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Abstract

Exchange-traded funds (ETFs) are typically considered to be passive investment
vehicles designed to track a benchmark index. However, with the promulgation of
the Securities and Exchange Commission’s 2019 ETF Rule, funds are permitted
the use of custom creation/redemption baskets. This change effectively enables
a form of active basket management during the ETF’s arbitrage process. In this
paper, I show that the uptake of custom baskets has heterogeneous effects on the
microstructure of corporate bond ETFs. While custom baskets enhance the liquid-
ity transformation of bond ETFs, this comes at a cost, as they concurrently produce
larger index tracking errors. To isolate these effects empirically, I exploit the 2019

ETF Rule as a quasi-natural experiment. My findings substantiate the presence of
a trade-off between liquidity enhancement and tracking error minimization, and
underscore the role of custom baskets as contributors to this trade-off.

JEL classifications: G12, G14, G18, D47
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1 introduction

In this paper, I investigate whether an ETF’s basket construction method is a key
determinant of its (market) microstructure. Basket construction is a pivotal element of
fund design. However, the economic implications of competing basket construction
methods have received relatively little attention in the existing academic literature
on ETFs. Until recently, all newly established basket-based funds used a standard
(in-kind) pro-rata approach. Unless an exemptive order had been obtained by the
fund sponsor prior to 2006, custom basket use was prohibited in the US.

The picture looks different today. With the promulgation of SEC Rule 06c-11, known
informally as the 2019 ETF Rule, all funds get to choose between two competing basket-
based replication methods: (i) pro-rata, where baskets replicate the full portfolio in
exact proportion to its holdings; and (ii) custom, where the fund is allowed to select
specific assets that may differ from the benchmark index for basket delivery. This
means that, under custom basket representation, an ETF can hold index assets at
weights that differ from the benchmark, and it can hold proxy assets that are not
constituents of the benchmark it is designed to track. Custom basket replication is
ubiquitous in bond ETFs due to the highly fragmented and illiquid nature of the
underlying bond market, making precise replication more challenging. 1

The contribution of this paper is to draw causal inferences on how basket replication
methods impact ETF liquidity and tracking errors. This has important implications
for ETF investors, fund managers and policymakers, as it informs on optimal ETF
design and fund selection. Policy relevance emerges from the fact that custom basket
replication relies on negotiations between the fund issuer and authorized participants
(APs), who jointly agree on a list of accepted assets for delivery in creation and
redemption baskets. Pan and Zeng (2023) find that this process may result in conflicts
of interests when APs occupy a dual role as bond dealers and as ETF arbitrageurs.
In such cases, APs may have incentives to leverage the flexibility of custom basket
replication to optimize inventory management, potentially leading to increased ETF
mispricing.

Custom basket replication is the predominant replication method in the rapidly
growing bond ETF market. As illustrated in Figure 1, both net assets and fund counts
for U.S. bond ETFs have grown significantly. Bond ETFs currently make up 19% of
the overall U.S. ETF market, and they are capturing an increasing market share of the

1 The prohibition on custom baskets primarily impacted new fund issuers, as many incumbent firms
held exemptive orders and were therefore unaffected. Nonetheless, the introduction of the ETF Rule
serves as a useful instrument that allows me to empirically assess the economic significance of custom
basket replication.
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market for ETFs. This growth is also fueled by the liquidity transformation service
that bond ETFs provide. Unlike the underlying bond securities, which can be difficult
to trade due to fragmentation and illiquidity, bond ETFs are traded on exchanges like
equities, resulting in greater liquidity. This paper aims to examine the role of custom
baskets in further facilitating liquidity transformation.

Figure 1.
Total net asset values and fund counts of US bond ETFs. This figure shows an annual time
series plot of the the total net asset value and fund count of bond ETFs in the US from 2002

to 2022. The red line marks the effective date of the 2019 ETF Rule on December 23, 2019.
Following a one-year transition period, previously granted exemptive orders were rescinded
on December 22, 2020.

I show that custom baskets have a heterogeneous effect on the microstructure of
corporate bond ETFs. While custom baskets enhance ETF liquidity, they concurrently
widen index tracking errors. My findings corroborate recent work from Koont et al.
(2024) and Brogaard et al. (2024), who also find evidence for the existence of a trade-off
between liquidity transformation and tracking errors during ETF arbitrage. In my
main regressions, custom baskets have a positive impact on two measures of liquidity:
they tighten the effective half-spread by up to 62 basis points and the realized half-
spread by up to 84 basis points, both at the 1% level. This result is economically
significant because it amounts to approximately 10% and 13% of the mean effective
and realized spreads, respectively. At the same time, index tracking errors widen by
up to 1.38 percentage points.

My empirical identification strategy leverages a recent policy change in the US. I
exploit the introduction of the 2019 ETF Rule, which lifts a prior ban on the use of
custom baskets. It thereby induces variation in the adoption of custom baskets without
feasibly impacting other determinants of ETF microstructure. Prior to the regulatory
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change, only funds that gained an exemptive order until 2006 were able to employ
custom basket replication. These funds are unaffected by the legislation and serve
as the control group. All other funds are affected and hence part of the treatment
group. This setup is robust to potential endogeneity concerns because the treatment
assignment induced by the policy change acts as a quasi-natural experiment and can
reasonably be assumed to be random.

I conduct my empirical analysis in a two-step approach, following Foucault et al.
(2011). The first part of my empirical strategy is to pursue a difference-in-differences
setup. The identifying assumption in the above set-up rests on the condition that
parallel trends are upheld. Provided that this condition holds, the interactive term
represents the causal effect of the treatment on the dependent variable. However,
if the empirical distributions of treated and control groups differ systematically on
factors such as fund size, reference benchmark index, or average credit rating and
duration of underlying holdings, and if the time series of ETF liquidity and tracking
errors depends on these systematic differences, the estimate could be biased. In the
subsequent analysis, I therefore test for systematic differences between treated and
control funds, and perform quartile matching, percentage difference matching and
propensity score matching to address this concern.

Subsequently, I conduct a number of further robustness checks. First, I check if
my results depend on the length of the sample period around the treatment event.
I perform all econometric regressions using a 12-month, a 24-month as well as a 36-
month sample period, equally distributed around the effective date of the legislation.
Second, I test for a potential anticipation effect using the announcement date and the
starting day of the transition period as alternative treatment dates. Third, I winsorize
the data at the 99% level to account for data quality concerns, while also presenting
unwinsorized results for comparison. Fourth, I show a placebo test. Finally, I re-run
the regressions excluding both the transition period and the COVID-19 period. This
approach aligns with Haddad et al. (2021) and addresses the issue of stale NAV prices
caused by the liquidity freeze in the bond market during the pandemic.

This paper is closely related to two recent studies on ETF microstructure. Koont
et al. (2024) show that corporate bond ETFs actively steer their portfolios by selectively
preferring liquid assets during physical replications. Similarly, Brogaard et al. (2024)
find that ETF sampling increases return co-movement of liquid underlying securities.
Consistent with both contributions, I also highlight the increasingly active decision-
making of purportedly passive funds. While Koont et al. (2024) focus on the role
of cash in the basket, Brogaard et al. (2024) investigate a phenomenon called index
sampling, where fund managers create shares using a representative sample of an
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index’s securities instead of including each index constituent. In contrast, my focus is
on custom creation and redemption baskets, and the flexibility to deliver proxy assets,
a related but distinct concept. Several other studies also highlight that ETFs may
pursue active strategies. Cheng et al. (2019) find that some ETFs perform securities
lending. Cong et al. (2024) find that some ETFs perform factor investing. In contrast,
this paper focuses on active portfolio management achieved through the channel of
authorized participants.

Custom baskets yield increased flexibility to APs, allowing them to substitute
underlying assets with proxy assets that do not necessarily have to be part of the
benchmark index. In practice, these decisions often involve negotiations between the
AP and the fund sponsor. The AP selects proxy assets from a list of accepted assets
published daily by the fund sponsor for the following trading day. With this paper, I
add to the literature on APs (Pan and Zeng (2023), Gorbatikov and Sikorskaya (2022),
Shim and Todorov (2023)). Dannhauser and Karmaziene (2023) find that bonds have
higher inventory costs when they are included in creation baskets. Helmke (2023)
finds that ETFs may be less liquid than mutual funds due to AP balance sheet costs.
Reilly (2022) finds that APs deliver underperforming bonds in creation baskets.

