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Unbiased split selection for classification trees

based on the Gini Index

Carolin Strobl, Anne-Laure Boulesteix, Thomas Augustin

Department of Statistics, University of Munich LMU

Ludwigstr. 33, 80539 Munich, Germany
carolin.strobl@stat.uni-muenchen.de

Abstract

The Gini gain is one of the most common variable selection criteria in machine learning. We
derive the exact distribution of the maximally selected Gini gain in the context of binary classification
using continuous predictors by means of a combinatorial approach. This distribution provides a formal
support for variable selection bias in favor of variables with a high amount of missing values when
the Gini gain is used as split selection criterion, and we suggest to use the resulting p-value as an
unbiased split selection criterion in recursive partitioning algorithms. We demonstratéitieney
of our novel method in simulation- and real data- studies from veterinary gynecology in the context of
binary classification and continuous predictor variables wiffecént numbers of missing values. Our
method is extendible to categorical and ordinal predictor variables and to other split selection criteria

such as the cross-entropy criterion.



1 Introduction

The traditional recursive partitioning approacl@®T by Breiman, Friedman, Olshen, and Stone (1984)
andc4. 5 by Quinlan (1993) use empirical entropy based measures, such as the Gini gain or the Informa-
tion gain, as split selection criteria. The intuitive approach of impurity reduction added to the popularity
of recursive partitioning algorithms, and entropy based measures are still the default splitting criteria in
most implementations of classification trees such astlart-function in the statistical programming
languager.

However, Breiman et al. (1984) already note that “variable selection is biased in favor of those vari-
ables having more values and thu$eang more splits” (p.42) when the Gini gain is used as splitting
criterion. For example, if the predictor variables are categorical variables of ordinal or nominal scale,
variable selection is biased in favor of categorical variables with a higher number of categories, which is
a general problem not limited to the Gini gain. In addition, variable selection bias can also occur if the
splitting variables vary in their number of missing values. Again, this problem is not limited to the Gini
gain criterion and fiects both binary and multiway splitting recursive partitioning. Exemplary simulation
studies on the topic of variable selection bias with the Gini gain are reviewed in Section 2.

The focus of this paper is to study the variable selection bias occurring with the widely used Gini gain
from a theoretical point of view and to propose an unbiased alternative splitting criterion based on the
Gini gain for the case of continuous predictors. In Section 2, we examine three potential components of
variable selection bias, which are (i) estimation bias of the Gini index, (ii) variance of the Gini index (iii)
multiple comparisonfects in cutpoint selection.

Section 3 presents our novel selection criterion based on the Gini gain and inspired by the theory
of maximally selected statistics. It can be seen as the p-value computed from the distribution of the
maximally selected Gini gain under the null-hypothesis of no association between response and predictor
variables. Our novel combinatorial method to derive the exact distribution of the maximally selected Gini
gain under the null-hypothesis is extensively described in section 3. The scope of this work is limited
to the case of a binary response variable and continuous predictor variables figterdinumbers of
missing values. However, our approach can be generalized to unbiased split selection from categorical
and ordinal predictor variables withffBrent numbers of categories, and to other entropy based measures,

using the definitions of Boulesteix (2006b) and Boulesteix (2006a).



Results from simulation studies documenting the performance of our novel split selection criterion are
displayed in section 4. The relevance of our approach is illustrated through an application to veterinary
data in section 5. The rest of this section introduces the notations.

In this paperY denotes the binary response variable which takes the vélgesandY = 2, andX™ =
(Xg, ..., Xp) denotes the random vector of continuous predictors. We consider a sginplg-1 n Of
N independent identically distributed observationsraindX. The variablesXy, ..., X, have diferent
numbers of missing values in the samfg x)i-1._~. Forj = 1,...,p, N; denotes the sample size
obtained if observations with missing value for variableare eliminated. Of thosdl; observations,
there areN;j observations witly = 1 andN; with Y = 2.

Using machine learning terminolog$®;, j = 1,..., p denotes the starting set for variabtg: S;
the observed values of andX;, where the sample is ordered with respecKja(Xu); < -+ < Xn);)-

The subset$, ; andSg; are produced by splitting; at a cutpoint betweenry); andX.1)j, such that all
observations witlX; < x;;); are assigned 6, j and the remaining observations3g;. These notations as
well as the corresponding subset sizes are summarized in Table 1, wheng;@)glenotes the number
of observations witly = 1in the subset defined bY; < x;;, i.e. by splitting after thé-th observation in
the ordered sample. The functiag(i) is thus defined as the number of observations With 1 among
thei first observations i
() = > 1w =1), Vi=1.. N
k=1
ny;(i) is defined similarly.
For any subsequent split, the new root node can be considered as the starting node. We thus restrict

the notation to the first root node for the sake of simplicity. For the considered vaXpaale in the case

Table 1: Contingency table obtained by splitting the predictor variable
X; at cutpointx;.

