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Abstract

Variable importance measures for random forests have been receiving increased attention
as a means of variable selection in many classification tasks in bioinformatics and related
scientific fields, for instance to select a subset of genetic markers relevant for the prediction of
a certain disease. We show that random forest variable importance measures are a sensible
means for variable selection in many applications, but are not reliable in situations where
potential predictor variables vary in their scale level or their number of categories. This is
particularly important in genomics and computational biology, where predictors often include
variables of different types, for example when predictors include both sequence data and
continuous variables such as folding energy, or when amino acid sequence data show different
numbers of categories. Simulation studies are presented illustrating that, when random forest
variable importance measures are used with data of varying types, the results are misleading
because suboptimal predictor variables may be artificially preferred in variable selection. The
two mechanisms underlying this deficiency are biased variable selection in the individual
classification trees used to build the random forest on one hand, and effects induced by
bootstrap sampling with replacement on the other hand. We propose to employ an alternative
implementation of random forests, that provides unbiased variable selection in the individual
classification trees. When this method is applied using subsampling without replacement,
the resulting variable importance measures can be used reliably for variable selection even
in situations where the potential predictor variables vary in their scale level or their number
of categories. The usage of both random forest algorithms and their variable importance
measures in the R system for statistical computing is illustrated and documented thoroughly
in an application re-analysing data from a study on RNA editing. Therefore the suggested
method can be applied straightforwardly by scientists in bioinformatics research.

Keywords: random forests, variable importance, Gini importance, variable selection bias.

1. Background

In bioinformatics and related scientific fields, such as statistical genomics and genetic epidemiology,
an important task is the prediction of a categorical response variable (such as the disease status
of a patient or the properties of a molecule) based on a large number of predictors. The aim
of this research is on one hand to predict the value of the response variable from the values of
the predictors, i.e. to create a diagnostic tool, and on the other hand to reliably identify relevant
predictors from a large set of candidate variables.

From a statistical point of view, one of the challenges in identifying these relevant predictor
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variables is the so-called “small n large p” problem: Usual data sets in genomics often contain
hundreds or thousands of genes or markers that serve as predictor variables X1, . . . , Xp, but only
for a comparatively small number n of subjects or tissue types.

Traditional statistical models used in clinical case control studies for predicting the disease status
from selected predictor variables, such as logistic regression, are not suitable for “small n large p”
problems (Bureau, Dupuis, Falls, Lunetta, Hayward, Keith, and Eerdewegh 2005; Heidema, Boer,
Nagelkerke, Mariman, van der A, and Feskens 2006). A more appropriate approach from machine
learning, that has been proposed recently for prediction and variable selection in various fields
related to bioinformatics and computational biology, is the nonlinear and nonparametric random
forest method (Breiman 2001). It also provides variable importance measures for variable selection
purposes.

Random forests have been successfully applied to various problems in, e.g., genetic epidemiology
and microbiology in general within the last five years. Within a very short period of time, random
forests have become a major data analysis tool, that performs well in comparison with many
standard methods (Heidema et al. 2006; Dı́az-Uriarte and de Andrés 2006). What has greatly
contributed to the popularity of random forests is the fact that they can be applied to a wide
range of prediction problems, even if they are non-linear and involve complex high-order interaction
effects, and that random forests produce variable importance measures for each predictor variable.

Applications of random forests in bioinformatics include large-scale association studies for complex
genetic diseases, as e.g. Lunetta, Hayward, Segal, and Eerdewegh (2004) and Bureau et al. (2005),
who detect SNP-SNP interactions in the case-control context by means of computing a random
forest variable importance measure for each polymorphism. An application to the analysis of gene
expression data is presented by Dı́az-Uriarte and de Andrés (2006), who recommend random forests
as a gene selection method for sample classification with microarray data. (We refer to Gunther,
Stone, Gerwien, Bento, and Heyes (2003); Huang, Pan, Grindle, Han, Chen, Park, Miller, and
Hall (2005); Shih (2005) for other applications of the random forest methodology to microarray
data.)

Prediction of phenotypes based on amino acid or DNA sequence is another important area of
application of random forests, since possibly involving many interactions. For example, Segal,
Barbour, and Grant (2004) use random forests to predict the replication capacity of viruses, such
as HIV-1, based on amino acid sequence from reverse transcriptase and protease. Cummings
and Segal (2004) link the rifampin resistance in Mycobacterium tuberculosis to a few amino acid
positions in rpoB, whereas Cummings and Myers (2004) predict C-to-U edited sites in plant
mitochondrial RNA based on sequence regions flanking edited sites and a few other (continuous)
parameters.

