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Modeling migraine severity with
autoregressive ordered probit models

Claudia Czado1, Anette Heyn, Gernot Müller

December 2005

Abstract

This paper considers the problem of modeling migraine severity assess-
ments and their dependence on weather and time characteristics. Since ordi-
nal severity measurements arise from a single patient, dependencies among
the measurements have to be accounted for. For this the autoregressive ordi-
nal probit (AOP) model of Müller and Czado (2005) is utilized and fitted by
a grouped move multigrid Monte Carlo (GM-MGMC) Gibbs sampler. Ini-
tially, covariates are selected using proportional odds models ignoring this
dependency. Model fit and model comparison are discussed. The analy-
sis shows that windchill and sunshine length, but not humidity and pressure
differences have an effect in addition to a high dependence on previous mea-
surements. A comparison with proportional odds specifications shows that
the AOP models are preferred.

Key words: Proportional odds; autoregressive component, ordinal valued time series,
regression, Markov Chain Monte Carlo (MCMC), deviance, Bayes factor;
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1 Introduction

According to (Prince, Rapoport, Sheftell, Tepper, and Bigal 2004) forty-five mil-
lion Americans seek medical attention for head pain yearly causing an estimated
labor cost of $13 billion. They found in their study that about half of their mi-
graine patients are sensitive to weather. However some studies investigating the
relationship between weather conditions and headache have been negative or in-
clusive (see (Prince, Rapoport, Sheftell, Tepper, and Bigal 2004) and (Cooke,
Rose, and Becker 2000) for specific references). In these studies the frequency of
headache occurrences and the daily maximum or total score of an ordinal severity
assessment have been the focus.

Here we focus directly on studying and modeling the observed severity cate-
gories collected using a headache calendar. In particular we want to investigate
the 4 daily ratings of the headache intensity obtained from a patient in study con-
ducted by psychologist T. Kostecki-Dillon, Toronto, Canada, resulting in an ordi-
nal valued time series.

Most studies ignore correlation among measurements on the same patient. We
will show that this correlation can be very high and should not be ignored. For
example (Prince, Rapoport, Sheftell, Tepper, and Bigal 2004) use daily maximum
and total scores as response variable relating to factors obtained from a factor
analysis of the weather data alone in a regression setup ignoring this correlation.

For studying headache occurrences (Piorecky, Becker, and Rose 1996) used a
generalized estimating approach (GEE) introduced by (Zeger and Liang 1986) to
adjust for the dependency between multiple measurements. While GEE could also
be used for ordinal valued time series (see for example (Liang, Zeger, and Qaqish
1992), (Heagerty and Zeger 1996) and (Fahrmeir and Pritscher 1996)), we prefer
a likelihood based regression time series approach to investigate the influence of
weather conditions on migraine severity. One major reason for this preference
is to have a complete statistical model specification, which allows the usage of
standard model comparison techniques and forecasts in dynamic models.

(Kauermann 2000) also considered the problem of modeling ordinal valued
time series with covariates. He used a nonparametric smoothing approach by al-
lowing for time varying coefficients in a proportional odds model. While (Kauer-
mann 2000) uses local estimation, (Gieger 1997) and (Fahrmeir, Gieger, and Her-
mann 1999) consider spline fitting within the GEE framework. (Wild and Yee
1996) focus on smooth additive components. While these approaches are useful
for fitting the data, a hierarchical time series approach which we propose here is
easier to interpret and has the potential for forecasting. In particular, we will use
an autoregressive ordered probit (AOP) model recently introduced by (M üller and
Czado 2005). It is based on a threshold approach using a latent real valued time
series. It is fitted and validated in a Bayesian setting using Markov Chain Monte
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Carlo (MCMC) methods.
Since as already mentioned many studies investigating the relationship be-

tween headache and weather conditions have been inclusive, we believe manage-
ment of migraine headaches should be tailored to the individual migraine sufferer.
Since migraine headaches are a persistent problem such an individual analysis
should be based on a headache calendar of the individual. Such an individual ap-
proach was also followed by (Schmitz and Otto 1984). However they ignored the
ordinal nature of the considered response time series. As an example for such a
single patient analysis we investigate data collected by a 35 year old woman with
chronic migraine who recorded her migraine severity four times a day on a scale
from 0 to 5. To determine which weather conditions have an important effect on
the migraine severity we used a proportional odds model commonly used for re-
gression models with independent ordinal responses as a starting model for our
AOP analysis. We will show that for this data the first order autocorrelation in
the latent time series is high within the AOP model ( ����� ), demonstrating con-
siderable dependence among the measurements. We like to mention that for this
patient headache severity scores are not reached by first successively experienc-
ing the lowest severity category to the next higher category until the highest is
reached. Therefore a continuation ratio formulation (see (Agresti 2002)) is not
appropriate for this patient. A Bayesian analysis of a probit continuation ratio for-
mulation is given by (Dunson, Chen, and Harry 2003) in a joint model for cluster
size and sub-unit specific outcomes.