S, Srj
X < Xji) X > Xji) z
Y=1 nlj(l) Nl] — nlj(l) Nlj
Y=2 I’]gj(i) sz — nzj(i) sz
) Nj=i Ngj=Nj—i N;



of a binary respons¥, the widely used Gini Index d§; is the impurity measure defined as

—~ sz Ngj
5=25 (%)
GL; andGg; are defined similarly. The Gini gain produced by splittigat x;); into S; and Sg; is

defined as
— ~ (Njj= Ngrj=
AGj()) = Gj- (_NJ- G+ N GRJ’)

— i = Nj—i~
= G] — W]GLJ + TJGRJ .
Obviously, the *best’ split according to the Gini gain criterion is the split with the largest Gini gain, i.e.
with the largest impurity reduction. The most usual approach for binary split and variable selection in

classification trees consists of the following successive steps:

1. determine the maximal Gini gakk’f;jmax over all possible cutpoints for each varialdg which is
defined as

AGjmax = i:m%_lAGj(l),

2. select the variabl¥;, with the largest maximal Gini gain:

jo = arg mMaxAGjmex.
j

In many situations, this approach induces variable selection bias: for instance, categorical predictor vari-
ables with many categories are preferred to those with few categories, even if all the predictors are in-
dependent of the response. Variable selection bias occurring when the Gini index is used as a selection

criterion is studied in the next section.

2 Variable selection bias

In this section, empirical evidence for variable selection bias with the Gini gain criterion is reviewed

from the literature. We then outline three important sources of variable selection bias, estimation bias



and variance and a multiple comparisoffieet, in order to give a comprehensive statistical explanation

of selection bias in dierent settings.

2.1 Empirical evidence for variable selection bias

Several simulation studies have been conducted to provide empirical evidence for variable selection bias
in different recursive partitioning algorithms (cp. e.g. White and Liu, 1994; Kononenko, 1995; Loh and
Shih, 1997). In this section, we review the experimental design and results of two exemplary studies.
These studies compare the variable selection performance of the Gini gain to that of other splitting criteria.
Together, they cover the main aspects of variable selection bias. The simulation studies in Kim and Loh
(2001) focus on binary splits with the Gini criterion used e.gCART (Breiman et al., 1984), while Dobra

and Gehrke (2001) treat the case of multiway splits used ilt4hé algorithm (Quinlan, 1993), but, in
contrast taC4 . 5, with the Gini gain as splitting criterion.

In their simulation study, Kim and Loh (2001) vary both the number of categories in categorical
predictor variables and the number of missing values in continuous predictor variables in a binary splitting
framework. Their results show strong variable selection bias towards variables with many categories and
variables with many missing values. On the other hand, Dobra and Gehrke (2001) vary the number of
categories in categorical splitting variables in the case of multiway splitting. In this framework, the Gini
gain does not depend on an optimally selected binary partition of the considered predictor variable, since
the root node is always split into as many nodes as there are categories in the predictor. Dobra and
Gehrke (2001) also observe variable selection bias towards variables with more categories in this context.
However, note that the underlying mechanism causing variable selection bias in favor of variables with
many categories is fierent in binary and multiway splitting as outlined below.

In the next section, we address three important factors that largely explain the selection bias occurring

with the Gini gain in the dferent experimental settings.

2.2 Estimation dfects

The first two sources of variable selection bias can be considered as ‘estim@ticts’e the classical
Gini index used in machine learning can be considered as an estimator of the true entropy. The bias and

the variance of this estimator tend to induce selection bias.



2.2.1 Bias

The empirical Gini Index used in machine learning can be considered as a plug-in estimator of a ‘true’
underlying Gini Index

G=2p(1-p).

wherep denotes the probabilitp = P(Y = 2). Under the null-hypothesis that the considered predictor

variableX is uninformative, the class probability is equal to the overall class probability in all subsets.
Using this terminology, the ‘true’ Gini Inde® is a function of the true class probability whereas

the empirical Gini Inde>xG is a nonlinear function of the Maximum-Likelihood estimator of the class

probability p, which is the relative class frequency:

®
I

2p(1-P)

N2, N
20 (1= D)

From Jensen’s inequality we expect the empirical Gini InGeto underestimate the true Gini Index

G, and accordingly find:

EG)

E(2p(1 - p)

= 2 E(&)—E(N—g) whereN; ~ B(N, p)

B N7 TN 2~ 2P
1

= 2(p— p*+ P - p))

N-1

= —C

Thus, the empirical Gini Inde$ underestimates the true Gini Index by facﬁﬁll:

BiagG) = —-G/N.

The same holds for the Gini indic€ andGg obtained for the child nodes created by binary splitting

in variableX.



The expected value of the Gini gazk/é for fixed N. andNR is then

E(AG)

The derivation of the expected value of the Gini gain corresponds to that of Dobra and Gehrke (2001)
adopted for binary splits. However, the authors do not elaborate on the interpretation as an estimation bias
induced by the plug-in estimation based on a limited sample size, which we find crucial for understanding
the bias mechanism:

Under the null-hypothesis of an uninformative predictor variable, the 'true’ Gini g@requals O.
Thus,AG has a positive bias, that increases with decreasing samplbl siéen the predictor variables
Xi, i = 1,...,p, have diferent sample sizeN;, this bias tends to favor variables with smblj, i.e.
variables with many missing values.

The same principle applies in classification tree algorithms with multiway splits for categorical pre-
dictors. In this case, the bias increases with the number of categories of the splitting variable: for each
additionally created node, the bias increases by adﬁimx;the bias derived above. Figuratively speak-
ing, if the overall sample size is divided into several small samples, the estimation from each sample is
inferior and this adds to the overall bias. Similflieets appear when other empirical entropy criteria like
the Shannon entropy are used in multiway splitting (cf. Strobl, 2005).

