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Abstract

P-splines are a popular approach for fitting nonlinear effects of continuous covari-
ates in semiparametric regression models. Recently, a Bayesian version for P-splines
has been developed on the basis of Markov chain Monte Carlo simulation techniques
for inference. In this work we adopt and generalize the concept of Bayesian contour
probabilities to Bayesian P-splines within a generalized additive models framework.
More specifically, we aim at computing the maximum credible level (sometimes called
Bayesian p-value) for which a particular parameter vector of interest lies within the
corresponding highest posterior density (HPD) region. We are particularly interested
in parameter vectors that correspond to a constant, linear or more generally a poly-
nomial fit. As an alternative to HPD regions simultaneous credible intervals could
be used to define pseudo contour probabilities. Efficient algorithms for computing
contour and pseudo contour probabilities are developed. The performance of the ap-
proach is assessed through simulation studies and applications to data for the Munich
rental guide and on undernutrition in Zambia and Tanzania.

1 Introduction

Consider the additive model

yi = ηi + εi = f1(xi1) + · · · + fp(xip) + εi, i = 1, . . . , n, (1)

where the mean of a continuous response variable yi is the sum of nonlinear but sufficiently
smooth functions f1, . . . , fp of the covariates xi = (xi1, . . . , xip)

′.

Currently one of the most popular approaches for estimating the functions fj is based
on P(enalized)-splines as proposed by Eilers and Marx (1996), see also Marx and Eilers
(1998) and Eilers and Marx (2004). The approach assumes that the unknown functions
fj can be approximated by a spline of degree l with equally spaced knots xj,min = ζj0 <
ζj1 < · · · < ζj,r−1 < ζjr = xj,max within the domain of xj . The spline can be written in
terms of a linear combination of r + l B-spline basis functions Bjρ, i.e.

fj(xj) =

r+l
∑

ρ=1

βjρBjρ(xj). (2)
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By defining the design matrices Xj , where the element in row i and column ρ is given by
Xj(i, ρ) = Bjρ(xij), we can rewrite the predictor in (1) in matrix notation as

η = X1β1 + · · · + Xpβp.

Eilers and Marx (1996) suggest a moderately large number of knots (usually between 20
and 40) to ensure enough flexibility, and to define a roughness penalty based on squared
differences of adjacent B-spline coefficients to guarantee sufficient smoothness of the fitted
curves. Recently, Lang and Brezger (2004) developed a Bayesian version of P-splines
which is based on stochastic analogues of difference penalties as priors for the regression
coefficients. More specifically, first or second order random walks are used as smoothness
prior, i.e.

βjρ = βj,ρ−1 + ujρ, or βjρ = 2βj,ρ−1 − βj,ρ−2 + ujρ (3)

with Gaussian errors ujρ ∼ N(0, τ 2
j ) and diffuse priors βj1 ∝ const, or βj1 and βj2 ∝ const,

for initial values, respectively. The priors (3) can be equivalently written in the form of a
global smoothness priors

βj |τ
2
j ∝ exp

(

−
1

2τ2
j

β′
jKjβj

)

with appropriate penalty matrix Kj . In a further stage of the hierarchy, inverse Gamma
hyperpriors p(τ 2

j ) ∼ IG(aj , bj) are assigned to the variances τ 2
j (and the overall variance

parameter σ2). Bayesian inference for the regression and variance parameters can be based
on MCMC simulation. For Gaussian responses, as primarily considered in this paper, a
Gibbs sampler can be used to successively update the parameters β1, . . . , βp, τ

2
1 , . . . , τ2

p ,
see Lang and Brezger (2004) for details.

Currently, interval estimates are limited to pointwise credible intervals for the regression
parameters βj and the functions fj evaluated at the observations. The primary goal of
this paper is to develop techniques for obtaining simultaneous probability statements about
the regression parameters and as a result about the unknown functions. More specifically,
we aim at computing the maximum credible level (sometimes called Bayesian p-value)
for which a particular parameter vector of interest lies within the corresponding highest
posterior density (HPD) region. We are particularly interested in parameter vectors that
correspond to a constant, linear or more generally a polynomial fit. Since the functions fj

are centered around zero, a constant fit corresponds to βj = 0, i.e. the particular covariate
has no effect on the conditional mean of the response variable. The final goal is to assist the
analyst in the model building process towards more parsimonious models. For instance,
if the contour probability for a linear fit is small but relatively high for a quadratic fit, a
more parsimonious model with a parametric linear fit could be used.

The plan of the paper is as follows:

• In Section 2.1 we review ideas recently proposed by Held (2004) for estimating and
computing contour probabilities or Bayesian p-values. As an alternative to HPD
regions, simultaneous credible intervals as proposed by Besag, Green, Higdon and
Mengersen (1995) could be used to define pseudo contour probabilities.

• We derive in Section 2.2 conditions on the regression parameters that lead to a
constant, linear or in general a polynomial fit and develop efficient algorithms for
computing the corresponding (pseudo) contour probabilities. So far, algorithms

2



and software are available for models with Gaussian responses and models where
latent Gaussian responses can be obtained through data augmentation. The latter
is possible for most categorical regression models, see Albert and Chib (1993) for
probit models and Holmes and Held (2005) for logit models.