The random forest approach was shown to outperform six other methods in the prediction of pro-
tein interactions based on various biological features such as gene expression, gene ontology (GO)
features and sequence data (Qi, Bar-Joseph, and Klein-Seetharaman 2006). Other applications of
random forests can be found in fields as different as quantitative structure-activity relationship
(QSAR) modelling (Guha and Jurs 2003; Svetnik, Liaw, Tong, Culberson, Sheridan, and Feuston
2003), nuclear magnetic resonance spectroscopy (Arun and Langmead 2006), landscape epidemi-
ology (Furlanello, Neteler, Merler, Menegon, Fontanari, Donini, Rizzoli, and Chemini 2003) and
medicine in general (Ward, Pajevic, Dreyfuss, and Malley 2006).

The scope of this paper is to show that the variable importance measures of Breiman’s original
random forest method (Breiman 2001), based on CART classification trees (Breiman, Friedman,
Olshen, and Stone 1984), are a sensible means for variable selection in many of these applications,
but are not reliable in situations where potential predictor variables vary in their scale level or
their number of categories, as, e.g., when both genetic and environmental variables, individually
and in interactions, are considered as potential predictors, or predictor variables of the same type
vary in the number of categories present in a certain sample, as is often the case in genomics,
bioinformatics and related disciplines.

Simulation studies are presented illustrating that variable selection with the variable importance
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measure of the original random forest method bears the risk that suboptimal predictor variables
are artificially preferred in such scenarios.
In an extra section, further details and explanations of the statistical sources underlying the
deficiency of the variable importance measures of the original random forest method, namely
biased variable selection in the individual classification trees used to build the random forest and
effects induced by bootstrap sampling with replacement, are given.
We propose to employ an alternative random forest method, the variable importance measure
of which can be employed to reliably select relevant predictor variables in any data set. The
performance of this method is compared to that of the original random forest method in simulation
studies, and is illustrated by an application to the prediction of C-to-U edited sites in plant
mitochondrial RNA, re-analysing the data of Cummings and Myers (2004) that were previously
analysed with the original random forest method.

2. Methods

Here we focus on the use of random forests for classification tasks, rather than regression tasks,
for instance for predicting the disease status from a set of selected genetic and environmental risk
factors, or for predicting whether a site of interest is edited by means of neighboring sites and
other predictor variables as in our application example.
Random forests are an ensemble method that combines several individual classification trees in the
following way: From the original sample several bootstrap samples are drawn, and an unpruned
classification tree is fit to each bootstrap sample. The variable selection for each classification tree
is conducted only from a small random subset of predictor variables, so that the “small n large p”
problem is avoided. From the complete forest the status of the response variable is predicted as
an average or majority vote of the predictions of all trees.
Random forests can highly increase the prediction accuracy as compared to individual classification
trees, because the ensemble adjusts for the instability of the individual trees induced by small
changes in the learning sample, that impairs the prediction accuracy in test samples. However, the
interpretability of a random forest is not as straightforward as that of an individual classification
tree, where the influence of a predictor variable directly corresponds to its position in the tree.
Thus, alternative measures for variable importance are required for the interpretation of random
forests.

2.1. Random forest variable importance measures

A naive variable importance measure to use in tree-based ensemble methods is to merely count
the number of times each variable is selected by all individual trees in the ensemble.
More elaborate variable importance measures incorporate a (weighted) mean of the individual
trees’ improvement in the splitting criterion produced by each variable (Friedman 2001). An
example for such a measure in classification is the “Gini importance” available in random forest
implementations. The “Gini importance” describes the improvement in the “Gini gain” splitting
criterion.
The most advanced variable importance measure available in random forests is the “permutation
accuracy importance”measure. Its rationale is the following: By randomly permuting the predictor
variable Xj , its original association with the response Y is broken. When the permuted variable
is used to predict the response, the prediction accuracy (i.e. the number of observations classified
correctly) decreases substantially as compared to the original variable, if the variable was associated
with the response originally. Thus, a reasonable measure for variable importance is the difference
in prediction accuracy before and after permuting Xj .
For variable selection purposes the advantage of the random forest permutation accuracy impor-
tance measure as compared to univariate screening methods is that it covers the impact of each
predictor variable individually as well as in multivariate interactions with other predictor variables.
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For example, Lunetta et al. (2004) find that genetic markers relevant in interactions with other
markers or environmental variables can be detected more efficiently by means of random forests
than by means of univariate screening methods like Fisher’s exact test.

The Gini importance and the permutation accuracy importance measures are employed as variable
selection criteria in many recent studies in various disciplines related to bioinformatics, as outlined
in the background section. Therefore we want to investigate their reliability as variable importance
measures in different scenarios.