This paper also builds on theoretical work on the asset pricing implications of
exchange-traded funds. Malamud (2016) and Cespa and Foucault (2014) build a
dynamic equilibrium model that presents share creations and redemptions as an infor-
mation propagation process. Cong et al. (2024) build a model of optimal composite
security design for liquidity trading with common risk factors. Pan and Zeng (2023)
predict how APs optimally arbitrage in response to relative mispricings between the
ETF and bond markets. Theoretical models often rely on an in-kind pro-rata represen-
tation, as this was customary in ETF markets until recently. This paper complements
these models by showcasing the aggregate impact of a deviation to custom baskets. In
doing so, it also informs the understanding of optimal ETF design.

In addition, this paper adds to the growing corpus of empirical studies on ETFs.
In the context of equity markets, Ben-David et al. (2018) show that ETF ownership
increases volatility of stocks, and Da and Shive (2018) show that it increases return
co-movement. Israeli et al. (2017) determine that ETF trading amplifies the trading
cost of stocks. This paper adds to the body of literature on bond ETFs. Dannhauser
(2017) shows that ETF ownership lowers bond yields due to a migration of liquidity
traders from the underlying to the ETF market. Holden and Nam (2017) observe its
impact on corporate bond liquidity, while Agarwal et al. (2021) highlight its influence
on liquidity co-movement.
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The rest of the paper is structured as follows: section 2 describes details on an
institutional framework on the creation and redemption mechanism with custom
baskets, section 3 describes the data, section 4 provides motivating evidence, section
5 develops the hypotheses, section 6 outlines the identification strategy, section 7

discusses the main empirical results and robustness checks, and section 8 concludes.

2 the creation and redemption process

The purpose of this section is to provide the reader with a background on share
creations and redemptions, the role of custom baskets within that process, and the
institutional framework surrounding the ETF Rule.

ETF shares can be freely traded on the securities exchange but their value is
designed to mimic a portfolio of underlying assets. Consequently, ETFs operate with
a dual pricing structure: the market price of the ETF itself and the net asset value
(NAV) of the underlying assets. To maintain alignment between these two prices, fund
sponsors rely on designated market makers, known as authorized participants, to
arbitrage away price deviations between ETF price and the NAV.

Authorized participants achieve this arbitrage by creating or redeeming ETF shares
through one of two methods: cash or basket-based replication. In cash creations,
the AP provides cash to the ETF fund, which the fund sponsor then uses to buy
underlying securities, with the AP receiving new ETF shares in return. For cash
redemptions, the AP returns ETF shares to the fund and receives cash. The fund
sponsor maintains responsibility for buying and selling the underlying assets. This
method is straightforward but less common, often used for specialty funds or those
with specific regulatory constraints.

The basket-based replication method is more prevalent and involves the AP in
directly managing the underlying securities. When the ETF trades at a premium to
NAV, the AP purchases the underlying assets in the open market, bundles them into
distinct unit sizes known as creation units, and exchanges them with the fund sponsor
for new ETF shares. Conversely, when the ETF trades at a discount to NAV, the AP
buys ETF shares on the open market and simultaneously sells the underlying assets in
the ETF portfolio. They then redeem those shares with the fund sponsor in exchange
for the basket of underlying assets. Figure 2 depicts this process.

The standard basket-based approach is in-kind pro-rata, which means that the
AP buys or sells the underlying asset in the exact weights as they appear in the
benchmark. With the promulgation of the ETF Rule, the role of custom baskets has
become increasingly important. In a custom basket, the AP can deliver or redeem a
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unique mix of securities that may not exactly reflect the ETF’s benchmark, as long as it
aligns with the fund’s investment objectives and regulatory guidelines. This approach
is preferred by funds with illiquid underlying securities that are difficult to trade, such
as corporate bonds. In a custom basket, the AP can deliver or redeem a unique mix of
securities that may not exactly reflect the ETF’s benchmark, as long as it aligns with
the fund’s investment objectives and regulatory guidelines.

Under custom basket replication, the ETF sponsor and AP negotiate on the names
and quantities of assets accepted in a basket. Every day, the ETF sponsor publishes
the creation and redemption baskets for the next trading day. The objective function
of the ETF sponsor is to minimize the index tracking error and transaction costs. The
profit function of the AP depends additionally on the inventory risk on its balance
sheet. Once a day, typically until 4 pm or sometimes earlier for bond ETFs, the AP can
issue an order to create or redeem shares with the fund sponsor, who then approves
the order.

Funds gained the ability to use custom baskets with the introduction of the ETF
Rule on September 26, 2019. The rule became effective on December 23, 2019, with a
one-year transition period, meaning that by December 22, 2020, all prior exemptive
orders were rescinded, and funds were required to comply with the new regulations.
Since the SEC stopped issuing broad exemptive orders for custom baskets around 2006,
only newer funds were significantly impacted by the ETF Rule, while many larger,
older funds were largely unaffected and serve as a control group in my econometric
analysis.

To use custom baskets under the ETF Rule, funds must adopt specific internal
procedures, including creating detailed policies on the construction and acceptance
of custom baskets, updating disclosures on their websites, and maintaining updated
records. This includes amending SEC Form N-1A, Form N-8B-2, and Form N-CEN.
However, these filings do not provide a precise timeline for when funds began
complying, as many funds were already in compliance with the first two forms, and
Form N-CEN is only filed annually. As a result, for the purpose of analysis, I run an
at-will treatment approach, using the rule’s effective date as the first point at which
funds could adopt custom baskets. This approach implies that my results represent a
lower bound, as not all funds would have immediately transitioned from pro-rata to
custom basket replication at that time.
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Figure 2.
ETF Creation and Redemption Process. This figure illustrates the share creation and re-
demption process of an ETF. In a creation event, an authorized participant (AP) purchases
the underlying assets of the ETF and delivers them to the fund in exchange for newly issued
ETF shares.These new shares are then sold on the secondary market, where ETF investors buy
and sell shares among themselves. When ETF investors buy shares on the secondary market,
they are purchasing existing shares from other investors. If there is high demand for the ETF
and a shortage of available shares, APs may initiate the creation process to increase supply
(Lettau and Madhavan (2018)). This is depicted in the figure below by flow of cash from the
ETF investor to the AP in exchange for ETF shares. The AP acquires the ETF shares via the
outer circle flow, by exchanging underlying securities for ETF units with the fund sponsor. It
can source the underlying with the received cash from the open market, or from assets sitting
on its balance sheet. The reverse flow occurs during a redemption event. The AP acquires ETF
shares from the secondary market and returns them to the fund in exchange for a basket of
the underlying assets, which reduces the number of shares in circulation. This typically occurs
when ETF investors are selling their shares and there is an excess supply. These transactions
are conducted in the primary market, where new shares are created or redeemed in large
blocks known as creation units, typically in lots of 50,000 shares and sometimes ranging from
25,000 to 100,000 shares, depending on the specific fund. The size of these creation units can
contribute to temporary premiums or discounts between the ETF price and its NAV, as APs
only engage in creation or redemption activities when the price discrepancy is sufficiently large
to cover the transaction costs and operational expenses involved. Additionally, the liquidity of
the underlying assets influences the premium or discount of an ETF relative to its NAV, with
illiquid assets typically leading to larger premiums or discounts due to higher transaction costs
and market impact, while liquid assets facilitate more efficient arbitrage and tighter alignment
with NAV.
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3 data

Data on authorized participants is sourced from SEC Form N-CEN filings, which
registered investment companies are required to submit annually. This form includes
detailed information on authorized participants, including entity identifiers and the
dollar amounts of each AP’s creation and redemption volume per fund. It also contains
a dummy variable indicating whether an ETF relied on Rule 06c-11 in a given fiscal
year. Although the requirement to file Form N-CEN only began in July 2018, making
it a relatively novel dataset, it has already been used in research by Gorbatikov and
Sikorskaya (2022), Zurowska (2022) Xiao (2022) and Du (2023), among others. I clean
the filings data by removing duplicate filings as well as filings that do not cover the
full fiscal reporting period.

