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Abstract
We present a data-driven approach to predict the next action in soccer. We focus on 
passing actions of the ball possessing player and aim to forecast the pass itself and 
when, in time, the pass will be played. At the same time, our model estimates the 
probability that the player loses possession of the ball before she can perform the 
action. Our approach consists of parameterized exponential rate models for all pos-
sible actions that are adapted to historic data with graph recurrent neural networks 
to account for inter-dependencies of the output space (i.e., the possible actions). We 
report on empirical results.

Keywords Soccer analytics · Football · Elite sports · Actions · Rate models · Game 
flow · GRNNs

1 Introduction

In team sports, the coordination of players is often of utmost interest as unorganized 
teams expose weaknesses and open spaces that can be exploited by the opponents. 
However, viewed from an action-centric perspective, everything depends on the 
decisions of the player who is currently in ball possession. Depending on whether 
she decides on a safe pass, risks a through ball or continues to dribble onwards, 
changes the future of the game. Obviously, her decision is not independent of the 
overall coordination of her team, including their actual positions, velocities, roles 
and tasks in the game, etc.

Passes have been frequently studied in the literature (Spearman et al. 2017; Per-
alta Alguacil et al. 2020), for instance focusing on effectiveness (Goes et al. 2019) 
or in risk vs reward analyses (Power et  al. 2017). Additionally, since football is a 
dynamic game, there has been a lot of research on predicting players movements 
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(Brefeld et al. 2019) and rating collective movements (Dick and Brefeld 2019). In 
this paper we focus on the player in ball possession and propose a model that simul-
taneously predicts (i) the player’s next action, (ii) the point in time of that action, 
and (iii) the player’s position at the time of action. To the best of our knowledge, this 
is the first approach that integrates player and ball movement models with predic-
tions over player actions to address the flow of the game.

Our model grounds on parameterized exponential distributions and assigns posi-
tive rates to all future player actions. The proposed action rate model (ARM) allows 
to not only predict the next ball action but also when it will be performed. Since 
decision making of the ball possessing player depends on the positions and trajec-
tories of all other players and the ball, we propose to represent the three learning 
tasks (i–iii) as a joint optimization problem using graph recurrent neural networks 
(GRNNs) to account for inter-dependencies between players. We empirically evalu-
ate our approach on trajectory data from 54 professional soccer matches recorded at 
25 frames per second.

The remainder is organized as follows. Section 2 reviews related work. We pre-
sent our graph recurrent action rate models in Sect. 3. Section 4 reports on empirical 
results and Sect. 5 concludes.

2  Related work

There is a wide variety on previous work on data-driven analysis of sports and, in 
particular, on soccer. The analysis of passes is the topic of several papers in soc-
cer analytics and different aspects of passes are investigated in depth. For exam-
ple, Spearman et al. (2017) present a model to compute the likelihood of successful 
passes. They make use of a physics-inspired movement model that predicts whether 
a player can reach a certain position in time and augment ball dynamics to estimate 
probabilities that possible receiving players can reach a ball or whether it can be 
intercepted by a defending player. Power et al. (2017) compare the probability of an 
interception (the risk of a pass) versus its reward. The latter is given by the likeli-
hood that the attacking team will take a shot at goal within 10 s after the pass. The 
effectiveness of passes is studied by Goes et al. (2019) who propose to quantify how 
defensive players move and coordinate to intercept passes.

Other publications rate general game states according to different measures and 
can also be used to rate the effectiveness of passes. For example, Link et al. (2016) 
propose to estimate the dangerousity of a situation by combining positions, pres-
sure, control, and a predicted density of future positions. Other interesting metrics 
deal with the quantification of space and its correlation with scoring opportunities 
(Spearman 2018) and defensive strategies (Fernández et al. 2019). Combining these 
concepts with Spearman et al. (2017) and Fujimura and Sugihara (2005) allows to 
identify potential runs of attacking players by maximizing a combination of pass 
probability, pitch impact and pitch control (Peralta  Alguacil et  al. 2020). Their 
approach also allows to compute optimal positions for attacking players and to com-
pare these predictions to historic data.
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Estimating future positions of soccer players is another aspect that has been widely 
investigated. A general problem when learning coordinated movements of several 
agents, like players in a team, is that trajectories come as unordered sets of individuals. 
When learning from several games, there is a need to incorporate different teams and 
players and, consequentially, the model has to work without a natural ordering of the 
players. Le et al. (2017b, 2017a) learn future positions of players by estimating their 
roles in a given episode and then use these role assignments to predict future move-
ments given the role. A similar approach has been taken by Zhan et al. (2019, 2018) 
who also use role assignments to predict future positions. Their results for basketball 
players are computed using a variational recurrent neural network that allows for the 
inclusion of macro goals. Similarly, Felsen et al. (2018) compute tree-based role assign-
ment to predict trajectories using a conditional variational autoencoder.

In general, graph representations suggest themselves to model interactions of 
players and ball. In one way or another, players and ball are identified with nodes 
in a fully connected graph, where edge weights correspond to their interaction and 
are learned in the training process. For example, Yeh et al. (2019) propose to lever-
age graph neural networks (GNN) which are naturally suited to model coordinated 
behavior because of their invariance to permutations in the input. The authors pro-
pose a graph variational recurrent neural network to predict future positions of soc-
cer and basketball players. Similarly, Hoshen (2017) and Kipf et al. (2018) propose 
graph-related attention mechanisms to learn player trajectories.

