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Abstract
The global aircraft fleet has been expanding worldwide, leading to a high demand for 
primary resources. Simultaneously, recycling initiatives for decommissioned aircraft are 
still incipient. Following circular economy principles, the aims of this paper are to iden-
tify potentially critical resources used and related environmental impacts, to derive recom-
mendations regarding recycling, and to analyze the influence of increasing utilization of 
lightweight composite materials in aircraft manufacturing. It was identified that the engine 
is the structure containing resources with the highest scarcity, with tantalum dominating 
seven of the eleven analyzed impact categories. Aluminum, titanium, and nickel were 
shown to lead to the highest environmental impacts. Hotspots in the criticality and envi-
ronmental assessment often occur due to alloying resources with a low mass share. It was 
shown that aluminum and steel alloy recycling should be prioritized. A higher lightweight 
composite material share in the aircraft increases impacts in the categories climate change 
and fossil resource depletion by 12% and 20%, respectively, whereas the impact of the cate-
gory acidification, political stability, and demand growth decreases by 16%, 35%, and 60%, 
respectively.

Keywords Aircraft · Resources · ESSENZ · Criticality · Life cycle assessment

Introduction

The relevance of the air transportation sector has been increasing in the last decade, mainly 
driven by factors such as low air fares and better living standards [1]. According to the 
most recent forecasts, between 2017 and 2036, the number of airline passengers worldwide 
is expected to grow by an average of 4.7% yearly [2]. By 2037, the annual number of pas-
sengers is predicted to reach up to 8.2 billion [3]. To satisfy this increasing demand, the 
aircraft fleet will almost double in the next 20 years [4, 5].
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In the last 30 years, the primary resource demand rose worldwide by overall 50% 
[6, 7] and is projected to more than double from 79 Gt/a in 2011 to 167 Gt in 2060, 
whereas metals are expected to grow the fastest [8]. The global aerospace industry alone 
consumes 770 kilo tons of resource per year [9]. Simultaneously, the topic of resources’ 
criticality has become more relevant in recent years due to limited availability of certain 
resources. Criticality is defined as supply risk (probability of supply disruption) and the 
vulnerability to this supply risk [10–12]. Several studies on country level (e.g., [13–16]) 
as well as product level (e.g., [12, 17–20]) including the mobility sector (e.g., [21–25]) 
have been carried out in recent years to assess resources’ criticality.

In this context, a circular economy approach is a precondition for achieving climate 
neutral production processes. The concept of circular economy emerged in the last dec-
ade considering the scarcity of natural resources counterposed to the growing demand 
for them due to, e.g., increasing population. While most of the studies apply this con-
cept for increasing the recycling or the reuse rate of products, a social dimension seems 
to be missing [26]. The ESSENZ method, applied in this paper, addresses the criticality 
of resources also incorporating societal aspects [27].

Usually, an aircraft is in operation for about 30 to 40 years. Considering the age of 
the current aircraft fleet, about 18,000 passenger aircraft will be decommissioned in the 
next 20 years [28]. Some aircrafts are used for spare parts, sold to developing countries 
or eventually brought back to service in the case of an increased demand. Notably, the 
most common practice for decommissioned aircraft is their disposal in deserts of former 
airports—the so-called aircraft graveyards [29, 30], where they are simply parked for 
an undefined time period. Even though some initiatives for aircraft recycling have been 
already developed and partly implemented (e.g., PAMELA project) [31–33]), they are 
still very incipient, also because there is no international regulation for the end-of-life 
handling of aircraft.

As aircraft are composed of a number of different resources, including aluminum, tita-
nium, nickel, and steel alloys, which are easily recyclable [34], these aircraft graveyards 
can be seen as a great source for secondary resources, especially considering that some 
of these resources might become scarce in the next decades. Also, it was already dem-
onstrated that 80–85% of an aircraft’s weight could be recycled [32]. Thus, it should be 
identified which resources to focus on for recycling to reduce overall criticality and envi-
ronmental impacts of the aircraft manufacturing.

As shown in Fig. 1, a new trend in the aircraft industry is the increased utilization of 
lightweight composite materials, such as carbon fiber reinforced plastic (CFRP) or glass 
fiber reinforced plastic (GFRP) [35, 36]. It is reported that the fuel use of aircraft with a 
higher proportion of composites materials is around 25% lower than a reference aircraft 
based mainly on aluminum parts [37]. Thus, the integration of composites materials in the 
aircraft manufacturing may significantly reduce emissions throughout the operation phase 
[38–40].