The paper is organized as follows. In Section 2 we review the proportional
odds model to motivate our AOP formulation. We address the problem of variable
selection and model comparison. In Section 3 we describe the data in more detail
and present some results from an exploratory analysis yielding three mean speci-
fications for the proportional odds model and two for the AOP model. In Section
4 we give the results of the model fitting and model comparison, demonstrating
the superiority of the AOP model. Finally Section 5 gives a summary and draws
conclusions.

2 Models, predictions and model selection

2.1 Models

In the migraine data we model an ordinal valued time series ���	��

������
 ����� 

��� ,
where ����������
 ����� 
���� denotes the pain severity at time � with ordinal levels
given by ����
� ! ! "
#��� . Together with the response �$� we observe further a vector% � of real-valued covariates for each ���&�'�(
 ����� 

��� representing meteorological
and time measurement information.
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2.1.1 Proportional Odds Model

A common ordinal regression model for independent responses is the ordinal lo-
gistic model first described by (Walker and Duncan 1967) and later named pro-
portional odds model by (McCullagh 1980). To aid us with the identification of
important covariates in the migraine headache data we utilize the proportional
odds model. The so identified covariate structure will then be used in the autore-
gressive ordinal probit (AOP) model, which in contrast to the proportional odds
model does not ignore the dependency among the measurements. The primary
focus of this paper is the AOP model for which maximum likelihood estimation
is not feasible and therefore a Bayesian estimation approach is followed. We now
shortly review the proportional odds model from a threshold perspective, which
motivates the AOP model formulation. For this we assume that the covariate
vector % � � ��� ��� 
 ����� 
 � ���	��
 is � -dimensional. To model the ��
 � different cat-
egories, an underlying unobserved real-valued time series ������ 

��� �(
 ��� � 

��� is
used which produces the discrete valued �$� by thresholding. In particular,

���"��� ��� � �� � ������� � 
 ����� 
 � � ��
 ��� � 
#� 
 (2.1)

� �� ��� % 
�� 
"! �� 
 � � �(
 ����� 

� 
 (2.2)

where �$# �&% �'� �)( �+* ( � �,(  ! ! -( �+. % �/# are unknown cutpoints,
and  � �10 �#
 ����� 
 0 �	� 
 is a vector of unknown regression coefficients. The errors!2�� are assumed to be i.i.d. and follow a logistic distribution with distribution
function 3 �1� � � 4157698;:=<��> 41576?8;:=< . It is easy to see that (2.1)-(2.2) imply the more familiar
representation given by

@ � � �BAC�+D % ��� �E3 ����� 
 % 
�  � � F=GIH
����� 
 % 
�  �

�J
 F=GIH
�K�+� 
 % 
�  � (2.3)

for � � � 
��(
� ! ! $
#�L� � . The properties of the proportional odds model are for
example discussed in (Harrell 2001) and (Agresti 2002). Let �NM ��

� � �(
  ! ! "

���
be the observed responses and OP% � ���B* 
 ��� � 
 �+.J� �Q� 
 . Since the responses are
assumed to be independent the joint likelihood is given by

R �  
SO-�T% � R �  
�O�D MU��
� ! ! "
VMNWX� �
WY
�[Z\�^] ��_ `�a 
 (2.4)

where ] �
� % � @ � ���	���+D % ��� �b3 ����� 
 % 
�� ���c3 ������� �V
 % 
�� � for � � ��
� ! ! $
#�"� �

and ] �
. % � �d�be

.J� �� Z * ] �
�
. The unknown  and O together with the ordering

constraint �$# �f% �'� �g( ��* ( � �h(� ! ! i( �+. % �j# can be estimated by
maximum likelihood (ML) using the S-Plus Design Library by Frank Harrell.
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2.1.2 Autoregressive Ordered Probit (AOP) Model

Since the migraine severity at time � may depend not only on the covariates at
time � , but also on the migraine severity at time � � � , it may be adequate to use
the autoregressive ordered probit (AOP) model introduced by (M üller and Czado
2005). Here, the latent process of the common ordered probit model is extended
by an autoregressive component:

���"�b� ��� � �� � ������� � 
 ����� 
 � � ��
 � ��� 
#� 
 (2.5)

� �� � % 
�  
 � � �� � � 
 ! �� 
 � � �(
 ��� � 

� 
 (2.6)

where �c# �&% �'� � ( ��* ( � � (  ! ! ( �+. % � # , ! ������ � ��
��	��� i.i.d., and% �"� � �(
 � ��� 
 ��� � 
 � ��� � 
 is a �J
 � -dimensional vector of real-valued covariates. Ac-
cordingly,

0 *
is the intercept for the latent process. For reasons of identifiability

the cutpoint
�+*

is fixed to 0, and the variance � � to 1. For notational convenience
we use O % � ��� � 
 ����� 
 �+.J� �Q� 
 as for the proportional odds model, however, since�+*

is fixed here, the vector O has only � � � components in the AOP case. More
details on this model and a Markov chain Monte Carlo (MCMC) estimation pro-
cedure for the latent variables and parameters can be found in (M üller and Czado
2005).

