:Thep, = P(Y = 2|X = k), k = 1,..., K, are equidistantly spread over an interval
included in[0, 1]:
p1 =03, py=0.5, p3s=0.7,

for K =3 and
p1 =03, p2 =04, p3s=0.5, ps=0.06,

for K = 4.

The empirical distributions of the logarithmizeevalues obtained with both tests are displayed in Figure
[ for the four examined situation&(= 3 or K = 4, Case A or B). Whereas the two distributions merge
for Case B, the empirical distribution function of thevalue obtained for our novel approach lies above
the one obtained for the usual chi-square statistic in Case A. In Case pvyvtiaes are significantly lower
with our approach than with the usual chi-square test: for Bots 3 and K = 4, Wilcoxon’s (paired and
two-sided) rank sum test rejects the hypothesis of equality of the medians at significanee 16veP. In

a word, our novel test and the usual chi-square test for2 contingency tables have approximately equal
power if thep, = P(Y = 2|X = k) are equidistantly spread over an interval includef®ir ], but our test

performs better if the, form two clusters.



Case A, K=3 Case B, K=3

© o _|
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Figure 1: Empirical distribution of the logarithmizeevalues obtained using our approach (plain) and the
usual chi-square statistic férx 2 tables (dashed) witk' = 3 (top) andK = 4 (bottom) in Case A (left)
and Case B (right).



3.3 Our novel approach vs. the 'naive approach’
3.3.1 Selection bias

A classical approach in recursive partitioning algorithms with binary splittings suchAST (Breimari

et all,[1984) is to search through all possible partitions generated by the candidate predictor variables. An
association criterion is computed for each of these partitions and the one maximizing the criterion is selected
for splitting. However, this approach is biased towards predictor variables with many possible partitions, see
e.g.[ Shih[(2004) for a discussion of this problem in the case of continuous predictors with different numbers
of missing values| Shih (2004) suggests an alternativalue criterion based on the distribution of the
maximally selected chi-square statistic. In the case of nominal predictors, the selection is biased towards
variables with many categorigs (Kim and Léoh, 2001), since the number of possible partitions for a given
predictor variable increases exponentially with its number of categories. The distribution of the maximally
selected chi-square statistic under the null-hypothesis of no association béfvesetl” derived in Section
provides graphical evidence for this selection bias. As an example, [Figure 2 (top) shows the distribution
function of the maximally selected chi-square statisticfgr = N, = 30 andm; = my = mg = 20

(K = 3, dashed)m; = ms = m3 = my = 15 (K = 4, dotted) orm; = mg = m3 = my = ms = 12

(K = 5, plain). It can be seen from Figuré 2 th{z) increases withK for a givenz. Thus, variable
selection based on the maximally selected chi-square statistic is expected to be biased towards variables
with large K. In the next section, a simulation study is performed to quantify this selection bias and to

check that variable selection basedi(yx?,,..) instead ofy?,,, eliminates the selection bias.

max

3.3.2 Simulations

N,..., = 1000 data sets containing a binary response’ variablend nominal 'predictor variables(;, Xo, X3

are simulated as follows. Each data set contains either 50 or N = 100 independent identically dis-
tributed observations of the binary variabésand of the nominal predictory’;, X», X3. The number of
categories is set t& = 3 for X;, K = 4 for Xo and K = 5 for X3. All four variables are assumed
mutually independent and uniformly distributed. Thus, a reliable variable selection criterion is expected to
selectX;, X, and X3 with equal probability%. For each of theVv,.,,, data sets, variable selection is per-

formed using successively?

max

andF(x2,,.) as selection criterion. The obtained frequencies of selection
are collected in TabIE] 1. Strong selection bias are observed when is used as a selection criterion.

In contrast, theF’(y2,,,.) criterion selects all three variables with approximately equal frequency. Another
advantage of thé"(y2,,.) based method is that, as an exact procedure, it providespratdlies even for

very small samples.

3.3.3 Comparison of thep-values

The performance of the two testing approaches may be visualized pigaduiep-value’ plot representing

the p-values obtained with our new approach againsyvalues obtained with the naive approach which



Distribution function of xﬁqaxunder Ho

F(x)

00 04 038
|

New p-value
0.0 04 0.8
l

0.0 0.2 0.4 0.6 0.8 1.0

Minimally selected p—value

Figure 2: Example:N; = Ny = 30 andm; = ms = mgz = 20 (K = 3, dashed)m; = my = m3 =
my = 15 (K = 4, dotted) orm; = my = m3 = my = ms = 12 (K = 5, plain). Top: Distribution

function of \2, ... Bottom: p-valuep-value plot.