However, the resource use of aircraft during the production and recycling phases is not 
fully addressed in these publications. As carbon fibers are mainly produced from fossil fuels, 
their dependency on these resources is high. Methods for CFRP recycling are still under 
development [39, 42, 43]. Currently, lightweight composite resources are more likely to be 
landfilled or burnt than properly recycled [44–46]. Thus, a comprehensive assessment of envi-
ronmental impacts and criticality of composite materials considering current and future use 
is also included in this paper. Overall, the aims of this paper are (i) to identify the most criti-
cal resources used in aircraft manufacturing applying the ESSENZ method [47, 48] —further 
explained in background "ESSENZ Method"  section—(ii) to determine the environmental 
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impacts of the manufacturing phase; (iii) to derive recommendations regarding recycling of 
resources, and (iv) to analyze the influence of the increasing use of lightweight composite 
materials and their impacts on resource criticality and the environment.

The Airbus A330-200 was selected as a reference aircraft, exemplary for the entire aircraft 
which is a commercial passenger aircraft designed for medium to long-haul flights. Currently, 
there are approximately 416 active A330-200 airplanes, and 199 are being stored [49]. The use 
phase is not considered in this paper, although it has the largest environmental impact when 
considering the entire life cycle of aircraft [44], and the use of fossil-based jet fuels is a hot-
spot in terms of resource use in general as well as critical resources. However, as the use phase 
has these high impacts, the impacts of the manufacturing stage are comparably low. Thus, the 
manufacturing phase is being disregarded by most of the authors. The focus of this paper is 
deliberately on the manufacturing phase to identify hotspots only in this life cycle stage.

To achieve the aims of the paper, first the analyzed product system and the methodology 
("Method") including the life cycle inventory are described. The results are presented for the 
criticality assessment including long-term availability ("Criticality Assessment Including 
Long-Term Availability"), environmental assessment ("Environmental Assessment"), recom-
mendations regarding recycling of resources ("Recommendations Regarding Recycling of 
Resources"), and scenario analysis for increased use of lightweight composite information 
("Scenario Analysis for Increased Use of Lightweight Composite Materials"). The underly-
ing assumptions of the case study are discussed ("Discussion"), and conclusions are drawn 
("Conclusions").

Fig. 1  Material trends for Airbus and Boeing aircraft based on a comparison designed by Ilg (2015) [41], 
showing the increasing share of composites materials in the most modern aircraft
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Environmental and Social Impact Evaluation of Aircraft Production in Existing 
Literature

There are only few publications depicting the LCA of an aircraft in detail. This is 
mainly due to the lack of public available data from aircraft manufacturers. In fact, only 
one peer-reviewed paper performing a complete LCA of an aircraft was found [44] and 
one from an aircraft’s wing [50], while the remaining works originate from theses and 
reports [40, 45, 51, 52]. There are also a few available publications focusing on the 
comparison between metallic alloys and lightweight materials from an environmental 
point of view [38, 39, 53]. The social dimension of aircraft manufacturing has not been 
discussed so far, affirming the assumption of Nikolaou et  al. (2021) [26] that most of 
engineering works tend to disregard it even in a context of sustainability assessment.

Howe et  al. (2013) [54] conducted an LCA of A320 applying the Eco-Indicator 
method, where manufacturing phase was found to contribute with 0.089% to the life 
cycle. The main impact occurred mainly due to use of CFRP (responsible for 45% of 
the total manufacturing impact). While evaluating an Airbus A320-200 with ReCiPe 
Endpoint method, Johanning et al. (2013) [51] concluded that material production and 
other manufacturing-related processes bore less than 1% of the total aggregated impact. 
Both authors assumed that the aircraft was solely composed by aluminum, steel, tita-
nium composites, and miscellaneous (without specification of what “miscellaneous” 
could mean). Jordão (2013) [52] have estimated only the embodied  CO2-eq emissions, 
concluding that aircraft manufacturing was responsible for 0.05% of the total life cycle 
impact of an Airbus A330-200.