In particular, it is shown there that a standard Gibbs sampling approach is ex-
tremely inefficient and cannot be recommended in practice. This inefficiency of
the Gibbs sampler was already noted by (Albert and Chib 1993) for polychoto-
mous regression models and (Chen and Dey 2000) for correlated ordinal regres-
sion data using lagged covariates to account for correlation. (Nandram and Chen
1996) proposed a scale reparametrization for ordinal regression models with three
categories, which accelerated the Gibbs sampler in this situation sufficiently. The
reason for the inefficiency in ordinal response models is that the updating scheme
for the cutpoints O allows only small movements from one iteration to the next in
larger data sets. To overcome this inefficiency (M üller and Czado 2005) developed
a specific grouped move multigrid Monte Carlo (GM-MGMC) Gibbs sampler for
the AOP model with arbitrary number of categories. GM-MGMC Gibbs samplers
have been suggested by (Liu and Sabatti 2000) as a general approach to accelerate
Gibbs sampling schemes.

We emphasize that the right-hand side of Equation (2.2) includes the term� % 
�� whereas the right-hand side of Equation (2.6) uses the term % 
�� . To make
the parameters

0�

in model specifications (2.2) and (2.6) comparable we decided

to compute the posterior mean estimates in the AOP model for the response �
�� % �� � � � . Therefore the worst migraine severity is associated with category � , and
no migraine is associated with category

�
when we fit the AOP model. Hence now

in both the proportional odds and in the AOP model a negative value for
0�


means
that an increasing value of the covariate

��

leads to a more severe migraine.
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2.2 Model Selection with the Deviance Criteria

2.2.1 Residual Deviance Test for the Proportional Odds Model

Here we use the deviance statistic � defined as

� % ��������� 	�
 H � _ 

R �  
�O-�	�
 H���� _�������_ ���
R ��� � 
� ! ! 	
 � W � 


where
R �  
�O � is defined in (2.4) and the supremum is taken over all O which

satisfy the ordering constraint. Further we denote by
R ��� � 
� ! ! "
 � W � for

� � % �� � � * 
� ! ! 	
 � � � � 
 the joint likelihood of T independent discrete random variables� � taking on values ��
� ! ! 	
#� with probabilities ��� * 
� ! ! "
�� � . , respectively. We
call

R ��� � 
� ! ! 	
 � W � the likelihood of the corresponding unstructured model. It is
straight forward to show that �P% � e W �[Z\� e

.� Z\� ����� ���] �
� � 
 where

�
] �
� % � 3 ������ 
% 
� � �T�E3 �������� � 
 % 
� � � and

� and
�O the joint MLE of  and O under the or-

dering constraint for O . Note that the proportional odds model can be considered
as a special case of multi categorical models considered in (Tutz 2000). Here he
shows that the null hypothesis of model adequacy can be rejected at level

�
if

��� � �W!� .J� �?_ � �#" 
 where � is the number of observations, � the number of cate-
gories minus 1 and � the number of regression parameters to be estimated. The � �
approximation is most accurate when covariates are categorical and the expected
cell counts formed by the cross classification of the responses and covariates are
greater than 5. Alternative goodness-of-fit tests in ordinal regression models have
been suggested in (Lipsitz, Fitzmaurice, and Molenberghs 1996). We restrict our
attention to the residual deviance, since we want to use the deviance information
criterion for the AOP model, which is closely related to the deviance.

2.2.2 Deviance Information Criterion for the AOP model

The Deviance Information Criterion (DIC) was suggested as general model se-
lection criterion by (Spiegelhalter, Best, Carlin, and van der Linde 2002). Model
fit is measured by the Bayesian deviance defined as � �%$ � % � �&����������' � M�D $ � � 

�(�)�*����' � M^�#� . The standardizing term �(�)�*� ��' � M � � for the AOP model will be set
to zero, which is consistent with a unstructured model. Model complexity is mea-
sured by the effective number of model parameters defined as ��+ % � � �%$ �=�,� � �$ � ,
where � �%$ � % �.- � � �/$ �ND M^� and � � �$ � � � � - �/$ D M � � . (Spiegelhalter, Best, Carlin,
and van der Linde 2002) now suggest now to use

DIC % �0� � �$ � 
1�=�2+ � � �/$ ��
 �!+ �0� � �/$ � �3� � �$ � �
as model selection criterion. A model with smaller DIC is preferred. We like to
note that the DIC allows for an information theoretic interpretation in exponential
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family models ((van der Linde 2005)) and might be less reliable in non exponential
family models such as the AOP model.

For the AOP model the parameter
$

includes the cutpoint vector O , the re-
gression parameter vector  , the autoregressive parameter

�
, and all the latent

variables � �� . The Bayesian deviance for the model is

� ��� � � �&������� ' � MhD $ �
� �&�

W�
�[Z\� �)�*����� �K�+� � % 
�  � � � �� � � � ��� �K�+�=� � � % 
�  � � � �� � � �	� �(2.7)

To compute the DIC, the expression � �%$ � can be estimated by averaging the terms
� �%$�
 � , where

$�

denotes the random sample for

$
drawn in iteration � of the

MCMC sampler. The value of � � �$ � is given by inserting the corresponding pos-
terior mean estimates in Equation (2.7).

