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Abstract
The popularity of modern portfolio theory has decreased among practitioners 
because of its unfavorable out-of-sample performance. Estimation risk tends to 
affect the optimal weight calculation noticeably, especially when a large number of 
assets are considered. To overcome these issues, many methods have been proposed 
in recent years, but only a few address practically relevant questions related to port-
folio allocation. This study therefore uses different covariance estimation techniques, 
combines them with sparse model approaches, and includes a turnover constraint 
that induces stability. We use two datasets of the S&P 500 to create a realistic data 
foundation for our empirical study. We discover that it is possible to maintain the 
low-risk profile of efficient estimation methods while automatically selecting only 
a subset of assets and further inducing low portfolio turnover. Moreover, we find 
that simply using LASSO is insufficient to lower turnover when the model’s tuning 
parameter can change over time.

Keywords  Minimum-variance portfolio · LASSO · Turnover constraint · Out-of-
sample variance · Asset selection · Short-sale budget

Introduction and main idea

The mean-variance portfolio optimization of Markowitz (1952) is still one of the 
most widely used approaches for selecting an optimal portfolio of assets with uncer-
tain returns. To implement this approach in practice, one needs to estimate two sets 
of parameters—expected asset returns and the covariances of asset returns—which 
are traditionally estimated using the sample means and sample covariances of past 
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returns, respectively. Unfortunately, the literature has extensively found that portfo-
lios based on these estimates exhibit extremely poor out-of-sample performance, as 
the errors in the parameter estimates are carried over to the portfolio weights.1

However, one portfolio on the efficient frontier that does not require researchers 
to estimate the mean decreases the estimation error: the global minimum-variance 
(GMV) portfolio. Interestingly, DeMiguel et  al. (2009b) show that the mean-var-
iance portfolio is outperformed out-of-sample not only by the naive portfolio but 
also by the GMV portfolio in terms of the Sharpe ratio as well as the certainty-
equivalent for most of their investigated datasets. This is a remarkable finding, as 
the GMV portfolio specifically aims to reduce the variance and not to increase the 
Sharpe ratio.

In this study, we therefore introduce a sparse and stable model approach that 
focuses on the minimum-variance portfolio. We regard a portfolio as sparse if it 
selects a small number of assets out of a large investment space and as stable if its 
weights exhibit only small changes for each rebalancing step over time.

We show that recent advances in estimating covariance matrices have improved 
the risk profile of this portfolio type vastly. Nonetheless, we find that even the most 
accurate and recent covariance estimation techniques need to be updated to meet the 
common requirements of investors, especially in terms of transaction costs. For that, 
we focus on two specifications: a sparse selection of a subset of all assets and low 
turnover. This study is the first to show that combining highly efficient covariance 
estimators with penalty terms and turnover constraints can lead to portfolios that 
have the same low risk as their unconstrained counterparts, while simultaneously 
keeping a lower number of assets as well as lower turnover. We further provide 
new evidence on the usage of a mere penalized optimization for the weights toward 
achieving low turnover.

The remainder of this paper is organized as follows. After this section, we review 
the subject to provide insights from the scientific literature as well as from a prac-
titioner’s perspective. We then introduce three model setups. In the empirical study 
section, we describe our methodology, provide empirical evidence, and draw con-
clusions. A summary of our work and final remarks are provided in the last section.

Review of the literature

In recent decades, research on estimating covariance matrices under specific prem-
ises has gained increasing popularity. Researchers from different fields have adopted 
various strategies to tackle the many issues arising because of high dimensional-
ity in the data and ill-conditioned covariance estimation. For instance, Bouchaud 
and Potters (2009), Fan et  al. (2013), and Ledoit and Wolf (2017) develop meth-
ods based on random matrix theory to estimate covariance matrices. Shrinking 
approaches have also been established, which have in common that the covariance 

1  See, for example, Michaud (1989), Best and Grauer (1991), Chopra and Ziemba (1993), Broadie 
(1993), Litterman (2003), and DeMiguel et al. (2009a, 2009b).
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matrix estimated with maximum likelihood (ML) is mixed with one or many tar-
get matrices, as shown, for example, by Ledoit and Wolf (2004). Other researchers 
have focused more on the time dependency of returns; see, for instance, Engle et al. 
(2017) for a recent study.

Owing to the increase in the transparency of research and advancement of com-
putational power, implementing these models has become gradually easier for prac-
titioners. Nonetheless, with the rise in data availability, investors seek diversification 
in large markets, but are limited by organizational as well as legal restrictions. The 
aforementioned estimation procedures, however, do not always make it straight-
forward to include these requirements. For example, the option to choose from a 
large set of stocks creates the problem of selection, as it is unfavorable for inves-
tors to hold a large number of stocks with a small relative weight (Lobo et al. 2007; 
Takeda et al. 2013). This is mostly because of the fixed costs associated with includ-
ing each asset. Further, the matter of transaction costs also plays a crucial role in 
portfolio choice. If, over time, the weights of the portfolio change too much and thus 
require frequent rebalancing, the investor faces unnecessarily high costs. To tackle 
these issues, researchers including Konno and Wijayanayake (2002) and Lobo et al. 
(2007) have independently developed methods to include costs in the portfolio opti-
mization itself. Another important, commonly applied restriction is the exclusion of 
short-sale positions, which is usually induced by law.

