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Abstract
In this paper we study a robust utility maximization problem in continuous time under model
uncertainty. The model uncertainty is governed by a continuous semimartingale with uncer-
tain local characteristics. Here, the differential characteristics are prescribed by a set-valued
function that depends on time and path.We show that the robust utilitymaximization problem
is in duality with a conjugate problem, and we study the existence of optimal portfolios for
logarithmic, exponential and power utilities.

Keywords Robust utility maximization · Robust market price of risk · Duality theory ·
Nonlinear continuous semimartingales · Semimartingale characteristics · Knightian
uncertainty

Mathematics Subject Classification 60G65 · 91B16 · 93E20

1 Introduction

1.1 The purpose of this article

An important problem for a portfolio manager is to maximize the expected utility of his
terminal wealth. For complete markets, this problem can be solved by the martingale method
developed in [12, 13, 36, 60]. The case of incomplete markets is considerably more difficult.
By now, the classical approach to compute the maximized utility (called value function) is to
use a duality argument which was formalized in an abstract manner in the seminal paper [39],

We are grateful to an associate editor and two anonymous referees for many valuable comments and
suggestions that helped us to improve the paper.
DC acknowledges financial support from the DFG project SCHM 2160/15-1 and LN acknowledges financial
support from the DFG project SCHM 2160/13-1 .

B David Criens
david.criens@stochastik.uni-freiburg.de

Lars Niemann
lars.niemann@stochastik.uni-freiburg.de

1 Albert-Ludwigs University of Freiburg, Ernst-Zermelo-Str. 1, 79104 Freiburg, Germany

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s11579-023-00342-y&domain=pdf
http://orcid.org/0000-0002-6436-145X


500 Mathematics and Financial Economics (2023) 17:499–536

see also [26, 37] for other pioneering work. The key idea is to pass to a dual optimization
problem, which is typically of reduced complexity, and to recover, via a bidual relation, the
value function of the original problem as the conjugate of the value function corresponding
to the dual problem.

In this paper we are interested in a robust framework, where, instead of a single financial
model, a whole family of models is taken into consideration. Financially speaking, we think
of a portfolio manager who is uncertain about the real-world measure, but who thinks that it
belongs to a certain set of probabilities.

Recently, an abstract duality theory for possibly nondominated robust frameworks was
developed in [3], see also [19] for another approach to a robust duality theory under drift
and volatility uncertainty for bounded utilities. Compared to the classical case treated in
[39], the theory from [3] relies on a measure-independent dual pairing which requires a
suitable topological structure. A natural choice for an underlying space is the Wiener space
of continuous functions, which can be seen as a canonical framework.

In their fundamental work [39], the authors use their abstract theory to establish dual-
ity theorems for general semimartingale market models. When it comes to robust duality
theorems in nondominated settings, it seems that only the Lévy type setting with determin-
istic uncertainty sets has been studied in detail, see [3, 19]. The purpose of this paper is to
reduce the gap between the robust and non-robust case in terms of a robust duality theory for
nondominated canonical continuous semimartingale markets with time and path-dependent
uncertainty sets. To this end, we rely on the ideas and abstract results of [3] that allow us to
derive robust duality theorems for a larger class of stochastic models. Therefore, we place
ourselves in the continuous path-setting of [3]. In the following, we explain our setting in
more detail.

1.2 The setting

Consider the robust utility maximization problem given by

u(x) := sup
g∈C(x)

inf
P∈P EP[

U (g)
]
, (1.1)

whereU : (0,∞) → R is a utility function,P is a set of (possibly nondominated) probability
measures on the Wiener space � := C([0, T ]; R

d), with finite time horizon T > 0, and
C(x) := x C is the set of claims that can be P-quasi surely superreplicated with initial capital
x > 0, i.e.,

C :=
{
g : � → [0,∞]: g is universally measurable and ∃H ∈ HP

with 1 +
∫ T

0
HsdXs ≥ g P-q.s.

}
.

The model uncertainty in this framework is introduced through a set P, which consists of
semimartingale laws on theWiener space. We parameterizeP via a compact parameter space
F and drift and volatility coefficients b : F×[0, T ]×� → R

d and a : F×[0, T ]×� → S
d+

such that

P = {
P ∈ Pac

sem : P ◦ X−1
0 = δx0 , (λ\ ⊗ P)-a.e. (dBP/dλ\, dCP/dλ\) ∈ �

}
,

wherePac
sem denotes the set of semimartingale lawswith absolutely continuous characteristics,

X is the coordinate process, x0 ∈ R
d is the initial value, (BP ,CP ) are the P-characteristics
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of X , and

�(t, ω) := {
(b( f , t, ω), a( f , t, ω)) : f ∈ F

}
, (t, ω) ∈ [0, T ] × �.

In words, the setP of feasible real-world measures consists of all continuous semimartingale
models whose coefficients take uncertain values in the fully path-dependent set �. This time
and path dependence constitutes the main novelty of our paper, extending the results of [3]
where �(t, ω) ≡ � is independent of time t and path ω.