2.3 Bayes Factors

Since DIC might be unreliable for the AOP model we consider Bayes factors
based on the marginal likelihood as an alternative method for model comparison
(see (Kass and Raftery 1995)). (M üller and Czado 2005) provided an estimation
procedure for the marginal likelihood for the AOP model adapting the methods of
(Chib 1995) and (Chib and Jeliazkov 2001). In particular the Bayes factor of a
model 
 � versus a model 
 � is given by

� ��� D�
 � 
�
 � � % ���
��� D�
 � �

�
��� D�
 � � 


where �
��� D�
�� % ��� ' ��� D $ 
�
��1� �/$ D�
b��� $ is the marginal likelihood of model
 . Here � �%$ D�
�� and ' ��� D $ 
�
�� denote the prior of the parameters

$
and the

likelihood in model 
 , respectively. Using the definition of the posterior distribu-
tion � �/$ D � 
�
�� in Model M the marginal likelihood of Model M can be estimated
by

�
��� D�
�� � '

� M+D $�� 
�
��1� �/$�� D�
��
� �%$ � D M 
�
�� 


where
$��

is the posterior mean estimate of
$

. For the AOP models the model
parameters are given by the cutpoints, the regression parameters and the autore-
gressive parameter.

2.4 Pseudo-predictions

One intuitive and quite simple way to investigate the quality of a model fit is to
compute pseudo-predictions. In the proportional odds model this means that one
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predicts the response at time � using ML estimates for the regression parameters
and cutpoints which are plugged into the model equations. This results in a fore-
cast probability for each category. One can use the category with highest forecast
probability as prediction for the response at time � . However, when the ML es-
timates are based on the whole data set we call these predictions more precisely
pseudo-predictions. For the AOP model one uses posterior mean estimates instead
of the ML estimates. Here, of course, one also needs a posterior mean estimate of
�&�� � � .
2.4.1 Pseudo-predictions for the Proportional Odds Model

The fitted probabilities for the proportional odds model for each category at time
� are defined by

�
] �
* % � �

@ � � � � � D % ��
 O 
  � � F=GIH
� �B* 
 % 
�  �

�J
 F=GIH
� �+* 
 % 
�  � 


�
] �
� % � �

@ � � � �E�)D % � 
 O 
  � � F=GIH
� ��� 
 % 
�  �

�J
 F=GIH
� �B� 
 % 
�  � � F=GIH

� �+��� � 
 % 
�  �
� 
 F=GIH

� ����� � 
 % 
�  � 
� � �(
 ����� 
���� ��

�
] �
. % � �

@ � � � � � D % � 
 O 
  � � � � F=GIH
� �B.J� � 
 % 
�  �

�J
 F=GIH
� �+.J� � 
 % 
�  �

where O and  denote maximum likelihood estimates of O and  , respectively.
The corresponding pseudo-prediction of �$� is therefore given by the category � ,
which has the highest value among

�
] �
* 
 ����� 
 �] �

.
.

2.4.2 Pseudo-predictions for the AOP model

The corresponding posterior probability estimates in the AOP model for each cat-
egory at time � are defined by

�
] �
* % � �

@ � � �"� � D % � 
 O 
  
 � 
 � �� � � � � � � �B* � % 
�  � � � �� � � � 
�
] �
� % � �

@ � � �"�b�)D % ��
 O 
  
 � 
 � �� � � � � � � �B� � % 
�  � � � �� � � �
� � � �+��� �B� % 
�  � � �� � � � 
 � � �(
 ��� � 
#� � �(
�

] �
. % � �

@ � � �"� � D % ��
 O 
  
 � 
 � �� � � � � � � � � �B.J� �+� % 
�  � � � �� � � � �
where O ,  ,

�
, and � �� � � denote posterior mean estimates of the corresponding

parameters and latent variables. The corresponding pseudo-prediction of �"� are
therefore given by the category k which has the highest value among

�
] �
* 
� ! ! 	
 �] �

.
.
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2.4.3 Assessing Model fit based on Pseudo-predictions

Now we suggest to use the pseudo-predictions for model assessment. For this
we define the variables

@ ������ � which correspond to the ’observed’ probabilities for
category � at time � in contrast to the ’predicted’ probabilities

�
] �
�

defined in the
previous subsections: @ ������ � % �

� � if ���"�b�$

� else.

When category � is observed at time � , it is clear that a good model fit leads to a
high probability

�
] �
�
, and to small probabilities

�
] �



for the other categories ���� � .
A large difference should be punished more than a small difference. Therefore we
compute the verification score introduced by (Brier 1950) defined by

S % � �
�

.� � Z *
W�
�[Z\�

� @ ������ � � �] �
� � �

to get an idea of the model fit. Of course, the smaller the value of S, the better
the model. The Brier score has been heavily used to evaluate forecasts in the
meteorological sciences and has the attractive property of being a strictly proper
scoring rule (see for example ()gneiting:04).