These real-world constraints are not only relevant because of legal and other 
regulatory circumstances. Jagannathan and Ma (2003), for example, show that 
self-imposed short-sale constraints can significantly improve the out-of-sample 
performance of portfolios. In particular, so-called norm constraints, or penalizing 
constraints, which help induce sparsity or shrinkage, can both reduce the amount 
of necessary assets and improve the estimation accuracy. They are implemented by 
penalizing the p-vector norm of the asset weights with an additional factor, usually 
called � . Since Brodie et al. (2009) and DeMiguel et al. (2009a) introduced the �1

-norm and squared �2-norm to portfolio optimization, these have gained increasing 
attention in this field of research. The �1-norm is primarily applied to create sparse 
portfolios (i.e., portfolios with only a few active positions and, thus, lower overall 
estimation risk). The squared �2-norm controls the balance of a portfolio, which can 
be measured by the deviation of its weights from the weights of an equally weighted 
portfolio. Another norm tailor-made for subset selection is the �0-norm, which over-
comes the issue of the �1-norm of deselecting potentially relevant assets (Takeda 
et al. 2013). Advances in this field have included, for instance, Fastrich et al. (2014), 
who compare standard cardinality constraints with different �p-norms. Despite its 
high quality, however, the �0-norm suffers from an absence of feasible solutions for 
estimating portfolios.

Model setup

To introduce our modeling approach, we start with the standard approach for construct-
ing a GMV portfolio with n assets and extend it further with restrictions to induce spar-
sity as well as stability. We assume that the investor uses a one-time optimization in the 
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current period and readjusts his or her investment decision in subsequent periods by 
repeatedly executing the one-time portfolio optimization. The true covariance matrix Σ , 
unknown to the investor, needs to be estimated using the return data of � historic time 
points.

Standard minimum‑variance portfolios

To find the portfolio exhibiting the lowest variance among all assets, an investor faces 
the following optimization problem:

where ŵ is the estimated vector of portfolio weights, Σ̂ is the estimated covariance 
matrix, and (2) represents the sum constraint. The latter means that all weights must 
sum to 1, as we choose A = 1n and a = 1 , where 1n is the n-dimensional vector of 
ones. We refer to the GMV model as the standard model.

Sparse minimum‑variance portfolios

If a smaller number of assets are selected from the whole investment space, the optimi-
zation problem can be adjusted by adding an �1-norm constraint, often referred to as the 
least absolute shrinkage and selection operator (LASSO), as follows:

Equation (5) introduces a sparsity parameter � , which controls the shrinkage of the 
portfolio weights toward zero. Choosing a high � value will lead to the same result 
as the standard optimization problem, whereas a sufficiently small � will restrict the 
parameter space to a few assets. The solution to the optimization problem can still 
easily be found using standard quadratic programming with linear constraints, as it is 
possible to reallocate w into its positive part w+ = max(w, 0) and w− = max(−w, 0) . 
The left-hand side of constraint (5) can then be rewritten as ||w||1 = 1nw

+ + 1nw
− . 

The whole optimization problem then becomes

(1)ŵ = arg min
w

w
�Σ̂w,

(2)s.t. Aw = a,

(3)ŵ = arg min
w

w
�Σ̂w,

(4)s.t. Aw = a,

(5)||w||1 ≤ �.
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which is a quadratic optimization with linear constraints and a Lagrange parameter 
� . Owing to the combination of (4) and (5), the parameter space cannot be fully 
restricted (e.g., to up to zero assets). Due to its composition, we refer to this model 
as the LASSO model.

Sparse and stable minimum‑variance portfolios

In a real-world application of a minimum-variance portfolio, investors are prone to 
costs, which are related to the turnover of the portfolio (e.g., transaction costs). The 
introduction of a shrinkage-type constraint such as (5) can, to some degree, account 
for transaction costs, as the parameter � will penalize high asset weights wi and 
therefore indirectly reduce the possibility of vast changes between the subsequent 
rebalancing time points. However, we argue that LASSO alone cannot sufficiently 
decrease turnover, as it has no information on past weights. Although the weights 
overall are relatively small, if many of these change at a time or many weights that 
were earlier deselected (i.e., set to zero) are now selected, turnover might still be 
reasonably high. Hence, we include a specific turnover constraint that works as a 
proxy for transaction costs. The optimization problem now changes to

where the stability-inducing constraints (10) and (11), respectively, form the turno-
ver constraints dependent on the weights of the previous optimization step wo and 
a tuning parameter k, which controls the allowed change in the positions for one 
rebalancing step in both directions. The usual turnover constraint |w| ≤ wo + k is 
rewritten as (10) and (11) to avoid using non-linear constraints. With respect to the 
adjustment of w to w+ and w− , as explained before, the whole optimization prob-
lem remains a quadratic problem with linear constraints and is therefore efficiently 

(6)

[
ŵ+

ŵ−

]
= arg min

w+,w−

[
w+

w−

]T [
Σ̂, − Σ̂

−Σ̂, Σ̂

] [
w+

w−

]
+

[
�1n
�1n

]T [
w+

w−

]

s.t.
[
A,−A

] [w+

w−

]
= a and

[
0n
0n

]
≤

[
w+

w−

]
,

(7)ŵ = arg min
w

w
T Σ̂w,

(8)s.t. Aw = 1,

(9)||w||1 ≤ �,

(10)w ≤ k + wo,

(11)− w ≤ k − wo,
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solvable with standard optimization software.2 Due to its design, we refer to this 
model as the LASSO with turnover (TO) constraint, in short, LASSO + TO model.

Model discussion

In theory, estimating the GMV portfolio, as introduced in Sect. 3.1, should be suf-
ficient to obtain the portfolio with the lowest variance and, thus, the lowest risk. The 
restriction introduced in Sect.  3.2 would then become obsolete, as no matter how 
large the investment space is, including assets will always reduce or keep the vari-
ance at the same level, but never increase it. The additional constraints (10) and (11) 
would then function as merely a practitioners’ constraint by reducing turnover and 
thus, transaction costs.