Therefore the estimation bias of empirical entropy criteria such as the empirical Gini gain is a potential

source of variable selection bias in the null case:

e in multiway splitting if variables dter in their number of categories as in the simulation study of

Dobra and Gehrke (2001), or in their number of missing values

¢ in binary splitting if variables dfer in their number of missing values as in part of the simulation

study by Kim and Loh (2001).



2.2.2 Variance

After computations (see Appendix), the varianc&ahay be written as

St g+ 0($).

Var(G) = <G

It gets large wheit is neither very large nor very low, and for small sample sizes. The varianté of
also increases with decreasiNg andNg. Therefore, if the predictor variables havééeient numbers of
missing values and thusftkrent sample sizeAGmaxtends to be larger for variables with many missing
values. This ‘varianceffect’ again tends to favor variables with many missing values in binary splitting
and many categories in multiway splitting.

In this section, we outlined two possible sources of selection Iffastang binary or multiway split-
ting with categorical or continuous predictor variables. However, there is another mechanism that can
account for the variable selection bias: tHeeet of multiple comparisons, which is relevant only if the
number of nodes produced in each split is smaller than the number of distinct observations or categories

like in binary splitting.

2.3 Multiple comparisons in cutpoint selection

The common problem of multiple comparisons refers to an increasing type | error-rate in multiple testing
situations. When multiple statistical tests are conducted for the same data set, the chance to make a type
| error for at least one of the tests increases with the number of performed tests. In the context of split
selection, a type | error occurs when a variable is selected for splitting even though it is not informative.

In the case of binary splitting, the number of conducted comparisons for a given predictor variable
increases with the number of possible binary partitions, i.e. with the number of possible cutpoints. For
categorical and ordinal predictor variables the number of cutpoints depends on the number of categories.
If the predictor is continuous, all the values taken in the sample are distinct. The number of possible
cutpoints to be evaluated is th&éh— 1, whereN is the sample size. The ‘multiple comparisoriteet’
results in a preference of predictor variables with many possible partitions: with many categories (for
categorical and ordinal variables) or few missing values (for continuous variables). However, in the case

of categorical predictors, the ‘multiple comparisorieet’ is only relevant if several ffierent (binary)



partitions are evaluated.

In apparent contradiction Dobra and Gehrke (2001) state explicitly that variable selection bias for
categorical predictor variables was not due to multiple comparisons. However, the authors use the Gini
gain for multiway splits with as many nodes as categories in the predictor rather than for binary splits,
which does not correspond to the stand@8T algorithm usually associated with the Gini criterion.

The next section gives a summary of all thréeets.

2.4 Resume and practical relevance

The simulation results obtained by Kim and Loh (2001) and Dobra and Gehrke (200ffeneni settings
and reviewed in section 2.1 may be explained by the three partially counterafiogs eoutlined in
sections 2.2 and 2.3.

In the binary splitting task of Kim and Loh (2001), the bias towards predictor variables with many
categories is mainly due to the multiple comparisdiee: variables with more categories have more
possible binary partitions to be evaluated. In contrast, the bias towards variables with many missing
values observed for the metric variables may be explained by the bias and vaftaote eariables with
small sample sizes, for which the Gini gain is overestimated and has large variance, tend to be favored.
In this case the reverse multiple comparisofisea is outweighed.

In the multiway splitting case of Dobra and Gehrke (2001), the bias towards variables with large
number of categories is due to the bias and variaffeets, and not due to multiple comparisons.

In practice, the number of categories in categorical variables of nominal and ordinal scales often
depends on arbitrary choices (e.g. in the design of questionnaires), and the number of missing values
in categorical and metric variables depends on unknown missing mechanisms (e.g. if some questions
are more delicate). Thus, it is obvious that variables should not be preferred due to a higher number of
categories or a higher number of missing values.

As cited in the introduction Breiman et al. (1984) noted the multiple comparigtets evident when
categorical predictors vary in their number of categories. In addition, they claim that their CART approach
can deal particularly well with missing values, because it provides surrogate splits when predictor values
are missing in the test sample. However, for missing predictor values in the learning sample, the CART

algorithm applies an available case strategy when evaluating the variables in split selection, leading to the



bias outlined above. This did not strike Breiman et al. (1984) though, because they only spread missing
values randomly over all predictor variables, instead of varying the sample sizes between variables.
In the next section, we suggest an alternative p-value selection criterion based on the Gini index which

corrects for all the types of bias described above.

3 The distribution of the maximally selected
Gini gain
3.1 A p-value based variable and split selection approach

For the case of binary splits, we introduce the maximally selected Gini gain over all possible splits as a
novel unbiased splitting criterion. Maximally selected statistics, e.g. the maximally sel€etstatistic

or maximally selected rank statistics, have been the subject of a few tens of papers published mainly in
the journalBiometricsin the last decades, headed by Miller and Siegmund (1982). They are based on the
following idea. Suppose one computes an association measure (e.g. the Gini gaipestagstic) for

all theN — 1 possible cutpoints of the considered continuous predictor and select the cutpoint yielding the
maximal association measure. The distribution of the resulting “maximally selected” association measure
is different from the distribution of the original association measure. In particular, this distribution may
depend on the sample sikk causing the selection bias observed in the case of predictors \ffiedit
numbers of missing values, and does not account for the deliberate choice of the cutpoint. Possible
penalizations for the choice of the optimal cutpoint in multiple comparisons are Bonferroni adjustments,
which tend to overpenalize (Hawkins, 1997; Shih, 2002, for a review), and the approach of optimally
selected statistics applied here.