Graph neural networks have been widely used to model structured or relational 
data, see (Battaglia et al. 2018) for an overview. In cases where data is sequential 
in nature, graph recurrent neural networks (GRNN) have been widely deployed, for 
example to mix graph representations with recurrent layers (Sanchez-Gonzalez et al. 
2018), such as gaited recurrent units (GRU, Cho et al. 2014).

Due to the complex nature of movements in soccer, a natural assumption on the 
distribution of future positions is its multi-modality. Trivially, any probabilistic 
model that aims to predict future positions in team sports needs to reflect the multi-
modal nature in some sense. Hence, the previously mentioned contributions (Zhan 
et  al. 2019, 2018; Yeh et  al. 2019; Felsen et  al. 2018) make use of (conditional) 
variational models (CVM) with Gaussian emission functions to account for multi-
modality in the data. However, Graves (2013) has shown that combining recurrent 
neural networks (RNNs) with mixture density networks (MDNs) (Bishop 1994) that 
learn a Gaussian mixture model (GMM) as output distribution, yields good results 
for spatiotemporal tasks. In fact, Rudolph et al. (2020) recently showed that com-
bining GMM emissions with recurrent graph networks performs on par with more 
complex conditional variational models.

3  Graph recurrent action rate models

3.1  Preliminaries

In this paper, we focus on two-dimensional representations of players and ball, given 
by their x/y positions on the pitch at a given time t. We enumerate players by the set 
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I = {1, ..., 22} and reserve index 0 for the ball such that the position and additional 
attributes of player i ∈ I  and the ball at time t are given by xi

t
∈ ℝ

d and x0
t
∈ ℝ

d , 
respectively. Dimensionality d ≥ 2 depends on the number of additional attributes 
such as whether the player is currently in ball possession. The set containing posi-
tions of all players and ball at time t is denoted by xt = {x0

t
, x1

t
, ..., x22

t
} . Since soccer 

is not a static game, we furthermore focus on consecutive timesteps (episodes) and 
write xi

∶t
= xi

0
… xi

t
 to denote the trajectory of positions of player i until time t. Anal-

ogously to xt , we denote the set of trajectories of all players and the ball until time t 
by x∶t = {x0

∶t
, x1

∶t
, ..., x22

∶t
} . Additionally, we distinguish the ball possessing player by 

a superscript b and denote her position by xb
t
.

We aim to devise a model that predicts (i) the next action of the ball possess-
ing player b as well as (ii) the time to that action. Since these outcomes are not 
independent, the model needs to simultaneously predict all possible futures and 
requires a ground-truth that differentiates between action ( yA

t
 ) and time to this action 

( yT
t
 ). Every episode x∶t in the training set is therefore annotated with label pair 

yt = (yT
t
, yA

t
) that is defined as follows.

The label yT
t
≥ 0 encodes the time until the player b loses control of the ball, 

either by playing a pass, losing the ball to another player, or because the referee 
interrupts the game, e.g. due to a foul. The label yA

t
∈ ℝ

11 distinguishes between 
passes to teammates and loss of ball. Note that there are several reasons for a loss of 
ball, including tackles, failed dribbles, and sheer bad luck. Thus, yA

t
 is represented 

as an 11-dimensional vector where every element corresponds to one outcome. If 
the ball is successfully passed to teammate k ∈ {1, ..., 10} , we have yA

t
[k] = 1 and 

yA
t
[i] = 0 for all i ≠ k . In case of an unsuccessful pass attempt, the notation allows 

for yA
t
[k] ∈ [0, 1] to quantify the probability that teammate k ∈ {1, ..., 10} was the 

intended receiver of that pass.1 If the player loses the ball, the action is indicated by 
yA
t
[11] = 1 and yA

t
[i] = 0 for 1 ≤ i ≤ 10 . It follows that �⊤yA

t
= 1 whenever a pass is 

played or the ball is lost.
In case the referee interrupts the game, e.g. due to a foul, none of the above 

actions can be performed and the action label is yA
t
= �.

3.2  Player action rate models

We now present our main contribution, a graph recurrent action rate model (ARM) 
that predicts the next action and simultaneously estimates the time to this action. 
To account for the complex nature of the problem, we pursue a model that ranks all 
possible futures and commits to the most likely one.

We begin by assuming that the time T to an action follows an exponential distri-
bution with rate parameter f. To be able to contextualize the distribution of time to 
an actual situation on the pitch, we employ a positive-valued �-parameterized rate 
function f (x∶t; �) ∈ ℝ + instead of a constant rate. The rate function thus forecasts 

1 We elaborate on how to quantify these probabilties in Appendix A.
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the rate of an action at time t for an episode x∶t and changes the distribution of time 
to an event to