We prove ourmain convex duality results under the assumption that b and a are continuous
and of linear growth, and that � is convex-valued. Further, we will introduce a robust market
price of risk, which seems to be a novel object. In case we deal with unbounded utility
functions, we additionally assume either a certain uniform boundedness condition or that
the volatility coefficient a is uniformly bounded and elliptic. In general, however, we do not
impose any ellipticity assumption and thence allow the portfolio manager to take incomplete
markets into consideration. It seems to us that this feature is new for robust semimartingale
frameworks.

Due to the high amount of flexibility of our framework, we are able to cover many promi-
nent stochastic models. This includes the case from [3] where�(t, ω) ≡ � is independent of
time t and path ω, which corresponds to the generalized G-Brownian motion as introduced
in [59], cf. also [49] for a nonlinear Lévy setting with jumps. Additionally, we are able to
capture a Markovian framework of nonlinear diffusions where �(t, ω) ≡ �(ω(t)) depends
on (t, ω) only through the value ω(t). Such models have been investigated, for instance, in
[16, 29]. Furthermore, our setting can also be used to model path-dependent dynamics such
as stochastic delay equations under parameter uncertainty and the random G-expectation as
discussed in Section 4 from [57], cf. also [53] for a related approach.

1.3 Main contributions

Denote the set of absolutely continuous separating measures by

D := {
Q ∈ Pa(P) : EQ[g] ≤ 1 for all g ∈ C}, D(y) := yD, y > 0,

wherePa(P) := {Q ∈ P(�) : ∃P ∈ P with Q � P}. The robust dual problem is given by

v(y) := inf
Q∈D(y)

sup
P∈P

EP
[
V

(dQ
dP

)]
, (1.2)

where V denotes the conjugate of the utility functionU .We focus on logarithmic, exponential
and power utility, i.e., U is assumed to be one of the following

U (x) = log(x), U (x) = −e−λx for λ > 0, U (x) = x p

p
for p ∈ (−∞, 0) ∪ (0, 1).

For these utility functions we show that the functions u and v are conjugates, i.e.,

u(x) = inf
y>0

[
v(y) + xy

]
, x > 0, v(y) = sup

x>0

[
u(x) − xy

]
, y > 0, (1.3)

which constitutes ourmain result. Additionally, we prove the existence of an optimal portfolio
for a relaxed version of the optimization problem (1.1), which accounts for the obstacle that
in the nondominated case one cannot rely on classical tools like Komlós’ lemma for the
approximation scheme of an optimal portfolio. In order to show (1.3), we use the duality
results developed in [3] and adapt the strategy laid out in [3, Section 3] beyond the case of
nonlinear continuous Lévy processes, i.e., where the set � is independent of time and path.
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To apply the main duality results from [3], we prove thatP andD are convex and compact,
and that the sets C and D are in duality, i.e.,

{
Q ∈ Pa(P) : EQ[g] ≤ 1 for all g ∈ C ∩ Cb(�; R)

} = D, (1.4)

and
{
g ∈ C+

b (�; R) : EQ[g] ≤ 1 for all Q ∈ D} = C ∩ Cb(�; R). (1.5)

We emphasise that for these dualities we work with absolutely continuous measures, while
equivalent measures were used in [3, Section 3]. As we explain in the following, we establish
(1.5) under a robust no arbitrage condition, which appears to us very natural. The corre-
sponding duality from [3, Section 3.1] is proved under a uniform ellipticity assumption that
implies the robust no arbitrage condition for the duality (1.5) and that all absolutely contin-
uous martingale measures are already equivalent martingale measures. We now comment in
more detail on the proofs.

For the first duality (1.4), we show thatD coincides with the robust analogue of the set of
absolutely continuous local martingale measures, i.e.,

Ma(P) := {
Q ∈ Pa(P) : X is a local Q-F-martingale

}
.

The equality Ma(P) = D relies on a characterization of local martingale measures on
the Wiener space, and it resembles the fact that for continuous paths, the set of separating
measures coincides with the set of local martingale measures.

Regarding the second duality (1.5), the equalityMa(P) = D further allows us to use the
robust superhedging duality

sup
Q∈Ma(P)

EQ[
f
] = min

{
x ∈ R : ∃H ∈ HMa(P)

with x +
∫ T

0
HsdXs ≥ f Q- a.s.,∀Q ∈ Ma(P)

}
, (1.6)

to show that there is a superhedging strategy for every function in the polar of D. To prove
the duality (1.6) we heavily rely on ideas from [54] and establish stability properties of a time
and path-dependent correspondence related toMa(P). As already mentioned above, we are
able to establish the duality (1.5) without imposing ellipticity conditions as used in [3, 19].
Rather, we work under a robust no free lunch with vanishing risk condition that ensures that
the set Ma(P) is sufficiently rich. More precisely, we assume that for every P ∈ P there
exists a measure Q ∈ Ma(P) with P � Q. This assumption is a continuous time version of
the robust no-arbitrage condition introduced in [7] and reduces to the classical no free lunch
with vanishing risk condition in case P is a singleton.