Shih (2004) introduces the p-value of the maximally selegfestatistic as an unbiased split selection
criterion for classification trees, and states that for other criteria, e.g. for entropy criteria like the Gini
Index, “the exact methods are yet to be found.”

Dobra and Gehrke (2001) on the other hand claim that p-value based criteria in general reduce the
selection bias in classification trees, and derive an approximation of the distribution of the Gini gain in the
case of multiway splits. However, their approach does not provide a satisfactory split selection criterion

for binary splitting, because it does not incorporate the multiple comparistat i cutpoint selection.
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In the present paper, we propose to correct the variable selection bias occurring with the Gini gain in
binary splitting by using a criterion based on the distribution of the maximally selection Gini gain rather
than the Gini gain itself. In the rest of the papErdenotes the distribution function of the maximally
selected Gini gain under the null-hypothesis of no association between the predictor and the response,

givenN; andN,. For simplicity, we use the notation
F(d) = Ph,(AGmax < d).

In a nutshell, our variable and split selection approach consists to:
1. determineféjmax for each predictor variables;, j = 1,...,p,
2. compute the criteriof (AGjn=:) for each variablex;.

3. select the variabl;, with the Iargesﬂ:(Ejmax). The split of X;, maximizing &Esjo(i) is then

selected.

The rest of this section presents our novel method to determine the distribution fuacliorsimplify
the notations, we consider only one predictor variablevith N non-missing independent identically
distributed observations. We proceed using the notations introduced in Section 1, but omit thigfardex

simplicity.

3.2 Outline of the method

Our aim is to derive the distribution of the maximally selected Gini gain over the possible cutpoints of
X, i.e. over all the possible partitiogS, , Sg} of the sample, under the null-hypothesis of no association

.....

ny(i) is defined as the number of observations Witk 2 among tha first observations:

i
(i) = > 10 =2), Vk=1,...,N.
k=1
Obviously, we have,(0) = 0 andny(N) = N,. Our approach to derive the exact distribution function of

the maximally selected Gini gain consists of two independent steps:

11



(i) First, we show that the maximally selected Gini gaiBaxexceeds a given threshold if and only if
the graph(i, ny(i)) crosses the boundaries of a zone located around the line of equatidlax/N.

The coordinates of these boundaries are derived in Section 3.3.

(i) The probability that the grapffi, n,(i)) crosses the boundaries under the null hypothesis of no
association betweeX andY is computed via the combinatorial method used by Koziol (1991) to

determine the distribution of the maximally selecté&d statistic.

Our novel two-step approach can be seen as an extension of Koziol's method. We use the same com-
binatorial method, but with new boundaries corresponding to the Gini gain instead pf-tetatistic.

This approach could be generalized to other splitting criteria for which a condition of the type of (2) (see
Section 3.3) can be formulated. In the rest of this section, we derive the new boundaries corresponding to

the Gini gain (Section 3.3) and recall Koziol's combinatorial computation method (Section 3.4).

3.3 Definition of the boundaries

The Gini gainA’(\B(i) obtained by cutting betweefy andx;.1) may be rewritten as

AG()

6 4220 (- )| ¢ o522 (1~ 52

N—i

_ N N N no(i)? (Np—na(i))?

- 2 (1- 1) - 2 22 2l

_ 202 2 -\ 4N NZ NZ

= M)(F + n) — e sy — 288 + 2Ry
N2 2 i\ 4N 2iNZ

= M) wm — ) g + e

Ford > 0, we have:

AN, 2iN2
N(N=1) W N(N—1)

— . 2 )
AG()<d & n2(|)2m - ny(i) d<0 (1)
With the notations

a = HOEOE

_ 4N
b= -’

12



we obtain after simple computations that

AG@) <d & mi)e

)

—bi - \/i(ﬁc—'i) —bi + v i(r?ﬂi)
23; ’ 23 '

We want to derive the distribution function of

Kf;maxz_ max K;(i)

i=1..n-1

under the null-hypothesis of no association betwEeand, i.e. PHO(A/ém;,IX < d) foranyd > 0. We
haveAGmax < d if and only if condition (2) holds for all in 1,...,N — 1, i.e. if and only if the path

(i, n2(i)) remains on or above the graph of the function

b - [
lowery(i) = l o
23,
and on or under the graph of the function
uppeg(i) = %

A sufficient and necessary condition 86 max < d is that the graplfi, nx(i)) does not pass through any

point of integer coordinatgs, j) withi=1,...,N - 1and
lowery(i) — 1 < j < lowery(i),

or

uppeg(i) < j < uppeg(i) + 1.