Lopes (2010) [45] conducted a comprehensive life cycle assessment with detailed data 
for the manufacturing, operation, and recycling of an A330-200. Three methods were 
applied: ReCiPe Midpoint, Cumulative Energy Demand [55], and Ecological Footprint 
[56]. Also here, the impact from manufacturing in most of the categories was very small 
(ca. 1·10-6%). Nevertheless, manufacturing was assessed in detail with ReCiPe midpoint 
method, concluding that the structure engine emerges as having the largest contribution in 
most of the categories. Wojcieh (2015) [40] used data obtained by Lopes (2010) [45], and 
by applying selected categories from ReCiPe Midpoint (climate change, terrestrial acidifi-
cation, photochemical oxidant formation, particular matter formation) also obtained mar-
ginal contribution of the manufacturing phase.

Asmatulu et al. (2013) [42] and Ribeiro and Gomes (2014) [29] raised concerns about 
end-of-life and recycling of aircraft and made recommendations on recycling options. 
While Asmatulu et al. (2013) [42] focused on estimating energy savings from the use of 
recycled materials, Ribeiro and Gomes (2014) [29] developed a conceptual framework for 
integrating end-of-life (EoL) already in the preliminary design of the aircraft. Energy and 
cost savings were the most important aspects of the framework.

ESSENZ Method

The integrated method to assess resource efficiency (herein referred to as ESSENZ) [47, 
48] allows for a comprehensive assessment of resources use by addressing environmen-
tal impacts, criticality, and long-term availability of resources as well as societal aspects 
of resource utilization. Further details are presented in the Supplementary Information 
– Sect. 1.
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For measuring the long-term availability of resources, the abiotic depletion potential 
(ADP) indicator based on ultimate reserves [57, 58] is applied. Criticality is assessed using 
an approach developed for ESSENZ, which was identified as one of the best approaches to 
address criticality aspects of products assessments [10, 59]. The following potential sup-
ply disruptions are considered in the method: concentration of production, reserves and 
company concentration, feasibility of exploration projects, political stability, occurrence as 
co-product, mining capacity, primary material use, demand growth, price fluctuations, and 
trade barriers.

Societal impacts within the category societal acceptance are determined by two catego-
ries: compliance with social and environmental standards. As consumers and local commu-
nities become more interested in compliance with social and environmental standards, this 
can become an additional constraint for companies when purchasing resources. For meas-
uring the category “Compliance with Social Standards”, child labor, high conflict zones, 
and forced labor based on indicators of the Social Hotspot Database [60] are applied. The 
indicator to measure the category “Compliance with Environmental Standards” is the 
Environmental Performance Index (EPI) [61].

For the determination of environmental impacts, the life cycle impact assessment 
method CML-IA [62] is applied for the impact categories acidification, eutrophication, cli-
mate change, and photochemical ozone creation.

Method

In the following, the product system, the corresponding system boundaries, and the 
assumptions for the scenario with an increased share of lightweight composite materials 
are presented.

The functional unit was defined as 1 (one) aircraft A330-200. The aircraft A330-200 has 
been separated into six major structural components: wings, fuselage, vertical stabilizer, 
horizontal stabilizer, landing gear, and engine. The aircraft A330-200 can operate with dif-
ferent engine types. As only data for the General Electric model CF6-80E1 are available 
[45], this engine type is considered.

The weight of the aircraft is the manufacturer’s empty weight (MEW) as defined by 
IVAO [63]. This includes the airframe structure and the engine, excluding the closed sys-
tem fluids as well as internal components of the aircraft such as textiles due do lacking 
data. Electronic parts were examined only for the structure engine.

For determining the environmental impacts, the GaBi software with datasets of sphera 
[64] and ecoinvent [65] was used. For the resource criticality assessment, only the bill of 
materials (BoM) of which the aircraft is composed of has been taken into account.

The identification of the BoM of the product system is based on the work of Lopes [45], 
as shown on Table 1. As far as the authors are aware, no other data sources for aircraft are 
available. However, to ensure that the applied data is adequate, the authors discussed the 
BoM as well as some of the results with the major aircraft manufacturers that confirmed 
that the overall data quality is fair to good. More information on the detailed alloys con-
sidered are presented in the Supplementary Information - Sect. 2. Energy and water use for 
the complete airplane production was retrieved from Spielmann et al. [66], where a similar 
aircraft was analyzed.