We deploy a dedicated rate model for every player action k, where k ranges from a 
pass to one of the k ∈ {1, ..., 10} teammates to a loss of the ball k = 11 . We indicate 
the respective action by a superscript and call

the action rate model. Accordingly, the time to an action k is governed by an expo-
nential distribution with pdf

and the expected time until action k is given by E[Tk] = 1∕f k(x∶t; �).
Our approach assumes that the rates of actions are mutually independent given 

the parameters � . This is a sensible assumption since an open player k in a game 
situation xt should receive a high rate f k(x∶t; �) and this rate should be independent 
of whether she is the only available open player or not. However, the likelihood that 
player k actually receives the pass depends on other available pass options and hence 
the likelihood of the next action being action k is the probability that action k occurs 
before all other actions i ≠ k

Note that the r.h.s. of Eqn. 2 is the softmax function of log f 1∶11 . It follows that our 
model reduces to standard softmax classification of the next action if we ignore the 
time to the next action. The time until the next action depends on all action rates 
and is given by the expectation of the exponential distribution with rate parameter ∑11

i=1
f i(x∶t;�),

3.3  Deriving the loss function

To finally learn the parameters � of the action rate models, we need to derive appro-
priate loss functions that allow for a meaningful training process. In the following, 
we differentiate three cases and show that all three give rise to the same loss.

p
(
T ; f (x∶t ; �)

)
= f (x∶t ; �) exp

{
− f (x∶t ; �)T

}
.

f 1∶11 = (f 1, ..., f 11)⊤ = ARM (x∶t)

(1)p
(
Tk; f k(x∶t; �)

)
= f k(x∶t; �) exp

{
−f k(x∶t; �)T

k
}
.

(2)p
�
k �� f

1∶11(x∶t; 𝜃)
�
= p

�
Tk < Ti≠k �� f

1∶11(x∶t; 𝜃)
�
=

f k(x∶t; 𝜃)
∑11

i=1
f i(x∶t; 𝜃)

.

(3)
E
�
Tmin = min{T1∶11} �� f

1∶11(x∶t ; �)
�
= E

�
p
�
Tmin ;

11�

i=1

f i(x∶t ; �)
�
�

=
1

∑11

i=1
f i(x∶t ; �)

.
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Case I: The first case ignores bad passes and non-actions such as stop of play and 
focuses on well-defined actions. Let x∶t be an episode that ends in action k, i.e. we have 
yA
t
[k] = 1 and yA

t
[i] = 0,∀i ≠ k . Recall that the second label yT

t
 denotes the observed 

time until action. Using the results from the previous section and exploiting the mem-
orylessness of the exponential distribution shows that the negative log-likelihood of 
event k can be written as

Thus, the log-likelihood of an action k being performed exactly T time steps into the 
future scales linearly with the log-rate of action k. On the other hand, the rates of all 
actions are penalized proportionally to the time it takes until the action is observed. 
This is an important characteristic of the score function and implies that low scores 
of all actions also lower the likelihood of a quick pass.

Case II: We now consider the case of interrupted or bad passes where the ground 
truth contains a distribution of likely pass receivers with yA

t
[k] ∈ [0, 1];k ∈ {1, ..., 10} 

and 
∑

k=1,...,10 y
A
t
[k] = 1 , rather than a one-hot encoded true receiver. It follows that 

turnovers are ignored, so that yA
t
[11] = 0 . Thus, the target yA

t
 is a probability distri-

bution over the teammates and instead of minimizing the negative likelihood of the 
observed action as above, we propose to minimize the Kullback–Leibler-divergence

between the ground-truth likelihood for receivers and the action distribution p. 
Focusing on a single trajectory-label pair (x∶t, yt) , the corresponding loss is given by

(4)

− log

�
p

�
yA
t
, yT

t
�� f

1∶11(x∶t; �)

��

= − log

�
p

�
k �� y

T
t
; f 1∶11(x∶t; �)

�
× p

�
yT
t
�� f

1∶11(x∶t; �)

��

= − log

�
f k(x∶t; �)

∑11

j=1
f j(x∶t; �)

�
− log

�
11�

j=1

f j(x∶t; �) exp

�
−

11�

i=1

f i(x∶t; �)y
T
t

��

= − log f k(x∶t; �) +

11�

i=1

f i(x∶t; �)y
T
t
.

KL

(
yA
t
‖‖ p

)
=
∑

k

yA
t
[k] log

[
yA
t
[k] ∕ p

(
k || f

1∶11(x∶t; �)
)]



35

1 3

Action rate models for predicting actions in soccer  

The constant c(yA
t
) =

∑
k y

A
t
[k] log yA

t
[k] is not affected by parameters � and can be 

dropped from the final equation as it does not change the optimum. Interestingly, for 
an action k, where yA

t
[k] = 1 and yA

t
[i] = 0 for i ≠ k , the loss functions in Eq. (4) and 

(5) agree.
Case III: Finally, ball possession phases may end without a defined action, e.g. 

because the referee interrupts the game due to a foul. In these cases, the play stops at 
time yT

t
 before any action could be performed. The likelihood of such a non-action is 

the likelihood that the expected time of each action happens only after yT
t
 . Since the 

complementary cumulative distribution of the exponential distribution is given by

it follows that the negative log-likelihood of such an event can be written as

which is again identical to the previous results in Eq. (4) and (5) for yA
t
= 0.

