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Identifying Missing Data Mechanisms
in (2 x 2)-Contingency Tables

T. Nittner, H. Toutenburg

February 3, 2004

Abstract

Consider the sample of two binary variables X and Y with some miss-
ing structure within X or Y. The knowledge about the corresponding
values of the observed covariate allows to play through all possible ‘orig-
inally’ complete data sets. After defining the notation, including some
theoretical work, a test for non-MCAR within the complete case table
is presented. Simulating all possible tables enables some testing on non-
MAR. A simulation experiment is used to illustrate this context.

KEY wORDS: missing data mechanism, odds-ratio, simulation experi-
ment, testing non—-MAR.

1 Introduction

Binary variables are of large interest in many surveys and studies, e.g., when
exploring the relation between smoking and lung cancer. For binary variables,
the odds—ratio is an important measure to analyze the risk for response when
one variable is supposed to be dependent of the other. Especially awkward
questions concerning private habits or private status are affected by missing
values, at least not missing completely at random (MCAR, see p. 4). The aim
of this work is to show how the additional information of the incomplete cases
can be used to run over all possible situations, to take a look at the change
of the odds-ratio, to show whether the complete case table gives suspect for
non—-MCAR and to test for non—-MAR within all possible completed data tables.

Consider a bivariate sample (X;,Y;),i = 1,...,n, where both, X and Y, are
of binary outcome ‘0’ or ‘1’. Visualize the sample of size n in a (2 x 2)-

contingency table, see Table 1.1. Using the well-known notation n;;,4,7 = 1,2,
the marginal frequencies are denoted according to

2 2
n;. = Znij and n.; = Znij . (1.1)
j=1 i=1

Given the joint distribution {n;;} or {n;;j/n}, the odds-ratio  can be estimated



n.1 mn.2 n

Table 1.1: (2 x 2)-contingency table.

by

§ — M N2z (1.2)
ni2 * N21
having values within [0; 0c0). The two variables are said to be independent for

6=1. For § < 1 response in the second row is more likely than in the first row.
Of course, for 6 > 1 response in the first row is more likely.

Instead of 6, often fy = Inf is considered in order to have a measure being
symmetric with respect to zero. Following e.g. Agresti (1996), By is asymptot-
ically normal distributed with mean 6y and standard deviation op, with their
estimates

b = In (u) (1.3)

12 - M21
1
1 1 1 1 2
T R w9
ni1 n22 ni2 N21

In case of independence of X and ¥ we have 6=1 and, therefore, éo =Infd = 0;
for —oo < 6y < 0 and 0 < By < oo we have negative and positive correlation,
respectively. The hypothesis Hy : ‘X and Y are independent’ versus H; : ‘X and
Y are not independent’ can be tested by computing the test—statistic z which
is standard normally distributed under Hy according to

~

=L ~ N(0,1). (1.5)

Reject Hy : o = 0 if | 2 |> z1_q/2 (two-sided). This test decision corresponds
to 0 not covered by the confidence interval

bo — 21_aya '&go;éJr 21—z &9*0] =[I;;1,]. (1.6)

Interval (1.6) corresponds to a confidence interval for 0 itself according to

[exp(11); exp(1u)] .- (1.7)

The introduction of the odds-ratio will be extended to the case of having missing
data within the next section.



2 An Extension to Missing Data

2.1 The (2x2)—Contingency Table with Missing Data

First of all, we want to extend Table 1.1 to the situation of missing data in
general. However, the situation is restricted to samples where at least cases
of one variable are observed. Assume that the number of incomplete cases is
known for each marginal frequency and denote them by [, 0,m and k. The new
situation can be illustrated as shown in Table 2.1.

X 1 0 observed | additionally
observed
1 11 ni2 n1 l ’fll
Y
0 n21  MN22 n2 0 n2
observed N1 N n

additionally | m k
observed

n.1 n.2 n

Table 2.1: (2 x 2)—contingency table with missing data.

A value of I = 4 and o = 7, for example, means that X is missing for 11
values, four cases with Y = 1 and seven cases with Y = 0. Define the sample
size of all the observed values by

n+l+o+m+k.