Let us denote these pointsBs . .., By and their coordinates &g, j1), ..., (ig, jq), whereBa, ..., Bq are
labeled in order of increasinigand increasing within eachi. The exact computation of the probability
that the grapil(i, nx(i)) passes through at least one of the poBats . ., By (i.€. that it leaves the boundaries
defined above) under the null-hypothesis of no association betXesmmd Y is described in the next

section. As an example, the boundaries are displayed in FigureN, ferN, = 50andd = 0.1.

13



obtained boundaries
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Figure 1. Boundaries as defined in Section 3.3 for an example with
N; = N, = 50and d-0.1

3.4 Koziol's combinatorial approach

Under the null-hypothesis of no association betw&eandY, all the possible pathg, n,(i)) have equal
probability 1/(,{?2). Thus, the probability that the path n,(i)) passes through at least one of the points

B, ..., Bgcan be computed using a combinatorial approach as described in Koziol (1991). This approach
is based on a Markov representatiomgfi) as the path of a binomial process with constant probability

of success and with unit jumps, conditionalbg(N) = N,. Here, we follow Koziol's formulation, which

is also adopted by Boulesteix (2006b) for ordinal variables. #alenote the set of the paths fr@) 0)

to Bs that do not pass through poin;, ..., Bs 1 andbs the number of paths i?s. Since the set®s,

s=1,...,qare mutually disjointbs, s=1,...,qcan be computed recursively as

= ()

bs = (1)-2t(E )b s=2....q

The above formula may be derived based on simple combinatoric considerations. The number of paths
from (0, 0) to Bs is obtained a#'ﬁs) To obtain the number of paths fro(, 0) to Bs that do not pass
through any of thé3, ..., Bs_1, one has to subtract fro(ﬁ) the sumover = 1,...,s—1of the numbers

of paths from(0, 0) to Bs that pass througB, but not throughB;,...,B;_;. For a giverr (r < s), the

number of paths fror(0, 0) to B, that do not path througBy, ..., B;_1 is by and the number of paths from

14



B, to Bs is( ) hence the produﬂé:?{)br in the sum in the above formula.

is—ir
js_jr

The number of paths fronf0,0) to (N, Ny) that pass througiBs, s = 1,...,q but not through

N —ig
> |bs.
(NZ_JS) *

Since all the possible paths are equally likely under the null-hypothesis, the probability that the graph

Bi,...,Bs 1 is then given as

(i,n2(i)) passes through at least one of the poBits . ., By is simply obtained as

Pu, (AGmax > d) = N _li N=is)y (3)
Ho max = N2 £ Nz—js s.
It follows
— NY ' (N—i
F@ = Pz ) = 1- (4] > (2 e @
s=1 S

We implemented the computation of the boundaries (step (i)) as well as the combinatorial derivation of
F(d) = PHD(K%maX < d) (step (ii)) in the languagR. As an example, the obtained boundaries are depicted
in Figure 1 forN; = N, = 50andd = 0.1.

4 Simulation studies

In this section, simulation studies are conducted to compare the variable selection performance of the
novel p-value criterion derived in Section 3 to that of the standard Gini gain criterion. We consider a
binary response variab¥ and 5 mutually independent continuous predictor varialileX,, X3, X4, Xs.

In the whole simulation study, the binary respoiYsis sampled from a Bernoulli distribution with prob-
ability of succes®.5. The manipulated parameter is the percentage of missing values in the predictor
variableX;, set successively to 0%,20%,40%,60% and 80%. The missing values are inserted completely
at random (MCAR) within variabléX;. The sample size is set t¢ = 100. However, similarly stable

results can be obtained for smaller sample sizes. Three cases are investigated:

e Null case: all the predictor variableX;, X,, X3, X4, X5 are uninformative, i.e. independent of the

response variable.

e Power case |:X; is informative andX,, X3, X4, X5 are uninformative.

15



e Power case II: X; is informative andXy, X3, X4, X5 are uninformative.

For each parameter setting and each case 1000 data sets are generated. For each data set, variable selection
is performed using successively the standard Gini gain and our p-value criterion. For both criteria, the
obtained frequencies of selection of all variables are given in tables. Based on the literature reviewed

in Section 2, we expect the Gini gain criterion to be biased towards the predictor variable with missing

values, regardless of its information content.

4.1 Null case

In the null case studyX,, Xo, X3, X4, X5 are sampled from the standard normal distribution.

X; ~ N(0,1), forj=1,...,5

For each percentage of missing values, the obtained frequencies of selectioiXffXs, X4, X5 over the
1000 simulation runs is given in Table 2 for the Gini gain (left) and the novel p-value criterion (right).
Since the predictor variables are all independent of the respgrs®e expects a good criterion to select
X1, Xz, X3, X4 andXs with random choice probability.

We find that for the Gini gain criterion the selection frequency<gpfincreases with the amount of
missing values, while it decreases for all other variables. In contrast, the p-value criterion shows almost
no variable selection bias. A slight bias may be obtained for large proportions of missing values. This can
be explained by the fact that for very small sample sizes the Gini gain can only take on very few possible
values, and p-value based criteria can be biased if the probability of the criterion to take on a single value
is significantly large (cf. Dobra and Gehrke, 2001). However, this bias is negligible compared to the bias

of the standard Gini gain criterion.