Loss function LA : To sum up, the losses in Eqs. (4), (5), and (6) are identical. We 
thus define the loss function for the next action which is given by

3.4  Movement model

To accurately predict the next action on the pitch, the model needs to predict the 
position of the player in ball possession in the near future. Since it can be beneficial 

(5)

KL
�
yA
t
�� p

�
− log p

�
yT
t
�� f

1∶11(x∶t; �)

�

=
�

k

�
yA
t
[k] log yA

t
[k] − yA

t
[k] log p

�
yT
t
�� f

1∶11(x∶t; �)

��

− log

�
11�

j=1

f j(x∶t; �) exp

�
−

11�

i=1

f i(x∶t; �)y
T
t

��

= c(yA
t
) +

�

k

−yA
t
[k] log

f k(x∶t; �)∑
j f

j(x∶t; �)

− log

�
11�

j=1

f j(x∶t; �) exp

�
−

11�

i=1

f i(x∶t; �)y
T
t

��

= c(yA
t
) +

�

k

−yA
t
[k] log f k(x∶t; �) + f k(x∶t; �)y

T
t

p

(
Tk > yL

t
|| f

k

)
= exp

{
−f kyT

t

}
,

(6)− log

[
p
(
T1 > yT

t
∧ ... ∧ T11 > yT

t

)]
=

11∑

k=1

f k(x∶t; 𝜃)y
T
t
,

(7)LA =
∑

(x∶t ,yt)

∑

k

−yA
t
[k] log f k(x∶t; �) + f k(x∶t; �)y

T
t
.
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to run with the ball instead of passing the ball immediately, either to open up new 
passing lanes or to simply gain space, our model estimates where the player runs to 
in the near future. This way, in addition to predicting which action will be observed 
next and when it will be performed, we also predict where it will take place.

We assume that the distribution pM(xbt+T |T , x∶t) of the future position of the ball 
possessing player b can be expressed by a mixture density network (MDN, Bishop 
1994; Rudolph et al. 2020) for time horizons T > 0 seconds. Due to the spatial setup, 
we deploy a mixture of G two-dimensional Gaussians, leading to the density

with mixing weights �(g|T , x∶t; �) ∈ [0, 1] , means �g(T , x∶t; �) and variances 
�g(T , x∶t; �) ⋅ � of the 1 ≤ g ≤ G Gaussians, where � denotes the two-dimensional 
unit matrix. Figure 2 (right) shows a graphical representation.

Loss function LM : The distribution in Eq. (8) can be learned by minimizing 
the negative log-likelihood of the trajectory data w.r.t the MDN model. Let again 
(x∶t, (y

T
t
, yA

t
)) be a trajectory-label pair where a ball possession phase x∶t ends after yT

t
 

time steps with action yA
t
 . The log-likelihood of that sample is given by

and, consequentially, the loss function for the movement model that is to be mini-
mized using the entire training set is given by

3.5  Joint optimization

The previous sections introduced loss functions for the next action and player move-
ment, respectively. Naturally, the tasks could be learned separately from one another. 
However, since the tasks are clearly correlated, it will prove beneficial to address 
them simultaneously. Thus, we propose to jointly minimize the losses LA in Eq. (7) 
and LM in Eq. (10). The joint loss is given by

(8)pM
(
xb
t+T

|T , x∶t; �
)
=

G∑

g=1

�
(
g|T , x∶t; �

)
N
(
xb
t+T

|�g(T , x∶t; �), �g(T , x∶t; �) ⋅ �
)

(9)log pM

(
xb
t+yTt

|yT
t
, x∶t; �

)
,

(10)LM = −
∑

(x∶t ,yt)

log pM

(
xb
t+yTt

|yT
t
, x∶t; �

)
.

(11)

min
�

∑

(x∶t ,yt)

(∑

k

−yA
t
[k] log f k(x∶t; �) + f k(x∶t; �)y

T
t

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
LA

− log pM
(
xb
t+yTt

|yT
t
, x∶t; �

)

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
LM

)
.
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3.6  Network architecture

In this section, we describe the full network architecture of our model. To account 
for inter-dependencies among players and ball, we represent players and ball by 
a fully connected graph and resort to graph recurrent neural networks (GRNN) 
(Sanchez-Gonzalez et al. 2018) as the underlying technique. The GRNN computes a 
contextualization of the situation on the pitch and passes this summary to the action 
rate model (ARM) component responsible for computing action score functions 
f 1∶11(x∶t) and to a mixture density network (MDN) that computes the distribution 
pM(x

b
t+T

|T , x∶t; �) of future positions.
GRNN: The GRNN part of the network represents the interaction between play-

ers using a fully connected graph. Players and ball correspond to nodes in that graph 
and edges represent their relations. This part of the model is depicted in Fig. 1 (left) 
and consists of several layers. One layer of the model is shown in Fig. 1 (right).

Recall that xi
t
 consists of the position of player/ball i on the pitch, as well as infor-

mation on the team and ball possession which are one-hot encoded. The input to 
the layer l are feature vectors vi

l−1,t
 and xi

t
 for 0 ≤ i ≤ 22 representing every player 

and the ball. The layer connects every player/ball i to all other players/ball j via 
edges eX

l
(i, j),X ∈ {PP,BP,PB} . Since we have three types of edges, namely edges 

between two players (PP), between ball and player (BP), and between player and 
ball (PB), the edge features are realized by different functions given the type of the 
edge. All types are computed via an attention function �X

l
(⋅; �l).