7l
Assuming further that [,0,m,k € INg allows to illustrate each of all missing
data situations where at least X (or V) is observed. One of the simplest cases
refers to ] = o = k = 0 and m > 0 which corresponds to the case where Y is
missing for m observed cases having X = 1, see Figure 2.1. If Y is missing for

any values of X, both, m > 0 and £ > 0 and [ = o = 0; this case is shown in
Figure 2.2.

The more complicated case where X and Y both are incomplete, but not for the
same case indices, corresponds to [,0,m, k > 0 and is illustrated in Figure 2.3.

Figures 2.1-2.3 are called missing data pattern (MDP), see e.g. Little and Rubin
(1987), (2002), and may give a first impression of the extent of incompleteness.
Another important tool to characterize the problem of missing data is the so—
called missing data mechanism (MDM) also going back to Little and Rubin
(1987), (2002). The MDMs are defined within the next section.
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1 m m+k
Figure 2.1: m > 0 Figure 2.2: m,k >0

X Y
1
m;i-k
1
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Figure 2.3: [,0,m,k > 0, X and Y mutually observed.

2.2 The Missing Data Mechanism (MDM)

As denoted before, the MDM can be used to characterize dependencies between
observed and missing data. In general one usually differs between missing com-
pletely at random (MCAR), missing at random (MAR) and non-missing at ran-
dom (HOH*MAR). Let Z = (X, Y) = (Zobs; Zmis); Zobs = (Xobs; Yobs); Zmis =
(Ximis, Ymis) denote the data matrix that would have occurred without any miss-
ing data. Further let R = (r;;) be a matrix defined by

rij :{ (1) i z‘j fﬁiiiﬁgd Vi=1,...,n,j=12 (2.1)

The so—called indicator matrix R indicates whether a value is observed or miss-
ing. In the figurative sense, the problem of missing data here is a random
experiment because R and its elements, respectively, are random variables. Con-
sidering the conditional density f(R | Zobs, Zmis, ®) with ® being the parameter
of the missing mechanism allows the distinction between the three missing data
mechanisms according to

1. MCAR (missing completely at random), if
f(R|2,8)= f(R|3) vZ (2.2

2. MAR (missing at random), if

f(R | Z) (}) = f(R | Zobs; (I>) V' Z mis and (23)

3. non-MAR (non-missing at random) if

f(R|Z,®) = f(R]| Zobs, Zmis, ®) (2.4)



whereas (2.4) cannot be simplified, i.e. R has to depend at least on Zy,s. If, for
example, X is affected by missing data,

1. MCAR means that the missingness within X is a random subsample of X,

2. MAR means that f(R | Z,®) = f(R | Y, ®), i.e. missingness within X
depends on the values of Y, and,

3. non-MAR means that f(R | Z,®) = f(R | X,Y,®), i.e. missingness
within X at least depends on the values of X itself.

In case of (2x2)-contingency tables of course R is of dimension (n x 2) and the
patterns 2.1 and 2.3 correspond to

1 1 1 1

1 1

1 1 1 0

R(2.1) — 1 0 R(2.3) — .
1 0

01

1 0 01

2.3 Parameterizing the Missing Data

In order to be able to include the additional information, the parameters of the
complete case table have to be combined with the four parameters characterizing
the missing data situation. Altogether, (m+1)-(k+1)-(I4+1)-(o+1) possibilities
exist to ‘distribute’ the missing values to the corresponding cells yielding the
same number of ‘completed’ tables, denoted by their frequencies fi;;. Let us
further denote the indices by z,w,¢ and j,

z = 0,...,1,
w = 0,...,0,
1 = 0,...,m,
j = 0,...,k, .

The main idea of including the missing data information consists of using growth
factors for each of the complete case frequencies. Define the growth factors
according to

_mutzti ~ne+(=2)+ (k=)
B ni1 B ni2
(2.5)
b:n21+(o—w)+(m—i) d:n22+w+j
n21 22
These growth factors could also be written according to
a:@,c:@,b:@,d:@. (2.6)
ni1 ni2 n21 22