However, as pointed out earlier, the covariance matrix needs to be accurately esti-
mated to obtain optimal results. As researchers have pointed out, even small estima-
tion differences can lead to vast deviations from the true efficient frontier; see, for 
instance, Jobson and Korkie (1980, 1981), and Frost and Savarino (1986, 1988) for 
some of the earliest studies of this topic. Moreover, Kan and Zhou (2007) argue that 
the unbiased ML estimator for Σ has unwanted properties for specific ratios n

�
 , even 

when the underlying return data follow a normal distribution.
Several methods have been proposed to reduce the estimation error for the covari-

ance matrix, most applying some form of shrinkage (e.g., Ledoit and Wolf (2004)). 
Nonetheless, as any estimation error in the covariance matrix directly influences 
the estimation of the weights w of the portfolio, some authors shrink the weights w 
directly by, for instance, combining it with another portfolio. For instance, Tu and 
Zhou (2011) apply a mean-variance portfolio combined with an equally weighted 
portfolio. Jagannathan and Ma (2003) even argue that any constraint on the optimi-
zation procedure might help reduce the estimation error.

All the model approaches introduced in Sects. 3.1–3.3 can therefore reduce the 
estimation error in their own way. To choose a suitable standard GMV portfolio, we 
use highly efficient and recent estimators for the covariance matrix Σ . The constraint 
(5) of our sparse model will not only create sparsity but also directly reduce the esti-
mation error in the weights w, as these will be shrunk toward zero. In our sparse and 
stable model presented in Sect. 3.3, we further stabilize the portfolio estimations by 
introducing the turnover constraint. This directly forces the weights to change only 
in a small window of length 2k and hence indirectly applies another way of prohibit-
ing estimation errors due to potential misspecifications in the data.

Overall, this framework allows us to study the behavior of LASSO, one of the 
most common sparsity-inducing methods, when the covariance estimate has already 
adjusted to potential problems. We further check whether the common assump-
tion that LASSO can reduce turnover significantly on its own continues to hold 
true when the covariance matrix is already estimated sufficiently (e.g., Brodie et al. 

2  Setting k = ∞ , models (7) and (3) become the same and when k = ∞ and � = ∞ , models (7) and (1) 
yield the same results.
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(2009)) By doing so, we can gain insights into how the introduction of a common 
turnover constraint changes the risk profile of these portfolios.

Empirical study

As our results are solely based on an empirical analysis, it is crucial to employ a 
suitable empirical setup to ensure the validity and reproducibility of our findings. As 
an investor who uses a minimum-variance portfolio seeks, by definition, the port-
folio exhibiting the lowest variance, our empirical study must reflect this objective. 
Indeed, all the investigated portfolios include so-called tuning parameters—param-
eters important for the optimization procedure but not yet optimized by theoretical 
analysis. Instead, one of these parameters is identified by cross-validation in combi-
nation with machine power, whereas the other will be set to a constant value.

In our case, we have two tuning parameters: � , resulting from the LASSO con-
straint, and k, emerging from the turnover constraint. Owing to computational 
restrictions, we use � as the tuning parameter to achieve the lowest variance and 
therefore optimize its value with cross-validation. The parameter k of the turnover 
constraint is kept constant throughout the dataset, as we only use it to reduce turno-
ver compared with the unconstrained benchmark.

Hence, we do not set the value of � so that it meets specific well-known con-
straints such as the short-sale constraint (see DeMiguel et al. (2009a)). In contrast to 
other authors such as Zhao et al. (2019), we do not want to achieve any practitioner’s 
rule for investment and therefore do not keep � as a constant, independent of the pre-
sent market situation. By contrast, we allow the � value to change in every period, as 
we always want to achieve the optimization goal, that is, finding the portfolio with 
the lowest variance. This, in our opinion, a more realistic approach leads to a more 
likely change in the chosen assets and higher turnover. This in turn provides another 
reason for imposing an additional turnover constraint, as in model (7).

Data

For our empirical study, we use S&P 500 stock price data from the Thomson Reu-
ters EIKON database. This covers daily data from January 1998 to the end of 
December 2018, with T = 5282 observations overall. Our analysis is based on dis-
crete returns, calculated as rt =

Pt−Pt−1

Pt−1

 . To avoid transforming the data and therefore 
potentially distorting valuable information, we only focus on those stocks present 
throughout the data period (319 stocks). To check whether dimensionality influences 
our results, we analyze the surviving 319 companies as well as a randomly gener-
ated subset of 100 stocks of the original 319. All our models are estimated by taking 
into account the returns of approximately the past two years of trading (i.e., 
� = 2 ∗ 252 = 504 observations). This results in 4778 trading days of out-of-sample 
returns from our different model approaches.

To illustrate the structure of our two datasets, Fig.  1 presents their correlation 
plots. This figure shows the sample correlation of each possible pair of stock returns. 
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As all the correlations are close to zero or positive for both datasets, we order the 
stocks according to their first principal component.3 Friendly (2002) and Wei et al. 
(2017) provide examples of an R-implementation. Both figures show that a large 
number of stocks exhibit strong correlations with each other. However, from the top 
left to bottom right of the figures, the overall correlation diminishes to a slight posi-
tive correlation, in some cases even close to zero. Further, the random selection of 
100 out of the 319 stocks does not visually break the underlying correlation struc-
ture of the data, as both plots seem to have a similar appearance.

Variance estimators

To thoroughly analyze whether the introduced LASSO and turnover constraints 
decrease the number of assets as well as turnover, while maintaining a low-variance 
profile, we use some recent and efficient variance estimators. Starting with one of 
the most commonly used estimators among practitioners and researchers, we calcu-
late the sample covariance estimator, defined as

where R ∈ ℝ
n×t is the matrix of past returns and �̂ ∈ ℝ

n the vector of expected 
returns (here, estimated as average returns). At high concentration ratios, 
q = n∕� → 1 , the empirical variance, although unbiased, exhibits high estimation 
variance and, therefore, a high out-of-sample estimation error. To minimize this esti-
mation error, a linear shrinkage procedure can be applied to the unbiased sample 

Σ̂S =
1

� − 1

(
R − �̂1�

)(
R − �̂1�

)�
,

−1
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1

(a) 100 stocks (b)  319 stocks

Fig. 1   Correlation plots for the stocks of our two datasets. The blue correlation indicates a strong posi-
tive correlation; white, slight to no correlation; and red, a strong negative correlation. (Color figure 
online)

3  In this way, we can easily display the magnitude of the correlation structure without checking, for 
instance, 50,721 correlations unit by unit, as would be needed in the case of 319 stocks.
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estimator by combining it with a target covariance matrix. Following Ledoit and 
Wolf (2003), the variance estimator becomes

where Σ̂T is the estimate of a specific target covariance matrix and s is a shrink-
age constant with s ∈ [0, 1] . Assuming identical pairwise correlations between all 
n assets, the target matrix is substituted with the constant covariance matrix as in 
Ledoit and Wolf (2004).