In the simulation studies presented in the next section, we compare the behavior of all three
random forest variable importance measures, namely the number of times each variable is selected
by all individual trees in the ensemble (termed “selection frequency” in the following), the “Gini
importance”and the permutation accuracy importance measure (termed“permutation importance”
in the following).

2.2. Simulation studies

The reference implementation of Breiman’s original random forest method (Breiman 2001) is
available in the R system for statistical computing (R Development Core Team 2006) via the
randomForest add-on package (Breiman, Cutler, Liaw, and Wiener 2006; Liaw and Wiener 2002).
The behavior of the selection frequency, the Gini importance and the permutation importance of
the randomForest function is explored in a simulation design where potential predictor variables
vary in their scale level and number of categories.

As an alternative, we propose to use the new random forest function cforest available in the
R add-on package party (Hothorn, Hornik, and Zeileis 2006a) in such scenarios. In contrast to
randomForest, the cforest function creates random forests not from CART classification trees
based on the Gini split criterion (Breiman et al. 1984), that are known to prefer variables with, e.g.,
more categories in variable selection (Breiman et al. 1984; Kononenko 1995; Kim and Loh 2001;
Boulesteix 2006b,a; Strobl, Boulesteix, and Augustin 2005), but from unbiased classification trees
based on a conditional inference framework (Hothorn, Hornik, and Zeileis 2006b). The problem
of biased variable selection in classification trees is covered more thoroughly in a separate section
below.

Predictor variables
X1 ∼ N(0, 1)
X2 ∼ M(2)
X3 ∼ M(4)
X4 ∼ M(10)
X5 ∼ M(20)

Table 1: In the simulation studies the predictor variables are sampled independently from the
following distributions. N(0, 1) stands for the standard normal distribution, M(k) stands for the
multinomial distribution with values in {0, . . . , k− 1} and equal probabilities, B(p) stands for the
binomial distribution with probability p, thus M(2) equals B(0.5).

Response variable
null case Y ∼ B(0.5)
power case Y |X2 = 1 ∼ B(0.3)

Y |X2 = 2 ∼ B(0.7)

Table 2: In the simulation studies the response variable is sampled from binomial distributions.
The degree of dependence between the response Y and X2 is regulated by the probability p of the
binomial distribution B(p) of Y conditional on X2.
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Since the cforest function does not employ the Gini criterion, we investigate the behavior of the
Gini importance for the randomForest function only. The selection frequency and the permutation
importance is studied for both functions randomForest and cforest in two ways: Either the
individual trees are built on samples drawn with replacement, as suggested in Breiman (2001), or
on samples drawn without replacement.
The simulation design used throughout this paper represents a scenario where a binary response
variable Y is supposed to be predicted from a set of potential predictor variables that vary in their
scale level and number of categories. The first predictor variable X1 is continuous, while the other
predictor variables X2, . . . , X5 are categorical with their number of categories between two and up
to twenty. The simulation designs of both studies are summarized in Tables 1 and 2. The sample
size for all simulation studies was set to n = 120.
In the first simulation study, the so-called null case, none of the predictor variables is informative
for the response, i.e. all predictor variables and the response are sampled independently. In this
situation a sensible variable importance measure should not prefer any one predictor variable over
any other.
In the second simulation study, the so-called power case, the predictor variable X2 is informative
for the response, i.e. the distribution of the response depends on the value of this predictor variable.
In this situation, a sensible variable importance measure should be able to detect the informative
predictor variable.

3. Results and discussion

Our simulation studies show that for the randomForest function all three variable importance
measures are biased, the Gini importance even strongly so. For the cforest function reliable
results can be achieved both with the selection frequency and the permutation importance if the
function is used together with subsampling without replacement. Otherwise the measures are
biased as well.