With the help of the four growth factors a,b,c and d the odds-ratio of the
filled—up table can easily be denoted by

i = 7}11 ’ 7}22
ni12 -N21
a-nip - d-ne
C-Nig - b- Not
a-d
— 0. 2.7
- (2.7)
Both, from a practical as well as from a theoretical point of view, it may be of
interest to consider the norm of the relative change in 6, i.e.,

| 166 1) |

~

)
| |

616—1]
6
= |6-1], (2.8)

with & = (a - d)/(c-b). That is, the norm of the relative change of § can be
restricted by considering the difference between the ratio of the growth factors
and 1. The norm of the change in 6 simply follows

|16—0|=6106—1]. (2.9)

Therefore, we are especially interested in the minimum and the maximum of
(2.9). Let us denote these as A, and Apax, i.e.,

é | d—1 | € [Amin;Amax] . (210)

Of course, the maximum of § corresponds to ‘putting’ all values on the main
diagonal and the minimum to ‘putting’ all values on the secondary diagonal.
However, in the following, let’s consider the three possible cases for (2.9) in
general.

~

Case 1: ~—é2 0 holds Vz,w,1,j.

This corresponds to
6 Zé Yz, w,i,j -

Therefore, also the minimum and the maximum value of 8 is larger than é, ie.,



Case 2: 6 — 6 < 0 holds Vz,w,i,j.

This corresponds to

)

<h Vz,w,i,7.

As before, we conclude that

)

min § < = Ay, = max 6,

Z,w,1,j Z,w,t,]

)

max § < = Apax = min

Z,w,t,] Z,W,,]

Asd € (0;00) and a > 1,b>1,¢>1,d > 1, § gets minimum for a = d = 1 and
maximum for ¢ = b = 1. For the minimum of 4, meaning § < 1 we have

min 6 <6 for at least one z,w, i, ], (2.11)

Z,Ww,t,]

and for the maximum of §, i.e. § > 1,

max 6 > 6 for at least one z,w, 4, ] . (2.12)
ERVRN

Equations (2.11) and (2.12) mean that

min § <0 < max 0, (2.13)

Z,W,t,J Z,W,1,])

i.e. there is no missing structure for which each simulated table yields odds—
ratios fulfilling Case 1 or Case 2. Cases 1 and 2 therefore never hold and the
main focus will be on Case 3.

Case 3: There is at least one setting {z,w,i,j} for 6 —6 < 0 and there

is at least one different setting {Z,w,1,;} # {2, w,i,;} for which 6—6>0
holds.

Thus, min._,;;# <  and max. ,,; ;8 > 6. As § in (2.8) can’t obtain § =1 for
every simulated setting, the minimum is the § nearest to 1. The maximum is

min, . ; ; @ or max, ,, ; ;#—depending on the absolute distance with respect to 6.

Let us consider the simplest case illustrated in Figure 2.1 where Y is miss-
ing for X = 1, meaning k = [ = o = 0, and, therefore, ¢ = d = 1. We see
that

S a-mipcn2e  a ;
l=—"—""=—-0.
niz - b-ny b
For a and b we have for i =0,...,m,
a:nll—ﬂ b:w_ (2.14)
ni1 n21



1=0 1=1
o~ A i~ A
| —6| = Dume | na_ | |f_§| = Tunm mudm g
niz2-n21 n21+m n12-M21 nii
— ni1-N22 | [N21—N21—m — ni1-M2 | |R11tm—nii
niz2-n2i n2i+m niz2-n2i nii
— m-nii-Nos — m-nas
nay-niz-(n21+m) niz-n21
= V1 = V2

Table 2.2: Minimum and maximum vakues of d.

Of course, § = a/b is minimum for i = 0 and maximum for 4+ = m. Let us deduce
a condition for the cells of Case 3, i.e. whether the minimum or the maximum

of @ is farther from the complete case estimate. See Table 2.2 for preparing the
solution.

The question is for which values v, is larger or equal to 7, i.e. when min; — 6
is larger than max; — 6 and vice versa. Thus, consider its ratio and compute

mnoo_ m 111 - 122 (a2 21
Y2 No1 - M1z - (Mo1 +M) M- N2
= (2.15)
N2t +m
Using (2.15) we get the following conditions for the cell frequencies,
22 S N 2N+ m, (2.16)
<y & nip<ng +m. (2.17)

Therefore, min; > max, for ny; > na; + m; the common distribution of the
variables of the imputed table is equivalent or nearly equivalent to the common
distribution of the variables of the observed table when 6 = 1 or ¢ is near to 1,
i.e. when a = b or a is near b. For checking where 6 is nearer to—the maximum
or the minimum of the imputed tables—it is just necessary to look at condition
(2.16).