The resulting dataset serves as the basis for the motivational evidence discussed in
section 5. It covers 1,106 unique ETFs spanning from Q3 2018 to Q2 2024 and involves
67 unique APs. Each ETF typically has a higher number of registered APs compared
to active APs. On average, an ETF has 35 registered APs, though 28 of them never
participate in creation or redemption transactions. Therefore, I differentiate between
registered APs and active APs, with the latter defined as those that have a non-zero
creation or redemption value in a given year.

The main empirical analysis draws on ETF data from multiple sources. I define the
ETF universe using tickers extracted from the CRSP Mutual Fund database, filtering
specifically for exchange-traded funds and corporate bond funds based on share codes
and CRSP object codes. Data on each ETF’s issuing company and inception date are
sourced from Bloomberg. This information is used to assign funds to the treatment
and control groups. Funds that belong to an issuing company established before 2006

are categorized into the control group, as they had the opportunity to file exemptive
orders. Newer funds fall into the treatment group. The control group includes fewer
ETFs than the treatment group (8,936 in the control group versus 9,115 in the treatment
group). However, because many of the largest funds belong to older issuing companies
in the control group, its total NAV is significantly higher. The NAV of the control
group is 4.9 trillion USD, while the NAV of the larger treatment group is 4.5 trillion
USD. Additionally, I use Bloomberg to calculate ETF tracking errors. From the Trade
and Quote (TAQ) database, I collect intra-day effective and realized spreads, which
are high-frequency liquidity measures. All variables are observed at the fund-month
level, and further details on the variables of interest are provided in Section 3.1.

Table 1 shows summary statistics for treatment and control groups. I report the
mean and standard deviation of all main variables of interest and of ancillary variables.
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Table 1.
Summary Statistics for Treated and Control Groups. This table presents summary statistics
for the data set used in this study. I report general and microstructure statistics, split between
treatment and control groups. For each variable, I present mean, standard deviation and
sample size.

Variable Treated Control

Mean SD N Mean SD N
Net Asset Value ($ bn) 4,545 1,021 9,115 4,931 666 8,936

Effective half-spread (%) 6.21 3.77 9,115 3.71 2.05 8,936

Realized half-spread (%) 6.25 53.67 9,115 2.08 9.64 8,936

Order imbalance ratio (%) 44.17 11.59 9,115 30.13 8.74 8,936

30-min variance ratio (%) 40.62 213.55 9,115 61.19 487.77 8,936

Tracking Error (%) 0.46 0.42 406 0.62 0.57 2,236

A potential concern is that the empirical distributions of treatment and control groups
differ systematically. Figures 3 and 4 illustrate this point by showing the distributions
of total net assets, benchmark indeces, as well as average credit ratings and duration
of underlying bonds for each group at the beginning of my sample period. It can
be seen that while empirical distributions differ, some overlap exists. This property
is useful as it enables me to control for differences in these dimensions by using a
matched sample approach. Section 5 explains the matching procedure in detail.
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Figure 3.
Histograms and kernel densities for ETFs. This table presents histograms and kernel densities
on the ETFs in the data set. Plot (a) shows the distribution of the log dollar value of NAV for
the treatment group, plot (b) shows the equivalent distribution for the control group, plot (c)
shows frequencies of the corresponding benchmark indices for the treatment group, and plot
(d) shows the equivalent frequencies for the control group.
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Figure 4.
Histograms and kernel densities for underlying holdings. This table presents histograms
and kernel densities on the underlying assets of the ETFs in the data set. Plot (a) shows the
distribution of the duration of the underlying bonds for the treatment group, plot (b) shows the
equivalent distribution for the control group, plot (c) shows distribution of credit ratings of the
underlying bonds within the treatment group, and plot (d) shows the equivalent distribution
for the control group. The red line in plots (c) and (d) signifies the cutoff between investment
grade and high yield ratings.

3.1 Variables of interest

The main variables of interest are the effective and realized half-spreads, and the
tracking error.
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The effective half-spread measures trading costs using prices actually obtained
by investors. the transaction cost of executing a trade relative to prevailing bid and
ask prices, reflecting the impact of liquidity on trade execution. In line with the
microstructure literature (see Foucault et al. (2023)), it is given as:

Se ≡ d · (p − m)

m
, (1)

where d is the order direction indicator and equals 1 for buyer-initiated and -1 for seller-
initated trades, and m is the midquote on the market prior to a transaction executed at
price p. The effective spread can be interpreted as a measure of a transaction’s impact
on the price, because it measures the deviation of the actual execution price from the
midprice prevailing just before the transaction. It’s value is strictly positive.

In contrast, the realized half-spread adopts the viewpoint of liquidity providers. It
measures the difference between the transaction price and the midprice at some time,
∆, after the transaction, where the interval ∆ should be long enough to ensure that
market quotes have adjusted to reflect the price impact of the transaction (Foucault
et al. (2023)). Let pt be the price of the transaction at time t, dt the direction of the
market order triggering it, and mt the midprice at time t. The realized half-spread for
this transaction is then given by:

Sr = dt(pt − mt+∆) = dt(pt − mt)− dt(mt+∆ − mt), (2)

where the first term, dt(pt −mt), is the effective spread, and the second one, dt(mt+∆ −
mt), is the price impact of the transaction, defined as the change in the midprice that
occurs after it. The overall expression can thus be seen as a measure of profit earned
by the liquidity supplier on the transaction at time t if he unwinds his position at
the midprice t + ∆. Using the definition of the effective spread from equation 1 in
equation 2, one can rewrite the average realized bid-ask spread as:

E(Sr) = E(Se)− E(dt(mt+∆ − mt)) (3)

This expression shows that the average realized spread is smaller than the average
effective spread if E(dt(mt+∆ − mt)) > 0, that is, if on average transactions have
a positive price impact. Interestingly, if the effective spread is on average smaller
than the price impact, liquidity providers would lose money on average, as E(Se) <

E(dt(mt+∆ − mt)).
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Finally, the ETF tracking error measures the deviation between ETF and bench-
mark index returns. It quantifies the volatility of the difference between the ETF’s
performance and that of the index it seeks to replicate, and is given as:

Tracking Error =

√√√√ 1
N

N

∑
t=1

(RETF,t − RBenchmark,t)
2 (4)

where RETF,t represents the return of the ETF at time t, RBenchmark,t denotes the return
of the benchmark index at the same time, and N signifies the total number of periods
considered for the calculation.

4 motivating evidence

The purpose of this section is to introduce stylized facts on the role of authorized
participants during ETF arbitrage, and to illustrate how their involvement varies across
different replication methods.

A natural starting point is to explore correlations between custom basket adoption
and AP activity. Authorized participants are the market participants who actively
drive creations and redemptions. Literature on Authorized participants. Comment on
why custom basket use impacts APs.

Using Form N-CEN filings data from the SEC, I compute the number of registered
authorized participants and active authorized participants for each fund since 2018. I
define an active AP as a registered authorized participant who has performed at least
one creation or redemption in the filing period. Table A.2 in the appendix show a list
of all unique APs in the dataset. To measure market concentration of APs, I calculate
the Herfindahl—Hirschman index (HHI). This is given as the sum of squared market
shares of each AP:

HHIi = ∑
j

(
Sji

Si

)2

where Sji denotes the j-th AP’s aggregate transactions with the i-th ETF. Under this
specification, HHI can take values between 0 and 1, with 1 corresponding to the case
with only one active AP. I discard all fund-quarter observations where the number
of active APs is 0, as the above ratio is then undefined. When the number of active
APs is 0, the above ratio is undefined; however, in the empirical analysis, I assume it is
equivalent to the monopoly by setting HHI to 1.