• The performance of the different approaches is assessed through simulation studies
(Section 3). We finally present in Section 4 applications to data for the Munich
rental guide and on undernutrition in Zambia and Tanzania.

2 Contour probabilities for P-Splines

In order to keep the notation as simple as possible the development in this section is
presented for a particular covariate x with regression parameters β. Hence the index j in
(2) and everywhere else is suppressed.

2.1 Contour probabilities

Suppose we are interested in simultaneous posterior probability statements for a particular
parameter vector β = β∗. The posterior contour probability P (β∗ | y) of β∗ is defined as 1
minus the content of the HPD region of p(β | y) which just covers β∗, i.e.

P (β∗ | y) = P{p(β | y) ≤ p(β∗ | y) | y}, (4)

see Box and Tiao (1973) and Held (2004). Note that p(β | y) is treated here as a random
variable. In the following we briefly review concepts for estimating the probability (4)
from posterior samples β(t), t = 1, . . . , T obtained via MCMC simulation.

Held (2004) proposes to estimate (4) by

̂P (β∗ | y) =
1

T

T
∑

t=1

1{p(β(t) | y) ≤ p(β∗ | y)}, (5)

i.e. the proportion of the MCMC samples for which the posterior density is smaller than
the density of the point of interest β∗.

Unfortunately the functional form of the marginal density p(β | y) is unknown (otherwise
MCMC would not be necessary) and we have to employ some method of density estimation

to obtain estimates ̂p(β(t) | y), t = 1, . . . , T , and ̂p(β∗ | y). For (latent) Gaussian responses
the full conditionals p(β | ·), i.e. the conditional densities of β given the data and the
remaining parameters, are available and an approach based on Rao-Blackwellization seems
natural (Held 2004). The Rao-Blackwell estimate is more efficient than any other density
estimate based on β(1), . . . , β(T ) and no smoothing parameter is involved. Estimates for
the marginal density p(β | y) can be obtained using the Rao-Blackwell theorem

p̂(β | y) =
1

T

T
∑

v=1

p(β |α
(v)
− , y), (6)

where α
(v)
− comprises all model parameters excluding β and hence p(β |α

(v)
− , y) denotes the

full conditional density of β. As an alternative to the mean in (6) Held (2004) suggests to
use the median, i.e.

p̂(β | y) = med1≤v≤T

{

p(β |α
(v)
− , y)

}

. (7)
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As an advantage, the estimated contour probabilities are invariant to monotonic transfor-

mations of p(β | y) in (4). For instance, one could replace p(β |α
(v)
− , y) in (7) by the log

density, i.e.

log(p̂(β | y)) = med1≤v≤T

{

log(p(β |α
(v)
− , y))

}

. (8)

Usually, this is computationally more favorable than using the density directly (see Sub-
section 2.3) and also more robust against extreme samples.

Summarizing, the contour probability (4) is estimated by replacing the marginal densities
with (6), (7), or (8) if log densities are used. Using (7), for instance, we obtain

̂P (β∗ | y) =
1

T

T
∑

t=1

1
{

med1≤v≤T

{

p(β(t) |α
(v)
− , y)

}

≤ med1≤v≤T

{

p(β∗ |α
(v)
− , y)

}}

(9)

Pseudo contour probabilities based on credible intervals

As an alternative to the definition of contour probabilities via HPD regions, we could
base the definition on simultaneous credible intervals for the parameter β∗ of interest.
For instance, Besag et al. (1995) propose to define a simultaneous credible interval as the
hyperrectangular defined by

[β[T+1−t∗]
ρ , β[t∗]

ρ ] ρ = 1, . . . , r + l, (10)

where β
[t]
ρ , t = 1, . . . , T denotes the ordered samples of the parameter βρ. The index t∗ is

the smallest integer such that the hyperrectangular (10) contains at least 100α percent of
the samples β(1), . . . , β(T ) if α is the desired level of the credible interval.

The (pseudo) contour probability P (β∗ | y) for β∗ can now be defined as 1 minus the smallest
credible level, for which β∗ is contained in the corresponding credible interval.

2.2 Contour probabilities for P-Splines

In the context of P-splines, we are particularly interested in parameters β = β∗ that lead
to a constant, linear or in general a polynomial fit. Since P-splines are centered around
zero a constant fit corresponds to β∗ = 0, i.e. the corresponding covariate is excluded from
the predictor. In this section we determine conditions on the regression parameters that
lead to a polynomial fit rather than a piecewise polynomial as is generally the case.

It can be shown that a spline f(x) reduces to a polynomial of degree s ≤ l if the (s+1)-th
differences of the regression parameters are zero, i.e.

∆s+1βρ = 0, ρ = s + 2, . . . , r + l, (11)

or in matrix notation
Ds+1β = 0,

where Ds+1 is a difference matrix of order s + 1. A proof can be found in the Appendix.