4.2 Power case |

In the first power case study, the four uninformative predictor variakjeXs, X4, X5 are sampled from

the standard normal distribution, while the informative predictor variXblis sampled from

XY=1 ~ N(O,1)
XJY=2 ~ N(O5,1).
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Table 2: Null case: Variable selection frequencies. The symliadli-
cates a varying number of missing values in the marked variable with
the percentage of missing values displayed in the left column.

Gini gain p-value criterion
X1 X2 X3 X4 X5 X1 X2 X3 X4 X5
o] (0]

0% 0.20 0.21 0.20 0.20 0.19 0.20 0.21 0.20 0.20 0.19
20% 0.28 0.19 0.18 0.18 0.17 0.18 021 0.21 0.21 0.20
40% 050 0.14 0.13 0.12 0.12 0.24 0.22 021 0.17 0.19
60% 0.67 0.09 0.07 0.07 0.09 0.22 0.20 020 0.19 0.21
80% 0.91 0.02 0.03 0.03 0.02 0.23 0.18 0.19 0.20 0.21

The manipulated parameter is again the percentage of missing values in the informative predictor variable
X1, with successively 0%, 20%, 40%, 60% and 80% of the original samplé\simessing completely at
random. All other predictors contain no missing values. With a sensible selection criterion, the selection
frequency of the informative predictor variabtg is supposed to decrease when the number of randomly
missing values increases, because its information content actually decreases. If the underlying missing
mechanism is known to be missing not at random, however, the missing mechanism should be mod-
eled accordingly. Otherwise our approach will behave conservatively and underestimate the information
content of the variable.

Table 3 summarizes the variable selection frequencies for all variables in the power case | design with
X1 being informative and containing missing values. We find that for the Gini gain criterion the selection
frequency ofX; increases with its amount of missing values, despite the loss of information content. In
contrast, the p-value criterion sele&s less often when it has many missing values. This dependence
of the selection frequency on the sample size of the informative predictor variable corresponds to the

findings of Shih (2004) for the p-value of the maximally selegtégtatistic, and is a desirable property

for a split selection criterion.
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Table 3: Power case |: Variable selection frequencies. o Bgmbol
indicates a varying number of missing values in the marked variable
with the percentage of missing values displayed in the rows of the table.
The ¢ symbol indicates that the marked variable is also an informative
predictor.

Gini gain p-value criterion
X1 X2 X3 X4 X5 X1 X2 X3 X4 X5

[e] [e]

0% 0.71 0.07 0.08 0.06 0.08 0.71 0.07 0.08 0.06 0.08
20% 0.77 0.06 0.06 0.06 0.06 0.66 0.08 0.08 0.09 0.09
40% 0.79 0.05 0.06 0.05 0.05 0.58 0.12 0.12 0.11 0.09
60% 0.84 0.06 0.03 0.04 0.03 045 0.16 0.13 0.14 0.13
80% 094 0.01 001 0.02 0.01 035 0.16 0.17 0.16 0.15

4.3 Power case Il

In the second power case study, the four uninformative predictor varixhle, X4, Xs are sampled

from standard normal distributions, while the informative predictor varixblis sampled from

XlY=1 ~ N(O1)
XlY=2 ~ N(05,1).

The manipulated variable is again the percentage of missing values in predictor vXgiablth succes-
sively 0%, 20%, 40%, 60% and 80% of the original sample Bizaissing completely at random. The
other predictors contain no missing values. We expect the estimated probabiifybefng selected as
splitting variable to increase with the percentage of missing valueg fior the Gini gain, despite the
higher information content of;, but not for the p-value criterion.

Table 4 summarizes the variable selection frequencies for all variables in the power case Il design.
We find again that the selection frequencyXafincreases with its amount of missing values for the Gini
gain criterion, outweighing the higher information contenXef This efect is also depicted in Figure 2.

In contrast, the p-value criterion shows no variable selection bias.
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Table 4: Power case Il: Variable selection frequencies. d’kgmbol

indicates a varying number of missing values in the marked variable
with the percentage of missing values displayed in the left column. The
symbole indicates that the marked variable is an informative predictor.

Gini gain p-value criterion
X1 X2 X3 X4 X5 X1 X2 X3 X4 X5
[ ] [ ]
o] (o]

0% 0.07 0.73 0.07 0.07 0.07 0.07 0.73 0.07 0.07 0.07
20% 0.12 0.69 0.07 0.07 0.06 0.07 0.72 0.07 0.07 0.06
40% 0.21 0.64 0.05 0.04 0.06 0.06 0.73 0.07 0.06 0.08
60% 0.42 0.47 0.03 0.03 0.05 0.07 0.73 0.06 0.06 0.09
80% 0.74 0.23 0.01 0.01 0.01 0.08 0.71 0.07 0.07 0.09

uninformative variable X;, missings informative variable X, no missings
o ] Q]
- o Gini gain - o Gini gain
© o p-value opt. sel. Gini Gain © o p-value opt. sel. Gini Gain
S P ISHE: T 7 ;

_ R S S S
g el g o] T
8 / $° \5
23 /9 23 \
<0 <

37 3 ;
o—0— %

o | S

°© T T T T T °© T T T T T
0.0 0.2 0.4 0.6 0.8 0.0 0.2 0.4 0.6 0.8

proportion missing in X;

proportion missing in X;

Figure 2: Power case II: Variable selection frequencies for the uninfor-
mative variableX; containing missing values (left) and the informative
variableX, containing no missing values (right).