3.1. Results of the null case simulation study

In the null case, when all predictor variables are equally uninformative, the selection frequencies
as well as the Gini importance and the permutation importance of all predictor variables are
supposed to be equal.
However, as presented in Figure 1, the mean selection frequencies (over 1000 simulation runs) of the
predictor variables differ substantially when the randomForest function (cf. top row in Figure 1)
or the cforest function with bootstrap sampling (cf. bottom row, left plot in Figure 1) are used.
Variables with more categories are obviously preferred. Only when the cforest function is used
together with subsampling without replacement (cf. bottom row, right plot in Figure 1) are the
variable selection frequencies for the uninformative predictor variables equally low as desired. (For
sampling without replacement the subsample size is set to 0.632 times the original sample size,
because in bootstrap sampling with replacement about 63.2% of the data end up in the bootstrap
sample.)
It is obvious that variable importance cannot be represented reliably by the selection frequencies,
that can be considered as very basic variable importance measures, if the potential predictor
variables vary in their scale level or number of categories.
The mean Gini importance (over 1000 simulation runs), that is displayed in Figure 2 is biased even
stronger. Like the selection frequencies for the randomForest function (cf. top row in Figure 1) the
Gini importance shows a strong preference for variables with many categories and the continuous
variable, the statistical sources of which are explained in the section on variable selection bias
in classification trees below. We conclude that the Gini importance cannot be used to reliably
measure variable importance in this situation either.
We now consider the more advanced permutation importance measure. We find that here an effect
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Figure 1: Mean variable selection frequencies for the null case study, where none of the predictor
variables is informative. The plots in the top row display the frequencies when the randomForest
function is used, the bottom row when the cforest function is used. The left column corresponds
to bootstrap sampling with replacement, the right column to subsampling without replacement.
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Figure 2: Mean Gini importance for the null case study, where none of the predictor variables is
informative. The left plot corresponds to bootstrap sampling with replacement, the right plot to
subsampling without replacement.
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of the scale level or number of categories of the potential predictor variables is less obvious but
still severely affects the reliability and interpretabilitiy of the variable importance measure.

Figure 3 shows boxplots of the distributions (over 1000 simulation runs) of the permutation im-
portance measures of both functions for the null case. The plots in the top row again display the
distribution when the randomForest function is used, the bottom row when the cforest function
is used. The left column of plots displays the distributions when bootstrap sampling is conducted
with replacement, while the right column displays the distributions when subsampling is conducted
without replacement.

Figure 4 shows boxplots of the distributions of the scaled version of the permutation importance
measures of both functions, incorporating the standard deviation of the measures.

The plots show that for the randomForest function (cf. top row in Figures 3 and 4) and, less pro-
nounced, for the cforest function with bootstrap sampling (cf. bottom row, left plot in Figures 3
and 4), the deviation of the permutation importance measure over the simulation runs is highest
for the variable X5 with the highest number of categories, and decreases for the variables with less
categories and the continuous variable. This effect is weakened but not substantially altered by
scaling the measure (cf. Figure 3 vs. Figure 4).
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Figure 3: Distributions of the unscaled permutation importance measures for the null case study,
where none of the predictor variables is informative. The plots in the top row display the distri-
butions when the randomForest function is used, the bottom row when the cforest function is
used. The left column corresponds to bootstrap sampling with replacement, the right column to
subsampling without replacement.
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As opposed to the obvious effect in the selection frequencies and the Gini importance, there is no
effect in the mean values of the distributions of the permutation importance measures, which are
in mean close to zero as expected for uninformative variables. However, the notable differences
in the variance of the distributions for predictor variables with different scale level or number of
categories seriously affect the expressiveness of the variable importance measure.

In a single trial this effect may lead to a severe under- or overestimation of the variable importance
of variables that have more categories as an artefact of the method, even though they are no more
informative than the other variables.

Only when the cforest function is used together with subsampling without replacement (cf.
bottom row, right plot in Figures 3 and 4) does the deviation of the permutation importance
measure over the simulation runs not depend on the number of categories or scale level of the
predictor variables.

Thus, only the variable importance measure available in cforest, and only when used together
with sampling without replacement, reliably reflects the true importance of potential predictor
variables in a scenario where the potential predictor variables vary in their scale level or number
of categories.
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Figure 4: Distributions of the scaled permutation importance measures for the null case study,
where none of the predictor variables is informative. The plots in the top row display the distri-
butions when the randomForest function is used, the bottom row when the cforest function is
used. The left column corresponds to bootstrap sampling with replacement, the right column to
subsampling without replacement.
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3.2. Results of the power case simulation study

In the power case, where only the predictor variable X2 is informative, each of the variable impor-
tance measures should clearly prefer X2 while the respective values for the remaining predictor
variables should be equally low.

Figure 5 shows that the mean selection frequencies (again over 1000 simulation runs) of the predic-
tor variables again differ substantially when the randomForest function (cf. top row in Figure 5)
is used, and the relevant predictor variable X2 cannot be identified. With the cforest function
with bootstrap sampling (cf. bottom row, left plot in Figure 5) there is still bias obvious in the
election frequencies of the categorical predictor variables with many categories. Only when the
cforest function is used together with subsampling without replacement (cf. bottom row, right
plot in Figure 5), are the variable selection frequencies for the uninformative predictor variables
equally low as desired, and the value for the relevant predictor variable X2 sticks out.