In order to compute (pseudo) contour probabilities the full conditional of Dsβ must be
computed. The full conditional of β is multivariate Gaussian

β |α−, y ∼ N(m, P−1) (12)
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with

P =
1

σ2
X ′X +

1

τj

K, m = P−1 1

σ2
X ′(y − η̃).

Here, η̃ is the part of the predictor associated with all remaining effects in the model.
Thus Dsβ =: β̃ is also multivariate Gaussian

β̃ |α−, y ∼ N(m̃, P̃−1), (13)

with mean m̃ = Dsm and precision matrix P̃ = DsP
−1D′

s. Note that for the special case
s = 0, i.e. Ds = I, we recover (12) as full conditional for Dsβ.

2.3 Computational aspects

This section is concerned with computational aspects of the estimator (9). We will distin-
guish the two cases s = 0 and s > 0.

In the case s = 0 we have to evaluate

log(p(β(t) |α
(v)
− , y)) =

1

2
log(|P (v)|) −

1

2
(β(t) − m(v))′P (v)(β(t) − m(v)) (14)

for t, v = 1, . . . , T in order to estimate (9). Here, P (v) is the posterior precision matrix
evaluated at the v-th sample of τ 2 and σ2 and m(v) is the posterior mean evaluated at the
v-th sample of P , σ2 and η̃. It is useful to decompose the quadratic form in (14) by

(β(t) − m(v))′P (v)(β(t) − m(v)) =

1

(σ2)(v)
(β(t))′X ′Xβ(t) +

1

(τ2)(v)
(β(t))′Kβ(t) + (m(v))′P (v)m(v) − 2(m(v))′P (v)β(t),

This shows that (9) can be evaluated by computing and storing the samples log(|P (t)|),
(β(t))′X ′Xβ(t), (β(t))′Kβ(t), (m(t))′P (t)m(t) and (m(v))′P (v)β(t). Except (m(v))′P (v)β(t)

these quantities are obtained as a by product of the MCMC simulation run. For t ≤
v, t, v = 1, . . . , T it is also possible to store (m(v))′P (v)β(t). For t > v the quantity
(m(v))′P (v)β(t) must be computed after the MCMC simulation. This is facilitated by
storing (m(v))′P (v) after every iteration of the MCMC sampler.

The case s > 0 is computationally more demanding. In this case the log densities

log(p(β̃(t) |α
(v)
− , y)) =

1

2
log(|P̃ (v)|) −

1

2
(β̃(t) − m̃(v))′P̃ (v)(β̃(t) − m̃(v))

must be computed. Evaluation of the quadratic form yields

(β̃(t) − m̃(v))′P̃ (v)(β̃(t) − m̃(v)) = (β̃(t))′P̃ (v)β̃(t) + (m̃(v))′P̃ (v)m̃(v) − 2(m̃(v))′P̃ (v)β̃(t).

Hence the quantities log(|P̃ (v)|) and (m̃(v))′P̃ (v)m̃(v) can be computed as a by product of
the MCMC sampler and stored in every iteration. However, the quantities (β̃(t))′P̃ (v)β̃(t)

and (m̃(v))′P̃ (v)β̃(t) can only be stored for t ≤ v. For t > v both quantities must be
computed after the MCMC run.

Now we can compute medv

{

log(p(β̃(t)|α
(v)
− , y))

}

for all t in two ways which differ in the

order of evaluations:

5



Algorithm 1:

For t = 1, . . . , T :

1. For v = 1, . . . , T :

(a) If t > v:
Compute P̃ (v) and with it the quantities (β̃(t))′P̃ (v)β̃(t) and (m̃(v))′P̃ (v)β̃(t).

(b) Compute log(p(β̃(t)|α
(v)
− , y)).

2. Compute medv

{

log(p(β̃(t)|α
(v)
− , y))

}

.

This algorithm is very time consuming, because P̃ (v) has to be computed T (T−1)/2 times.

The second algorithm is:

Algorithm 2:

1. For v = 1, . . . , T :

(a) Compute P̃ (v).

(b) For t = 1, . . . , T :

If t ≤ v: Compute log(p(β̃(t) |α
(v)
− , y)) based on the stored quantities.

If t > v:
Compute first (β(t))′P̃ (v)β(t) and (m̃(v))′P̃ (v)β̃(t) and then log(p(β̃(t) |α

(v)
− , y)).

2. For v = 1, . . . , T : Compute medv

{

log(p(β̃(t) |α
(v)
− , y))

}

.

The drawback of this algorithm is that it takes an enormous amount of memory space,

because we have to create a T × T matrix to store all values log(p(β̃(t) |α
(v)
− , y)), t, v =

1, . . . , T , before computing the median. A remedy is to take only every k-th sample to

estimate ̂p(β̃(t)|y), but the memory requirement is still quite high.

As an alternative to the direct computation of the medians, we propose to use the method
of stochastic approximation as described in Tierney (1983). The advantage is, that the
quantiles can be estimated by a very space-efficient recursive procedure. Throughout this
work we use Algorithm 2 together with stochastic approximation of quantiles to avoid
extensive use of memory space.