A more sophisticated shrinking method is non-linear shrinkage, as suggested 
by Ledoit and Wolf (2017). As this estimator shrinks the eigenvalues individually; 
small, potentially underestimated eigenvalues are pushed up, while large, potentially 
overestimated eigenvalues are pulled down. Without going into further detail, we 
write the non-linear shrinkage estimator as

where V is the matrix of the orthogonal eigenvectors and ÊLW
NL

 is the diago-
nal matrix of the shrunk eigenvalues, as shown by Ledoit and Wolf (2012, 2015). 
Because Σ̂

LW
NL

 is proven to be asymptotically optimal within the class of rotationally 
equivariant estimators, we might expect it to perform better than any of the afore-
mentioned estimators, especially in cases of large concentration ratios.

Hence, we further extend our analysis to factor-based covariance estimation 
methods, which assume a specific structure in the covariances of asset returns. One 
promising example of that family of variance estimators is the principal orthogonal 
complement thresholding (POET) estimator provided by Fan et al. (2013). Here, the 
principal components of the sample covariance matrix Σ̂

S
 are used as factors. More-

over, subsequent adaptive thresholding with a threshold parameter � is applied to 
the covariance of the residuals of the estimated factor model (see, e.g., Cai and Liu 
2011).4 Therefore, the POET estimator has the form:

where vi is the eigenvector to asset return i, �i is the corresponding eigenvalue, and 
Σ̂�
u,K

 is the idiosyncratic covariance matrix after the applied thresholding procedure 
with threshold level �.

In particular, the estimators (13) and (14) estimate the GMV portfolios well, and 
thus, they can be considered to be the state-of-the-art among homoscedastic vari-
ance estimators for return data.

(12)Σ̂
LW

L
= sΣ̂

T
+ (1 − s)Σ̂

S
,

(13)Σ̂
LW

NL
= VÊ

LW
NL
V
�
,

(14)Σ̂
POET

=

K∑

i=1

�̂
i
v
i
v
�
i
+ Σ̂�

u,K
,

4  For the application in our study, we use the R-code provided by Fan et al. (2013) within the R-package 
POET and repeatedly apply a separate cross-validation to obtain the number of factors K, as suggested by 
the authors.
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Performance measures

To evaluate the out-of-sample performance of each portfolio, we report various per-
formance measures, starting with the out-of-sample portfolio standard deviation �p 
and Sharpe ratio SRp , defined as

where wt are the portfolio weights chosen at time t, w�
t
rt+1 is the out-of-sample port-

folio return, �̂p =
1

T−�

∑T−1

t=�
w�
t
rt+1 is the out-of-sample portfolio expected return. 

For the computation of the Sharpe ratio, we assume a risk-free interest rate rf = 0.
Since we consider a variance minimization problem, daily out-of-sample portfo-

lio variance is of utmost importance. Hence, we check whether the calculated out-
of-sample variance of the LASSO-based method in (3) as well as the LASSO and 
turnover-based method in (7) have significantly different standard deviations than 
their standard counterpart in (1). Therefore, we perform the two-sided HAC test 
with the Parzen kernel for the differences in variances, as described by Ledoit and 
Wolf (2008), and report the corresponding p-values.

Furthermore, in accordance with the literature on portfolio optimization and esti-
mation risk reduction, to approximate the arising transaction costs (e.g., DeMiguel 
et al. 2009a; Dai and Wen 2018), we use the average daily turnover

where wj,t+ denotes the portfolio weight in asset j before rebalancing at t + 1 but 
scaled back to sum to 1 and wj,t+1 is the portfolio weight in asset j after rebalancing 
at t + 1.

We next evaluate the portfolio composition with respect to the number of non-
zero investments and short sales as well as the development of the short-sale budget 
over time, defined as

To shed more light the introduced models from the perspective of risk exposure, we 
include two different portfolio concentration measures. First, the concentration ratio 

(15)�̂p =
1

T − �

T−1∑

t=�

(
w�
t
rt+1 − �̂p

)2
,

(16)ŜRp =
�̂p − rf

�̂p
,

(17)Turnover =
1

T − � − 1

T−1∑

t=�+1

n∑

j=1

(|||wj,t+1 − wj,t+
|||
)
,

(18)Average assets =
1

T − �

T∑

t=�+1

n∑

j=1

1{wj,t≠0}
,

(19)Average short sales =
1

T − 𝜏

T∑

t=𝜏+1

n∑

j=1

1{wj,t<0}
.
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determines the distribution of assets exposures within a portfolio and is defined as 
the aggregate share of the nb-largest weights within a portfolio.

where we set nb = 5 throughout our empirical study. Naturally, a lower concentra-
tion ratio implies better portfolio exposure and diversification.

Second, following Choueifaty and Coignard (2008), we compute the diversifica-
tion ratio as the ratio of the weighted average of asset volatilities divided by the 
portfolio volatility.

where Σt is calculated as in Eq. (13) and �t =
√
diag(Σt) . Due to its definition, the 

diversification ratio takes up values ≥ 1 and is higher when the portfolio exhibits 
higher (better) diversification levels.