Next, we comment on the proofs for convexity and compactness of the sets P and D.
For P we adapt a strategy from [16] from a one-dimensional nonlinear diffusion setting to
our multidimensional path-dependent framework. To establish compactness of the setD, we
show that it coincides with

M := {
Q ∈ Pac

sem : Q ◦ X−1
0 = δx0 , (λ\ ⊗ Q)-a.e. (dBQ/dλ\, dCQ/dλ\) ∈ �̃

}
,

where

�̃(t, ω) := {0}d × {
a( f , t, ω) : f ∈ F

} ⊂ R
d × S

d+, (t, ω) ∈ [0, T ] × �.

Compactness ofM then can be proved as for its companionP. To derive the equalityD = M,
we assume the existence of a robust market price of risk (MPR). That is, the existence of
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a Borel function θ : F × [0, T ] × � → R
d , subject to a modest boundedness assumption,

such that b = aθ . The robust MPR allows for equivalent measure changes between the set of
candidate measuresP and the robust version of the set of martingale measuresM. By means
of an example, we show that mild boundedness assumptions on the MPR are necessary for
the identity M = D to hold.

Evidently, by virtue of (1.2), to deal with unbounded utility functions, we require some
integrability of the Radon–Nikodym derivative dQ/dP for Q ∈ D and P ∈ P. To this end,
we establish finite polynomial moments for certain stochastic exponentials.We think that this
result is of independent interest. In order to achieve this, we give a boundedness condition on
the MPR and a uniform ellipticity and boundedness condition on the volatility from which
we require only one to hold. The first allows us to incorporate incomplete market models,
while the second gives additional freedom in the drift coefficient.

1.4 Comments on related literature

There is already a vast literature on the robust utility maximization problem (1.1) with
respect to nondominated probability measures. In the discrete-time setting, the robust utility
maximisation problem has been considered for instance in [2, 5, 9, 56], see also the references
therein. Nonlinear Lévy frameworks with constant � were for instance considered in [3, 19,
43, 50] andnonlinear time-inhomogeneousLévy settingswith time-dependent�were studied
in [41, 42, 58]. Further, [4] investigated a robust Merton problem with uncertain volatility
of Lévy type and volatility state dependent drift. Compared to these papers, we allow for
uncertain drift and volatility with fully path dependent coefficients. In particular, our work
includes diffusion models with uncertain parameters, such as real-valued nonlinear affine
models as studied in [23], as well as stochastic volatility models with uncertain volatility
processes.

The literature on the robust dual problem in continuous time is less extensive. Indeed, we
are only aware of the papers [3, 19], where the problem is investigated from a theoretical
perspective, and the only concrete examples we know of are the continuous Lévy frameworks
with uniformly bounded and elliptic coefficients as discussed in these papers.

In the remainder of this subsection we comment on the differences between our proofs
and those from [3] for the Lévy setting. To establish (1.3) – (1.5), we follow the ideas used in
[3, Section 3] for the Lévy case. We do however, replace the uniform ellipticity assumption
of [3, Section 3] with a robust notion of no free lunch with vanishing risk. This is in the spirit
of the seminal work [39]. Further, notice that we work with the set Ma(P) of absolutely
continuous local martingale measures as in [7]. This relaxes our condition of no free lunch
with vanishing risk, compared to its counterpart formulated with equivalent local martingale
measures. To take our unbounded, non-elliptic and path-dependent framework into account,
we have to develop new results on the equivalence, convexity and compactness of the sets
P and M. The difficulty of extending results from a Lévy setting to its more general path-
dependent counterparts has already been acknowledged in the literature (see, e.g., [29, 40]).
Another novelty in our treatment is the concept of a robust MPR that is crucial to capture
incomplete market situations that are excluded in [3, Section 3]. Related to the MPR, we
need to investigate the martingale property and establish polynomial moment estimates for
certain stochastic exponentials. To achieve this, the mere existence of a market price of risk
is not sufficient and we have to impose either an additional boundedness assumption on the
MPR, or restrict ourselves to a uniformly elliptic setting. Both conditions are satisfied for
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the Lévy framework studied in [3, Section 3]. Finally, let us emphasize again that this is the
only point were we use an ellipticity condition.