3 Simulations

We realized an extensive simulation study in order to compare the performance of contour
and pseudo contour probabilities. We investigated the functions

yi = 1 + k · sin(2πxi) + εi, k = 0.0, 1.0, 1.5, (15)

and
yi = 1 + xi + k · sin(2πxi) + εi, k = 0.0, 1.0, 1.5. (16)
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For x we chose 100 equidistant design points in the interval [0, 1] and generated data
sets with 250 replications of each of the models (15) and (16) with εi ∼ N(0, 0.5). This
corresponds to a signal to noise ratio (SNR) of 0.0, 1.0 and 2.25 for k = 0, 1.0, 1.5 and
model (15) and a SNR of approximately 0.17, 0.53 and 1.47 for k = 0, 1.0, 1.5 and model
(16), respectively. We used an IG(0.001,0.001) prior for the scale parameter σ2 and the
variance parameter τ 2. Figures 1 and 2 display the simulated functions as well as a
typical replication from the generated response for k = 0, 1.0, 1.5.

We compare the results in terms of the ’p-values’ obtained from contour probabilities based
on the median and the mean of the log-density, and from pseudo contour probabilities.
Figure 3 shows boxplots of p-values for model (15). Note that ∆sβ = 0 corresponds to a
constant fit (i.e. no effect) for both, s = 0 and s = 1. The results for model (16) exhibit
mainly the same behavior and are displayed in Figure 4. The results of both models can
be summarized as follows:

• No effect (SNR=0.0)
As we could have expected, for a signal to noise ratio of 0.0 the contour probabilities
are close to one for all difference orders considered, i.e. p-values give no evidence of
any influence of the covariate at all. Pseudo contour probabilities do not suggest the
existence of an influence of the covariate either, though they are considerably lower
than the contour probabilities.

It is striking that pseudo contour probabilities show a noticeable difference between
difference orders s = 0 and s = 1, though both correspond to the probability for
no effect of the covariate. Held (2004) reports severe underestimation for s = 0 and
conjures that this comes from strong correlations between successive parameters.
Since the correlation decreases when considering first differences of the parameters
instead of the parameters directly the problem becomes less distinctive. This may
explain the big differences between s = 0 and s = 1.

• Very low to low signal to noise ratio (SNR=0.17, 0.53, 1.0)
For the very low and low signal to noise ratios (0.17, 0.53 in model 16, 1.0 in model 15)
the p-values clearly decrease for all difference orders smaller than 4, i.e. the posterior
probabilities for a (at least) cubic effect increase, as the SNR increases from 0.17 to
1.0. For the model with SNR = 1.0 contour probabilities actually speak against the
hypothesis of the covariate having no effect. However, neither contour probabilities
nor pseudo contour probabilities give clear cut results and hence further investigation
is advisable. An exception are p-values from pseudo contour probabilities based on
0-th order differences. Here, pseudo contour probabilities exhibit mainly very low
p-values. However, this may be due to the underestimation mentioned by Held
(2004).

• Medium signal to noise ratio (SNR=1.47, 2.25)
For medium signal to noise ratios (1.47 in model 16, 2.25 in model 15) the con-
tour probabilities for parametric fits with polynomials of degree smaller than three
(i.e. difference order smaller than 4) are very small, suggesting that a more flexible
modeling is needed. However, the need of a polynomial of degree higher than 3 is
rather unlikely a posteriori. This is in perfect agreement with the data, since a sine
curve can be approximated by a polynomial of degree 3 without major deviations
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(compare Figure 5). Pseudo contour probabilities, on the other hand, perform very
poorly for difference orders higher than 1.

• Contour probabilities versus pseudo contour probabilities
It turns out that p-values based on pseudo contour probabilities are apparently
smaller than that obtained from the contour probabilities for very low signal to
noise ratios. This is in accordance with findings of Held (2004) who reported severe
underestimation of p-values especially in the case of difference order s = 0, but also
- to a smaller degree - when considering first differences.

In contrast, pseudo contour probabilities behave rather conservative regarding higher
differences compared to contour probabilities. For a SNR of 2.25 p-values in favor of a
parametrization by polynomials of a degree higher than quadratic are still reasonably
close to one.

• Contour probabilities based on the median/mean of log-density
Estimated p-values may differ slightly regarding on which definition they are based.
In our simulation study we compared p-values based on the median or on the mean of
the log-density, respectively. We found p-values based on the mean of the log-density
to be noticeably higher than the ones based on the median.

We conclude that pseudo contour probabilities seem to underestimate the p-values regard-
ing the decision whether a covariate has an effect on the response or not, whereas for the
decision for modeling an effect linearly (or by a polynomial of higher degree) they seem to
behave too conservative. Contour probabilities seem to give the most reasonable results.
However, it is difficult to base model selection solely on contour probabilities in cases when
the obtained p-values lie in a medium range (i.e. between 0.1 and 0.4, approximately).

4 Applications

In this section we illustrate the performance of the previously described model selection
tools by applications to complex data sets. First, we reanalyze data from the official
Munich rental guide of the year 2003 using the model developed by Fahrmeir, Biller,
Brezger, Gieger, Hennerfeind, Jerak and Schmid (2003). A brief description of the data is
given in Subsection 4.1. For a more detailed description we refer the reader to Fahrmeir
et al. (2003).