19



5 Application to veterinary data

5.1 Data set

The data were collected in a research farm in the area of Munich, Germany, in 2004. It contains vari-
ous measurements recorded for 51 cows from the week of their first delivery (week 0) until the fourth
week post partum (week 4). The binary response variable of interest takeWalukeif the cow shows

signs of minor genital infection and = 2 if it shows signs of major genital infection or even puerperal
sepsis (childbed fever) and pyometra (uterine suppuration). The potential predictor variables are mea-
sures of body condition, various parameters of the hemogram, milk production, energy consumption and
gynecological indicators that are displayed in Table 5.

The predictor variables vary strongly in their numbers of missing values, e.g., between 0 and 50 in
week 0 and between 0 and 25 in week 4. Some variables contain less than three observations for some of
the weeks, which is obviously not a reasonable sample size in a binary classification task. These variables
were excluded from the analysis for the considered week (week 0: USHR, USHL; week 1: FFS; week 3:
FFS).

The aim of our analysis is to show that the Gini gain and the p-value criterion rank the predictor
variables substantially fierently with respect to their number of missing values. In addition, we explore
the explanatory power of the variables that would be selected for the first split with each criterion.

For this exemplary analysis we assume that the missing values are missing completely at random

within each variable.

5.2 Variable selection ranking

The Gini gain criterion and our novel p-value criterion may be used to rank the variables: the least
informative variable is assigned rank 1, and so on. In this section, the rankings of the predictor variables
obtained with the Gini gain criterion and with our novel p-value criterion are compared. Due to selection
bias of the Gini gain towards variables with many missing values, the two rankings are expected to
diverge. The scatterplots of the two rankings are displayed in Figure 3 for each week. The number of
missing values is represented by the circumference of the corresponding point. It can be observed from

the scatterplots that
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Table 5: Potential predictor variables from the cow data. All variables
are measured on a metric scale but contain strongly varying numbers of
missing values.

body condition

BCS body condition score

RFD backfat thickness (mm)

MD muscle thickness (mm)
hemogram

FFS free fatty acidsfmol/l)

Caro caroteneug/l)

Bili bilirubin (umol/l)

AST aspartate aminotransferaseglju
CK creatine kinase (W)

AP alkaline phosphatase ()
GLDH glutamate dehydrogenase/(lU
GGT gamma glutamiltransferase/(U
BHB beta hydroxybutyric acid (mm)
IGF1 insulin growth factor 1 (nmg)

milk production

Milch milk yield (kg)

FettM milk fat (week mean; %)

EiM milk protein (week mean; %)

FEQ fat-protein-ratio

LaktM milk lactose (week mean; %)

FLQ fat-lactose-ratio

HarnM milk carbamide (week mean; mrfipl

energy consumption

TMGes dry matter intake total (kg)
Eauf energy intake (MJ NEL)

EbedM energy requirement (MJ NEL)
EbilM energy balance (MJ NEL)
gynecology

uzb cervix diameter (cm)

USHR uterine horn diameter right (cm)
USHL uterine horn diameter left (cm)
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- the points deviate noticeably from the bisector,
- the deviation from the bisector is linked to the number of missing values.

Variables with more missing values tend to be ranked higher by the Gini gain criterion than with our
new p-value criterion. Thus, it is useful to consider the unbiased p-value criterion instead of the standard
Gini gain. In classification trees, the variable ranked highest by the chosen criterion is then selected for
splitting. The explanatory power of the variables selected first for splitting is investigated in the following

section.

5.3 Selected splitting variables

In this section, we examine the variables selected for the first split in each week with the standard Gini
gain and with our p-value criterion. When comparing the variables we take into account the number of
missing values, and additionally compute logistic regression models for the binary response and each
selected variable individually. The p-value of the likelihood ratfe test of logistic regression models

does not strictly match with the deterministic bisection approach of classification trees, but can serve as
another indicator of the explanatory power of the selected variables. The results are summarized in Table
6.

We find in Table 6 that the Gini gain criterion systematically prefers variables with high numbers
of missing values. For example, the variable UZD selected by the Gini gain in week 0 has 39 missing
values and only 12 observed values. It should thus be treated with caution. In contrast, the variables
selected by our p-value criterion do not have any or have only few missing values. Through all weeks
the p-values of the logistic regression model (abbreviated by LRM) are lower for the variables selected
by our p-value criterion than for those selected by the Gini gain criterion in each week. This indicates a
higher explanatory power of the variables selected by our p-value criterion in this data set.

Moreover, our p-value criterion may be used as follows as a stopping rule when constructing a clas-
sification tree: We suggest to fix a threshold for the p-value criterion, e.g. 0.95. The considered node is
split only if the p-value criterion of the selected variable exceeds this threshold.