The mean Gini importance, that is displayed in Figure 6, again shows a strong bias towards
variables with many categories and the continuous variable. It completely fails to identify the
relevant predictor variable, with the mean value for the relevant variable X2 only slightly higher
than in the null case.

Figures 7 and 8 show boxplots of the distributions of the unscaled and scaled permutation impor-
tance measures of both functions. Again for the randomForest function (cf. top row in Figures 7
and 8) and, less pronounced, for the cforest function with bootstrap sampling (cf. bottom row,
left plot in Figures 7 and 8), the deviation of the permutation importance measure over the sim-
ulation runs is highest for the variable X5 with the highest number of categories, and decreases
for the variables with less categories and the continuous variable. This effect is weakened but not
substantially altered by scaling the measure (cf. Figure 7 vs. Figure 8).

As expected the mean value of the permutation importance measure for the informative predictor
variable X2 is higher than for the uninformative variables. However, the deviation of the variable
importance measure for the uninformative variables with many categories X4 and X5 is so high
that in a single trial these uninformative variables may outperform the informative variable as an
artefact of the method.

Thus, only the variable importance measure computed with the cforest function, and only when
used together with sampling without replacement, is able to reliably detect the informative variable
out of a set of uninformative competitors.

We have seen that for the assessment of variable importance and variable selection purposes it is
important to use a reliable method, that is not affected by other characteristics of the predictor
variables, such as the scale level or number of categories. Statistical explanations of our findings
are given in a later section.

In addition to its superiority in the assessment of variable importance the cforest method,
especially when used together with sampling without replacement, can also be superior to the
randomForest method with respect to classification accuracy in situations like that of the power
case simulation study, where uninformative predictor variables with many categories “fool” the
variable importance measure of the randomForest function.

Due to its artificial preference for uninformative predictor variables with many categories the
randomForest method can produce a higher mean misclassification rate than the cforest method.
For the simulation design chosen here, the mean misclassification rates (again over 1000 simulation
runs) of the methods, applied with sampling with and without replacement, show the ranking
displayed in Table 3. Each method was applied to the same simulated test set in each simulation
run. The test sets were generated from the same data generating process as the learning sets. We
find that the cforest method, especially with sampling without replacement, outperforms the
other methods. A similar result is obtained in the application to C-to-U conversion data presented
in the next section.

The differences in classification accuracy are moderate in the latter case, however one could think
of more extreme situations that would produce even greater differences. This shows that the same
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Figure 5: Mean variable selection frequencies for the power case study, where only the second
predictor variable is informative. The arrangement of the plots corresponds to that in Figure 1.
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mechanisms underlying the variable importance bias can also affect the classification accuracy, e.g.
when suboptimal predictor variables, that do not add to the classification accuracy, are artificially
preferred in variable selection merely because they have more categories.

Method Sampling with replacement Mean misclassification rate Std. error of mean
randomForest true 0.40241 0.00161

false 0.40241 0.00162
cforest true 0.3519 0.00199

false 0.34066 0.002

Table 3: Mean misclassification rates of the randomForest method applied with sampling with
and without replacement as compared to those of the cforest method applied with sampling with
and without replacement in the power case study.

3.3. Application to C-to-U conversion data

RNA editing is the process whereby RNA is modified from the sequence of the corresponding DNA
template (Cummings and Myers 2004). For instance, cytidine-to-uridine conversion (abbreviated
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Figure 7: Distributions of the unscaled permutation importance measures for the power case
study, where only the second predictor variable is informative. The arrangement of the plots
corresponds to that in Figure 3.
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Figure 8: Distributions of the scaled permutation importance measures for the power case study,
where only the second predictor variable is informative. The arrangement of the plots corresponds
to that in Figure 4.

C-to-U conversion) is common in plant mitochondria. The mechanisms of this conversion remain
largely unknown, although the role of neighboring nucleotides is emphasized. Cummings and My-
ers (2004) suggest to use information from sequence regions flanking the sites of interest to predict
editing in arabidopsis thaliana, brassica napus and oryza sativa based on random forests. The ara-
bidopsis thaliana data of Cummings and Myers (2004) can be loaded from the journal’s homepage
(http://www.biomedcentral.com/content/supplementary/1471-2105-5-132-S1.txt).
For each of the 876 observations, the data set gives

• the response at the site of interest (binary: edited/not edited)

and as potential predictor variables

• the 40 nucleotides at positions -20 to 20, relative to the edited site (4 categories),

• the codon position (4 categories),

• the estimated folding energy (continuous) and

• the difference in estimated folding energy between pre-edited and edited sequences (contin-
uous).

http://www.biomedcentral.com/content/supplementary/1471-2105-5-132-S1.txt
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We first derive the permutation importance measure for each of the 43 potential predictor variables
with each method. As can be seen from the barplot in Figure 9, the (scaled) variable importance
measures largely reflect the results of Cummings and Myers (2004) based on the Gini impor-
tance measure, but differ noticeably for the randomForest and cforest function and the different
resampling schemes.