Our second example investigates undernutrition of children in Zambia and Tanzania and
is based on data already analyzed by Kandala, Lang, Klasen and Fahrmeir (2001). We
give a brief description of the data in Subsection 4.2.

4.1 Rental guide

According to the German rental law, owners of apartments or flats can base an increase
in the amount that they charge for rent on ”average rents” for flats comparable in type,
size, equipment, quality and location in a community. To provide information about
these ”average rents”, most larger cities publish ”rental guides”, which can be based on
regression analysis with rent as the dependent variable. We use data from the City of
Munich, collected in 2002 by Infratest Sozialforschung for a random sample of more than
3000 flats. As response variable we choose
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R monthly net rent per square meter in German Marks, that is the monthly rent minus
calculated or estimated utility costs.

Covariates characterizing the flat were constructed from almost 200 variables out of a
questionnaire answered by tenants of flats. In our reanalysis we use the same covariates as
in the official Munich ’03 rental guide. These are the continuous covariates ”floor space”
(F ) and ”year of construction” (Y ) and a vector v of 23 binary covariates characterizing
the quality of the flat, e.g. the kitchen and bath equipment, the quality of the heating
or the quality of the warm water system. Another important covariate is the location L
of the flat in Munich. For the official Munich ’03 rental guide, location in the city was
assessed in three categories (average, good, top) by experts.

Thus, our model has a semiparametric predictor of the form

η = γ0 + f1(F ) + f2(Y ) + γ′x,

where F denotes the floor space in square meters, Y denotes the year of construction and
γ contains all covariates to be modeled parametrically, e.g. the quality of the kitchen and
bath equipment, location of the flat, etc. The main effects f1 and f2 of floor space and
year of construction are modeled by cubic P-splines with 20 knots and a second order
random walk penalty. Since we aim at deciding whether the nonparametric modeling
of the continuous covariates F and Y could possibly be replaced by a more parsimonious
polynomial fit, we do not compare the results for the fixed effects to the results of Fahrmeir
et al. (2003).

By visual inspection, the nonparametric effects as depicted in Figure 6 seem justified
and one presumes that they can not be adequately modeled by low degree polynomials.
Table 1 displays the p-values obtained from contour probabilities and pseudo contour
probabilities. Obviously, there is strong evidence for the need of nonparametric modeling
of the effects for F and Y regarding contour probabilities, as all p-values are either exactly
or at least near zero. However, pseudo contour probabilities only suggest a linear effect of
both covariates. For comparison we additionally estimate the model with only fixed effects
included, i.e. we model F and Y linearly. Comparison of the DIC (Table 2) shows that
the semiparametric model clearly outperforms the parametric model suggested by pseudo
contour probabilities.

Figure 7 depicts the linear and nonparametric estimates for F and Y together with the
partial residuals

rF = y − η̂−F and rY = y − η̂−Y ,

where η̂−F , η̂−Y is the estimated predictor with the estimated effect of F and Y , respec-
tively, excluded. Figure 8 displays the mean and the standard deviation of the partial
residuals. Note, that for F the data is rounded to integer values to compute means and
standard deviations. A comparison between the figures for the linear and the nonpara-
metric model gives further evidence for the superiority of the semiparametric model, since
the nonparametric estimates show a clearly better adaptation to the partial residuals.

We conclude that nonparametric modeling of the continuous covariates is reasonable ac-
cording to the results obtained from both, the estimated contour probabilities and the DIC.
Pseudo contour probabilities, however, are somewhat misleading and gave no satisfactory
results, similar to the simulation results in Section 3
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4.2 Undernutrition in Zambia and Tanzania

The Demographic and Health Surveys (DHS) of Tanzania and Zambia, both conducted
in 1992, draw a representative sample of women in reproductive age in the two countries.
Thereafter they administer a questionnaire and an anthropometric assessment of them-
selves and their children that where born within the previous five years. The data contains
6299 cases in Zambia and 8138 cases in Tanzania. Kandala et al. (2001) use this data to
explore determinants of undernutrition measured through stunting, which is insufficient
height for age, indicating chronic undernutrition. Stunting for a child i is determined by
a Z-score

Zi =
AIi − MAI

σR

,

where AI refers to the childs height at a certain age, MAI refers to the median of a
reference population, and σR denotes the standard deviation of the reference population.

Kandala et al. (2001) estimate separate additive models for each country with a predictor

η = γ0 + f1(bmi) + f2(agc) + fspat(d) + γ′x,

where the mothers body mass index bmi and the age of the child agc are modeled non-
parametrically with Bayesian P-splines. The expression fspat(d) denotes the spatial effect
associated with the district d the child lives in, and is modeled as sum of a structured
and an unstructured random effect for Zambia. For Tanzania they exclude the unstruc-
tured effect from the model. The fixed effects γ include categorical variables concerning
the education and employment situation of the mother, the gender of the child and the
characteristic of the area (urban or rural), where the child resides. For more details on
the analysis we refer the reader to Kandala et al. (2001).