In this example the split with the selected variable would be conducted for weeks 0 through 3 (with
the level again indicated by the * and ** symbols); only in week 4 the split does not produce enough

impurity reduction and is omitted if the threshold is fixed at 0.95. If the threshold was set to .99 the
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Figure 3: Rank obtained with the new p-value criterion vs. rank ob-
tained with the Gini gain. The circumference of each point is propor-
tional to number of missing values in the predictor.
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Table 6: Variables selected for the first split using the standard Gini gain
(top) and our p-value criterion (bottom). Results that are significant on a
5%-level are indicated by the * symbol, those significant on a 1%-level

by **,

week 0 weekl week2 week3 week4
Gini gain
selected variable UZD uzD Bili BCS BCS
missing values 39 38 0 23 25
p-value LRM 0.094 0.028* 0.001** 0.305 0.121
p-value criterion
selected variable  Bili GLDH  Bili Caro USHL
missing values 0 0 0 0 9
p-value LRM 0.007** 0.003** 0.001** 0.207 0.059

criterion value 0.990** 0.999** 0.994** 0.983* 0.927

split would be conducted in weeks 0 through 2 (indicated by **). This proceeding is compatible with the

insignificant results of the logistic regression models in weeks 3 and 4.

6 Discussion and conclusion

In this paper, we derived the exact distribution of the maximally selected Gini gain under the null-
hypothesis of no association between the binary response variable and a continuous predictor. The result-
ing p-value can be applied as a split selection criterion in recursive partitioning algorithms, as well as an
information measure i x 2 tables where the cutpoint is preselected such as to optimize the separation
of the response classes.

Our novel p-value based approach for split and variable selection eliminates all sources of variable
selection bias examined in Section 2. The estimation bias and varigiectseas well as the multiple
comparisonsfects are overcome by considering the distribution function of the maximally selected Gini
gain given the class sizé§ andN,. In simulation and real data studies, our approach has proved to deal
effectively with diferent amounts of missing values in the predictor variables.

Other strategies to cope with randomly missing values in classification tree induction have been pro-
posed in the machine learning literature. Most of them are imputation methods (see e.g. Quinlan, 1984;
Liu etal., 1997, for a comprehensive review). Apart from any animadversion against imputation methods

our approach has the advantage that it detects the information drop in informative variables caused by an
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increasing number of missing values.

Our p-value based approach may be applied to other common selection criteria such as the deviance
(also called cross-entropy). In future research, one could also work on a generalization to ordinal and
categorical predictors using the boundaries defined in Boulesteix (2006b) and Boulesteix (2006a) for use
in classification trees. In this context, our p-value criterion would address the problem of missing values
and the problem of dierent numbers of categories simultaneously, in contrast ta fthaction rpart
which handles only the problem of missing values in a separate preliminary function, but is biased with
respect to dierent numbers of categories.

Another advantage of our method is that it is based on the Gini index, with possible extensions to
other popular impurity measures. These easily tangible impurity measures are more attractive to applied
scientists without a strong statistical background than classical test statistics as split selection criteria.

Our criterion can replace the Gini Gain criterion in the traditional “greedy search” appro@aRbf
the intuitiveness of which has played a crucial role in making classification trees understandable and
attractive to a broad scientific community.

Different authors argue along the lines of Loh and Shih (1997), who state that the key to avoiding
variable selection bias is to separate the process of variable selection from that of cutpoint selection. The
resulting algorithmQUEST (Loh and Shih, 1997) andRUISE (Kim and Loh, 2001) employ association
test statistics (of ANOVA F-Test for metric predictors and of jfetest for categorical predictors) for
variable selection. The split is selected subsequently using discriminant analysis techniques. Hothorn,
Hornik, and Zeileis (2005) critically discuss this approach and propose a more elegant conditional infer-
ence approach.

However, we argue that, in order to achieve unbiased variable selection in classification trees, it is
neither necessary to give up the popular impurity measures, nor to give up the greedy approach that
attracted such a diverse group of applicants with varying statistical knowledge. Giving up the greedy
search approach of the traditional recursive partitioning algorithms for an advanced statistical modeling
approach might, as an unwanted sidieet, result in leaving those applicants with a weaker statistical
background behind - with easy to handle but biased classification trees.

Using a p-value criterion based on the Gini index, we addréssantly the problem of selection bias
but preserve the simplicity of traditional classification trees with binary splits. In addition, the p-value

might provide a statistically sound stopping criterion. As all exact procedures, our method becomes
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computationally intensive for large samples but can handle very small samples. It could be integrated
into any traditional recursive partitioning algorithm and might thus prove both manageable and useful for

applied scientists, as demonstrated in the veterinary example.
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Appendix

VARG) = VAR2(1- p)
= 4VARP(1-p)
VARP(L-P) = E(p*(1-p)?) - E(p(1- p))?
= E(P?) - 2E(P°) + E(p") - JE(G)?
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We compute the four terms successively.

E(P) = HE(®). wherex~ B(N, p)
L
= p+ W
—-2E(p°) = -2(FE()), wherex ~ B(N, p)
= 2%+ P -+ O(%)
= —GW”Z—Zp3+6Wp3+O($)
E(p*) = HE(X*), wherex ~ B(N, p)
= 6Wp3 +p*- GW”A +O(5)
~1E@G)? = 102
= —-G*( - ) + O(f)

Finally,
VARP(L- ) = &+%ﬂ—%12p+w+“+m 8~ G4 - A&) +O(%)
= (PP-2p*+pY(1- Q)+ 5 - G5 - )+O(m)
= SZ@1-2)+Z —Gz(21 - 5k) + O(%)
= S2(-5+3)+ 2 +O()
= £G-6)+0(%)
VAR2p(1-P) = 45(3-G)+O0()
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