For a more complex missing data structure, i.e., [,0,k # 0 such a condition
is not easy to deduce because of the larger number of parameters. But note
that it is sufficient to look at the § nearest to 1 to get the minimum of (2.9).

Within the next section it is shown how to test for non—-MCAR. Further, some
testing for non-MAR is introduced.



3 Testing on the Missing Data

The main idea of testing on the missing data is based on Cohen and Cohen
(1983): The cases of a complete co—variable are split into an observed part
(R = 1) and a missing part (R = 0) according to the incomplete variable,
building one population and one sample for a standard testing procedure.

3.1 Testing for non-MCAR

Before introducing the test procedure let’s denote the situation where X is
missing for | + o cases. Thus, the indicator variable Rx is given by

Ry=( 1,...,1 , 0,...,0 ). (3.1)
—— ——
1,...,n—(l40), n—(l+0)+1,...,n

Based on this indicator variable we are able to separate Y into two groups.
Suppose that the data can be rearranged according to Figure 2.2, i.e., the pairs
of values of X and Y are not lost and one index of both of them is an identifier
for the case. Before joining the theory of the binomial-test with diagnosis on
non—MCAR some remarks on the binomial test.

Assume a random variable Z having the two values ‘1’ and ‘0’, representing
incidence and non—incidence of an event. The probability p may denote the
probability for incidence in the population. From a sample

Z=(Zy,...,Z,) with Z; ¥ B(1;p),
we are able to estimate p = P(Z = 1) by the unbiased estimate p = >' | Z;
(see Toutenburg (2000)). The object is to test Ho : p = pg versus the alternative
H; : p # po. Under Hy it holds that

(1—
Var(p) = - L=20) (3.2)
Standardizing gives the test statistic
T(Z)= L2 . /n, (3.3)

Po - (1 —po)
where the binomial distribution can be approximated by the normal distribution
if n-po-(1—po)>9 holds. For a fixed level of significance, «,

Py (T(X) < k) < a/2 Pp(T(X) > k) <af2,  (34)

with a lower bound &; and an upper bound k., has to hold for Hy. Let’s go back
to the actual problem here: X is missing for [ 4+ o values where Y is observed. If
the probability for Y = 1 differs for Rx = 1 and Rx = 0 there would be suspect
for X missing depending on the values of Y. Considering P(Y =1 | Rx = 1) as
the probability of the population and denoting p = P(Y = 1| Rx = 0) yields

P(Y:1|RXZO)—P(Y:]_|RX:]_) ViTo
VPV =1|Rx=1)-1-PY =1|Rx=1)
1
= l+o—n_ l_|_0 (35)

T(Y)




It is called T'(Y) because it depends on the distribution of Y. Further, the test
statistic just depends on given values and therefore can easily be computed.
Considering the case where Y is incomplete the corresponding test statistic
T(X) can be computed by using p = P(X = 1| Ry =0) =m/(m + k) and the
probability to test for, pp = P(X = 1| Ry = 1) = n.;/n; the corresponding
sample size is m + k.

In case of rejecting Hy there might be suspect for the incomplete variable not to
be affected by missing completely at random. At least, the missingness depends
on the values of the covariate.

Apart from some diagnosis on the complete case table some more diagnostics
concerning all filled—up tables may be of interest.

3.2 Some Testing for non-MAR

In fact, it cannot be tested for non—-MAR that’s why the title of this section is
called ‘some testing’. However, simulating all complete data sets—which is pos-
sible when considering binary or categorical data—enables to test for non-MAR.

Again, the idea is based on the binomial-test which here is based on the
(marginal) distribution of the incomplete variable itself. The test compares
the probability for Y = 1 (X = 1) based on the complete cases, i.e. Rx = 1
(Ry = 1), with the probability for X = 1 (Y = 1) for all filled—up data, i.e.,
Rx =0 (Ry = 0). If the probabilities differ too much—in the sense of some
confidence—, there’s suspect for the missing values to miss at least depending
on the values of X (V') itself.