Here, our aim is to investigate whether the nonparametric modeling of bmi and agc is
necessary by employing contour probabilities and pseudo contour probabilities. More-
over, we compare different models in terms of the DIC. In a first attempt, we use the
model developed by Kandala et al. (2001) and model both continuous covariates, bmi
and agc, nonparametrically by P-splines. Based on the contour probabilities for the non-
parametric effects obtained from this model, we investigate a number of different model
specifications, where bmi and agc are modeled nonparametrically, or parametrically with
polynomials of different degrees. Following Kandala et al. (2001), spatial heterogeneity
is captured by adding an unstructured and a structured random effect for Zambia and a
structured random effect for Tanzania and the remaining covariates are modeled paramet-
rically throughout our analysis. The models under consideration are:

η1 = γ0 + f1(bmi) + f2(agc) + fspat(d) + γ′x
η2 = γ0 + f1(bmi) + β1agc + β2agc2 + fspat(d) + γ′x
η3 = γ0 + f1(bmi) + β1agc + β2agc2 + β3agc3 + fspat(d) + γ′x
η4 = γ0 + + f2(agc) + fspat(d) + γ′x
η5 = γ0 + + β1agc + β2agc2 + fspat(d) + γ′x
η6 = γ0 + + β1agc + β2agc2 + β3agc3 + fspat(d) + γ′x
η7 = γ0 + α1bmi + f2(agc) + fspat(d) + γ′x
η8 = γ0 + α1bmi + β1agc + β2agc2 + fspat(d) + γ′x
η9 = γ0 + α1bmi + β1agc + β2agc2 + β3agc3 + fspat(d) + γ′x
η10 = γ0 + α1bmi + α2bmi2 + f2(agc) + fspat(d) + γ′x
η11 = γ0 + α1bmi + α2bmi2 + β1agc + β2agc2 + fspat(d) + γ′x
η12 = γ0 + α1bmi + α2bmi2 + β1agc + β2agc2 + β3agc3 + fspat(d) + γ′x
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Table 3 shows the resulting contour probabilities and pseudo contour probabilities, respec-
tively. In Table 4 values for the deviance, the effective degrees of freedom (pD) and the
DIC are displayed. Models are ordered according to the DIC.

For the effect of agc the p-values obtained from both, contour probabilities based on the
median and on the log-density, are zero for difference order 2 and lower, and still very low
for difference order 3. This suggests cubic modeling for the effect of agc, since contour
probabilities for difference order 4 are quite high. In contrast, pseudo contour probabilities
suggest a linear effect. The p-values based on contour probabilities in favor of ’no effect’
of bmi are in a medium region and allow no clear decision. Pseudo contour probabilities
allow no clear decision either since the p-value for difference order s = 0 pleads for an
effect, whereas the p-value for s = 1 tends towards ’no effect’.

The best fit in terms of the DIC is achieved by model 7, featuring a nonparametric fit for
agc and a linear fit for bmi. However, the models 1, 9, 10 and 12 perform almost equally
well. Summarizing table 4, we may derive that the DIC slightly favors nonparametric over
cubic modeling of agc and clearly votes for a linear effect of bmi. Even a quadratic effect
of bmi is considered.

In Figure 9 we compare the nonparametric, the linear and the quadratic fit for agc, and the
nonparametric, the quadratic and the cubic effect for bmi. The depicted effects correspond
to the best model in terms of DIC that includes the corresponding type of modeling of an
effect. Here we see that the functional form of the two effects can indeed satisfactorily be
modeled by a linear and a cubic term, respectively. The subjective reduction of the bias
of the quadratic fit of bmi compared to the linear is mainly due to few observations at the
borders.

The results for Tanzania are reported in Tables 5 and 6. A comparison of parametric and
nonparametric estimations is displayed in Figure 10. The main differences compared to
the results for Zambia are a more curved estimation of the effect of bmi and an additional
local maximum of the effect of agc at in the interval [25, 30].

This is confirmed by the obtained contour probabilities (based on the median and the
mean of the log-density), which are clearly smaller for 4th differences for agc and still
somewhat smaller for difference order s = 1 for bmi. Figure 10 shows that a cubic fit
totally misses the local maximum exhibited by the nonparametric estimate of the effect of
agc. Pseudo contour probabilities are smaller than for Zambia, too, but still prefer a linear
effect of agc and exclude bmi from the model. Comparing the models in terms of the DIC,
we observe a distinct improvement when using a nonparametric fit for agc (models 1, 4,
7, 10) instead of a cubic fit (models 3, 6, 9, 12). A quadratic fit for bmi (models 10, 11,
12) only slightly improves the model compared to a linear fit (models 7, 8, 9),

Summarizing, we observe that the contour probabilities are somewhat conservative com-
pared to the DIC, which tends to chose more complex models. This is in agreement with
the typical experience, that the DIC – like the AIC – is likely to prefer (too) complex
models.
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5 Conclusion

We applied contour probabilities and pseudo contour probabilities in order to decide
whether nonparametric modeling of continuous covariates is necessary or if parametric
modeling by polynomials of small degree is sufficient. In a simulation study we found con-
tour probabilities to perform clearly superior compared to pseudo contour probabilities.
In two applications we highlight that contour probabilities qualify as a helpful instrument
for model selection. We conclude that contour probabilities give useful hints for a careful
model selection. They seem to behave somewhat more conservative regarding the possible
model fit compared to the DIC. Therefore, we recommend not to rely solely on them, but
to take into account other model selection tools as for example the DIC, especially when
the resulting contour probabilities are not close to 0 or 1.