Criterion N X X2 X3
Cron 50 17 35 50
F(x%,,) 50 32 34 34
oo 100 17 32 51

F(x2,,) 100 35 32 34

Table 1: Frequencies of selection i) of X;,X> and X3 for N = 50 (top) andN = 100 (bottom) with



may be denoted as minimally selectedalues. As an example, FigUrg 2 (bottom) displaysitvaluep-

value plot forN; = Ny = 30 andm; = my = m3 = 20 (K = 3, dashed)in; = ms = m3 =my = 15

(K = 4, dotted) orm; = my = m3 = my = ms = 12 (K = 5, plain). Unsurprisingly, for a given?,....

the p-value obtained with our method increases with All three graphs are above the line of equation

y = x when the minimally selecteg-values are large enough, which can be interpreted as a multiple
comparisons effect. However, when the minimally selegte@lue is low (e.g.< 0.1 for K = 3), the
p-value obtained using our new approach is lower thanptivalue yielded by the naive approach. In a
word, our new testing approach makes lapgealues even larger and loprvalues even lower, which is of
course a desirable property in terms of power. This feature is illustrated in the next section through a real

data example.

3.3.4 Areal data example

This section illustrates the novel method through an application to a birth data set introduiced by Boulesteix
(2005). In developed countries, the proportion of cesarean births has considerably increased in the last
decades. The factors influencing the probability to undergo a cesarean section have been the subject of
numerous publications, e.g., Cnattingius, Cnattingius and Npbizon |(1998) and Liebermann et al. (1997).
Beside obvious factors such as previous cesarean section(s), fetal-pelvic disproportion or unusual fetal
presentation (for instance breech), the way the delivery begins might also influence the probability to need a
cesarean section. There are basically three possible scenarios: (i) the woman feels natural contractions, (ii)
the membranes rupture or (iii) labor is medically induced, for instance because of fetal distress or overdue
pregnancy. If the membranes rupture before the first contractions, most women will go into labor naturally.
However, if the amniotic sac has ruptured but labor has not started within 24-48 hours, contractions are
often induced medically. Here, we consider 566 singleton births of primiparous women who tried to have

a vaginal delivery. The binary variable of interest is whether an emergency cesarean section had to be

performed. The considered nominal variable has four categories:

X =1: Labor started naturally and before the membranes ruptured.
X =2: Labor started naturally but after the membranes ruptured.
X =3: Laborwas induced medically before the membranes ruptured.

X =4 : Laborwas induced medically after the membranes ruptured.

Our new approach, the 'naive’ approach and the usual chi-square tdstdar tables yieldp-values of
1074,3-10~* and3-10~°, respectively, and - 10~4, 4-10~* and2 - 10—* if categoriesX = 2 andX = 4
(both corresponding to scenario (ii)) are merged. In both cases, the new approach yielgs\valwes than
the naive approach, but the difference is greatetfor= 4 than for X' = 3, which corroborates Figufg 2
as well as the simulation results . Thevalues of the usual chi-square test fok 2 tables are lower than
the p-values of our test. It indicates that the probabilifigs= P(Y = 2|X = k) do not form two clearly

separated clusters, which can be confirmed by considering the corresponding empirical probabilities

p1 = 0.18, po = 0.10, p3 = 0.33, ps = 0.28.



Thus, althoughX andY are associated, a binary splitting &f might be somewhat artificial. This topic

could be investigated more precisely in future research.

4 Discussion and Perspectives

In this paper, we proposed a combinatorial exact method to compute the distribution of the maximally
selected chi-square statistic in the context of a bidargnd a nominal (multicategoricaly. The same
approach could be generalized to other association measures satisfying a specific convexity property (Shih,
2001) such as the deviance (also called cross-entropy), the Freeman-Tukey or the Cressie-Read criteria.

Since the distribution of the maximally selected chi-square statistic is different from the nominal chi-
square distribution, performing a chi-square test fromthe2 contingency table corresponding to the best
partition of the variableX is an incorrect approach. In particular, it leads to strong selection bias towards
X variables with more categories when used for variable selection. In contrast, our approach avoids this
selection bias.

The derived distribution function can be used to construct a test of association competing with the usual
chi-square test fok x 2 contingency tables. In simulation studies, we found that our new test has a higher
power than the usual chi-square test when the conditional probabiifies= 2| X = k), k= 1,..., K,
form two distinct clusters. A further advantage of our new exact and distribution-free test is that it is
also applicable to very small sample sizes. Our method might be employed to prevent biased reporting of
artificially low p-values in the context of a “drop-the-losers” design (Sampson and Sill] 2005), where only
the most effective treatments are selected for continuation into the subsequent phase of a biopharmaceutical
clinical trial, as described by Wittels (2005).