Based on the situation described in Section 3.1 with its basic test statistic (3.3)
the question whether X is missing according to non-MAR can be answered sta-
tistically. Here, the probabilities P(X =1 | Rx = 1) and P(X =1| Rx =0)
have to be compared. Use

ﬁ.l —nN.q

p = P(X=1 =0)= —— .
p ( |RX 0) l+0—+—m’ anda (36)
n.
po = P(X:1|RX:1):71 (3.7)
to compute the test statistic
otn — W e
oTm n
n n

When testing for non-MAR, within Y (3.6) and (3.7) have to be modified aco-
ording to

o fll. —nNni.
S l+m+k’
P(Y:1|Ry:1):%, (3.10)

PY=1|Ry =0) and, (3.9

ST
I

Do
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and the corresponding test statistic follows

T(Y) = %-\/l+m+k. (3.11)

Though the two test statistics (3.8) and (3.11) may also easily be computed the
probabilities P(X = 1| Rx = 0) and P(Y =1 | Ry = 0) are not known; they
can be computed by simulating all common distributions of X and Y, based on
their frequencies {7;;}.

4 A Simulation Experiment

Within this section the simulation experiment used to deal with the test prob-
lems is described. The program was realized by using R programming language,
version 1.8.0.

4.1 Some Detalils

When the program is started via command line the user has to indicate the
frequencies of the complete case table, i.e. ni1,n12,n21 and nss as well as the
additional information about the incomplete cases, i.e. [,0,m and k. After some
consistency checks, e.g. 0 < n;; > 5000 V 7, j,n < 10000 (to reduce the sample
size and the computing time) or n;. <[ (don’t try to copy the oracle of Delphi),
the simulation is started. First of all, the MCAR~diagnosis is achieved by testing
the complete case table. Some descriptive statistics are also computed for the
complete case table, e.g., the estimated odds-ratio, its estimated variance, the
z—test for independency and the confidence interval for the odds-ratio. After
the analysis of the complete case table, the actual simulation starts. Four loops
are used to compute the ‘virtual’ frequencies ;5. For each of these tables again
the descriptive statistics are computed as well as the p—values for the tests on
non—-MAR. The results contain

e a missing data pattern for the indicated frequencies of the complete case
table,

e the p—values of the tests for non—-MCAR,

e descriptive statistics (minimum and maximum sample odds-ratio, mini-
mum and maximum sample standard deviation, shortest and longest con-
fidence interval for the estimated odds-ratio) for all distribution {n;;},
and,

e the p-values of the tests for non-MAR, illustrated by graphics (in case of
normal approximation).

The next section describes the simulation experiment and discusses some results.
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4.2 An Example

Within this section a simple example is used to illustrate the tests and the main
aspects mentioned so far. Table 4.1 resumes the complete case table of the ex-
periment and contains the frequencies as they were introduced in Table 2.1.

X
1 0
1 257 181 438 23
Y
0 245 337 082 15

502 518 1020

31 8 1097

Table 4.1: Table for X and Y including information about the incomplete cases.

Altogether, 77 cases are incomplete which corresponds to a missing percent-
age of 7,02%. See Figure 4.1 where the corresponding missing data pattern is
illustrated.

39

38

Figure 4.1: [ =23,0=15,m = 31,k = 8; X and Y mutually observed.

As X and Y both are incomplete, one main interest is the question whether
X and Y are missing according to MCAR. We have [ + 0 = 38 > 0, so we are
able to test for non-MCAR for the incomplete variable X. Referring to the
actual problem here, T(Y") follows

l n1.

TY) = W-\/Ho (4.1)
_ 0605-0429 = 510 (42)

1/0.429 - (1 — 0.429)

12



The corresponding p—value for Hy : ‘X is missing completely at random’ for
the given data is 0.0285 and therefore the hypothesis that X is missing accord-
ing to MCAR has to be rejected for a = 0.05. Note that n -pg - (1 — pg) =

(I4+0)- 2= (1 - 2) = 9.3, so we used the normal approximation.