A preliminary examination of the data, as illustrated in Figure 5, reveals histograms
that show the distribution of active APs and the HHI for ETFs utilizing custom basket
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replication in comparison to those employing conventional replication. The findings
indicate that funds adopting custom basket replication generally exhibit a lower
count of active APs. It is crucial to recognize that active and registered AP counts
differ fundamentally; active APs are those who engage in transactions and contribute
meaningfully to market activity, while registered APs may include entities that do not
participate in creations or redemption at all. As such, relying solely on registered AP
counts could lead to misleading conclusions regarding market dynamics. Furthermore,
the histograms of the HHI substantiate the conclusion that custom basket replication
promotes a more concentrated market structure. The HHI data further illustrate that
while the number of active APs diminishes for custom basket ETFs, the concentration
of creations and redemptions, as indicated by the HHI, increases, thereby underscoring
the evolving dynamics within these funds.
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Figure 5.
Histogram of active APs and HHI indeces This figure presents four histograms, each overlaid
with a kernel density plot. Panels (a) and (b) show histograms for the number of active
authorized participants (APs), while panels (c) and (d) show histograms for the Herfindahl-
Hirschman Index (HHI). Panels (a) and (c) pertain to custom basket ETFs, whereas panels (b)
and (d) correspond to non-custom basket ETFs.

I complement my observations more formally by examining whether there is a
relationship between the usage of custom baskets in exchange-traded funds (ETFs) and
various factors such as the count of registered authorized participants (APs), active
APs, and the Herfindahl-Hirschman Index (HHI) values associated with creations,
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redemptions, and total flows. To study this question, I estimate the following binary
logistic regression:

logit(CBit) = β0 + β1APit + ϵit,

where CBit is a binary indicator representing whether custom baskets are used for
ETF i in quarter t, and APit represents registered and active AP counts.

Table 2.
Logit Regression Results for Custom Basket Use This table presents the results of logit
regressions analyzing the determinants of custom basket usage among ETFs. The dependent
variable CBi is a binary dummy indicating whether a custom basket is used. The regression
equation is specified as follows:

Logit(CBit) = β0 + βAP · APit + ϵit

where Yi is the binary indicator for custom basket use, and APi represents the number of
authorized participants. All models employ ETF-clustered robust standard errors.
In Model (1), the coefficient βAP refers to the effect of the number of registered authorized
participants on the log-odds of using a custom basket. In Model (2), βAP reflects the effect
of the number of active authorized participants on the log-odds of custom basket use. The
intercepts and McFadden’s pseudo-R2 values are also reported.

(1) (2)

Number of registered APs 0.052∗∗∗

(0.056)
Number of active APs −0.055∗∗∗

(−0.014)
Intercept −1.299∗∗∗ 0.869∗∗∗

(0.21) (0.116)

Observations 1,106 1,106

McFadden’s Pseudo−R2
0.061 0.011

Standard errors in parentheses
* p < 0.1, ** p < 0.05, *** p < 0.01

My empirical results are shown in Table 2. The logit regressions reveal significant
relationships between custom basket usage and the AP count. Custom basket use is
associated with a higher registered AP count but a lower active AP count. The results
from the logit regression presented in Table 2 indicate the relationship between the
number of authorized participants and the likelihood of using a custom basket in ETFs.
Odds ratios are given as e0.052 ≈ 1.0534 for registered AP counts (model 1) and as
e−0.055 ≈ 0.9460 for active AP counts (model 2). This indicates that for each additional
registered AP, the likelihood of custom basket use increases by approximately 5.34%,
whereas for each additional active AP, the likelihood decreases by approximately
5.4%. This finding underscores that the likelihoods move in opposite directions,
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emphasizing that the active AP count may provide a more meaningful measure of
market concentration when evaluating custom basket usage.

I complement the first analysis with further logistic regressions based on the
Herfindahl-Hirschmann index for creations, redemptions and total flows. In Table 3, I
estimate:

Logit(CBit) = β0 + βHHI · HHIit + ϵit

where CBit is the binary indicator for custom basket use, HHIit represents the
Herfindahl-Hirschman Index (HHI) for creations, redemptions, or all flows, and
ϵit is the error term. All models employ ETF-clustered robust standard errors.

In regression (1), the coefficient βHHI for the Herfindahl-Hirschman Index (HHI)
for creations is significant at the 5% level, indicating that a higher HHI for creations is
associated with an increased likelihood of using a custom basket. Regression (2) shows
a significant impact of the HHI for redemptions on the log-odds of custom basket
use, also at the 5% level. Meanwhile, regression (3) demonstrates a strong positive
association with custom basket usage, as the coefficient for the HHI for all flows is
significant at the 1% level. The odds ratios indicate that a 0.1 increase in the HHI
for creations leads to an approximate 6.21% increase in the odds of using a custom
basket, calculated as e0.621·0.1 ≈ 1.0621. Similarly, for the HHI for redemptions, a 0.1
unit increase is associated with a 4.97% increase in odds, given by e0.486·0.1 ≈ 1.0497.
Lastly, a 0.1 unit increase in the HHI for all flows results in an approximately 8.99%
increase in the odds of custom basket use, calculated as e0.861·0.1 ≈ 1.0899.
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Table 3.
Regression Results for Custom Basket Use This table presents the results of logit regressions
analyzing the determinants of custom basket usage among ETFs. The dependent variable CBi
is a binary dummy indicating whether a custom basket is used. The regression equation is
specified as follows:

Logit(CBit) = β0 + βHHI · HHIit + ϵit

where Yi is the binary indicator for custom basket use, HHIi represents the Herfindahl-
Hirschman Index (HHI) for creations, redemptions, or all flows, and ϵi is the error term. All
models employ ETF-clustered robust standard errors.
In Model (1), the coefficient βHHI for HHI for creations indicates the effect of HHI on the
log-odds of using a custom basket. In Model (2), the coefficient reflects the impact of HHI
for redemptions on the log-odds of custom basket use. In Model (3), the coefficient pertains
to the HHI for all flows, demonstrating its effect on the log-odds of custom basket use. The
intercepts and McFadden’s pseudo-R2 values are also reported.

(1) (2) (3)

HHI for creations 0.621∗∗

(0.252)
HHI for redemptions 0.486∗∗

(0.218)
HHI for all flows 0.861∗∗∗

(0.272)
Intercept 0.229∗ 0.279∗∗ 0.146

(0.118) (0.108) (0.121)

Observations 1,106 1,106 1,106

McFadden’s Pseudo−R2
0.004 0.003 0.007

Standard errors in parentheses
* p < 0.1, ** p < 0.05, *** p < 0.01

5 hypothesis development

In this section, I formulate testable hypotheses to guide my empirical analysis on the
microstructure implications of custom basket replication.

My first hypothesis delineates the effects of custom basket replication on ETF
liquidity. Since ETF sponsors use custom baskets to replace hard-to-source assets with
more liquid proxy assets, I predict that the aggregate liquidity of underlying assets in
custom basket replication is higher than in pro-rata replication, and that, as a result,
the ETF itself will be more liquid. This should be reflected in ETF spreads.

Hypothesis 1. (ETF Liquidity: half-spreads).
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An ETF that uses custom basket replication should trade with tighter effective and realized
half-spreads than an equivalent ETF that uses pro-rata replication.

Hypothesis 1 relies on the premise that there exists a monotonically increasing
function f (·) that maps the liquidity of the underlying assets, LUA, to the liquidity of
the ETF, LETF. Given the monotonic increase, I expect that f ′(LUA) ≥ 0 for all LUA,
indicating that as LUA increases, LETF also increases or remains constant, but does not
decrease.

My second prediction is that custom baskets increase the ETF’s index tracking
error,

√
Var(RETF − RBM). I motivate this hypothesis by considering the added

flexibility that custom baskets provide in the composition of ETF portfolios. They
allow deviations of the asset weights relative to the benchmark composition, and, in
theory, they also allow the inclusion of assets that are entirely outside the benchmark.
Tracking errors can be measured using various metrics such as the standard deviation
of returns, mean absolute deviation, and root mean square deviation.