As already shown in Fig.  1, there is a trend to produce aircraft with an increasingly 
higher share of composites. For the scenario presented in this paper, based on the example 
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of the aircraft family A350 XWB, an aircraft with 53% composites and 19% aluminum 
is assumed and modeled leading to weight savings of 15% compared to a “classical” 
aluminum-based aircraft [4, 37]. Since the material substitution is usually realized in the 
wings and in the fuselage [67], it is assumed that the engine and the remaining parts of 
the aircraft remain the same weight. Due to lacking data to determine the GFRP share in 
modern aircraft, only the share of CFRP will be considered. The approach to determine 
the change in the overall weight of an aircraft is shown in the Supplementary Information 
- Sect. 3.

Results

In the following, the results of criticality including long-term availability ("Criticality 
Assessment Including Long-Term Availability"), environmental assessment ("Environmen-
tal Assessment"), recommendations regarding recycling of resources ("Recommendations 
Regarding Recycling of Resources"), and results for the scenario analysis for increased use 
of lightweight composite materials ("Scenario Analysis for Increased Use of Lightweight 
Composite Materials") are presented.

Criticality Assessment Including Long‑Term Availability

Results for Long‑Term Availability of Resources

First, results for the long-term availability applying the ADP indicator are presented 
(Fig. 2). Only the five resources with the highest impacts are shown, because the results of 
the other resources are comparably low and that they cannot be visualized. The complete 
assessment is presented in the Supplementary Information - Sect. 4. Molybdenum, which 
is mainly contained in the titanium, iron-nickel-chromium, and steel alloys, has the highest 
impacts and therefore the lowest long-term availability compared to the other resources of 
the aircraft. Results of copper (mostly contained in the aluminum 2024 alloy) and tin (pre-
sent mostly in the titanium alloy) are high as well, whereas results of chrome and nickel 
are low. Overall, the engine is the structure with the most resources facing challenges 

Table 1  Bill of materials (BoM) 
of A330-200 based on Lopes 
[45]

Materials Mass (kg) Mass (%)

Aluminum alloy 2024 62,056 59
Carbon fiber composites (CFRP) 9,664 9
Glass fiber composites (GFRP) 1,086 1
Titanium alloy 8,116 8
Steel alloy 17,856 17
Niobium and tantalum alloy 188 0.01
Iron-nickel-chromium alloy 1,728 2
Iron alloy 912 1
Nickel alloy 2,948 3
Chromium alloy 894 1
Overall sum 105,448 100
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Fig. 2  Results of long-term availability

Fig. 3  Criticality results of aircraft A330-20 applying ESSENZ-method
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regarding long-term availability, followed by the wings and fuselage. Also when excluding 
the engine from the assessment, molybdenum, copper, and tin still remain the hotspots.

Results for the Criticality of Resources

Further, the results for criticality are presented (see Fig. 3). It can be seen that tantalum 
dominates most categories (except for mining capacity, feasibility of exploration projects, 
price variation, and company concentration), even though its quantity in the product sys-
tem is rather small (0.1% by weight in the composition of the aircraft). Molybdenum, 
which faces the highest challenges regarding long-term availability, is not a hotspot in the 
criticality assessment and only shows a significant contribution in the category price varia-
tion. Again, the engine is the component of the aircraft showing the highest impact, mainly 
due to tantalum use (see Supplementary Information – Sect. 5 for a more detailed analysis 
of the different aircraft structures).

In the following, the hotspots of every category are explained:

• Political stability: Tantalum is a hotspot, because 40% of its production takes place in 
the Congo (Kinshasa) [68], which is characterized by political unrest [69, 70]. High 
amounts of tantalum are also produced in Rwanda (28%), which faces high political 
instability as well [71, 72].

• Demand growth: Tantalum is a hotspot, because the growth of the electronics industry 
worldwide pushes its demand and already accounts for more than 50% of the global 
tantalum use [73]. As microelectronics use will further increase, tantalum demand is 
also expected to increase further.

• Mining capacity: Nickel, tin, and molybdenum are hotspots, because of their high 
yearly production on the one hand and only few active mines on the other hand [74, 
75].

• Concentration of reserves and production: The predominance of tantalum in the cat-
egory concentration of reserves can be explained by the fact that 70% of the known 
world reserves are located in Australia and 28% in Brazil [68]. Even though the reserves 
are mainly located in these two countries, the production is dominated by Congo and 
Rwanda [68].