In future work, our approach could be interestingly applied to recursive partitioning algorithms. In
recent papers, maximally selected statistics and their assogiatades have been successfully applied to
the problem of variable and cutpoint selection in classification and regressior trees (Sc¢hlittgeh, 1999; Shih,
2004 Lausen et al., 2004). Thevalue based association measure proposed in the present paper might also
be used as a selection criterion for choosing the best nominal predictor variable and the best binary partition.
Since it allows the comparison of nominal predictor variables with different numbers of categories and can
be used in the case of small sample sizes, we expect it to perform better than the usual criteria in some cases.
Together with the method for at least ordinally scaled predictors developed in Boulesteix (2005), it forms
an homogeneous class of selection criteria for predictor variables of different types (nominal, ordinal).
Alternative exact procedures for ordinal predictors are discussed in Bergerl (1998). In further research,
one could also work on a generalization of our approach based on the minimally seleckee rather
than on the maximally selected statistic itself. Approaches using the mipivellie as test statistic are
developed, e.g., in Berger and Ivanova (2002). Such a modification of our approach would potentially allow
the comparison of more complicated splits of various forms, even ff-thadues are computed in completely

different ways.



Another potential application of our approach is the search for complex binary splits of ordinal variables
of the type{{X < aUX > b},{a < X < b}}. In medical applications, such binary splits may be used
e.g. whenX is a blood value that has to be neither too high nor too low¥rid a binary variable of the

type 'healthy/not healthy’.
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Appendix
To compute theBy, £k = 1,..., K — 1, we consider the graph representing the points of coordinates
(N{oy,....0;}s M2 {o1,....0;3) TOr j = 1,..., K — 1. After simple computations, one obtains that for a subset

S € S of sizeNg
Ag > \/g<:> n2,s > fx(NS)>

wheref, denotes the function

oty = N NNV oy L L ®




For conditions) ancﬂG) to be satisfied, the graph,, . ..o,},72,(0,.....c;}) Must lie below or on the
boundary of equation [8) for =1, ...,k — 1 and above it fo = k:

@ < V.j < k> n2,{01 ..... o} < fx(N{al ..... O’j})
A \V/j < k: n2.{o;} < fx(N{al,..‘,aj}) — N2 {o1,...,05-1}>
® <

nZ,{al,...,Uk} > fX(N{o'l,A..,a'k})

& N2 (o0} > Sx(Nior,o0}) = "2, {01, 001}

Condition Q) can be interpreted in terms of concavity of the gi@pfy., ... 5,1, 72, {0, ...,s,}) @nd rewritten

as
. n2 {o;_1} .
Vi=2,...,K, N2 {o,} <TJllmgj if 0j—1>0j
.
Ny fo. .
< 2loi=1d py  otherwise
Mo; 4 J

Letupper(na (o, 1}, Mo, _, Mo, 04, 05-1) denote the greatest allowed valuefgry,,, corresponding to
condition [4).
Tosumup,Bg, k = 2,..., K — 1, is the number of ways to choo$é observations from a sample of

N observations such that, ;. € I for allj=1,...,K —1,with

P9 = [0,min(fy(me, ), ma,, Na)l,

I;Bk) = [0,min(fy(N{oy,....00}) = M2f01,iay—1 3 UPPET (N2 {0, 1} Mgy, Moy, 05 051))]
forj=2,...,k—1,

L5 = 1A (Nior o)) = M2 for, 001} WPPET (T2 (o1 }s My 13 My T 1),

L) = [0,upper(no (s, 1y Mo, 13 M, 05,05-1)]

forj > k.
Fork =1, the intervals[j(.Bl) are simply given as

Il(B1) = ]fx(mdl)alnin(mUUNQ)] forj = ]"
IJ(_BI) = [0, upper(na (o, .}, Mo;_,»Mo;,04,05-1)] forj>1.

Using these notation$3;, is then obtained as

Be= > ()l X () (e,

ilEIin) ikfleffKB_kl)
The computational efficiency can be considerably improved by noticingthat - - - > jp,,. implies

n2,{0,} > Ny — "2,{o1,....,05_1}
- )
m(,-j N - N{G'l ..... oj—1}

forj=1,...,K.fn3 (5, 00} > [x(N{o,,..on}) then we even have

2,005} o HWNVior, o) = M2 001,0051)
Mg - N{ol ..... o}t T N{Ul ..... oj—1}

forj =1,...,k— 1. Computation time can be spared by replacing 0 by the corresponding lower bounds in

the intervaIsIJ(Bk)



	Introduction
	Method
	Framework and notations

	Applications and simulations
	Introduction
	The 'naive' approach based on 2max
	The usual chi-square test for k2 contingency tables
	Our novel approach based on F(2max)

	Our novel approach vs. the chi-square statistics for k2 contingency tables
	Our novel approach vs. the 'naive approach'
	Selection bias
	Simulations
	Comparison of the p-values
	A real data example


	Discussion and Perspectives