The intermediate features oi
l
 are fed into a standard gaited recurrent unit (GRU) (Cho 

et al. 2014) to compute the output of the layer as vi
l,t
= GRU (vi

l,t−1
, oi

l,t
) . To sum up, 

the layer of the GRNN shown in Fig. 1 (right) is denoted by

eX
l
(i, j) = 𝜙X

e
(xi

t
, x

j

t, v
j

l−1
; 𝜃l) = 𝛼X

l
(xi

t
− x

j

t; 𝜃l)
⊤vi

l−1

oi
l
= 𝜙o({e(i, j) ∶ j ∈ {0, ...,N}) =

∑

j

el(i, j).

Fig. 1  Left: Graph recurrent neural network. Right: Exemplary layer
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The full GRNN, displayed in Fig. 1 (left), concatenates L such layers.

Inputs vi
0,t

 to the first layer are computed by a single layer fully connected network 
�v(x

i
t
).

ARM: The action rate model (ARM) layer of the network is responsible for 
predicting the next action. The idea is to compute the score function f 1∶11(x∶t; �) 
of the action rate models introduced in Sect. 3.2 from the output of the GRNN. 
Figure  2 (left) shows a visualization. We have f 1∶11(x∶t) = ARM(v1∶N

t
) and note 

that pass actions k ∈ {1, ..., 10} depend on both the passer b and receiving player 
k. Consequently, score functions for those actions take both representations vb

t
 

and vk
t
 as input such that f k(x∶t; �) = �P(v

k
t
, vb

t
;�) . By contrast, a lost ball ( k = 11 ) 

is considered a ’local’ action and treated as a function of player b only (though 
information on other players is inherent due to the graph structure), leading to 
f 11(x∶t; �) = �L(v

b
t
;�) . Both functions �P,�L are implemented as a fully connected 

layer with a single output and exponential activation function. The desired prob-
abilities p

(
k || f 1∶11(x∶t; �)

)
 and time distribution p

(
Tmin| f 1∶11(x∶t ; �)

)
 are obtained 

using Equations (2) and (3), as described in Sect.  3.2. Figure  2 (left) shows a 
visualization.

MDN: The future distribution of whereabouts of the ball possessing player is 
computed in the mixture density network (MDN) layer, compare Fig.  2 (right). 
The subnetwork �MDN(v

b
t
, T; �) takes as input the output vb

t
 of the GRNN as 

well as the predicted time until the next action T. The MDN-part of the net-
work computes the G Gaussians with means �j(T , x∶t; �) ∈ ℝ

2 and variances 
𝜎j(T , x∶t; 𝜃) > 0 , j = 1, ...,G and, using an additional softmax layer, also the mix-
ing weights. During training, the time until the next action T is simply the ground 
truth yT

t
 from the respective training instance. However, at prediction time, the 

predicted time until the next action is computed from the output of the action rate 
model (ARM) using Eq. (3).

v0∶22
l,t

= GR(v0∶22
l−1,t

, v0∶22
l,t−1

, x0∶22
t

; �l).

v0∶22
t

= (v0∶22
1,t

, ..., v0∶22
L,t

) = GRNN(v0∶22
0,t

, v0∶22
t−1

, x0∶22
t

; �)

Fig. 2  Left: Depiction of graph recurrent rate model. Right: Graph recurrent mixture density network
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4  Empirical evaluation

The empirical evaluation is conducted on synchronized tracking and event data from 
54 Bundesliga matches from the 2017/18 season. The tracking data consists of xy-
coordinates of all players and the ball sampled at 25 fps. We extract information 
on successful and unsuccessful passes from the corresponding event data, including 
passing and receiving players and timestamps. In case of an unsuccessful pass, the 
receiving player is either missing, or a player of the opponent team if the pass was 
intercepted. We will thus impute the missing target player by the approach detailed 
in Appendix  A. We make use of additionally available flags like ball possession 
markers and indicators of whether the ball is in-play or if play is interrupted by the 
referee. In total, the data contains 3321 direct turnovers, 2607 unsuccessful passes, 
and 16,379 successful passes. We empirically evaluate the quality of our model 
using a fivefold cross validation and report average performance over the five runs.

4.1  Predicting the next action

The first experiment evaluates how well our approach can predict the observed 
action. Naturally, we expect predictions to become better the closer in time this 
action is since passing and receiving players will be aligned a moment before the 
pass is being played while they may run into very different directions for longer 
look-aheads. As the likelihoods in Fig.  3 (left) show, this insight holds true for 
passes as well as for turnovers where opponents intercept the ball.

In addition, the right-hand side of the figure demonstrates that the true pass 
receiver is predicted as most likely action in 60% of all cases exactly 0.75 s before 
the pass is being played. If we extend the evaluation, to the real action being among 
the three most likely predicted actions, the accuracy increases to 90%. The same 
message holds for turnovers. Even one second before an observed turnover, our 
model predicts a turnover with an average probability of 0.45. Figure 4 (left) sum-
marizes the results for turnovers and shows how often turnovers are correctly pre-
dicted as most likely next action. For example, one second before an actual turnover, 

Fig. 3  Left: Predicted probabilities for true turnovers and true receiving players. Right: Accuracies for 
true player being among the top-k predicted ones
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our model predicts a turnover to be the most likely next action in 75% of cases and 
in 95% of cases it is one of the 3 most likely actions.