• Trade barriers: Tantalum is a hotspot, because its trade by Congo and Rwanda is influ-
enced by the uncertain behavior of rebel groups and the unclear role of the government 
[76].

• Feasibility of exploration projects: The hotspot of aluminum can be explained by the 
fact that a relatively high share of its reserves (27%) are located in Guinea. Stricter 
rules from the Guinea government obliging mining companies to incorporate social 
licenses into every mining process has led to fewer private investment interest [77].

• Price variation: This category is influenced by molybdenum and titanium. The prices of 
molybdenum have been highly fluctuating in the last years [78]. Titanium is the most 
demanded resource for the aerospace industry (30% of the total resource demand for 
that year) [9].

• Occurrence of co-production: Tantalum is a hotspot, because 33% of its production is 
linked to extraction of other resources, for example, in polymetallic mines (e.g., as a 
by-product of lithium production [68]) or from tin slag [79].

• Primary material use: Tantalum is a hotspot due to its low recycling rate and therefore 
small recycled content [80, 81].
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• Company concentration: Niobium is a hotspot, because more than 80% is produced by 
one Brazilian company [82, 83].

Based on the criticality results as well as the long-term availability, the engine is the air-
craft structure influencing the results the most. Assessing the criticality when the engine is 
not considered can give further information on which resources might be critical.

When the engine is excluded, it can be verified that tantalum is not the hotspot any-
more of the system (see Supplementary Information – Sect. 6). The largest contributors 
are then aluminum (in wings, landing gear, and fuselage), titanium (wings and fuse-
lage), molybdenum (in fuselage), and vanadium (in wings).

Results of the Dimension Societal Acceptance

In the following, the results for the dimension societal acceptance are shown, which con-
sists of two categories: non-compliance with environmental and non-compliance with 
social standards. The results are independent from the quantity of the used materials.

As shown in Fig. 4, overall the risk of non-complying with environmental standards 
is high for all materials. Tin, vanadium, and tantalum are hotspots. China is the larg-
est producer of tin (40%) and vanadium (61%) [84] and has a high EPI value, meaning 
that the environmental performance of this country is low. Tantalum is mainly mined 
in Congo and Rwanda [68], having both countries a high EPI value and therefore also 
a low environmental performance. For the category non-compliance with social stand-
ards, tungsten and magnesium, whose production is dominated by China [85, 86], are 
the hotspots from the evaluation (Fig. 4).
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Environmental Assessment

Overall, the aircraft leads to 9.46 ∙103 kg sulfur dioxide equivalents in the category acidifi-
cation (AP), 7.05 ∙103 kg phosphate equivalents in the category eutrophication (EP), 2.10 
∙106 kg carbon dioxide equivalents in the category climate change (GWP), and 6.43∙102 kg 
ethene equivalents in the category smog (POCP). As shown in Fig. 5, the overall electricity 
use for building the aircraft is the hotspot in AP with 28%, GWP with 45%, and POCP with 
26%. The structures engine, wings, and fuselage have the highest impacts in all categories.

For AP, the aircraft’s engine is responsible for 45% of the impacts due to the provision 
of nickel alloys. Aluminum alloys are responsible for 79% of total impacts of the wings and 
for 81% of the impacts of the fuselage. For EP, the engine contributes most to the impact 
(47%), titanium being the hotspot with 94%. For the wings, both aluminum contributes to 
79% and titanium to 16%. Overall, all titanium alloys are responsible for 95% of the total 
impacts, molybdenum being the largest contributor for this. During molybdenum process-
ing, there is a high release of nitrates potentially leading to eutrophication of rivers and 
lakes [87]. The structures fuselage and wings are responsible for 71% of the total GWP 
impacts due to their large amount of aluminum alloy 2024 which is responsible for 56% 
of total impact in the GWP considering all structures. The aluminum refining has a high 
energy demand, accounting for 11% of  CO2-eq emissions among all metals [87]. The alloy 
2024 itself contains cooper, manganese, and zinc which are also metals with high green-
house gas emissions [8]. Further, the production of carbon fibers composites is responsi-
ble for 19% of the impact in GWP, mainly due to their high crude oil input. Finally, for 
POCP titanium (36%) and nickel (40%)—in the structure engine—have the highest impact, 
whereas for the structures wings and fuselage, the aluminum (64% for wings and 68% 
for fuselage) and titanium (27% for wings and 25% for fuselage) production dominates. 
More detailed results for the environmental impacts can be found in the Supplementary 

Fig. 5  Environmental impacts of manufacturing of A330-200 aircraft
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Information - Sect. 7. The alloys showing highest environmental impacts are nickel, alu-
minum, titanium, tantalum, and niobium.