In particular, the variable importance measure of the randomForest function produces more“noise”
than that of the cforest function: the contrast of amplitudes between irrelevant and relevant pre-
dictors is more pronounced when the cforest function is used. Moreover, the variable importance
of the two continuous predictor variables “estimated folding energy” and “difference in estimated
folding energy”(the two last bars on the right) is underestimated severely when bootstrap sampling
with replacement is used.

Similarly to the simulation study, we also compared the prediction accuracy of the four approaches
for this data set. To do so, we split the original data set into learning and test sets with size ratio
2:1 in a standard split-sample validation scheme. A random forest is grown based on the learning
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Figure 9: Scaled variable importance measures for the C-to-U conversion data. The plots in the
top row display the measures when the randomForest function is used, the bottom row when the
cforest function is used. The left column corresponds to bootstrap sampling with replacement,
the right column to subsampling without replacement. In each plot the positions -20 through 20
indicate the nucleotides flanking the site of interest, and the last three bars on the right refer to
the codon position (cp), the estimated folding energy (fe) and the difference in estimated folding
energy (dfe).



14 Bias in Random Forest Variable Importance Measures

Method Sampling with replacement Mean misclassification rate Std. error of mean
randomForest true 0.29682 0.00245

false 0.29144 0.00244
cforest true 0.28325 0.00253

false 0.28055 0.00264

Table 4: Mean misclassification rates of the randomForest method applied with sampling with
and without replacement as compared to those of the cforest method applied with sampling with
and without replacement for the C-to-U conversion data.

set and subsequently used to predict the observations in the test set. This procedure is repeated
100 times, and the mean classification error rate over the 100 runs is reported in Table 4. Again we
find a slight superiority of the cforest function, especially when sampling is conducted without
replacement. (Differences to the accuracy values reported in Cummings and Myers (2004) are most
likely due to their use of a different validation scheme, that is not reported in detail in Cummings
and Myers (2004).)
All function calls and all important options of the randomForest and cforest functions used
in the simulation studies and the application to C-to-U conversion data are documented in the
supplementary file.

4. Sources of variable importance bias

The main difference between the randomForest function, based on CART trees (Breiman et al.
1984), and cforest function, based on conditional inference trees (Hothorn et al. 2006b), is that in
randomForest the variable selection in the individual CART trees is biased, so that e.g. variables
with more categories are preferred. This is illustrated in the next section on variable selection bias
in individual classification trees.
However, even if the individual trees select variables in an unbiased way as in the cforest function,
we find that the variable importance measures, as well as the selection frequencies of the variables,
are affected by the bootstrap sampling with replacement. This is explained in the section on effects
induced by bootstrapping.

4.1. Variable selection bias in the individual classification trees

Let us again consider the null case simulation study design, where none of the variables is infor-
mative, and thus should be selected with equally low probabilities in a classification tree.
In traditional classification tree algorithms, like CART, for each variable a split criterion like the
“Gini index” is computed for all possible cutpoints within the range of that variable. The variable
selected for the next split is the one that produced the highest criterion value overall, i.e. in its
best cutpoint.
Obviously variables with more potential cutpoints are more likely to produce a good criterion value
by chance, as in a multiple testing situation. Therefore, if we compare the highest criterion value
of a variable with two categories, say, that provides only one cutpoint from which the criterion
was computed, with a variable with four categories, that provides seven cutpoints from which
the best criterion value is used, the latter is often preferred. Because the number of cutpoints
grows exponentially with the number of categories of unordered categorical predictors we find a
preference for variables with more categories in CART-like classification trees. (For further reading
on variable selection bias in classification trees see, e.g., the corresponding sections in Kim and
Loh (2001); Kononenko (1995); Strobl et al. (2005); Hothorn et al. (2006b); Dobra and Gehrke
(2001); Strobl (2005a,b).)
Since the Gini importance measure in randomForest is directly derived from the Gini index split
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Figure 10: Relative selection frequencies for the rpart (left) and the ctree (right) classification
tree methods. All variables are uninformative as in the null case simulation study.