Hypothesis 2. (Index tracking errors).

Custom baskets increase the index tracking error of an ETF.

6 identification strategy

Isolating the effect of custom baskets on ETF dynamics is challenging because unob-
served confounding variables may also affect ETF spreads and index tracking errors.
For example, either could be driven by daily trading volumes, the number of autho-
rized participants per ETF or other unobserved factors. To overcome this difficulty,
I pursue a difference-in-differences approach and complement this with matching
regressions.

6.1 Diff-in-diff

The promulgation of SEC Rule 06c-11 in December 2019 provides a robust quasi-natural
experiment because its implementation is plausibly exogenous to ETF spreads and
index tracking errors, and it is unlikely to have been influenced by the determinants
of these variables. The legislation prescribes a clear separation between affected and
unaffected funds, mitigating self-selection issues. In a diff-in-diff setup, I run the
following regression:

Yit = α + β1Treatedi + β2Postt + β3Treatedi × Postt + ϵit, (5)
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where Yit is the measure of interest for fund i in month t. Postt is a dummy variable
equal to one after 23 December 2019, which marks the post-transition date of the
ETF Rule, and Treatedi is equal to one if fund i has its inception date after 2006. In
the event of serial correlation in the error terms for a given fund, the OLS standard
deviations of the estimates in equation 5 may be biased. I therefore compute standard
deviations for my estimates by computing double-clustered standard errors. In other
words, I allow for correlation in residuals over time and across funds (see Thompson
(2011)). In the above equation, Treatedi controls for differences in outcomes between
treated and control groups that are fixed over time and Postt controls for factors that
may affect the development of the outcome variable over time across all funds.

6.2 Parallel trends

The identifying assumption in this empirical set-up rests on the condition that parallel
trends are upheld. This implies that, absent the treatment, both the treated and
control groups would have experienced similar changes in the outcome variable over
time. The parallel trends assumption is inherently untestable. Tests of pre-treatment
coefficients in event studies often lack sufficient power, making a failure to reject the
null hypothesis inconclusive regarding the existence of pre-trends (see Roth (2022)).
Instead, figure 6 presents event study plots on the variables of interest. The red line
indicates the treatment date, corresponding to the post-transition date on 22 September
2019. The green line represents the pre-transition date, one year earlier, and the blue
line denotes the announcement date in September 2018. The plots reveal that the
confidence intervals for the pre-treatment coefficients predominantly include zero for
effective and realized spreads but not for the tracking error. At the same time, the
tracking error exhibits a more pronounced trend shift following the treatment.

21



Figure 6.
Event study plots. This figure presents event study plots on the difference-in-differences
(DiD) analysis for (a) effective spread, (b) realized spread, and (c) tracking error. The y-axis
represents the coefficient estimates. I use these plots to assess parallel trends by comparing the
pre-event and post-event trajectories of the treated and control groups.

An issue with the diff-in-diff framework is that systematic differences between
treated and control groups can undermine the parallel trends assumption, leading to
biased estimates of treatment effects. In the next section, I perform various matching
regressions as a further robustness check.

To address this, researchers can conduct pre-treatment tests, match covariates, or
use alternative control groups to ensure that the parallel trends assumption holds.

6.3 Matching regressions

If treated and control groups differ systematically, these differences may confound
the estimated treatment effect. For instance, variations in (i) net asset value, (ii)
benchmark composition, or the (iii) average credit rating and (iv) average duration
of underlying bonds between treated and control ETFs could lead to divergent pre-
treatment trends, independent of the treatment itself. To address this issue, I match
each fund in the treated group with a counterpart in the control group based on these
four characteristics. I then estimate the following model:

Yit − Ymatch
it = α + δ1Postt + ηit (6)
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where Yit is the outcome variable for fund i in month t and Ymatch
i is the outcome

variable for the matched fund in the control group. δ1 measures the average change in
the difference Yit −Ymatch

it associated with the introduction of the ETF Rule. Consistent
with the diff-in-diff approach, I use double-clustered standard errors to account for
both clustering at the fund level and within-period correlation in the data.

In line with Foucault et al. (2011), I use three different matching methods to
ensure that the results are robust to the matching method: (1) quartile matching,
(2) percentage difference matching, and (3) propensity score matching. For QM, I
calculate average net asset values and duration of the ETFs in 2017, and group stocks
in quartiles of NAV and duration. Thus, I obtain 16 groups of ETFs. The variable
is then defined as the average value of over all control stocks that are in the same
group as treated stock i. For PDM, I calculate for each treated fund the percentage
differences between its NAV and the NAV of each control stock and its average
duration and the average duration of each control stock in December 2017 (Foucault
et al. (2011), Guo et al. (2011)). I match each treated fund i with a control fund that
minimizes the maximum difference between the two computed differences for NAV
and duration. I exclude treated funds from the sample where the distance between
fund i and its nearest neighbour exceeds 10%. For PSM, I estimate propensity scores
for each unit using a logistic regression model. The propensity score êi is the predicted
probability that fund i newly obtains the right to use custom baskets based on its
observed characteristics Xi. The dependent variable of the logistic regression is the
binary treatment indicator Di, and the independent variables are the covariates Xi.
Mathematically, êi = Pr(Di = 1 | Xi) represents the conditional probability of unit i
receiving the treatment given its observed covariates Xi. First, I estimate the following
logistic regression:

Treatedi = α + βln(NAVi) + γBMi + θDi + λCRi + νi (7)

where Treated equals 1 if fund i has its inception after 2006, Si is the average total
net asset value of fund i over the year 2017, BMi is a categorical variable for the
corresponding benchmark, Di is the average duration of underlying bonds, and CRi

is an indicator of the credit rating of underlying bonds with values 1 for investment
grade ETFs and 0 for high-yield ETFs. With these estimates, I calculate the likelihood
that a fund has an inception after 2006 given its total net assets and daily turnover. I
then pair each treated fund with the control group fund that has the nearest score.
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7 main empirical findings

This section presents empirical findings on custom basket replication in ETFs. Section
7.1 analyzes effects on ETF spreads, and Section 7.2 on index tracking errors. My
results indicate that custom baskets tighten bid-ask spreads, enhancing liquidity, but
at the cost of increased tracking errors. These findings are robust to various robustness
checks.

7.1 Spread size

Following Hypothesis 5, custom basket replication should tighten spreads. The
intuition behind this is straightforward: by replacing illiquid underlying securities
with more liquid proxy assets, the overall liquidity of the ETF’s holdings improves.
Given the interconnectedness between the markets for ETFs and their underlying
assets, this is likely to lead to liquidity spillover into the fund itself.

Table 4 presents the difference-in-differences results for effective and realized
spreads in Panels A and B, respectively. The coefficient estimate β2 for the interactive
variable is consistently negative across both panels and all specifications. The effective
spread values demonstrate economic significance across all models, ranging from -23

basis points within a 24-month window around the treatment (significant at the 10%
level) to -62 basis points within a 12-month window around the event (significant
at the 1% level). These estimates are economically significant, as they represent a
tightening of up to 10% relative to the mean effective half-spread for ETFs in the
treatment group. These results are based on double-clustered standard errors to allow
for correlation in residuals over time and across funds.

In contrast, my estimates for β2 related to the realized spread are also negative but
are statistically significant only for the specification with a 36-month time window
around the event. In this case, the magnitude of the tightening is 86 basis points
(significant at the 1% level), which is substantial compared to the mean realized
half-spread of 6.25% for treated funds in the sample. Although the specifications with
12- and 24-month windows are not statistically significant, it is important to note that
the empirical design is based on an at-will treatment; thus, these estimates should be
interpreted as a conservative lower bound.

The different time windows around the treatment date served as a first robustness
check to my difference-in-differences results. As a further robustness check, I perform
matching regressions. Table 6, Panels A.1 and A2. present regression results on
effective and realized spreads with quartile matching, percentage difference matching
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and propensity score matching. The magnitude of the tightening more than doubles
across all matching specifications relative to the diff-in-diff results. The effective
spreads tighten by 140 bps (percentage difference matching) to 234 bps (propensity
score matching). The realized spreads tighten by 115 bps (PDM) to 206 bps (PSM). All
matching specifications are statistically significant at the 1% level.