Recommendations Regarding Recycling of Resources

Within Table 2, the results of the "Criticality Assessment Including Long-Term Availabil-
ity" and the "Environmental Assessment" sections are summarized regarding the hotspots 
(ca. 78% of the total aircraft mass) identified for long-term availability, criticality, societal 
acceptance, and environmental impacts related to mass and aircraft structures.

It can be seen that the resource tin shows impacts in most of the considered categories; 
as its long-term availability is affected, it is influenced by criticality in the category mining 
capacities, and it is in the top 5 resources facing challenges with societal acceptance. Tin is 
contained in almost all aircraft structures, being a relevant part in the titanium alloys with 
a strengthening function. This also applies to molybdenum, which is a hotspot in most con-
sidered aspects except societal acceptance, being an important additive to titanium, iron-
nickel-chromium, and steel alloys.

Even though the mass share of both tin and molybdenum is very low, considering their 
relatively high impacts in most of the analyzed categories, it is recommended to recycle 
these resources in the respective alloys.

Aluminum is the main component of the most alloys contained in the fuselage (71% by 
mass) and in the wings (66% by mass), being a hotspot both from criticality as also from 
the environmental perspective. According to the last reported data, only approximately 
20% of both aluminum is actually being recycled even though it is technologically fea-
sible without much additional effort [42]. The recycling of this resource is thus strongly 
recommended.

Nickel and tantalum, both important elements in the engine, have been also identified 
as a hotspot resource for criticality and environmental impacts, emphasizing therefore the 
need for their recycling. Copper, titanium, vanadium, and magnesium are hotspots in two 
of the considered impact categories. Thus, their recycling should also be promoted. Tita-
nium, vanadium, and magnesium are contained in aluminum 2024 and steel alloys, under-
lying once more the recycling need of these resources. Chromium, tungsten, silicon, zinc, 
and niobium each face only one hotspot, but should also not neglected. Chromium and 
silicon are also components of aluminum and steel alloys.

Next, the recycling of engine components such as tantalum, tungsten, and niobium 
shows a great potential to reduce criticality aspects (including societal acceptance) even 
though their mass may seem rather residual.

Even though iron, the main component of steel, does not show any evident hotspots in 
this assessment, due to the critical resources contained in this alloy, its recycling should 
also be prioritized. Overall, it can be thus stated that due to the hotspots of alloying 
resources, the recycling of aluminum 2024 and steel should be emphasized.

Resources used in composite materials have not shown any hotspots. Next, it will be 
analyzed if this changes when the share of  composite materials  is increased in aircraft 
construction.

Scenario Analysis for Increased Use of Lightweight Composite Materials

Figure 6 shows the changes in the results when increasing the share of composite materi-
als in aircraft. The aircraft with 49% composite materials has higher impacts in GWP with 
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12% and fossil resource depletion  (ADPfossil) with 20%. Increases in these categories can 
be explained by the higher use of fossil fuels needed for carbon fibers composites made out 
of epoxy, which is crude oil-based.

The impacts of the composites-based aircraft are significantly lower for AP with 16%, 
 ADPelements by 14%, political stability with 35%, demand growth with 60%, concentration 
of reserves, production, and companies by 12%, 28%, and 30%, respectively. The biggest 
reduction occurs in the category feasibility of exploration projects with 68% impact reduc-
tion for the composite-based aircraft. These reductions can be explained by to the lower 
amount of aluminum, as explained in the results presented in "Criticality Assessment 
Including Long-Term Availability".

Even though the modeled aircraft with 49% composites scores better than A330-200 in 
several environmental categories, these results are not sufficient to derive further manu-
facturing recommendations. Higher GWP,  ADPfossil, and the already mentioned difficulties 
for recycling composite materials might suppress eventual benefits achieved in the other 
categories (e.g., AP,  ADPelements, or criticality).