criterion used in the underlying individual classification trees, it carries forward the same bias as
was shown in Figures 2 and 6.
Conditional inference trees (Hothorn et al. 2006b), that are used to construct the classification
trees in cforest, are unbiased in variable selection. Here, the variable selection is conducted by
minimizing the p value of an independence test, like e.g. the χ2 test, that incorporates the number
of categories of each variable in the degrees of freedom.
The mean selection frequencies (again over 1000 simulation runs) of the five predictor variables of
the null case simulation study design for both CART classification trees (as implemented in the
rpart function (Therneau, Atkinson, and Ripley 2006)) and conditional inference trees (function
ctree (Hothorn et al. 2006b)) are displayed in Figure 10. We find that the variable selection with
the rpart function is highly biased, while for the ctree function it is unbiased.
The variable selection bias that occurs in every individual tree in the randomForest function also
has a direct effect on the variable importance measures of this function. Predictor variables with
more categories are artificially preferred in variable selection in each splitting decision. Thus, they
are selected in more individual classification trees and tend to be situated closer to the root node
in each tree.
The variable selection bias affects the variable importance measures in two respects. Firstly, the
variable selection frequencies over all trees are directly affected by the variable selection bias in
each individual tree. Secondly, the effect on the permutation importance is less obvious but just
as severe.
When permuting the variables to compute their permutation importance measure, the variables
closer to the root node can affect the prediction accuracy of a large set of observations represented
by this node, while variables in the bottom nodes affect only small subsets of observations. Thus,
the range of possible changes in prediction accuracy in the random forest, i.e. the deviation of the
variable importance measure, is higher for variables that achieve positions closer to the root node
due to variable selection bias in the individual trees.
We found in Figures 1 through 9, that the effects induced by the differences in scale level of
the predictor variables where more pronounced for the randomForest function, where variable
selection in the individual trees is biased, than for the cforest function, where the individual
trees are unbiased. However, we also found that when the cforest function is used with bootstrap
sampling, the variable selection frequencies of the categorical predictors still depend on their
number of categories (cf., e.g., bottom row, left plot in Figure 1), and also the deviation of the
permutation importance measure is still affected by the number of categories (cf., e.g., bottom
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row, left plot in Figures 3 and 4).
Thus, there must be another source of bias, besides the variable selection bias in the individ-
ual trees, that affects the selection frequencies and the deviation of the permutation importance
measure.
We show in the next section that this additional effect is due to bootstrap sampling with replace-
ment, that is traditionally employed in random forests.

4.2. Effects induced by bootstrapping

From the comparison of left and right columns (representing sampling with and without replace-
ment) in Figures 1 and 5 we learned that the variable selection frequencies in random forest
functions are affected by the resampling scheme.
We found that, even when the cforest function based on unbiased classification trees is used,
variables with more categories are preferred when bootstrap sampling is conducted with replace-
ment, while no bias occurs when subsampling is conducted without replacement, as displayed in
the bottom right plot in Figures 1 and 5. Thus, the bootstrap sampling induces an effect that is
more pronounced for predictor variables with more categories.
For a better understanding of the underlying mechanism let us consider only the categorical pre-
dictor variables X2 through X5 with different numbers of categories from the null case simulation
study design. Rather than trying to explain the effect of bootstrap sampling in the complex
framework of random forests, we use a much simpler independence test for the explanation.
We consider the p values of χ2 tests (computed from 1000 simulated data sets). In each simulation
run, a χ2 test is computed for each predictor variable and the binary response Y . Remember that
the variables in the null case are not informative, i.e. the response is independent of all variables.
For independent variables the distribution of the p values of the χ2 test is supposed to form a
uniform distribution.
The left plot in Figure 11 displays the distribution of the p values of χ2 tests from each predictor
variable and the response Y as boxplots. We find that the boxplots range from 0 to 1 with median
0.5 as expected, because the p values of the χ2 test form a uniform distribution when computed
before bootstrapping.
However, if in each simulation run we draw a bootstrap sample from the original sample and then
again compute the p values based on the bootstrap sample, we find that the distribution of the p
values is shifted towards zero as displayed in the right plot in Figure 9.
Obviously, the bootstrap sampling artificially induces an association between the variables. This
effect is more pronounced for the variables that have more categories.
The reason for this shift in the distribution of the p values is that each original sample, even if
sampled from theoretically independent distributions, may show some minor variations from the
null hypothesis of independence. These minor variations are aggravated by bootstrap sampling
with replacement, because the cell counts in the contingency table are affected by observations
that are either not included or are doubled or tripled in the bootstrap sample.
This effect is more pronounced for variables with more categories, because in larger tables (such
as the 4× 2 table from the cross-classification of X3 and the binary response Y ), the absolute cell
counts are smaller than in smaller tables (such as the 2 × 2 table from the cross-classification of
X2 and the binary response Y ). With respect to the smaller absolute cell counts, excluding or
duplicating an observation produces more severe variations from the null hypothesis.
This effect is not eliminated if the sample size is increased, because in bootstrap sampling the
size n of the original sample and the bootstrap sample size n increase simultaneously. However, if
subsamples are drawn without replacement the effect disappears.
The apparent association that is induced by bootstrap sampling, and that is more pronounced for
predictor variables with many categories, affects both variable importance measures: The selection
frequency is again directly affected, and the permutation importance is affected because variables
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Figure 11: Distribution of the p values of χ2 tests of each categorical variable X2, . . . , X5 and
the binary response for the null case simulation study, where none of the predictor variables is
informative. The left plots correspond to the distribution of the p values computed from the
original sample before bootstrapping. The right plots correspond to the distribution of the p
values computed for each variable from the bootstrap sample drawn with replacement.