3 Analysis of migraine severity data

3.1 Data description and exploratory analysis

We investigate the migraine headache diary of a 35 year old female, who is work-
ing full-time as a manager. She suffers from migraine without aura for 22 years.
In this study she recorded her headache four times a day on an ordinal scale from
0 to 5, where 0 means that she did not feel any migraine headache, and 5 the worst
migraine headache she can feel. For a precise definition of the migraine inten-
sity categories see Table 1. The data is part of a larger study on determinants of
migraine headaches collected by the psychologist T. Kostecki-Dillon, York Uni-
versity, Toronto, Canada. The migraine headache diary was completed between
January 6, 1995, and September 30, 1995, which is a period of 268 subsequent
days. Therefore the length of the data set is 	  2��
 � � �!�
�*� . In addition also
weather related information on a daily basis was collected. This includes infor-
mation on humidity, windchill, temperature and pressure changes, wind direction,
and length of sun shine on the previous day.

Table 1 contains also the frequencies for the six possible response categories
in the data set. As can be seen from this table 150 observations are unequal to
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zero which corresponds to suffering from migraine headaches in about 14% of
the time. On the one hand we use covariates which reflect weather conditions, on
the other hand covariates which contain information about the measurement time
points. A description of the covariates in our analysis is also provided in Table 1.
We point out that the humidity index is measured only in the period from May to
October and the windchill index only in the period from November to April. This
means that always only one of these covariates is contained in the data set.

[Table 1 about here]

In the following we conduct a short exploratory analysis. As described in
(M üller and Czado 2005), the idea is to compute the average response for each
category of a categorical covariate and for intervals, when a continuous covariate
is considered. More precisely for a continuous covariate

� � 
 which falls in an
interval I with ��� observations, the average response is given as

���� % � �
���

�
��� : a �	� �

� �

Depending on the shape of the graph one can then decide to use an appropriate
transformation of the covariate or to use indicator variables, which is, of course,
the most flexible way of modeling.

PMND1P (mean pressure change from previous day, cf. Figure 1, top panel):
We group the observed PMND1P values into six intervals with equal number of
observations and compute the average response for each interval. A linear rela-
tionship seems to be sufficient, since a possibly present quadratic part is obviously
small.

[Figure 1 about here]

S1P (sunshine on previous day): This covariate has not been collected 120
times in the considered period. The remaining 952 observations are grouped in
intervals. The relationship is quite linear (not shown), and a sunny day seems
to increase the probability for headache on the following day, since the average
response increases with the length of the sunshine. The range of the average
response is � ��
 � .

HDXDD (humidity index): We computed the average response for each inter-
val and decided to use a quadratic transformation. The relative high range among
these average responses of � ����
 is a first hint at the importance of this covariate.

WCD (windchill): We use an indicator for windchill. If windchill is present,
the patient suffered from more intense migraine headaches.

WDAY (weekday): Because of the periodicity a polynomial or logarithmic
transformation does not make sense. Perhaps a sine transformation could be used.
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We use indicator variables since this choice provides the most flexible way for
modeling the influence of the weekdays. Weekdays were grouped together when
they showed a similar behavior. Indicator variables are abbreviated in a natural
way. For example, the variable TUEWED is 1 if the measurement was done on a
Tuesday or Wednesday, otherwise 0.

MESS (time of measurement, cf. Figure 1, bottom panel): In the afternoon
the average response is the highest with � � � � . The difference between the range of
the average response is � � � � � � � ��
 � � � � � . The afternoon indicator HAMP.IND
is used.

3.2 Proportional Odds Model Specifications

To determine reasonable mean specifications for the AOP model we ignore in an
initial analysis the dependency among the responses and utilize the proportional
odds model. For the proportional odds model we analyzed models with different
sets of covariates. As mentioned the covariate ’sunshine on previous day’ has
not been collected 120 times in the period. We remove these measurements and
reduce our data set to the length �!�
���d� ��� � ��� � � . The 3 models A, B, and C
considered in the following are found by a forward selection procedure. In each
step the � -values for each covariate were determined by a Wald test. The covariate
with the lowest � -value below the 5% level was included. The � -values of already
included variables were checked that they remain below a 5% level and otherwise
removed. This means that the covariates of Model A, B, and C are all significant
on the 5% level.

Model A contains only main effects. For time of measurement we use only an
indicator for the afternoon measurement and an indicator for Tuesday or Wednes-
day. In Model B and C we consider 3 weekday indicators following our ex-
ploratory analysis. Furthermore, in Model B we also allow for 3 interaction ef-
fects, whereas Model C contains even 9 interaction components. The covariates
which are used are seen in Table 2. This table also gives the ML estimators for
the regression coefficients and the cutpoints.