The different time windows around the treatment date serve as an initial robustness
check for the difference-in-differences results. To further validate these findings,
I conduct matching regressions. Table 6, Panels A.1 and A.2, presents regression
results for effective and realized spreads using quartile matching (QM), percentage
difference matching (PDM), and propensity score matching (PSM). Across all matching
specifications, the magnitude of tightening more than doubles relative to the difference-
in-differences estimates. Effective spreads tighten by 140 bps (PDM) to 234 bps (PSM),
and realized spreads tighten by 115 bps (PDM) to 206 bps (PSM), with all results
statistically significant at the 1% level. The number of observations decreases in the
matching analysis relative to the difference-in-differences specification due to the
exclusion of funds missing data on fund size, benchmark, credit rating, or duration.
Despite this reduction in sample size, the adjusted R-squared generally improves.

I conduct several further robustness checks. I test for anticipation effects surround-
ing the adoption of SEC Rule 06c-11, which was announced on September 26, 2019,
and came into effect on December 23, 2019 with a one-year transition period for com-
pliance. The main specifications above are based on the end of the transition period
on 22 December 2020 as the treatment date, as funds were likely to have finalized the
necessary administrative steps for custom basket adoption by then. Table A.4 presents
robustness tests using the announcement date and the start of the transition period as
alternative treatment dates. The evidence for anticipation effects is mixed: for effective
spreads, the signs, magnitudes, and statistical significance of the coefficients vary
across specifications, indicating an inconsistent effect. However, realized spreads dis-
play a more consistent anticipation effect, showing a tightening across all specifications,
with statistical significance at the 1% level in most cases. Despite this, the observed
magnitudes of spread tightening for the announcement and pre-transition dates are
smaller than those for the post-transition date under the main specification. While
some anticipation effect for realized spreads may be present, these results should
be interpreted cautiously, as the relatively low adjusted R-squared suggests that the
model captures only a small portion of the variation in realized spreads.

Due to the administrative steps required, funds likely adopted custom baskets at
varying intervals within the transition period, though the exact adoption date for each
fund is unobservable. However, it is reasonable to assume that most funds completed
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the adoption at some point during the one-year transition. To account for this variation,
I conduct an additional robustness check by excluding data from the transition period.
The results, shown in Table A.5, support the main findings.

The results in Table A.5 also serve as a robustness test for potential COVID-19 effects.
During the COVID-19 period, the bond market experienced significant illiquidity, and
many bond ETFs traded at a discount to NAV. By excluding data from this period,
the robustness results in Table A.5 confirm that the main findings are not driven by
the unusual bond market conditions during COVID-19. Notably, I exclude a relatively
long time period, from December 2019 to December 2020. In comparison, Haddad
et al. (2021) exclude the interval from 19 February 2020 to 16 April 2020.

Finally, I show a placebo test in Table A.6 and unwinsorized results in Table A.3.
The placebo test is based on 01 June 2018, well in advance of the announcement date.
That being said, the ETF Rule was first proposed by the SEC on 28 June 2018. A
placebo test with a date will in advance of that date would have been preferable, but
I use 01 June 2018 due to the limitations in my dataset. The results of the placebo
test show mostly non-significant results for effective and realized spreads, thereby
supporting the hypothesis. The unwinsorized results further confirm the main results.

7.2 Index tracking error

Hypothesis 5 predicts that index tracking errors should widen. Intuitively, substituting
a benchmark asset with a proxy asset can contribute to an increase in tracking error
when the proxy asset exhibits different return volatilities than the benchmark asset.

My results in Table 5 indicate that index tracking errors widen in the 24-month
and 36-month windows surrounding the event, with increases ranging from 0.7 to
1.38 percentage points. In contrast, the 12-month window shows a decrease of 0.91

percentage points in the tracking error. That being said, the 12-month period coincides
with the transition phase, which may influence the results. In the robustness check
presented in Table A.4, I find that excluding the transition period data substantially
increases tracking errors. This specification also improves the R-squared.

The matching regressions in Table 6 largely support my earlier findings. I observe
statistically significant increases in tracking error under both the QM and PSM spec-
ifications, while the PDM specification shows no significant change. This pattern
also persists in the robustness checks with alternative treatment dates shown in Table
A.4. Specifically, when analyzing both the announcement date in September 2019

and the pre-transition date in December 2019, I find that tracking error increases
under custom basket replication. In the placebo test outlined in Table A.6, the QM
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specification becomes statistically insignificant, while the difference-in-difference and
PSM specifications remain significant at the 5% and 1% levels, though with reduced
magnitudes.

8 conclusion

In this paper, I demonstrate that the introduction of custom baskets significantly
tightens both effective and realized spreads, indicating improved liquidity in the
ETF market. This tightening effect is robust across various time windows, with
realized spreads showing more pronounced tightening over longer horizons. However,
while these improvements in liquidity and arbitrage efficiency are beneficial, they
are accompanied by increased tracking errors over medium to longer time horizons.
These findings suggest that regulatory interventions aimed at improving liquidity and
arbitrage efficiency must also consider potential trade-offs in tracking accuracy.
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Table 4.
Diff-in-Diff Results for ETF Spreads. In this table, I estimate the impact of the ETF Rule on
ETF liquidity, using two alternate measures of ETF spreads. I estimate the following regression:

Yit = α + β0Treatedi + β1Postt + β2Treatedi × Postt + ϵit,

where Yit is one of the measures of ETF dynamics for fund i in month t, Postt is a dummy
variable equal to one after 22 December 2020, and Treatedi is equal to one if fund i was listed
after 2006. In panel A, Yit = Seit and in panel B, Yit = Srit. The sample period starts in
December 2017 and ends in December 2023. In brackets, I report double-clustered standard
errors allowing for correlation in residuals over time and across funds.

12-month 24-month 36-month
window window window

Panel A: Dependent variable: Effective Spread (bps)

Treated × Post (β2) -62.32***
(21.26)

-23.35*
(13.11)

-32.74***
(10.56)

Treated 266.22***
(61.07)

230.94***
(46.00)

231.48***
(42.86)

Post -219.52***
(12.78)

-149.95***
(7.28)

-146.98***
(5.56)

Constant 496.13***
(35.88)

458.64***
(28.78)

447.27***
(26.13)

Observations 5,767 12,039 18,055

Adj.R2
0.10 0.06 0.06

Panel B: Dependent variable: Realized Spread (bps)

Treated × Post (β2) -45.33

(30.30)
-15.49

(20.23)
-84.367***

(23.82)
Treated 270.92***

(60.39)
282.81***

(48.47)
348.34***

(51.48)
Post -165.36***

(13.21)
-128.67***

(7.93)
-132.35***

(8.63)
Constant 384.06***

(26.87)
374.61***

(20.34)
370.85***

(21.43)

Observations 5,767 12,039 18,055

Adj.R2
0.03 0.02 0.02

Standard errors in parentheses
* p < 0.1, ** p < 0.05, *** p < 0.01
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Table 5.
Diff-in-Diff Results for Tracking Errors. In this table, I estimate the impact of the ETF Rule
on index tracking errors. I estimate the following regression:

TEit = α + β0Treatedi + β1Postt + β2Treatedi × Postt + ϵit,

where TEit is the index tracking error for fund i in month t, Postt is a dummy variable equal
to one after 22 December 2020, and Treatedi is equal to one if fund i was listed after 2006.
The sample period starts in December 2017 and ends in December 2023. In brackets, I report
double-clustered standard errors allowing for correlation in residuals over time and across
funds.

12-month 24-month 36-month
window window window

Dependent variable: Tracking error (% pts.)