Having established the predictive accuracy of the model, we now investigate 
when and why predictions are likely mistaken. Figure 4 (right) shows an interest-
ing, albeit intuitive, insight. Displayed are predicted probabilities of ball losses in 
cases where the observed action was a pass. Two things are noteworthy: First, the 
predicted probability of a turnover increases before the pass. This is to be expected, 
as usually defenders try to attack the ball carrier (e.g., see also Fig. 7). Secondly, the 
predicted probability that the ball carrier loses the ball is much higher for unsuccess-
ful passes. This is also not really surprising, as many bad passes are strongly influ-
enced by pressure that is applied to the player by opponents.

4.2  Predicting the point in time of the next action

Figure 5 (left) shows the predicted versus the real observed time until an action. The 
figure displays a strong correlation between predicted and observed times. However, 
the predicted times of actions that are less than one second in the future, are gen-
erally overestimated whereas times of events that occur further into the future are 
underestimated. To understand the difficulty of predicting the correct time of the 
next action, consider the examples in Fig. 5, top right and bottom row. The pictures 
show three consecutive ball possession phases of the same player within 10 s. The 
blue team is playing from right to left, the ball position is indicated with a black 
circle. Numbers and light grey circles indicate the likelihood of a pass to that player 
according to our model, and the number and circle around the player in possession 
of the ball indicates the likelihood of a turnover. Orange shades indicates the distri-
bution of positions where the predicted action will take place.

The player first passes to the player to the left of him in direction of play after 
2.5 s. The algorithm predicted the next action to be performed after 1.1 s already. 
The player then receives the ball again (bottom left), and passes after 0.5 s to the 
player in front of him (algorithm: 0.9 s). The receiving player plays a one-two, and 
finally passes to the player to the right after 1 s (algorithm: 1.2 s). Thus, the model 
roughly predicts the next pass to be around 1  s into the future for all three cases, 

Fig. 4  Left: Accuracies for turnovers being among the top-k predicted actions. Right: Probabilities of a 
turnover in case of successful and unsuccessful passes
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whereas the real times were 2.5sec, 0.5sec, and 1sec. Note that our model constantly 
predicts a pass to the player to the right in all three occasions. Interestingly, all three 
passes are directly returned by the respective receiving players until the fourth pass 
is finally the one predicted by the proposed approach and the game continues. We 
selected this example on purpose as it shows a situation where it is almost impossi-
ble to predict the next action even for human experts. Although the predicted player 
to the right constitutes a good passing option, the near future still depends on indi-
vidual choices of the ball possessing player.

4.3  Predicting the position of player at time of action

Figure 6 (left) shows an exemplary prediction of future movement of the ball pos-
sessing player. The orange area denotes the predicted density of future whereabouts 
by the model and the light black circle indicates the real observed position of the 
player at the time of the pass. The model correctly predicts that the player will run 
for an expected 1.5 s to the light circle until he plays a pass.

The movement model is included by the mixture density network (MDN) compo-
nent in the optimization. Figure 6 (right) shows that learning the action rate model 
(ARM) together with the MDN in a single optimization problem leads to smaller 
overall loss on the test sets, compared to learning each model individually. The rea-
son for is the graph recurrent network (GRNN) that exploits individual traits of the 
two components in the joint backpropagation steps, where parameters are changed 

Fig. 5  Top Left: Expected times of the next action in comparison to observed times. Top Right and bot-
tom row: Examples of three consecutive ball possession phases within 10 s. See text for details
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proportionally to their contribution to the wrong predictions. Since both tasks inter-
depend, optimizing both components simultaneously proves beneficial.

Figure  7 shows an exemplary progression of a ball phase that lasts for exactly 
one second. The images are ordered from top left to bottom right; blue is playing 
from right to left, the ball position is indicated with a black circle. The displayed 
sequence starts with a pass to the blue player in the center. Numbers and light grey 
circles indicate the probability of a pass to that player according to our model, and 
the number and circle around the ball possessing player indicates the likelihood of a 
turnover. The predicted movement distribution of this player until the next action is 
shown in orange.

Just before the player receives the ball in the top right image, the model estimates 
that the most likely next action is a pass to one of the four indicated teammates, 
highlighted by larger circles. When the ball is received, the pass to the player on 
blue’s right wing turns out the most likely option. However, the first touch renders a 
pass to the right wing unlikely but opens another likely passing window to the left 
wing. Note that, at the same time, the turnover probability increases, mainly because 
the player decided against the first pass. Nevertheless, as play progresses, the player 
manages to maintain the ball and pass it on to the left wing which is again the most 
likely action according to the model.

4.4  Player ranking

4.4.1  Turnovers
The proposed approach could lead to novel key performance indicators to quantify 
players and teams. In this section we evaluate individual players with respect to their 
ability to keep possession of ball and continue play in a controlled way while being 
under pressure from opponents. Additionally, we characterize passing by measuring 
how ’conventional’ or ’expected’ their passes are with respect to our model. Note 

MDN
Only

ARM
Only ARM + MDN

MDN Loss
on Test

2.061 - 2.055

ARM Loss
on Test

- 1.159 1.111

Fig. 6  Comparison of MDN and ARM losses on test. The combined model leads to better performance 
w.r.t. both losses
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that the data only comprises a limited amount of games where some teams are over-
represented. The results ignore players from underrepresented teams and hence do 
not reflect the full picture of passing behavior German Bundesliga. In the remainder, 
we focus on 73 players who had at least 70 ball possessions in the 54 games. These 
players are affiliated with FC Bayern Munich, TSG 1899 Hoffenheim, Hamburger 
SV, Borussia Mönchengladbach, FC Schalke 04, and Eintracht Frankfurt.