with many categories gain positions closer to the root node in the individual trees. Together with
the mechanisms described in the previous section, this explains all our findings.

From our simulation results we can also see that the effect of bootstrap sampling is mostly su-
perposed by the much stronger effect of variable selection bias when comparing the conditions
of sampling with and without replacement for the randomForest function only (cf. Figures 1
through 9, top row). Only when variable selection bias is removed by the cforest function the
differences between the conditions of sampling with and without replacement are obvious (cf.
Figures 1 through 9, bottom row).

We therefore conclude that in order to be able to reliably interpret the variable importance mea-
sures of a random forest, the forest must be built from unbiased classification trees, and sampling
must be conducted without replacement.

5. Conclusions

Random forests are a powerful statistical tool, that has found many applicants in various scientific
areas. It has been applied to such a wide variety of problems as large-scale association studies for
complex genetic diseases, the prediction of phenotypes based on amino acid or DNA sequences,
QSAR modelling and clinical medicine, to name just a few.

Features that have added to the popularity of random forests especially in bioinformatics and
related fields, where identifying a subset of relevant predictor variables from very large sets of
candidates is the major challenge, include its ability to deal with critical “small n large p” data
sets and the variable importance measures it provides for variable selection purposes.

However, when a method is used for variable selection, rather than prediction only, it is particularly
important that the value and interpretation of the variable importance measure actually depict
the importance of the variable, and are not affected by any other characteristics.

We found that for the original random forest method the variable importance measures are affected
by the number of categories and scale level of the predictor variables, which are no indicators of the
true importance of the variable. This finding is particularly relevant in studies where continuous
variables like the folding energy are used in combination with categorical information like the
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neighboring nucleotides, or when categorical predictors, as e.g. in amino acid sequence data, vary
in their number of categories present in the sample.
Especially information on clinical and environmental variables is often gathered by means of ques-
tionnaires, where the number of categories can vary between questions. The number of categories
is typically determined by many different influence factors and is not an indicator of variable im-
portance. Similarly, the number of different categories of a predictor actually available in a certain
sample is not necessarily an indicator of its relevance for predicting the response. Hence, the num-
ber of categories of a variable should obviously not influence its estimated importance—otherwise
the results of a study could easily be affected if an irrelevant variable with many categories is
included in the study design.
We showed that, due to variable selection bias in the individual classification trees and effects
induced by bootstrap sampling, the variable importance measures of the randomForest function
are not reliable in many scenarios relevant in applied research.
As an alternative random forest method we propose to use the cforest function, that provides
unbiased variable selection in the individual classification trees. When this method is applied with
subsampling without replacement the resulting variable importance measure can be used reliably
for variable selection even in situations where the potential predictor variables vary in their scale
level or their number of categories.
The aim of this paper is to explore the limits of the empirical measures of variable importance pro-
vided for random forests, to understand the underlying mechanisms and to use that understanding
to guarantee unbiased and reliable variable selection in random forests.
In a more theoretical work van der Laan (2006) gives a fundamental definition of variable impor-
tance, as well as a statistical inference framework for estimating and testing variable importance.
Inspired by this approach, future research on variable importance measures for variable selection
with random forests aims at providing further means of statistical inference, that can be used to
guide the decision on which and how many predictor variables to select in a certain problem.

Computational details

The results in this paper were obtained using R 2.3.1 (R Development Core Team 2006) and the
packages party 0.8-6 (Hothorn et al. 2006a) randomForest 4.5-16 (Liaw and Wiener 2002; Breiman
et al. 2006) rpart 3.1-29 (Therneau et al. 2006).
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