The test statistic for non—-MCAR for the incomplete variable Y follows

P(X=1|Ry=0)—P(X=1|Ry =1)

= VPX =1y =1)- 1-P(X=1[Ry =1)) e
_ % R (43)

_m__ g
T(X) = - ﬁ*“k(l _nu) Vm+k (4.4)
0.795 — 0.492

T /0492 (1_0492) V39=378. (45)

The corresponding p—value for Hy : ‘Y is missing completely at random’ for
the given data is 0.00016 so also Y is not supposed to be MCAR. Note that
n-po-(1—=po) = (m+k) 2L (1-=1)=9.7 sowe here also used the normal
approximation.

Before analyzing the simulated tables with respect to non-MAR, the descriptive
statistics are resumed in Table 4.2.

@

log(8) 5(log(8)) | p-value I; Iy Ayl (2P iy figg [
Omin 1.4 0.34 0.12 0.0056 1.1 1.8 257 212 201 337 | 1097
fmax 2.5 0.93 0.12 1.2¢-13 2 3.2 311 181 245 360 | 1097
& min(log(9)) 1.6 0.46 0.12 0.00015 1.3 2 274 212 274 337 | 1097
& max(log(8)) 2.5 0.93 0.12 1.2¢-13 2 3.2 311 181 245 360 | 1097
min CI 1.4 0.34 0.12 0.0056 1.1 1.8 257 212 201 337 | 1097
max CI 2.5 0.93 0.12 1.2¢-13 2 3.2 311 181 245 360 | 1097

Table 4.2: Minimum /maximum values of essential terms for the simulated data.

The odds—ratio of the complete case table is about 1.95. For the minimum
and for the maximum odds—ratio of the simulated tables, the hypothesis for in-
dependency of X and Y has to be rejected. The estimated standard deviations
of the sample odds-ratios are nearly constant so the z—statistic just varies de-
pending on the estimates of 8 itself. Therefore, independency has to be rejected
for all tables because it is rejected for the maximum estimate of 6.

But let’s take a look at the tests for non-MAR now. Instead of using de-

scriptive statistics to analyze the different simulation experiments a graphic is
used to illustrate the different results.

13



Figure 4.2: Plot of P(X = 1| Rx = 0) (z—axis) against the p—values (y—axis)
for testing non-MAR, i.e. Hy: P(X =1|Rx =0)=P(X =1| Rx =1).

Figure 4.3: Plot of P(Y = 1| Ry = 0) (z—axis) against the p-values (y—axis)
for testing non-MAR, i.e. Hy: P(Y =1|Ry =0)=P(Y =1| Ry =1).

Figure 4.2 plots the p—value for the test of non-MAR within X against P(X =
1| Rx =0). We see that we have to reject MAR when P(X =1 | Rx =0) is
about to be larger than 0.6; for about P(X = 1| Rx = 0) < 0.6, X seems to
miss depending on the values of Y. The p—value gets maximum for about 0.5—
the probability for P(X = 1| Rx = 1) = 0.49. A similar situation could be seen
by considering Figure 4.3 where the p—value for Hy : ‘Y is missing according to
MAR’ is plotted against P(Y = 1 | Ry = 0). Here, we have to reject MAR
when P(Y =1 | Ry = 0) is larger than about 0.55. The maximum p-value of
course is near or equal to P(Y =1 | Ry =1) = 0.43.

14



4.3 Concluding Remarks

It is planned to post the program on the internet, so please watch
www.stat.uni-muenchen.de/~nittner/program

When the link exists, the program and all its modules could be downloaded.
Note that automatically a A\TEX-report will be generated containing basic infor-
mation about the study you made. The report is about 7-8 pages and contains
the complete case table, the table including the missing data information, the
missing data pattern, the test statistics and results for testing on non-MCAR
as well as the descriptive statistics and the test results for independency for the
possible distributions {7;;}. For studies using the normal approximation within
the binomial test also the corresponding graphics are included. Note that this
report will correspond to the missing data problem you had. For printing, it
is just necessary to compile the source code and to generate a postscript or a
pdf-file. Additionally a logfile is generated and could be expanded by setting
the debugger. An exact description will be on the homepage.

The program is thought to be useful for researchers analyzing (2x 2)—contingency
tables affected by missing data. Additionally, reserachers being capable of R pro-
gramming language easily can extend the existing program. The logfile contains
some more information (when setting the debugger) which also could addition-
ally be used. Tools for doing diagnostics on missing data are rare and some
more work has to be done on this area.
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