Table 1 shows the top 20 ranked players with respect to their turnover difference. 
The latter is given by the difference between predicted turnover probabilities and 
actually observed turnovers. Larger differences are thus realized by players who 
often manage to retain the ball in situations where the model predicts a loss of ball.2 
Note that we only take turnovers into account that end with the opponent team in 
ball possession.

Bayern Munich clearly dominates the ranking with players like Robert Lewan-
dowski, who ranked 9th in the 2017 Fifa Ballon d’Or vote, Arjen Robben, Kingsley 

Fig. 7  Exemplary ball possession phase. See text for details

2 Predictions are recorded one second before the end of the ball possession phase.
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Coman, and James Rodriguez. Bayern also won the championship in the 2017/18 sea-
son with Schalke being runner-up and Hoffenheim placed third. The remarkable rank-
ings of their youngsters Max Meyer, Dennis Geiger, and Steven Zuber may be surpris-
ing at first sight. However, Max Meyer actually became a Germany international in the 
end of 2016 and Steven Zuber became a regular in the Swiss national team during the 
2017/18 season. Dennis Geiger played in the Under19-EuroCup for Germany before 
the season. Also, Lars Stindl became a Germany international in 2017 and was a starter 
during their successful 2017 Confederations Cup campaign.

We also like to note that Robert Lewandowski has the highest expected turnovers of 
all players in the top 20, with Kingsley Coman and Lars Stindl also having values over 
0.3. Recall that expected turnover describes the likelihood that the average player will 
lose the ball and, hence, players who usually operate in tight spaces are expected to 
rank on top. Table 3 in the Appendix B verifies this assumption.

Table 1  Turnovers

Rank Player Turnover difference Expected 
turnovers

Observed 
effective 
turnovers

Team

1 Max Meyer 0.061 0.131 0.070 FC Schalke 04
2 Robert Lewandowski 0.059 0.389 0.330 FC Bayern Munich
3 Dennis Geiger 0.052 0.142 0.090 TSG 1899 Hoffenheim
4 Lars Stindl 0.048 0.318 0.270 Borussia Möncheng-

ladbach
5 Arjen Robben 0.035 0.283 0.248 FC Bayern Munich
6 Kingsley Coman 0.027 0.325 0.298 FC Bayern Munich
7 Steven Zuber 0.015 0.220 0.206 TSG 1899 Hoffenheim
8 James Rodriguez 0.010 0.202 0.192 FC Bayern Munich
9 Rafinha 0.005 0.124 0.120 FC Bayern Munich
10 Thiago 0.003 0.144 0.140 FC Bayern Munich
11 Javier Martinez 0.002 0.056 0.054 FC Bayern Munich
12 Niklas Süle 0.001 0.041 0.041 FC Bayern Munich
13 Sebastian Rudy − 0.002 0.118 0.120 FC Bayern Munich
14 Corentin Tolisso − 0.002 0.127 0.129 FC Bayern Munich
15 David Alaba − 0.004 0.149 0.153 FC Bayern Munich
16 Arturo Vidal − 0.007 0.119 0.126 FC Bayern Munich
17 Lewis Holtby − 0.019 0.213 0.232 Hamburger SV
18 Franck Ribery − 0.021 0.278 0.299 FC Bayern Munich
19 Joshua Kimmich − 0.028 0.136 0.164 FC Bayern Munich
20 Denis Zakaria − 0.030 0.226 0.256 Borussia Möncheng-

ladbach
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4.4.2  Passing

Analogously to turnovers, we could deploy the approach with respect to new met-
rics for passing behavior. To showcase the idea, we locate the true receiver of a 
pass in the predicted ranking of all possible receivers, computed 1.5 s before the 
pass happened. From the viewpoint of the model, likely pass actions have been 
seen many times in the training data and are distinguished accordingly by high 
likelihoods. By contrast, surprising passes are rarely observed in the data and 
consequentially range in lower likelihood scores. Thus, averaging the predicted 
ranks of the true receiving players may serve as a proxy for passing behavior of 
players: Players with small average ranks usually pass to an obvious team mem-
ber as predicted by the model while players with large averages include many 
surprising passes that have not been foreseen by our approach.

Table 2 shows the results. The ranking shows that unexpected passes mainly 
come from forwards and midfielders. Defenders generally take less risks when 
playing passes and usually choose a simpler pass over a more risky one. A special 
mention may go to Kevin-Prince Boateng who, according to our model on limited 
data, shows a distinguished passing behavior.

5  Conclusion/discussion

We presented an action rate model to predict the next action of football players. 
The approach consisted of parameterized exponential rate models where param-
eters are shared across different actions and optimized with a graph network. 
Empirical results showed that the model reliably predicts future actions. Addi-
tional empirical evidence supported the inclusion of movement models in the net-
work architecture.