1.5 Structure of the article

In Sect. 2.1 we lay out our setting, in Sect. 2.2 we provide the superhedging duality for
nonlinear continuous semimartingales and in Sect. 2.3we discuss the duality relation between
C and D. After stating the separating dualities and the appropriate notion of no-arbitrage,
we give parameterized conditions that ensure compactness and convexity of P and M,
respectively. The final part of Sect. 2.3 is devoted to the robust market price of risk and to
the equality D = M. In Sect. 2.4 we study the robust utiltiy maximization problem, and its
dual problem. In Sect. 3 we provide three examples of specific models that are captured by
our framework. The proofs for our main results are given in the remaining sections. More
precisely, the superhedging duality is proved in Sect. 4.1. In Sect. 4.2 we show the duality
between C and D while compactness and convexity of P and M is proved in Sect. 4.3. In
Sect. 4.4 we verify that D = M in case a robust MPR exists. The duality relation between u
and v is established in Sect. 4.5.

2 Main result

2.1 The setting

Fix a dimension d ∈ N and a finite time horizon T > 0. We define � to be the space
of continuous functions [0, T ] → R

d endowed with the uniform topology. The canonical
process on � is denoted by X , i.e., Xt (ω) = ω(t) for ω ∈ � and t ∈ [0, T ]. It is well-
known that F := B(�) = σ(Xt , t ∈ [0, T ]). We define F := (Ft )t∈[0,T ] to be the canonical
filtration generated by X , i.e., Ft := σ(Xs, s ∈ [0, t]) for t ∈ [0, T ]. The set of probability
measures on (�,F) is denoted byP(�) and endowedwith the usual topology of convergence
in distribution. Moreover, for any σ -field G, let G∗ := ⋂

P GP be the universal σ -field, where
P ranges over all probability measures on G, and GP denotes the completion of G w.r.t. P .

Further, we denote the space of symmetric, positive semidefinite real-valued d×d matrices
by S

d+, and by S
d++ ⊂ S

d+ the set of all positive definite matrices in S
d+. Finally, recall that

a subset of a Polish space is called analytic if it is the image of a Borel subset of some
Polish space under a Borel map, and that a function f with values in R := [−∞,+∞] is
upper semianalytic if { f > c} is analytic for every c ∈ R. Any Borel function is also upper
semianalytic. We define, for two stopping times ρ and τ with values in [0, T ] ∪ {+∞}, the
stochastic interval

[[ρ, τ [[ := {(t, ω) ∈ [0, T ] × � : ρ(ω) ≤ t < τ(ω)}.

The stochastic intervals ]]ρ, τ [[, [[ρ, τ ]], ]]ρ, τ ]] are defined accordingly. In particular, the
equality [[0, T ]] = [0, T ] × � holds.

Let F be a metrizable space and let b : F × [[0, T ]] → R
d and a : F × [[0, T ]] → S

d+ be
two Borel functions such that (t, ω) �→ b( f , t, ω) and (t, ω) �→ a( f , t, ω) are predictable
for all f ∈ F .
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We define the correspondences, i.e., the set-valued maps, �, �̃ : [[0, T ]] � R
d × S

d+ by

�(t, ω) := {
(b( f , t, ω), a( f , t, ω)) : f ∈ F

} ⊂ R
d × S

d+,

�̃(t, ω) := {0}d × {
a( f , t, ω) : f ∈ F

} ⊂ R
d × S

d+.

Wedenote the set of laws of continuous semimartingales byPsem ⊂ P(�). For P ∈ Psem,
we denote the semimartingale characteristics of the coordinate process X by (BP ,CP ), and
we set

Pac
sem := {

P ∈ Psem : P-a.s. (BP ,CP ) � λ\
}
,

where λ\ denotes the Lebesgue measure.
We further define, for fixed x0 ∈ R

d ,

P := {
P ∈ Pac

sem : P ◦ X−1
0 = δx0 , (λ\ ⊗ P)-a.e. (dBP/dλ\, dCP/dλ\) ∈ �

}
,

M := {
Q ∈ Pac

sem : Q ◦ X−1
0 = δx0 , (λ\ ⊗ Q)-a.e. (dBQ/dλ\, dCQ/dλ\) ∈ �̃

}
.

Standing Assumption 2.1

(i) P �= ∅ �= M.
(ii) � and �̃ have a Borel measurable graph, i.e.,

{
(t, ω, b, a) ∈ [0, T ] × � × R

d × S
d+ : (b, a) ∈ �(t, ω)

}

∈ B([0, T ]) ⊗ F ⊗ B(Rd) ⊗ B(Sd+),
{
(t, ω, b, a) ∈ [0, T ] × � × R

d × S
d+ : (b, a) ∈ �̃(t, ω)

}

∈ B([0, T ]) ⊗ F ⊗ B(Rd) ⊗ B(Sd+).

Remark 2.2

(i) By virtue of [15, Lemma 2.10], part (i) from Standing Assumption 2.1 holds if the
functions b : F × [[0, T ]] → R

d and a : F × [[0, T ]] → S
d+ are continuous and of linear

growth, i.e., there exists a constant C > 0 such that

‖b( f , t, ω)‖2 + ‖a( f , t, ω)‖ ≤ C
(
1 + sup

s∈[0,t]
‖ω(s)‖2

)

for all ( f , t, ω) ∈ F × [[0, T ]].
(ii) Thanks to [15, Lemma 2.8], part (ii) from Standing Assumption 2.1 holds once F is

compact and the functionsb : F×[[0, T ]] → R
d anda : F×[[0, T ]] → S

d+ are continuous.
This is a crucial property in order to use the theory developed in [21, 57].