Estimating Bayesian p-values for general distributions from an exponential family is
computationally much more expensive since the marginal distributions are no longer
available by Rao-Blackwellization. Instead an approach of Chib and Jeliazkov (2001)
could be used. This might be a challenge for future research.
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A Proof of equation (11)

For a proof of (11) we exploit the fact that the B-spline basis functions in (2) for repre-
senting the spline can be computed as differences of truncated power functions (e.g. Eilers
and Marx 2004), i.e.

Bρ(x) = −1l+1∆l+1t(x, ρ)/(hll!), ρ = 1, . . . , r + l (17)

where h is the distance between two neighboring knots and t(x, ρ) := (x − (ζ0 + ρh))l
+ is

the truncated power function that corresponds to the knot ζρ = ζ0 + ρh.

Assume first that s = 0, which corresponds to a constant fit. Then we get

(hll!)

−1l+1
f(x) =

(hll!)

−1l+1

r+l
∑

ρ=1

Bρ(x)βρ =
r+l
∑

ρ=1

∆∆lt(x, ρ)βρ =
r+l
∑

ρ=1

∆lt(x, ρ)βρ−
r+l
∑

ρ=1

∆lt(x, ρ−1)βρ

Rearranging the two sums by combining the respective ρ-th summand of the first sum and
the (ρ + 1)-th summand of the second sum yields

(hll!)

−1l+1
f(x) = −

r+l−1
∑

ρ=1

∆lt(x, ρ)∆βρ+1 + ∆lt(x, r + l)βr+l − ∆lt(x, 0)β1. (18)

Provided that ∆βρ = 0, the summands in the first term are all zero. The second term in
(18) is zero within the range [xmin, xmax] of x because the polynomial part of t(x, r + l)
starts at xmax. In the third term the truncated power function t(x, 0) is a polynomial of
degree l within the range of x. Since the l-th difference of a polynomial of degree l is a
constant (compare, e.g. Schlittgen and Streitberg, p. 39f), the spline f(x) reduces to a
constant as claimed in (11).

For an arbitrary degree s ≤ l the proof is based on analogous arguments. Using again
relationship (17) we get

(hll!)

−1l+1
f(x) =

r+l
∑

ρ=1

∆s+1∆l−st(x, ρ)βρ

= a1

r+l
∑

ρ=1

∆l−st(x, ρ)βρ + · · · + as+2

r+l
∑

ρ=1

∆l−st(x, ρ − (s + 1))βρ

(19)

with constants a1, . . . , as+2 given by

aj = (−1)s+j

(

s + 1

j − 1

)

, j = 1, . . . , s + 2.

Combining the ρ-th summand of the first sum, (ρ + 1)-th summand of the second sum, to
the (ρ + s + 1)-th summand of the (s + 2)-th sum, ρ = 1, . . . , r + l − s − 1, we obtain

(hll!)

−1l+1
f(x) = (−1)s+1

r+l−s−1
∑

ρ=1

∆l−st(x, ρ)∆s+1βρ+s+1 + R1 + R2 (20)

with

R1 = a1

(

∆l−st(x, r + l − s)βr+l−s + · · · + ∆l−st(x, r + l)βr+l

)

+ · · · + as+1∆
l−st(x, r + l)βr+l−s
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and

R2 = a2∆
l−st(x, 0)β1 + · · · + as+2

(

∆l−st(x,−s)β1 + · · · + ∆l−st(x, 0)βs+1

)

.

Provided that ∆s+1βρ = 0, the sum in (20) is zero. The expression R1 is zero within the
range [xmin, xmax] of x. Since the (l − s)-th difference of a polynomial of degree l is a
polynomial of degree s (compare Schlittgen and Streitberg, p. 39f) all differences of the
truncated power functions appearing in R2 are polynomials of degree l−s within the range
of x. Hence R2, and therefore the spline f(x), is a polynomial of degree s.
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Table 1: Contour probabilities based on median, mean of log-density and mean of density
and pseudo contour probabilities for the effects of F and Y with IG(0.001,0.001) priors on
τ2
F , τ2

Y and σ2.

difference order 0 1 2 3 4

degree of polynomial const const linear quadratic cubic

F (based on median) 0.0 0.0 0.0 0.01 0.03

F (based on mean of log-density) 0.0 0.0 0.0 0.01 0.04

F (pseudo contour probabilities) 0.0 0.0 0.46 0.94 1.0

Y (based on median) 0.0 0.02 0.01 0.11 0.12

Y (based on mean of log-density) 0.01 0.03 0.03 0.17 0.19

Y (pseudo contour probabilities) 0.0 0.0 0.70 0.99 0.99

Table 2: Deviance, effective degrees of freedom (pD) and DIC for the parametric and
the semiparametric model using IG(0.001,0.001) priors on τ 2

F , τ2
Y (in the semiparametric

model) and σ2.