Table 2  Unexpected passes

Rank Player Pass receiver 
(avg. rank)

Team Position

1 Kevin-Prince Boateng 2.730 Eintracht Frankfurt Forward/Midfield
2 Mark Uth 2.152 TSG 1899 Hoffenheim Forward
3 Max Meyer 1.946 FC Schalke 04 Midfield
4 Guido Burgstaller 1.946 FC Schalke 04 Forward
5 Robert Lewandowski 1.914 FC Bayern Munich Forward
6 Matti Steinmann 1.907 Hamburger SV Midfield
7 Sebastian Rudy 1.856 FC Bayern Munich Midfield
8 Lewis Holtby 1.850 Hamburger SV Midfield
9 Andrej Kramaric 1.785 TSG 1899 Hoffenheim Forward
10 Florian Grillitsch 1.755 TSG 1899 Hoffenheim Midfield
11 Thiago 1.721 FC Bayern Munich Midfield
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The model also allowed to analyze and compare playing styles and behavior of 
players and teams. While over the last few years the amount of per-player and per-
team statistics that are collected and curated skyrocketed, those statistics often only 
tell half the story. For instance, the number of committed turnovers per possession3 
is certainly an interesting statistic, however, it may not show the full picture. Con-
sider a striker that usually gets the ball in tight spaces. Unsurprisingly, this players 
loses the ball more often due to a failed dribble or an unsuccessful pass under pres-
sure, than, for example, a defending player who usually has more time and an open 
lane for a simple pass. But even among strikers different team tactics and player 
positions influence the likelihood of a player to lose the ball. Our model may help to 
better assess the individual behavior and characteristics traits of players by compar-
ing their observed actions4 to the expected action of the average player in the same 
situation. Thus, a player who concedes ball possession in 30% should be considered 
better than average at retaining ball control if the average player would concede the 
ball in 40% of the time. Other possible applications of the model include assess-
ments of how quickly a player or team passes the ball in comparison to others in the 
same game situations and how ”unconventional” or ”surprising” a player passes the 
ball, i.e. how well the model can predict the player’s next action in the future.

Predicting intended receivers

Throughout the manuscript, we have assumed that (soft) labels of observed actions 
are available in the training set. However, this may not necessarily be the case and 
even currently available commercial data, such as the data we use in our experi-
ments, does not provide information about the most probable receiver of an inter-
cepted pass. Annotating this information by hand is very time-consuming and 
expensive and raises the question whether intended receivers of passes can be pre-
dicted on the basis of tracking data.

As a solution, we present a data-driven approach for automatically identifying 
the intended receiver. Although the architecture is very similar to the one presented 
in Sect. 3.6, this model is not part of the main contribution and cannot be incorpo-
rated into Fig. 2 as another output layer as the parameters of the GRNN layer of this 
network will be very different from the ones of the GRNN in Sect. 3.6. Consequen-
tially, the model proposed in this section needs to be trained before the GRNN in 
Sect. 3.6 to provide estimates for the missing variables in the training data.

Instead of singling out the one most likely receiving player, we aim to predict soft 
assignments as follows. We define a bad pass to have two possible outcomes: It can 
either be intercepted by an opposing player or the ball can go out of bounds. To be 
able to observe the initial trajectory of the ball, we focus on passes where the ball 
travels for at least 6/25 s (6 frames) before it is intercepted or out of bounds.

4 We consider losing the ball an ”action”, like passing the ball.

3 https:// stats bomb. com/ 2018/ 08/ new- data- new- stats bomb- radars/.

https://statsbomb.com/2018/08/new-data-new-statsbomb-radars/
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Training data consists of successful passes, where the intended receiver is the 
actually observed one. Consider a pass at time tp and let yA

tp
 be the real receiver of 

that pass as described in Sect.  3.1. This pass is turned into a training instance 
(x∶tp+0.2sec, y

A
tp
) and added to the training set. Thus, we consider examples of success-

ful passes where positions and trajectories of players and ball are sampled 0.2 s after 
the ball carrier hit the ball. By doing so, the model learns to predict the receiving 
player by the initial ball trajectory and the positioning of all other players.

Figure  8 shows an overview of the model. Analogously to the ARM model of 
Sect. 3.6, let �I(v

k
t
, vb

t
) be a score function of outputs of potential receiver k and pas-

ser b. The model minimizes the cross-entropy loss between real labels and scores. 
Note that this is identical to the ARM model, as noted in the remark in Sect. 3.2, 
when we ignore the time of the pass (which lies in the past according to the data 
generation process described above).

To determine optimal hyperparameters (e.g., number and width of layers) we 
perform a 5 fold cross-validation where data is split along games. The final model 
constitutes of 2 graph layers of width 256 and predicts the real receiver with an aver-
age accuracy of 0.89 ± 0.03 . As an out-of-sample test, we manually annotated all 
unsuccessful passes in one game (100 passes) with the intended receiver using video 
footage. On these 100 bad passes, the model performed similarly and achieved an 
accuracy of 0.87 ± 0.1.

Expected turnover and player position

Table  3 shows expected turnover and the main position of the player. The table 
shows that large expected turnover values are generally predicted for forwards as 
they usually operate in tight spaces. Hence, defenders naturally realize smaller 
values.

Fig. 8  Model for predicting 
intended receivers
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