Let Q ⊂ P(�) be a set of probability measures. Recall that a Q-polar set is a set that is
Q-null under every Q ∈ Q, and that a property holds Q-quasi surely, if it holds outside a
Q-polar set. For two sets of probability measures Q,R ⊂ P(�), we write Q � R if every
R-polar set is Q-polar. If Q � R and R � Q, we denote this by Q ∼ R.

Finally, for any collectionR ⊂ Psem, we first define the filtration GR = (GRt )t∈[0,T ] via

GRt :=
⋂

s>t

(F∗
s ∨ NR)

, t ∈ [0, T ], (2.1)
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where F∗
t is the universal completion of Ft , andNR is the collection ofR-polar sets. Then,

we setHR to be the set of allGR-predictable processes H with H ∈ L(X , P) for all P ∈ R
and such that for every P ∈ R there exists a constant C = C(H , P) > 0 such that P- a.s.∫ ·
0 HsdXs ≥ −C .

The following observation becomes useful later. If P ∈ R is such that X is a local P-
martingale, then

∫ ·
0 HsdXs is a P-supermartingale for every H ∈ HR. This follows from the

wellknown fact that any local martingale that is bounded from below is a supermartingale.1

2.2 Superhedging duality

We denote the set of all local martingales measures for X that are absolutely continuous to
the uncertainty set P by

Ma(P) := {
Q ∈ Pa(P) : X is a local Q-F-martingale

}
,

where

Pa(P) := {
Q ∈ P(�) : ∃P ∈ P with Q � P

}
.

The following theorem provides a version of [54, Theorem 3.2] which is tailored to our
nonlinear semimartingale framework. It shows that for payoffs bounded from below, the
optimal superhedging strategy is admissible in a robust sense. This will turn out to be useful
in Sect. 4. The proof is given in Sect. 4.1 below.

Theorem 2.3 Assume thatMa(P) �= ∅. Let f : � → R+ be an upper semianalytic function
such that

sup
Q∈Ma(P)

EQ[
f
]

< ∞.

Then, there exist a strategy H ∈ HMa(P) and a constant C > 0 with
∫ ·

0
HsdXs ≥ −C Q-a.s. for all Q ∈ Ma(P),

such that

sup
Q∈Ma(P)

EQ[
f
] +

∫ T

0
HsdXs ≥ f , Q-a.s. for all Q ∈ Ma(P).

To prove Theorem 2.3 we have to verify the prerequisites of [54, Theorem 3.2]. To this end,
in Sect. 4.1 we establish stability properties ofMa(P) that ensure the dynamic programming
principle for the (dynamic) superhedging price associated toMa(P).

2.3 Separating duality for nonlinear continuous semimartingales

For P ∈ P, we define
MP

e := {
Q ∈ P(�) : P ∼ Q, X is a local Q-F-martingale

}
.

1 See, for instance, [33, Section III.6.c] for more details.
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Further, we denote the set of all local martingales measures for X that are equivalent to the
uncertainty set P by

Me(P) := {
Q ∈ Pe(P) : X is a local Q-F-martingale

}
,

where

Pe(P) := {
Q ∈ P(�) : ∃P ∈ P with Q ∼ P

}
.

We define

C :=
{
g : � → [0,∞] : g is F∗

T -measurable and ∃H ∈ HP with 1 +
∫ T

0
HsdXs ≥ g P-q.s.

}
.

D := {
Q ∈ Pa(P) : EQ[

g
] ≤ 1 for all g ∈ C}.

Here, C is the set of claims that can be P-quasi surely superreplicated with initial capital 1,
while D is the collection of absolutely continuous separating measures for C.

In order to derive the duality between C and D, we impose the following no-arbitrage
condition.

Definition 2.4 We say that NFLVR(P)holds if for every real-world measure P ∈ P there
exists a martingale measure Q ∈ Ma(P) such that P � Q.

Remark 2.5 If NFLVR(P)holds, then P ∼ Ma(P). To see this, note that Ma(P) ⊂
Pa(P) � P by definition. Conversely, if NFLVR(P)holds, it follows that P � Ma(P).

The following theorem can be viewed as a generalization of [3, Propositions 5.7, 5.9] from
aLévy settingwith constant�(t, ω) ≡ � ⊂ R

d×S
d++ to a general nonlinear semimartingale

framework with path dependent uncertainty set (t, ω) �→ �(t, ω). Moreover, it seems to be
the first concrete result without an ellipticity assumption, i.e., which also covers incomplete
market scenarios, see [3, Remark 3.2]. The theorem is proved in Sect. 4.2 below.