Discussion

The paper relayed mainly on data for aircraft manufacturing provided by only one publica-
tion [45], since no primary data from Airbus or other aircraft’s manufacturers are available. 
A combination of sphera and ecoinvent databases was used to model the environmental 
impacts of aircraft manufacturing. As these databases rely on somewhat different modeling 
principles [88], this might also have influenced the results. Data for energy and water use 
were available just for the complete production process. For this reason, it was not possible 
to identify where the highest consumption take place.

0%

20%

40%

60%

80%

100%

120%
AP [kg SO2 eq.]

EP [kg P eq.]

GWP [kg CO2 eq.]

ODP [kg R11 eq.]

POCP [kg Ethene eq.]

ADPelements [kg Sb-eq.]

ADPfossil [kg Sb-eq.]

Poli�cal stability

Demand growth
Mining capacity

Concentra�on of reserves

Concentra�on of produc�on

Trade barriers

Feasability of explora�on
projects

Price vola�lity

Occurence of co-produc�on

Primary material use

Company concentra�on

A330-200 Airplane with 49% composites

Fig. 6  Comparison of baseline scenario A330-200 and aircraft with 49% composites
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Several simplifications concerning the existing alloys in the aircraft and their composi-
tion were made. One is that the information on the alloys’ composition was collected in 
secondary sources. The aluminum alloys for the aircraft industry are very diverse depend-
ing on their purpose. Even though aluminum alloy 2024 is the most common one, other 
configurations are used and could lead to different results in the individual dimensions. 
Also, the exact knowledge of the structure from CFRP and GFRP materials adopted in 
the aerospace industry was not known in detail, and assumptions based on literature were 
made regarding their exact composition. Such simplifications may explain why the dif-
ferences between composites- and aluminum-based aircraft were not so significant in the 
environmental dimension.

It was shown that the engine component tantalum has the highest impacts in several 
criticality dimensions, despite its very small mass share. Tantalum has also been analyzed 
within another study [45], being pointed out as an environmental hotspot. Also nickel and 
aluminum were considered hotspots by previous publications [42, 45, 52]. Aluminum is 
also the material with the highest energy savings when recovered [42]. Therefore, a com-
parison of results was partly possible to validate the case study results. However, the envi-
ronmental impacts of remaining raw resources (such as titanium and molybdenum) have 
not been analyzed in detail by other works.

As the aircraft structure engine shows several hotspots in the different dimensions and 
categories, a more detailed analysis of the remaining electronic parts such cables and navi-
gation instruments should be carried out. Since no data is available for these electronics 
components, they were not considered in this paper.

To fully cover the impacts in all considered dimensions and also to identify potential 
trade-offs, composites should be deeper analyzed. This also includes the changing shares 
of other resources such as steel in the lightweight aircraft, as well as considering the use 
phase of the aircraft’s service life and determining the break-even point when composites 
lead to lower environmental (as well as economic and societal) impacts by decreasing fuel 
consumption.

A further  growth of the aircraft fleet would put more pressure on resources that are 
already considered critical. Thus, for future work, the EoL phase and different recycling 
strategies for the identified resources with high recycling potentials should be analyzed in 
more detail. The EoL might be especially relevant for the composite resources, because 
their recycling potential and more sustainable alternatives are still being researched [46, 
89–92]. Further, for a complete picture, the use phase should be included as well.

Conclusions

By applying ESSENZ, this work has identified the major criticality and environmental hot-
spots of aircraft manufacturing. The engine of the aircraft is the structure with the poten-
tially highest scarcity resources due to the use of tantalum. Engine, wings, and fuselage 
production lead to the highest environmental impacts due to aluminum, titanium, tanta-
lum, molybdenum, and tin. Hotspots in the criticality and environmental assessment often 
occur in alloying resources with a low mass share. Thus, when it comes to recommen-
dations regarding recycling, aluminum and steel alloys should be recycled. Next, within 
engine the resources tantalum, tungsten, and niobium should also be sourced from second-
ary sources. Clear advantages of using lightweight composite materials to reduce scarcity 
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and environmental impacts during the manufacturing phase were not identified, and this is 
therefore not a relevant factor when only focusing on the manufacturing phase.

Herewith, the relevancy of analyzing the manufacturing phase of aircrafts was demon-
strated as well as the advantages of promoting the recycling of decommissioned aircrafts 
in order to decrease the aircraft potential resource criticality. This might lead to a lower 
need for primary resources as well as to diminished environmental impacts, contributing 
therefore to reduce the overall impact of the aviation sector in line with circular economy 
principles.
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