[Table 2 about here]

3.3 AOP Model Specifications

For the AOP model with latent variables given by

� �� � � 
�� 
 � � �� � � 
 ! ��
we investigate two models. For numerical stability we use covariates which have
been standardized such that they have empirical mean 0 and empirical variance 1.
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We call these standardized covariates % � � 
 � ��� � � 
 
 ����� 
 � �W 
 � 
 , where the components
are given by � �� 
 % �

� � 
 � �� � 

�

�
We�[Z\�
��� � 
 � �� � 
 � �

(3.8)

with
�� � 
 � �

�
We�[Z\�
� � 
 . Only indicator variables % � 


(where
� � 
 � ����
���� for all

� ���'�(
 ����� 
 � � ) are not standardized. The proportional odds model specifications
from above were used as a starting point for the model specifications of the AOP
models considered. If the 95% credible interval of a parameter contained zero, the
corresponding covariate was removed from the model. In this way proportional
odds model A and B lead to AOP model I and II, respectively.

Table 3 shows the posterior mean estimates together with estimated 2.5% and
97.5% quantiles for all parameters based on 10000 iterations with a burn-in of
1000 iterations. For Model I, the 95% credible interval for every main effect does
not contain zero, so every covariate is significant. For Model II, the 95% credible
intervals for PMND1P

�� and WEDFRI � contain the value 0. However, these two
covariates must remain in the model since they appear in an interaction term which
is itself significant.

[Table 3 about here]

4 Results

Now we conduct a model comparison analysis for the five models investigated
in Sections 3.2 and 3.3. First we consider the proportional odds models. To
decide which of the proportional odds models fits the data best, we use the residual
deviance test of Section 2.2.1. As mentioned there a model does not describe the
data well, if � � � �W!� .J� �?_ � �#" � Here we have � � � � � and � � �

. We test on
the 5% and 1% level and compute the � -value. Table 2 shows the results of the
deviance analysis for the three models. For all three models the deviance � is
not larger than the corresponding 99% quantiles of the � � -distribution, therefore
all considered models fit the data quite well. Next we compare the AOP models
using the DIC criterion. The values of the DIC for Model I and Model II are given
in Table 3. The posterior mean of the Bayesian deviance � �%$ � is smaller for
Model II, however the complexity measure � + is smaller for the more complex
Model II, which indicates that DIC is not suitable for AOP models. Therefore
we base our model selection on Bayes factors and Brier scores. For the Bayes
factors we use proper noninformative priors. We see from the likelihood ordinate,
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that Model II clearly fits the data better than Model I (by the likelihood factor

F=GIH
� � 	 �
� ��� 	 � 
 
 	 � � � � � 
�� � � � � �(��
 � ��� � . However, the prior and the posterior

ordinate punish Modell II heavily, since it uses four covariates more than Model
I. Therefore, if one uses the Bayes factor as model selection criterion, one should
prefer the simpler Model I to describe the data, since following the Bayes factor
scale by (Jeffreys 1961), the evidence of Model I against Model II is decisive.

Finally we compare all proportional odds models and AOP models using the
pseudo-predictions defined in Section 2.4. The corresponding Brier scores are
given in Table 2 and 3, respectively. We conclude that the two AOP models de-
scribe the data better than all the proportional odds models. The Brier scores
chooses Model I over all models, which is consistent with the model selection
based on Bayes factors. Therefore we conclude that Model I is the overall pre-
ferred model for this data set.

The signs of the regression parameters in Table 3 agree nearly everywhere with
the signs in Table 2. This means that both the proportional odds models and the
AOP models lead to the same conclusions, when asking which covariates have a
high and which a low value to reduce the migraine severity. For example from the
negative signs for S1P in all models we conclude that a sunny day increases the
headache severity on the next day. This agrees with our conjecture from the ex-
ploratory analysis. The indicator for afternoon, HAPM.IND, also has a coefficient
with negative sign. Again this approves our conjecture: The afternoon headache
is usually worse than in the morning, at noon, and during the night. Considering
the coefficients of the weekday indicators in Model II we see that the headache
is worse between Wednesday and Saturday which might be a consequence of an
(over)exertion on the job.

We provide now a quantitative interpretation of the covariate effects in the
AOP models. For this we match the first two moments of the standard normal
distribution to the logistic distribution to give the approximation

� ��� � � F�GIH
���� � ���

� 
 F=GIH
���� � ��� �

For the AOP model it follows that the cumulative log odds ratio 	 � � �+D % ��� for cate-
gory k at time t and covariate vector % � can be approximated by	 � � ��D % ��� % � ���*��
 3 � � ��D % �K�

� � 3 � � �+D % ���
� � ]� 

����� � % 
�  � � � �� � � � 
 (4.9)

where 3 � � �+D % �K� % � @ � � � Ab�+D % ��
SO 
  
 � 
��d�� � � � � � ����� � % 
�� � � � �� � � � . There-
fore the scaled impact of covariate

��

defined as

]� 

�K0 * 
 0 
V��
 �
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approximates the effect on the cumulative log odds ratio, when the remaining
covariates are set to zero. Note that 3 � � �+D % ��� corresponds to the probability of
experiencing a headache of category k or worse at time t and covariate vector % � ,
since we use � �� � � � � � in the AOP models. Since we used standardized co-
variates a zero standardized covariate value corresponds to the average value of
the unstandardized covariate. The scaled impacts of the unstandardized covariates
HDXDD and S1P are given in Figure 2. The corresponding 95% credible inter-
vals show that the data provides much more evidence of a sunshine effect on the
previous day than a humidity effect.