Theorem 2.6

(i) It holds that

Ma(P) = D = {
Q ∈ Pa(P) : EQ[

g
] ≤ 1 for all g ∈ C ∩ Cb(�; R)

}
. (2.2)

(ii) If NFLVR(P)holds, then

C ∩ Cb(�; R) = {
g ∈ C+

b (�; R) : EQ[
g
] ≤ 1 for all Q ∈ D}

. (2.3)

Remark 2.7 (Discussion of NFLVR(P) ) Notice that in the single-measure case P = {P},
NFLVR(P) is equivalent to the existence of an equivalent localmartingalemeasure Q ∈ MP

e .
Thanks to the seminal work of Delbaen and Schachermayer (cf. [17] for an overview), the
existence of an equivalent local martingale measure is equivalent to the absence of arbitrage
in the sense of no free lunch with vanishing risk (NFLVR). Further, observe that NFLVR(P)

is implied by the existence of a measure Q ∈ MP
e for every P ∈ P, i.e., if the NFLVR

conditions holds under every P ∈ P. In general, NFLVR(P) is the continuous time version
of the robust no-arbitrage condition NA(P) from [7]. More precisely, in finite discrete time,
[7, Theorem 4.5] shows that NA(P) is equivalent to both, the mere equivalence of Ma(P)

and P, and the seemingly stronger condition that for every P ∈ P there exists Q ∈ Ma(P)

such that P � Q. We impose the latter condition to account for continuous time stochastic
integration. It guarantees thatMa(P) is sufficiently rich in the sense that it implies the equality
HP = HMa(P) (see Lemma 4.6 below). This equality is crucial in our proof of the separating
duality.
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The dualities (2.2) and (2.3) are two of the three main hypothesis from [3]. The third main
assumption translates to compactness and convexity of P and Ma(P).

Next, we investigate compactness and convexity ofP andMa(P) = D. To treat the second
set, we prove that it coincides with M under the existence of a robust market price of risk,
which is a notion we introduce in Condition 2.11 below.

Before, we formulate parameterized conditions that ensure compactness and convexity of
P and M, respectively.

Condition 2.8

(i) F is compact.
(ii) The functions b : F × [[0, T ]] → R

d and a : F × [[0, T ]] → S
d+ are continuous.

(iii) There exists a constant C > 0 such that

‖b( f , t, ω)‖2 + ‖a( f , t, ω)‖ ≤ C
(
1 + sup

s∈[0,t]
‖ω(s)‖2

)

for all ( f , t, ω) ∈ F × [[0, T ]].
Condition 2.9 The correspondence � is convex-valued, i.e., {(b( f , t, ω), a( f , t, ω)) : f ∈
F} ⊂ R

d × S
d+ is convex for every (t, ω) ∈ [[0, T ]].

Observe that Condition 2.9 also ensures that �̃ is convex-valued. Additionally, recall that a
continuous semimartingale is a local martingale if and only if its first characteristic vanishes.
Hence,M consists of local martingale measures. In fact, by the linear growth condition (iii)
from Condition 2.8, the setM then even consists of (true) martingale measures.

The following theorem was established in [16, Propositions 3.9, 5.7] for one-dimensional
nonlinear diffusions, but the argument transfers to our multidimensional path dependent
framework. Its compactness part extends [29, Theorem 4.41] and [44, Theorem 2.5] beyond
the case where b and a are ofMarkovian structure, uniformly bounded and globally Lipschitz
continuous.2 The following result is proved in Sect. 4.3 below.

Theorem 2.10 Suppose that the Conditions 2.8 and 2.9 hold. Then, the sets P and M are
both convex and compact.

In the final part of this section, we provide a condition under that Ma(P) = M. This,
together with Theorem 2.10, will provide compactness of Ma(P). Compactness is a key
ingredient needed for the robust duality theory developed in Sect. 2.4 below.

Condition 2.11 (Existence of robustmarket price of risk (MPR)) There exists a Borel function
θ : F × [[0, T ]] → R

d such that b = aθ. Moreover, for every N > 0, there exists a constant
C = CN > 0 such that

sup
{
(〈θ, aθ〉)( f , t, ω) : f ∈ F, t < TN (ω)

} ≤ C

for all ω ∈ �, where TN (ω) := inf{t ∈ [0, T ] : ‖ω(t)‖ ≥ N } ∧ T .

In order to apply the results of [3], it remains to verify [3, Assumption 2.1], i.e., that

for everyP ∈ P there exists Q ∈ Ma(P) such that Q � P. (2.4)

By means of Condition 2.11, we establish in Theorem 2.12 below the stronger statement
that for every P ∈ P there exists a measure Q ∈ Me(P) such that Q ∼ P . Theorem 2.12
constitutes the last main result of this section. Its proof is given in Sect. 4.4.