Deviance D(θ̄) pD DIC

parametric model 12629.7 26.0 12681.7

semiparametric model 12400.0 41.8 12483.6



Table 3: Contour probabilities for the effects of bmi and agc in Zambia. Displayed are the
results for model 1.

difference order 0 1 2 3 4

degree of polynomial const const linear quadratic cubic

bmi (based on median) 0.29 0.38 1.0 1.0 1.0

bmi (based on mean of log-density) 0.30 0.42 1.0 1.0 1.0

bmi (pseudo contour probabilities) 0.0 0.45 1.0 1.0 1.0

agc (based on median) 0.0 0.0 0.0 0.09 0.84

agc (based on mean of log-density) 0.0 0.0 0.0 0.12 0.87

agc (pseudo contour probabilities) 0.0 0.0 0.83 1.0 1.0

Table 4: Deviance, effective degrees of freedom (pD) and DIC for models 1-12 for Zambia
using IG(0.001,0.001) priors on τ 2

bmi, τ2
agc and σ2.

Deviance D(θ̄) pD DIC

Model 7 12640.5 46.7 12733.9

Model 10 12640 47.5 12735

Model 9 12651.5 42.7 12736.9

Model 1 12639.1 49.4 12737.9

Model 12 12650.9 43.9 12738.7

Model 3 12650.9 45.3 12741.5

Model 4 12663 46.6 12756.2

Model 6 12676.5 42.6 12761.7

Model 8 12696.3 41.6 12779.5

Model 11 12695.2 42.5 12780.2

Model 2 12694.3 44.0 12782.3

Model 5 12722 41.1 12804.2



Table 5: Contour probabilities for the effects of bmi and agc in Tanzania. Displayed are
the results for model 1.

difference order 0 1 2 3 4

degree of polynomial const const linear quadratic cubic

bmi (based on median) 0.33 0.14 0.79 0.93 0.93

bmi (based on mean of log-density) 0.42 0.25 0.86 0.97 0.97

bmi (pseudo contour probabilities) 0.02 0.04 0.89 0.84 0.97

agc (based on median) 0.0 0.0 0.0 0.0 0.09

agc (based on mean of log-density) 0.0 0.0 0.0 0.01 0.20

agc (pseudo contour probabilities) 0.0 0.0 0.60 0.77 0.99

Table 6: Deviance, effective degrees of freedom (pD) and DIC for models 1-12 for Tanzania
using IG(0.001,0.001) priors on τ 2

bmi, τ2
agc and σ2.

Deviance D(θ̄) pD DIC

Model 1 15477.8 39.0 15555.8

Model 10 15489.3 35.0 15559.3

Model 7 15494.7 34.2 15563.1

Model 3 15521.2 32.8 15586.8

Model 12 15531.4 28.9 15589.6

Model 9 15537 27.9 15592.8

Model 4 15539.9 33.3 15606.5

Model 6 15583.4 27.0 15638.4

Model 2 15601 32.0 15665

Model 11 15612.5 27.8 15668.1

Model 8 15618.8 26.9 15672.6

Model 5 15671.8 25.9 15723.6
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Figure 1: True functions for model (15) (a) and a typical replication of y for k = 0, 1.0, 1.5
(b)-(d).
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Figure 3: Boxplots of p-values obtained from contour probabilities based on the median
(top), contour probabilities based on the mean of the log-density (middle), and pseudo
contour probabilities (bottom) for different SNRs and difference orders (model 15). Dif-
ference order s = 0 and s = 1 corresponds to no effect, s = 2 (3, 4) corresponds to a linear
(quadratic, cubic) effect.
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Figure 4: Boxplots of p-values obtained from contour probabilities based on the median
(top), contour probabilities based on the mean of the log-density (middle), and pseudo
contour probabilities (bottom) for different SNRs and difference orders (model 16). Dif-
ference order s = 0 and s = 1 corresponds to no effect, s = 2 (3, 4) corresponds to a linear
(quadratic, cubic) effect.
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Figure 7: Estimated function (solid line) and partial residuals (dots) for F (left panel) and
Y (right panel). Shown are the results for the parametric (top) and the nonparametric fit
(bottom).
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Figure 8: Estimated function (solid line), mean (symbol ’x’) and mean ± standard devia-
tion of partial residuals (symbol ’-’) for F (left panel) and Y (right panel). Shown are the
results for the parametric (top) and the nonparametric fit (bottom).
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Figure 9: Effects of bmi (left panel) and agc (right panel) in Zambia for different model
specifications. In the two lower panels the solid line corresponds to the parametric fit, the
dotted curve displays the spline estimate.
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Figure 10: Effects of bmi (left panel) and agc (right panel) in Tanzania for different model
specifications. In the two lower panels the solid line corresponds to the parametric fit, the
dotted curve displays the spline estimate.