Treated × Post (β2) -0.91***
(0.22)

0.70***
(0.16)

1.38***
(0.13)

Treated 4.04***
(1.10)

2.50***
(0.92)

1.87**
(0.82)

Post -0.49***
(0.07)

-0.07*
(0.04)

-0.00

(0.03)
Constant 1.15***

(0.38)
1.01*
(0.53)

0.85**
(0.39)

Observations 3,545 7,474 11,368

Adj.R2
0.03 0.01 0.03

Standard errors in parentheses
* p < 0.1, ** p < 0.05, *** p < 0.01
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Table 6.
Matching Results. In this table, I estimate the impact of the ETF rule using various matching
methods. I estimate the following regression:

Yit − Ymatch
it = αi + δ1Postt + ϵit,

where Yit is one of the measures of ETF dynamics for fund i in month t and Ymatchit is the
value of this measure for the match of fund i in month t in the group of control stocks. I use
three different methods to choose a match for fund i in month t: quartile matching, percentage
difference matching, and propensity score matching. Estimates of the effect of the reform (δ1)
with each matching procedure are reported in columns 1, 2, and 3, respectively. In panel A.1,
Yit = Seit; in panel A.2, Yit = Srit; and in panel B, Yit = TEit. The sample period starts in
December 2017 and ends in December 2023. In brackets, I report double-clustered standard
errors allowing for correlation in residuals over time and across funds.

Variable Quartile Percentage Difference Propensity Score
Matching Matching Matching

Panel A.1: Dependent variable: Effective Spread (bps)

Post (δ1) -187.39***
(18.07)

-140.41***
(25.70)

-233.94***
(24.22)

Observations 777 336 777

Adj.R2
0.10 0.06 0.09

Panel A.2: Dependent variable: Realized Spread (bps)

Post (δ1) -152.96***
(15.38)

-115.34***
(22.59)

-206.45***
(20.82)

Observations 777 336 777

Adj.R2
0.09 0.05 0.09

Panel B: Dependent variable: Tracking Error (%)

Post (δ1) 0.18***
(0.06)

0.13

(0.11)
0.14*
(0.08)

Observations 777 336 777

Adj.R2 -0.01 -0.02 -0.02

Standard errors in parentheses
* p < 0.1, ** p < 0.05, *** p < 0.01
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Table A.2.
List of Authorized Participants. This table presents the financial institution that appear in
the N-CEN filings as authorized participants for filings submitted between July 2018 - June
2024. I filter for filings with full report length, filings from ETFs, and without missing data for
reliance on Rule 6c-11. The cleaned database contained over 197 different AP names with 67

unique LEI identifiers. After grouping APs at the parent organization, I was able to identify 51

unique AP names listed in the table below.

Authorized Participants
ABN Amro Jane Street
Banca IMI Jefferies
Bank of America Knight Capital
Barclays Macquarie Capital
BMO Capital Markets Mirae Asset Securities
BNP Paribas Mizuho
BNY Mellon Morgan Stanley
Cantor Fitzgerald MUFG
CIBC National Bank of Canada
Citadel Securities National Financial Services
CitiGroup NATIXIS
Commerzbank Natwest
Cowen and Company Nomura
Credit Suisse Pershing
Daiwa RBC
Deutsche Bank Scotiabank
EWT SG Americas
Goldman Sachs State Street
HSBC Holdings Stifel Nicolaus
Hudson River Trading TD
Industrial and Commercial Bank of China Timer Hill
Interactive Brokers U.S. Bancorp Investments
ITAU UBS
ITG Virtu Americas
J.P. Morgan Wedbush
Wells Fargo
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Table A.3.
Unwinsorized Regression Results. In this table, I estimate the impact of the ETF Rule on
ETF liquidity and tracking errors, using unwinsorized data. For the difference-in-differences
regressions, I estimate the following:

Yit = α + β0Treatedi + β1Postt + β2Treatedi × Postt + ϵit,

where Yit is one of the measures of ETF dynamics for fund i in month t, Postt is a dummy
variable equal to one after 22 December 2020, and Treatedi is equal to one if fund i was listed
after 2006. For the matching regressions, I estimate the following:

Yit − Ymatch
it = αi + δ1Postt + ϵit,

where Yit is one of the measures of ETF dynamics for fund i in month t and Ymatchit is the
value of this measure for the match of fund i in month t in the group of control stocks. I use
three different methods to choose a match for fund i in month t: quartile matching, percentage
difference matching, and propensity score matching. Estimates of the effect of the reform (δ1)
with each matching procedure are reported in columns 2, 3, and 4, respectively. In panel A.1,
Yit = Seit; in panel A.2, Yit = Srit; and in panel B, Yit = TEit. The sample period starts in
December 2017 and ends in December 2023. In brackets, I report double-clustered standard
errors allowing for correlation in residuals over time and across funds.

Variable DD Quartile Percentage Difference Propensity Score
Matching Matching Matching

Panel A.1: Dependent variable: Effective Spread (bps)

Treated × Post (β2) -66.85***
(20.79)

Treated 302.89***
(60.47)

Post (δ1) -154.25***
(8.15)

-248.54***
(39.53)

-157.35***
(33.01)

-315.34***
(50.24)

Constant 461.46***
(26.31)

226.39***
(39.53)

228.83***
(33.01)

309.94***
(115.89)

Observations 12,039 777 336 777

Adj.R2
0.03 0.05 0.06 0.05

Panel A.2: Dependent variable: Realized Spread (bps)

Treated × Post (β2) -1048.22*
(602.24)

Treated 909.82

(619.26)
Post (δ1) 160.57

(205.99)
-209.47***

(35.70)
-131.46***

(28.93)
-281.07***

(45.06)
Constant 78.34

(236.37)
192.66**
(88.10)

200.78***
(28.93)

264.79***
(100.26)

Observations 12,039 777 336 777

Adj.R2
0.00 0.04 0.05 0.05

Panel B: Dependent variable: Tracking error

Treated × Post (β2) 0.5699*
(0.3079)

Treated 2.3849

(2.0291)
Post (δ1) -0.0469

(0.0791)
0.26*
(0.15)

0.13

(0.11)
0.22

(0.16)
Constant 1.56

(1.90)
1.20

(0.98)
-0.10

(0.20)
1.07

(0.94)

Observations 7,474 777 336 777

Adj.R2
0.00 0.00 0.00 0.00

Standard errors in parentheses
* p < 0.1, ** p < 0.05, *** p < 0.01
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Table A.4.
Regression Results with Announcement and Pre-transition Dates as Treatment Dates. In
this table, I estimate the impact of the ETF Rule on ETF liquidity and tracking errors, using
the announcement date and the pre-transition date as alternative treatment dates. For the
difference-in-differences regressions, I estimate the following:

Yit = α + β0Treatedi + β1Postt + β2Treatedi × Postt + ϵit,

where Yit is one of the measures of ETF dynamics for fund i in month t, Postt is a dummy
variable equal to one after 26 September 2018 in regressions (1), (3), (5) and (7), and equal to
one after 23 December 2019 in regressions (2), (4), (6) and (8), and Treatedi is equal to one if
fund i was listed after 2006. For the matching regressions, I estimate the following:

Yit − Ymatch
it = αi + δ1Postt + ϵit,

where Yit is one of the measures of ETF dynamics for fund i in month t and Ymatchit is the
value of this measure for the match of fund i in month t in the group of control stocks. I use
three different methods to choose a match for fund i in month t: quartile matching, percentage
difference matching, and propensity score matching. Estimates of the effect of the reform (δ1)
with each matching procedure are reported in columns 2, 3, and 4, respectively. In panel A.1,
Yit = Seit; in panel A.2, Yit = Srit; and in panel B, Yit = TEit. The sample period starts in
December 2017 and ends in December 2023. In brackets, I report double-clustered standard
errors allowing for correlation in residuals over time and across funds.