2 After submitting this paper, we established a more general version of Theorem 2.10 in the (updated) paper
[15].
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Theorem 2.12 Assume that the Conditions 2.8 and 2.11 hold. Then,

(i) for every P ∈ P, there exists a measure Q ∈ M with P ∼ Q, and
(ii) for every Q ∈ M, there exists a measure P ∈ P with Q ∼ P.

Corollary 2.13 Assume that the Conditions 2.8 and 2.11 hold. Then,

(i) the equalitiesM = Me(P) = Ma(P) hold, and
(ii) for every P ∈ P there exists a measure Q ∈ MP

e .

In particular, NFLVR(P)holds.

Proof Notice that, by Girsanov’s theorem ([33, Theorem III.3.24]),

Me(P) = M ∩ Pe(P) andMa(P) = M ∩ Pa(P).

The second part of Theorem 2.12 implies M ⊂ Pe(P) and therefore Me(P) = M. Hence,
we conclude that

Ma(P) ⊂ M = Me(P) ⊂ Ma(P),

which shows the first statement. Further, the first part of Theorem 2.12 shows that for every
P ∈ P there exists a measure Q ∈ MP

e . ��
Remark 2.14 (Compactness of Me(P)) Together with Theorem 2.10, Corollary 2.13 shows
that Me(P) = Ma(P) is compact. In the single measure case P = {P}, compactness of
Me(P) = MP

e is equivalent toMP
e being a singleton (given it is nonempty), i.e., the market

is complete. Indeed, in case there exist two distinct elements in MP
e , George Lowther [45]

has shown that there exists a local martingale measure Q absolutely continuous with respect
to P but Q /∈ MP

e . In particular,M
P
e then fails to be closed. In the robust case,Me(P) can be

compact without the necessity that every physical measure P ∈ P corresponds to a complete
market model.

It seems to us that the structure of Condition 2.11 is new in the literature on robust dualities.
In the followingwe discuss the relation of Condition 2.11 to the classical notion of aMPR and
NFLVR(P) . Further, we relate Condition 2.11 to ellipticity conditions that have previously
appeared in the literature, and we show with an example that M = Ma(P) fails without
Condition 2.11.

Remark 2.15 (Relation to classical MPRs) Let us shortly explain why θ from Condition 2.11
can be considered as a robust version of aMPR. Take a real-world measure P ∈ P and denote
the Lebesgue densities of the P-characteristics of X by (bP , aP ). Under Condition 2.11, in
Lemma 4.9 belowwe establish the existence of a predictable function f = f(P) : [[0, T ]] → F
such that, for (λ\ ⊗ P)-a.a. (t, ω) ∈ [[0, T ]],

(bPt (ω), aP
t (ω)) = (b(f(t, ω), t, ω), a(f(t, ω), t, ω))

= (a(f(t, ω), t, ω)θ(f(t, ω), t, ω), a(f(t, ω), t, ω)).

This representation shows that (t, ω) �→ θ(f(t, ω), t, ω) is a MPR in the classical sense for
the real-world measure P . As P ∈ P was arbitrary, this leads to our interpretation of θ as a
robust version of a MPR.

Remark 2.16 (Relation to NFLVR(P) ) As observed in the seminal paper [11], the existence
of a MPR is equivalent to the no unbounded profits with bounded risk (NUPBR) condition

123



510 Mathematics and Financial Economics (2023) 17:499–536

that has been introduced in [35]. In the context of utility maximization, assuming NUPBR
is very natural, as it is known to be the minimal a priori assumption needed to proceed with
utility optimization, see [35]. We stress that Condition 2.11 is in fact a bit more than only the
existence of a MPR. Indeed, we require in addition some mild local boundedness property,
which is of technical nature. The difference between NUPBR andNFLVR can be captured by
themartingale property of a non-negative local martingale (a so-called strict local martingale
deflator). In our setting, we establish suchmartingale properties with help of the linear growth
condition (iii) from Condition 2.8. This allows us to verify that for every model P ∈ P the
NFLVR condition holds.

Remark 2.17 (Relation to ellipticity) The results from [3, 19] require a uniform ellipticity
assumption. Let us briefly explain how our framework and particularly Condition 2.11 relates
to the setting from [3]. As in [3], we take a compact and convex set � ⊂ R

d × S
d+. The

uniform ellipticity assumption [3, Assumption 3.1] reads as follows:

there exists a matrix A ∈ S
d++ such that A ≤ A, A ∈ �2, (2.5)

where

�2 := {A ∈ S
d+ : ∃B ∈ R

d with (B, A) ∈ �},
and A ≤ A means that A− A ∈ S

d+. Notice that (2.5), together with the boundedness of �2,
is equivalent to the existence of a constant K > 0 such that, for all ξ ∈ R

d with ‖ξ‖ = 1,

1

K
≤ 〈ξ, Aξ 〉 ≤ K, A ∈ �2.