[Figure 2 about here]

Using 4.9 we can approximate the cumulative odds ratio change by
� a 8
��� �
� <� � � a 8
��� �
� <� a 8

��� ���
<� � � a 8

��� ���
<
� F=GIH � ]� 


� %
� � % � � 
  �'


when the covariate vector is changed from � � � � % � to % � � %
� . Note that this

quantity is independent of category k,
�

and � �� � � . Table 4 gives these cumulative
odds ratio changes when a single covariate is changed. The remaining covariate
values are held fixed. We see that the presence of windchill has the largest impact
on the cumulative odds ratio change followed by a PM measurement and expo-
sure to sunshine on the previous day. The evidence for a humidity effect on the
cumulative odds ratio change is marginal since the 95% credible intervals con-
tain 1. In particular this means that the odds of having a headache of severity k
or worse is 4.6(2.93) times higher when windchill (PM measurement) is present
compared to being absent. Five hours more sunshine on the previous day changes
the cumulative odds ratio by a factor of 1.30.

[Table 4 about here]

Finally we note that the autoregressive component for the latent time series
� �� is around .8 indicating large positive dependency among the ordinal intensity
measurements.

In summary we recommend to this patient to avoid windchill and long sun-
shine exposures. The evidence for a humidity, workday and pressure change effect
is too small to warrant specific recommendations with regard to these variables.
Further the chance of experiencing a headache compared to no headache is about
3 times higher in the afternoon compared to other times of the day.
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5 Conclusions

The importance of using time series models to evaluate within patient migraine
headache diaries has also been recognized in a recent paper by (Houle, Penzien,
and Rains 2005). As in (Prince, Rapoport, Sheftell, Tepper, and Bigal 2004) they
study the daily total and maximum score over four measurements of a patient over
one month. They recognized that this approach yields only a time series of length
28, which is considered too short to make significant conclusions about the time
series properties. In contrast our approach is more adequate since we work with
not aggregated data and thus longer time series. In addition we avoid information
loss due to data aggregation. The analysis of (Houle, Penzien, and Rains 2005)
showed the presence of positive autocorrelations between successive values of
their daily outcome measures. They however do not consider time series models
to account for this autocorrelation due to their short time series length. Further,
they only included a linear time trend as explanatory variable for their headache
outcome variable. Our approach overcomes these short comings - short time series
due to data aggregation, no model based adjustment for autocorrelation and a very
limited set of explanatory factors for headache activity.

For our approach we applied the autoregressive ordered probit (AOP) model
suggested by (M üller and Czado 2005) to an ordinal valued time series arising
from headache intensity assessments. Here the ordered categories are produced
by threshholding a latent real-valued time series with regression effects. To model
the dependencies among the measurements the latent time series includes besides
regression components also an autoregressive component. Parameter estimation
is facilitated using a grouped move multigrid Monte Carlo (GM-MGMC) Gibbs
sampler in a Bayesian setting. Models were compared using Bayes factors and
the Brier score based on pseudo predictions. We also show that the DIC model
selection criterion is problematic for AOP models.

For the migraine headache intensity data the latent time series shows a high
first order autocorrelation of around .8 demonstrating considerable dependence
among the ordinal measurements. For this patient we were able to demonstrate
considerable impact of weather related variables such as the present of windchill
and sunshine length. This supports the conclusions of (Prince, Rapoport, Sheftell,
Tepper, and Bigal 2004) who showed that some patients are sensitive to weather.
Specific recommendations to this patient to lower the risk factors for severe mi-
graine headaches have been provided. Even though an individual analysis offers
the opportunity to develop more precise migraine control mechanisms, it is of in-
terest to identify common risk factors in groups of patients. This problem is the
subject of current research. For long individual patient diaries it would be inter-
sting to extend our first order AOP models to higher orders and this will also be
pursued in the future.
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Table 1: Description of response scales with observed frequencies and weather
and time measurements related covariates

Response categories
intensity frequency condition

0 922 No headache
1 27 Mild headache: Aware of it only when attending to it
2 46 Moderate headache: Could be ignored at times
3 47 Painful headache: Continuously aware of it, but able to start

or continue daily activities as usual
4 24 Severe headache: Continuously aware of it. Difficult to

concentrate and able to perform only undemanding tasks
5 6 Intense headache: Continuously aware of it, incapacitating.