Variable DD Quartile Percentage Difference Propensity Score
Matching Matching Matching

(1) (2) (3) (4) (5) (6) (7) (8)

Panel A.1: Dependent variable: Effective Spread (bps)

Treated × Post (β2) 7.23

(14.16)
10.60

(14.15)
Treated 220.02***

(50.70)
187.43***

(44.23)
Post (δ1) 13.45

(7.33)
19.84***

(7.40)
-3.11

(21.98)
-5.30

(22.03)
-77.6**
(31.21)

-83.12***
(31.30)

58.41**
(23.04)

37.85

(24.91)
Constant 381.25***

(26.74)
371.35***

(24.72)
117.83

(80.13)
110.06

(78.68)
244.65**
(121.79)

239.07**
(114.54)

194.78**
(84.38)

204.33**
(93.62)

Observations 10,712 10,940 766 768 336 336 776 768

Adj.R2
0.01 0.01 0.00 0.00 0.02 0.02 0.01 0.00

Panel A.2: Dependent variable: Realized Spread (bps)

Treated × Post (β2) -72.91**
(35.99)

-75.18**
(33.85)

Treated 300.67***
(67.70)

306.38***
(63.49)

Post (δ1) -30.54

(14.14)
-14.28

(12.55)
-87.22***
(29.31)

-73.26***
(25.58)

-119.16***
(44.81)

-115.37***
(41.13)

-60.22*
(31.50)

-38.98

(28.15)
Constant 337.48***

(29.65)
310.52***

(24.79)
133.65*
(81.23)

128.09*
(76.79)

264.50*
(143.73)

251.66*
(132.30)

268.21***
(85.29)

231.73**
(90.40)

Observations 10,712 10,940 766 768 366 336 766 768

Adj.R2
0.01 0.01 0.01 0.01 0.02 0.02 0.00 0.00

Panel B: Dependent variable: Tracking error (%)

Treated × Post (β2) 1.11***
(0.14)

1.05***
(0.14)

Treated 2.36***
(0.38)

2.18***
(0.38)

Post (δ1) 2.39***
(0.90)

0.22***
(0.82)

0.34***
(0.06)

0.35***
(0.05)

-0.03

(0.07)
-0.01

(0.07)
0.32***
(0.01)

0.43***
(0.07)

Constant 0.56*
(0.30)

0.64**
(0.27)

0.68

(0.60)
0.71

(0.63)
-0.05

(0.12)
-0.04

(0.13)
0.46

(0.68)
0.45

(0.68)

Observations 6,057 6,302 766 768 336 336 766 768

Adj.R2
0.04 0.03 0.04 0.06 -0.00 -0.00 0.02 0.05

Standard errors in parentheses
* p < 0.1, ** p < 0.05, *** p < 0.01
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Table A.5.
Regression Results without Transition Date. In this table, I estimate the impact of the ETF
Rule on ETF liquidity and tracking errors, omitting data inside the transition period. For the
difference-in-differences regressions, I estimate the following:

Yit = α + β0Treatedi + β1Postt + β2Treatedi × Postt + ϵit,

where Yit is one of the measures of ETF dynamics for fund i in month t, Postt is a dummy
variable equal to one after 22 December 2020, and Treatedi is equal to one if fund i was listed
after 2006. For the matching regressions, I estimate the following:

Yit − Ymatch
it = αi + δ1Postt + ϵit,

where Yit is one of the measures of ETF dynamics for fund i in month t and Ymatchit is the
value of this measure for the match of fund i in month t in the group of control stocks. I use
three different methods to choose a match for fund i in month t: quartile matching, percentage
difference matching, and propensity score matching. Estimates of the effect of the reform (δ1)
with each matching procedure are reported in columns 2, 3, and 4, respectively. In panel A.1,
Yit = Seit; in panel A.2, Yit = Srit; and in panel B, Yit = TEit. The sample period starts in
December 2017 and ends in December 2023. In brackets, I report double-clustered standard
errors allowing for correlation in residuals over time and across funds.

Variable DD Quartile Percentage Difference Propensity Score
Matching Matching Matching

Panel A.1: Dependent variable: Effective Spread (bps)

Treated × Post (β2) -20.20*
(10.41)

Treated 216.62**
(40.87)

Post (δ1) -91.65**
(4.71)

-156.76***
(15.50)

-151.70***
(19.71)

-149.39***
(16.94)

Constant 406.06***
(23.24)

159.96**
(66.42)

223.18**
(97.47)

288.45***
(55.79)

Observations 11,714 777 336 777

Adj. R2
0.04 0.12 0.15 0.09

Panel A.2: Dependent variable: Realized Spread (bps)

Treated × Post (β2) -126.65***
(37.03)

Treated 396.61***
(61.97)

Post (δ1) -98.18***
(11.65)

-126.95***
(12.46)

-155.53***
(25.35)

-119.27***
(14.44)

Constant 341.47***
(22.98)

151.84**
(71.73)

224.79**
(104.07)

288.64***
(62.07)

Observations 11,714 777 336 777

Adj.R2
0.01 0.12 0.10 0.08

Panel B: Dependent variable: Tracking error (%)

Treated × Post (β2) 0.97***
(0.09)

Treated 1.56***
(0.58)

Post (δ1) 0.16***
(0.02)

0.48***
(0.05)

-0.08

(0.01)
0.53***
(0.06)

Constant 0.75**
(0.34)

0.09

(0.77)
-0.00

(0.11)
0.80

(0.77)

Observations 7,123 781 336 781

Adj.R2
0.07 0.10 -0.00 0.10

Standard errors in parentheses
* p < 0.1, ** p < 0.05, *** p < 0.01
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Table A.6.
Regression Results with Placebo Treatment. In this table, I estimate the impact of the ETF
Rule on ETF liquidity and tracking errors, based on a placebo treatment on 01 June 2018. For
the difference-in-differences regressions, I estimate the following:

Yit = α + β0Treatedi + β1Postt + β2Treatedi × Postt + ϵit,

where Yit is one of the measures of ETF dynamics for fund i in month t, Postt is a dummy
variable equal to one after 01 June 2018, and Treatedi is equal to one if fund i was listed after
2006. For the matching regressions, I estimate the following:

Yit − Ymatch
it = αi + δ1Postt + ϵit,

where Yit is one of the measures of ETF dynamics for fund i in month t and Ymatchit is the
value of this measure for the match of fund i in month t in the group of control stocks. I use
three different methods to choose a match for fund i in month t: quartile matching, percentage
difference matching, and propensity score matching. Estimates of the effect of the reform (δ1)
with each matching procedure are reported in columns 2, 3, and 4, respectively. In panel A.1,
Yit = Seit; in panel A.2, Yit = Srit; and in panel B, Yit = TEit. The sample period starts in
December 2017 and ends in December 2023. In brackets, I report double-clustered standard
errors allowing for correlation in residuals over time and across funds.

Variable DD Quartile Percentage Difference Propensity Score
Matching Matching Matching

Panel A.1: Dependent variable: Effective Spread

Treated × Post (β2) 25.52

(19.80)
Treated 305.67***

(81-67)
Post (δ1) -90.88***

(10.77)
-59.26**
(29.57)

4.03

(31.02)
-83.56***
(28.15)

Constant 564.47***
(47.90)

177.21**
(76.70)

249.90*
(129.00)

292.05***
(105.68)

Observations 9,781 670 284 670

Adj.R2
0.02 0.00 0.01 0.01

Panel A.2: Dependent variable: Realized Spread

Treated × Post (β2) -98.15

(70.63)
Treated 549.78***

(130.22)
Post (δ1) -134.49***

(29.85)
-48.99

(47.84)
-19.82

(63.96)
-92.91*
(48.90)

Constant 493.96***
(60.99)

152.50*
(78.10)

285.11***
(103.26)

352.65***
(104.05)

Observations 9,781 670 284 670

Adj.R2
0.02 0.00 0.01 0.00

Panel B: Dependent variable: Tracking error

Treated × Post (β2) 0.41**
(0.16)

Treated 3.67***
(1.16)

Post (δ1) 0.15***
(0.04)

0.08

(0.11)
-0.02

(0.06)
0.32***
(0.09)

Constant 0.71*
(0.37)

0.86

(0.66)
-0.09

(0.12)
0.40

(0.07)

Observations 4,883 670 284 670

Adj.R2
0.01 -0.00 -0.00 0.08

Standard errors in parentheses
* p < 0.1, ** p < 0.05, *** p < 0.01
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