Finally, to gain more insight into the model structure, we analyze the final � val-
ues of model types (3) and (7). All the values are reported on a daily basis.

Course of action

For our empirical work, we use a non-expanding rolling window study that incor-
porates cross-validation for our tuning parameter. As mentioned earlier, we evaluate 
the tuning parameter � for the LASSO constraint, so that it may change each day. 
The parameter k is left constant over time, set to 0.0005 for the 319 S&P dataset 
and 0.001 for the 100 S&P dataset. These values were found by checking different 
values k for each dataset in a small subsample. Changing k by a reasonably large 
number did not result in vastly different outcomes. In general, choosing a too large 
value for k leads to a portfolio that still has high turnover, whereas choosing it to be 
too small worsens its risk/return profile. The more the assets considered, the lower k 
should be.

To analyze the impact of both the sparsity (LASSO) and the stability (LASSO 
+ TO) constraints, we implement a simple one-fold cross-validation for the tuning 
parameter � . However, because of the described model representation of (6), which 
allows us to simplify the absolute value constraint, we apply our cross-validation 
toward the � Lagrange parameter instead of � and restore all � values in a second 
step by simply calculating ||w||1 = �.

We start with t = 1 , January 2, 1998, and use the following daily returns up to 
t = 504 to create an in-sample dataset covering approximately two years of daily 
returns. From that data sample, we take another smaller subsample for our cross-val-
idation consisting of the first 504 − 20 = 484 observations. We then calculate mod-
els (3) and (7) using 20 different � values chosen from a linear sequence of numbers 
from �t+1 = �t + 0.00001 to 0, whereas we initialize �1 with 0.00001. The resulting 
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weights of these 20 models are then applied to the first subsequent daily return of 
the cross-validation subsample (here, the 485th observation) to create an individual 
daily portfolio return for both models. The subsample is then shifted by one and the 
procedure carried out again. This is repeated until we reach the 20 observations we 
previously omitted. We then compare the standard deviations of the 20 out-of-sam-
ple cross-validation returns for each � for both models individually. After receiving 
an optimal � , chosen to be that corresponding to the lowest standard deviation, we 
set our final � to be �t for each model individually. Next, we calculate the weights 
using models (3) and (7) for all the selected data on daily in-sample returns. The true 
out-of-sample returns are then constructed by multiplying the calculated weights by 
the returns of the following period (here, the 505th observation). As model (1) needs 
no cross-validation, we calculate it only at this point to receive its out-of-sample 
portfolio return as well. We then proceed by shifting the former in-sample data by 
one period (i.e., a day) and repeat the procedure 4778 times until the last out-of-
sample daily return covers December 31, 2018.

Results

After applying the above mentioned techniques to the 319 and 100 S&P 500 stock 
returns, we can analyze the suggested portfolio strategies. The major results of our 
study for the first dataset with 319 stocks are provided by Table 1 by sorting accord-
ing to the implemented variance estimation methods in the columns and the three 
modeling approaches in the rows. All the values are based on out-of-sample data. 
First, we report the standard deviation p.a., which is the most important measure 
for comparing minimum-variance portfolios. Second, we use the Sharpe ratio p.a. 
to evaluate the return-risk profile of the suggested models. Moreover, as a proxy for 
transaction costs, we calculate the average daily turnover. We further report aver-
age assets, namely the average number of assets with weights different than zero 
included in the daily final portfolio choice, and the average short sales per day as 
the average of all negative weights. Finally, we compute both the concentration and 
the diversification ratios of all implemented model combinations. For a better over-
view of the data, every number in bold corresponds to the model that performed best 
under a certain variance estimation technique and performance measure. The under-
lined numbers represent the overall best model in that performance category.

In terms of standard deviation, the standard approach leads to the highest risk lev-
els of all the estimation techniques, with only one exception (i.e., the POET estima-
tor). The difference between the standard approach and the LASSO approach with 
POET is, however, not significant, with a p-value of almost 90%. For less effective 
estimators such as ML and Ledoit and Wolf (2003), LASSO-based models can sig-
nificantly decrease the variance, as indicated by a p-value of almost 0. This find-
ing is in accordance with that of Dai and Wen (2018) who conduct a similar study 
combining the estimator of Ledoit and Wolf (2003) with LASSO and compare it 
with the short sale-constrained GMV portfolio. Here, we can further compare the 
effect of LASSO across various estimators. Interestingly, the LASSO model with 
the linear shrinkage of Ledoit and Wolf (2003) performs even better than their 
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Table 1   Standard deviation p.a., Sharpe ratio p.a., average turnover per day, average assets as the mean 
of all non-zero weights, average short sales as the mean of all weights greater 0, the concentration, and 
diversification ratios for the different models applied to the 319 S&P dataset

The column headers represent the used variance estimation technique and rows report the results of 
the GMV calculated with (1) (Standard), (3) (LASSO), or (7) (LASSO+TO). The results in bold rep-
resent the best model of that column for a specific measure and the underlined number represents 
the best overall model for that measure. The numbers in brackets represent the p-values of the test 
H0 ∶ �

LASSO
= �

Standard
 and H0 ∶ �

LASSO+TO = �
Standard

 , respectively. All the results are calculated based 
on the whole out-of-sample period consisting 4778 daily observations

ML Ledoit and Wolf 
(2003)

Ledoit and Wolf 
(2017)

Fan et al. (2013)

Standard deviation p.a.
 Standard 0.1387 0.1064 0.1004 �.����

 LASSO 0.1025 0.0990 0.1000 0.0975
(0.0000) (0.0000) (0.5392) (0.8979)

 LASSO + TO 0.0998 0.0991 0.0997 0.0981
(0.0000) (0.0000) (0.5106) (0.4153)

Sharpe ratio p.a.
 Standard 0.7268 0.6644 0.7363 0.6819
 LASSO 0.7400 0.6373 0.7128 0.6880
 LASSO + TO 0.7153 0.6426 0.7396 �.����

Turnover
 Standard 0.7856 0.3279 0.1757 0.1472
 LASSO 0.4125 0.3979 0.3062 0.2811
 LASSO + TO 0.1439 0.1379 0.1392 �.����

Average assets
 Standard 319.00 319.00 319.00 319.00
 LASSO ���.�� 144.49 188.78 193.97

% of full 37.68 45.29 59.18 60.80
LASSO + TO 265.22 255.53 267.06 233.57
 % of full 83.14 80.10 83.72 73.22

Average short sales
 Standard 152.26 154.30 133.11 141.73
 LASSO ��.�� 60.87 67.29 77.81
 % of full 14.09 19.08 21.09 24.39
 LASSO + TO 125.97 122.37 117.45 103.73
 % of full 39.49 38.36 36.82 32.52

Concentration ratio
 Standard 0.6578 0.4683 �.���� 0.3058
 LASSO 0.4668 0.4577 0.2571 0.3415
 LASSO + TO 0.4401 0.4363 0.2516 0.3373

Diversification ratio
 Standard 1.7398 1.9365 �.���� 2.2852
 LASSO 2.5232 2.2680 2.8770 2.3243
 LASSO + TO 2.6667 2.3746 2.9479 2.3932
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non-linear version (Ledoit and Wolf (2017)), independent of the model with which it 
is combined. Moreover, the POET estimator strictly dominates all the other variance 
estimators irrespective of whether a LASSO constraint is imposed. One possible 
explanation is that POET is the only covariance estimation method to incorporate 
an underlying factor model, a popular theory in finance for explaining the cross-
section of returns. In general, introducing the stability constraint within the LASSO 
+ TO model does not noticeably weaken the results for variance compared with the 
LASSO model. Hence, both the LASSO and LASSO + TO models retain the low-
variance profile of the standard approach and can even at times significantly outper-
form it, providing suggestive evidence that incorporating the LASSO might improve 
variance overall as well.

To add more information on the overall return-risk profile of the suggested portfo-
lio models, we include the Sharpe ratio p.a. in our empirical study. The LASSO+TO 
portfolio strategy with the POET estimator results in the highest Sharpe ratio across 
all model combinations. Nevertheless, the sparsity and stability constraints as well 
as the efficiency of the covariance estimators do not seem to influence the Sharpe 
ratio levels consistently. This is not surprising, since we optimize both the portfolios 
and the sparsity parameters solely according to the underlying risk level. Moreover, 
the Sharpe ratios are known to suffer under high standard errors (Ledoit and Wolf 
2008). Accordingly, the included Sharpe ratios serve as an informative addition to 
our already extensive empirical results. The main purpose of our study remains to 
identify a portfolio that maintains a low-risk profile while investing in less assets 
(sparsity) with less turnover (stability). Therefore, in the following, we analyze in 
detail the structure of the various portfolios.

In terms of turnover, calculated in Eq. (17), the findings are surprising and novel. 
The table suggests that LASSO models without the turnover constraint have overall 
higher turnover than the standard model, except for the ML estimator. Merely in the 
case of the latter, LASSO reduces the turnover, a finding that coincides with those 
of, for example, Brodie et al. (2009). Moreover, the more efficient a variance estima-
tion method, the larger is the relative increase of turnover due to the incorporated 
sparsity constraint as in (3). Only when introducing the stability constraint, as in 
model (7), does turnover vastly decrease to levels below that of the standard models. 
This holds true for all the variance estimators. To further support our findings and 
provide possible explanations, Fig.  2 provides an overview of the � values of the 
portfolios over time, demonstrating the variance estimation technique of Ledoit and 
Wolf (2017) as a benchmark.

Figure 2a shows the calculated � values for the standard as well as the LASSO 
model over time. The parameter � in Eq. (5) corresponds to the sum of absolute 
portfolio weights. While this parameter can only be calculated afterward in the 
standard model, it is directly linked to the most influential tuning parameter in 
the LASSO model: the � Lagrange parameter. � also provides information on the 
short-sale budget as well as practitioners’ investment rules, as shown by Zhao et al. 
(2019). Naturally, as represented by the black line of standard models’ � , this param-
eter is stable over a few months but can have high fluctuations over years. In that 
sense, � varies between 2.5 and 5 throughout the whole out-of-sample period. The 
LASSO model, however, does not reveal such high levels of � , and thus implies a 
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lower short-sale budget than its standard counterpart. This can be seen by the orange 
dots, but even better by the blue line, which represents the simple moving average of 
30 days for these orange dots. The moving average is only applied for visualization 
purposes to show the variation in �.

In general, two main findings come from Fig.  2a. First, the overall short-sale 
budget with LASSO is always lower than or equal to that of the standard portfo-
lio approach, which coincides with the findings in the literature (e.g., Brodie et al. 
(2009)). Second, the optimal � for LASSO portfolios seems to be much more volatile 
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mated following Ledoit and Wolf (2017)
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than that for the standard portfolio. In particular, the second finding causes the turn-
over of these portfolios to be high. If the chosen optimal � of each cross-validation 
out-of-sample step needs to be adjusted for every new step to minimize the standard 
deviation, the portfolio weights fluctuate more than usual. In studies focusing on 
LASSO-constrained portfolios, this is usually overseen, as most research assumes a 
stable sparsity parameter � and, thus, a stable � over time (e.g., Zhao et al. (2019)). 
Figure  2b provides more evidence in this regard. The image illustrates the same 
characteristics, but now for the LASSO + TO model. The orange dots seem to be 
much closer to each other than before. In addition, the blue line is far less volatile. 
This higher stability of � over time leads to more stable weights and, thus, lower 
turnover.