Unable to start or continue activity.
weather conditions
PMND1P mean pressure change since previous day in 0.01 kilopascal
S1P length of sunshine on previous day in hours
HDXDD humidity index based on maximal temperature and humidity,

only in period May to October, 0 otherwise
WCD windchill index based on minimal temperature and wind speed,

only in period November to April, 0 otherwise
WC.IND indicator for windchill: 1 if WCD unequal 0, 0 otherwise
time of measurement
WDAY weekday, also coded by 1 (Monday) to 7 (Sunday)
MESS time of measurement: HAAM = morning (also coded by 1),

HANOON = noon (2), HAPM = afternoon (3),
HABED = late evening (4)

HAPM.IND indicator for afternoon: 1 if MESS=HAPM, 0 otherwise
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Figure 1: Relationship between average response and pressure difference intervals
(top panel) and average response and time of measurement (bottom panel).
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Table 2: Maximum likelihood estimates of regression parameters and cutpoint
parameters, residual deviances and Brier scores using the proportional odds model
ignoring dependency

Model A Model B Model C
weather conditions
HDXDD � -0.4592 -0.4513 -0.4011
HDXDD �� 0.0109 0.0106 0.0097
S1P � -0.1055 -0.1205 -0.0651
WC.IND � -4.6821 -4.7190 -4.3610
PMND1P � 0.0035 -0.0149 -0.0147
time of measurement
HAPM.IND � -0.4719 -0.5051 -0.5433
TUEWED � 0.5298
TUESUN� -0.2180 -1.0196
WEDFRI � -0.2542 1.9105
THUSAT� -0.3935 -0.5628
interactions
PMND1P ��� TUESUN� 0.0150 0.0174
PMND1P � � WEDFRI � 0.0284 0.0297
PMND1P ��� THUSAT� 0.0185 0.0188
S1P ��� TUESUN� 0.0703
S1P ��� WEDFRI� -0.2218
S1P ��� THUSAT� -0.0413
WC.IND � � TUESUN� 0.5248
WC.IND ��� WEDFRI � -0.9426
WC.IND � � THUSAT� 1.3245
cutpoints
�
*

6.8128 7.3810 6.5040
� � 7.0478 7.6272 6.7591
� � 7.6310 8.2314 7.3874
� � 8.6903 9.3101 8.5073
��� 10.2024 10.8279 10.0509
residual deviance (df) 1106 (4753) 1083 (4748) 1056 (4742)
Brier score .2545 .2467 .2405
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Table 3: Posterior mean and quantile estimates for standardized regression param-
eters and cutpoint parameters using the AOP model and their deviance information
criterion and Brier score

Model I Model II
2.5% mean 97.5% 2.5% mean 97.5%

intercept 0.8817 1.2969 1.7624 1.0610 1.4764 1.9456
weather conditions
HDXDD

�� -2.3685 -1.2880 -0.3530 -2.3874 -1.3548 -0.4171�
HDXDD ���� � 0.4096 1.1552 2.0173 0.4616 1.2054 2.0311

S1P
�� -0.2368 -0.1322 -0.0314 -0.2688 -0.1619 -0.0569

WC.IND � -1.6215 -0.8410 -0.1464 -1.6499 -0.8959 -0.2006
PMND1P

�� -0.1331 -0.0172 0.0937
time of measurement
HAPM.IND � -0.9163 -0.5924 -0.2612 -0.9194 -0.5769 -0.2469
WEDFRI � -0.2672 -0.0079 0.2609
THUSAT � -0.5213 -0.2899 -0.0535
interactions
PMND1P

��� WEDFRI � 0.0839 0.3077 0.5402
autoregressive parameter�

0.7404 0.8077 0.8718 0.7250 0.7932 0.8541
cutpoints
� � 0.4706 0.7314 1.0221 0.4596 0.7383 1.1732
� � 1.0821 1.3851 1.6962 1.1002 1.4021 1.8384
� � 1.5870 1.8979 2.2151 1.6049 1.9250 2.3588
��� 1.8548 2.1704 2.5127 1.8644 2.2013 2.6321
deviance information criterion� ��� � � + DIC

� ��� � � + DIC
799.6967 97.8068 897.5035 787.8536 92.5850 880.4387

Bayes factor	�

� ��������� � ����� ��� -417.5238 -407.8493	�

� � � ��� �
� � ��� -26.6353 -39.5151	�

� � � ��� � � � ��� ��� 16.8070 22.7356	�

� ��������� � ��� -460.9661 -470.1000
Bayes Factor of Model I versus Model II ���! #" �%$'&)(+*-,/.
(
(-0213&546*-,�07*
*
* � �98;:=<?> ,/@;A
Brier score

.1688 .1724
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Figure 2: Scaled Impacts for humidex (solid) and sunshine (dotted) with 95% CI’s
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Table 4: Posterior mean and quantile estimates of the cumulative odds changes
for AOP Model I

cumulative odds change 2.5% mean 97.5%
humidex from 10 to 20 .08 .66 5.31
humidex from 20 to 30 .10 1.49 21.73
humidex from 30 to 40 .14 3.34 88.99
humidex from 40 to 50 .18 7.48 364.19
humidex from 20 to 40 .01 4.97 1934.80

2 hr more sunshine 1.02 1.11 1.21
5 hr more sunshine 1.06 1.30 1.60

10 hr more sunshine 1.13 1.69 2.54
Windchill from present

to absent 1.30 4.60 18.94
PM measurement to
no PM measurement 1.60 2.93 5.27
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