Table 1 provides more information on the average number of assets over time, 
calculated as in (18). Naturally, the standard portfolio includes all 319 assets, as 
no restriction is imposed. However, the LASSO and LASSO + TO portfolios both 
reduce the number of stocks in the portfolio. Again, for the unconstrained LASSO 
model, the number of included assets increases when a more efficient covariance 
estimation technique is used. For the worst performing estimator in terms of stand-
ard deviation (i.e., ML), the LASSO model only selects 37.68% of all stocks on 
average, whereas this is 60.80% for the POET estimator of Fan et al. (2013). Impos-
ing an additional turnover constraint changes these results slightly, meaning that 
the number of included assets increases compared with the regular LASSO model. 
However, compared with the standard model, the LASSO + TO model is still strictly 
dominating in terms of sparsity, as it reduces the number of included assets to less 
than 84% of the whole asset universe for all cases.

To get a fuller picture on the included assets, we investigate the average short 
sales, calculated as in (19). In accordance with the literature and as already seen in 
Fig. 2, the LASSO model tends to constrain short sales, leading to a small number of 
short sales overall compared with the standard approach. In most cases, LASSO can 
generally halve the amount of short sales of the standard approach, whereas includ-
ing a turnover constraint induces a smaller reduction than LASSO alone. However, 
the LASSO + TO model still decreases the short-sale budget overall compared with 
the standard method. Figure 3 provides further details.

Here, we compare the amount of short sales of the LASSO models with that of 
the standard model over time. The black and gray areas of the two subfigures repre-
sent the full out-of-sample period, whereas the blue areas are an example of a cho-
sen subset to provide an easier illustration. The figure specifically compares the pro-
portion SSLASSO(+TO)

SSLASSO(+TO)+SSStandard
 , where SS stands for the amount of short sales on a specific 

day for a specific portfolio. This number is beneficial to analyze, as it explains which 
model exhibits higher amounts of short sales for a given time point. The number 0.5 
stands for the cut-off point, for which one or the other model will have higher short 
sales, assuming that lower short sales is advantageous.

Figure 3a, which compares the LASSO model with the standard model, shows 
that the LASSO model never exhibits more short sales than its standard version 
throughout the period. This is graphically illustrated by the black and blue areas 
never exceeding the red line. On some occasions (e.g., some days in August 2006), 



230	 S. Husmann et al.

the short-sale budget of the LASSO model becomes 0 (i.e., there were no short 
sales).

Figure  3b, which compares the LASSO + TO model with the standard model, 
does not share the same properties. Here, the red line is often exceeded by the black 
and blue areas, leading to a portfolio with higher short sales than under the standard 
method. Moreover, short sales were never absent from the portfolio. Nevertheless, 
as already shown in Table  1, the LASSO with the turnover constraint model still 
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(a) Comparison of short sales for the LASSO and Standard model.

(b) Comparison of short sales for the LASSO with the turnover constraint and Standard model.

Fig. 3   Development of short sales compared with the standard model over the whole out-of-sample 
period as the black area and a snapshot of 10 months as the blue area. Data are normalized, so that 0 
stands for 0% of the combined short sales of standard and LASSO(+ TO) and 1 for 100%. The red line 
describes the breaking point of 0.5, where both methods show the same amount of short sales. (Color 
figure online)
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reduces the short-sale budget, as the gray area below the red line is greater than the 
black and blue areas above the red line.

Finally, in Table 1, we report both the concentration (as in (20)) and the diver-
sification (as in (21)) ratios across all model combinations. Here, first, we need 
to remind that a lower concentration ratio indicates a lower portfolio risk expo-
sure. Reversely, a higher diversification ratio implies a better diversified portfo-
lio. Overall, for the less efficient covariance estimation methods, we can observe 
strong effects of the introduced sparsity and stability constraints on both perfor-
mance measures. The effects are most emphasized for the ill-conditioned ML 
estimator. In this case, the LASSO model decreases the portfolio concentration 
by approximately 30% and increases the portfolio diversification ratio by roughly 
45%. Interestingly, both the LASSO and the LASSO + TO model with the ML 
estimator achieve higher diversification ratios than their counterparts with the 
POET estimator. Similar, although less pronounced, are the results considering 
the linear shrinkage estimator by Ledoit and Wolf (2003). For exactly these two 
estimation methods, both the LASSO and LASSO + TO models achieve the high-
est relative decrease in standard deviation. Intuitively, as LASSO models reduce 
the number of assets, it could be assumed that LASSO will increase the concen-
tration ratio. On average, spreading an investment over 100 assets will result in 
lower absolute weights than spreading it over 10 assets. However, since the spar-
sity constraint is designed to remove assets with only a low absolute impact on 
the risk profile of the portfolio, the LASSO and LASSO + TO models manage 
to both reduce the number of assets and increase the concentration ratio for less 
efficient covariance estimators. Considering the more efficient, state-of-the-art 
covariance methods, it does not seem that the introduced LASSO and LASSO 
with turnover constraints can improve the concentration ratios. More importantly, 
the standard model with the non-linear shrinkage by Ledoit and Wolf (2017) 
achieves the best concentration and diversification levels across all model com-
binations. However, in this case, the differences to the LASSO and LASSO + TO 
models are negligible. We can therefore still conclude that the sparsity and stabil-
ity constraints improve the overall portfolio profile, even in the case of highly 
efficient estimators. While we manage to keep a low-risk level and high diversi-
fication ratios, we strongly reduce the number of invested assets and the overall 
portfolio turnover rate.

To further strengthen our results, we examine 100 randomly selected stocks of 
the S&P 500. Table 2 shows the results. The findings in Table 1 are supported by 
those summarized in Table 2. Ledoit and Wolf (2017) and Fan et al. (2013) seem to 
be superior variance estimation techniques. Now, the standard deviation is almost 
always significantly better when using LASSO-based methods than standard meth-
ods, providing even more evidence that our proposed methods can reduce the out-of-
sample variance of the minimum-variance portfolio. Considering the Sharpe ratios, 
we can observe some increase for the LASSO and LASSO + TO models, partly 
due to the respective decrease in the standard deviation of these particular portfo-
lios. Turnover for the standard model with POET is still slightly lower than that for 
the LASSO + TO model simply because of our non-flexible choice of k for all the 
models, as described above. This result can be easily adjusted by imposing a tighter 



232	 S. Husmann et al.

Table 2   Standard deviation p.a., Sharpe ratio p.a., average turnover per day, average assets as the mean 
of all non-zero weights, average short sales as the mean of all weights greater 0, the concentration, and 
diversification ratios for the different models applied to the 100 S&P dataset

The column headers represent the used variance estimation technique and rows report the results of 
the GMV calculated with (1) (standard), (3) (LASSO), or (7) (LASSO+TO). The results in bold rep-
resent the best model of that column for a specific measure and the underlined number represents 
the best overall model for that measure. The numbers in brackets represent the p-values of the test 
H0 ∶ �

LASSO
= �

Standard
 and H0 ∶ �

LASSO+TO = �
Standard

 , respectively. All the results are calculated based 
on the whole out-of-sample period consisting of 4778 daily observations

ML Ledoit and Wolf 
(2003)

Ledoit and Wolf 
(2017)

Fan et al. (2013)

Standard deviation p.a.
 Standard 0.1170 0.1137 0.1131 0.1136
 LASSO 0.1123 0.1116 0.1116 �.����

(0.0014) (0.0703) (0.1314) (0.0051)
 LASSO + TO 0.1122 0.1119 0.1116 0.1113

(0.0000) (0.0407) (0.0643) (0.0143)
Sharpe ratio p.a.
 Standard �.���� 0.6896 0.6776 0.6463
 LASSO 0.6351 0.6376 0.6353 0.6730
 LASSO + TO 0.7371 0.7186 0.7197 0.6710

Turnover
 Standard 0.1348 0.1041 0.0922 �.����

 LASSO 0.2111 0.1829 0.1633 0.1247
 LASSO + TO 0.0878 0.0858 0.0864 0.0730

Average assets
 Standard 100.00 100.00 100.00 100.00
 LASSO ��.�� 59.13 63.60 62.28
 % of full 56.61 59.13 63.60 62.28
 LASSO + TO 83.43 81.71 85.35 73.99
 % of full 83.43 81.71 85.35 73.99

Average short sales
 Standard 44.49 45.77 41.11 41.27
 LASSO ��.�� 22.62 20.97 21.12
 % of full 20.17 22.62 20.97 21.12
 LASSO + TO 37.90 37.42 36.20 30.06
 % of full 37.90 37.42 36.20 30.06

Concentration ratio
 Standard 0.6800 0.6480 0.4946 �.����

 LASSO 0.6344 0.6355 0.5060 0.5273
 LASSO + TO 0.6172 0.6227 0.4989 0.5392

Diversification ratio
 Standard 1.8016 1.6340 1.9574 1.5065
 LASSO 1.9018 1.7500 1.9975 1.6764
 LASSO + TO 1.9266 1.7690 �.���� 1.7107
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turnover constraint parameter k. All the other major findings remain the same: the 
LASSO alone does not reduce turnover because of the need to estimate � for every 
period, but the LASSO with the turnover constraint model does. Furthermore, the 
LASSO models reduce the overall number of assets as well as the short-sale budget 
of the portfolios, while keeping a low-risk profile and high diversification level.

Summary and conclusion

In this study, we investigate different types of global minimum-variance portfolios 
in terms of their standard deviation and practically relevant features such as the 
number of included assets, a short-sale reduction, and a turnover constraint. We use 
realistic datasets with up to 319 stocks in one portfolio and find that highly efficient 
estimation techniques for minimum-variance portfolios can be combined with prac-
titioners’ requirements for such portfolios. Our proposed estimation setup is con-
structed to be easily implemented, as it is solvable with standard software for quad-
ratic programming.

Adding common constraints found in the literature, we construct sparse and sta-
ble portfolios. Our detailed empirical analysis, covering almost 19 years of daily 
out-of-sample observations, show the distinct and novel features of using portfolio 
construction with efficient estimation techniques. Specifically, we make the follow-
ing discoveries:

•	 LASSO-type models can retain the low-variance profile of highly efficient vari-
ance estimators or even lower it

•	 A standard LASSO constraint increases turnover when � is allowed to change 
over time

•	 The LASSO with the turnover constraint model can reduce turnover drastically, 
while maintaining sparsity, keeping variance low, and reducing the short-sale 
budget

We therefore conclude that it is beneficial, especially to practitioners, to use the 
LASSO with the turnover constraint approach and combine it with a modern tech-
nique to estimate large covariances.

However, our results depend on the procedure used to obtain the lowest variance 
in the out-of-sample study, namely, the cross-validation for the different � tuning 
parameters. While this is a common practice in many fields unrelated to portfolio 
optimization, some researchers tend to use preset parameter values (i.e., they do not 
allow them to change over time). Future research should aim to provide more evi-
dence on whether one or the other method yields better results in terms of relevant 
performance measures such as variance.

Further, data with a daily frequency are an a priori assumption that latently influ-
ences the outcome of our study. Even if the investor decides to rebalance daily, it 
is still questionable whether using only end-of-day daily data is sufficient to esti-
mate the necessary moments of the multivariate return distribution. Advancements 
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in intraday data analysis might therefore also be included in further research on this 
topic.

Finally, all our models inherit the assumption of homoscedasticity. This, however, 
conflicts with the inclusion of a time-varying � to some extent. Variance models 
that can capture the time dependency in return data, such as DCC-GARCH mod-
els, might be able to overcome the need to allow � to fluctuate over time. Recent 
advancements in combining non-linear variance estimation with time-dependent 
techniques might therefore also provide new insights into this matter.
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