To wit, in our notation this can be recovered by setting F := � and defining the func-
tions b : F → R

d and a : F → S
d+ as the projections on the first and second coordinate,

respectively. Then, (2.5) translates to

there exists a matrix A ∈ S
d++ such that A ≤ a( f ), f ∈ F . (2.6)

In this case, we can decompose b = aθ with θ = a−1b. If, in addition, the drift b is
uniformly bounded as in [3, Assumption 3.1], the (unique) market price of risk θ is (globally)
bounded and Condition 2.11 holds.

Remark 2.18 (M = Ma(P) fails without Condition 2.11) The existence of a MPR is nec-
essary for the identity M = Ma(P) to hold. We now give an example where Ma(P) � M
and a MPR exists but it fails to be locally bounded.

Let d = 1 and x0 > 0, and take F := [1, 2] × [1, 2] and
b(( f1, f2), t, ω) := f1 · |ω(t)|1/2, a(( f1, f2), t, ω) := f2 · |ω(t)|3/2,

for (( f1, f2), t, ω) ∈ F × [[0, T ]]. Evidently, Condition 2.8 is satisfied. Moreover,

θ(( f1, f2), t, ω) := f1
f2

1{ω(t)�=0}
|ω(t)| , (( f1, f2), t, ω) ∈ F × [[0, T ]],

is a MPR but it fails to satisfy the local boundedness assumption from Condition 2.11. We
now prove thatMa(P) � M. Let Q be a solutionmeasure (i.e., the law of a solution process)
for the stochastic differential equation (SDE)

dYt = |Yt |3/4dWt , Y0 = x0,
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where W is a one-dimensional standard Brownian motion. Such a measure Q exists by
Skorokhod’s existence theorem (see, e.g., [22, Theorem 4, p. 265]). Furthermore, it is clear
that Q ∈ M. In the following we show that Q /∈ Ma(P). Set T0 := inf{t ∈ [0, T ] : Xt = 0}.
As

∫ 1

0

x dx

|x |3/4·2 =
∫ 1

0

dx

x1/2
= 2 < ∞,

we deduce from Feller’s test for explosion (cf., e.g., [48, Proposition 2.12]) and [8, Theo-
rem 1.1] that

Q(T0 < T ) > 0.

Set b(x) := 1/(2x), b(x) := 2/x and a(x) := 2x3/2 for x > 0. Furthermore, for suitable
Borel functions f : (0,∞) → R and g : (0,∞) → (0,∞), define

v( f , g)(x) :=
∫ x

1
exp

(
−

∫ y

1
2 f (z)dz

) ∫ y

1

2 exp(
∫ ξ

1 2 f (z)dz)

g(ξ)
dξdy, x > 0.

Notice that

v(b, a)(x) = 4
[
x1/2 − 1

] − 2 log(x) → ∞, x ↘ 0,

v(b, a)(x) = 2
21

[
x−3 + 6x1/2 − 7

] → ∞, x ↗ ∞. (2.7)

Take a measure P ∈ P. By definition, we have P-a.s. for λ\-a.e. t < T0

dCP
t /dλ\ ≤ a(Xt ), dCP

t /dλ\ · b(Xt ) ≤ dBP
t /dλ\ ≤ dCP

t /dλ\ · b(Xt ).

Hence, taking (2.7) into account, we deduce from [14, Theorem 5.2] that P(T0 = ∞) = 1.
In summary, Q(T0 < T ) > 0 and P(T0 < T ) = 0. As P was arbitrary, we conclude that
Q /∈ Ma(P).

2.4 Duality theory for robust utility maximization

LetU : (0,∞) → [−∞,∞)be autility function, i.e., a concave andnon-decreasing function.
We define U (0) := limx↘0U (x), and consider the conjugate function

V (y) :=

⎧
⎪⎨

⎪⎩

supx≥0[U (x) − xy], y > 0,

limy↘0 V (y), y = 0,

∞, y < 0.

We set, for x, y > 0,

C(x) := x C, D(y) := yD,

and

u(x) := sup
g∈C(x)

inf
P∈P EP[

U (g)
]
, v(y) := inf

Q∈D(y)
sup
P∈P

EP
[
V

(dQ
dP

)]
,

with the convention dQ
dP := −∞ in case Q is not absolutely continuous with respect to P .

The separating dualities in Theorem 2.6 allow us to establish a conjugacy relation between
u and v for utility functions bounded from below. This is in the spirit of [39, Theorem 2.1],
as it only requires a no-arbitrage assumption in the sense of Condition 2.11 and finiteness of
the value function u.
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Theorem 2.19 Assume that the Conditions 2.8, 2.9 and 2.11 hold. Let U be a utility function
with U (0) > −∞ and assume that u(x0) < ∞ for some x0 > 0. Then,

(i) u is nondecreasing, concave and real-valued on (0,∞),
(ii) v is nonincreasing, convex, and proper,
(iii) the functions u and v are conjugates, i.e.,

u(x) = inf
y>0

[
v(y) + xy

]
, x > 0, v(y) = sup

x>0

[
u(x) − xy

]
, y > 0,

(iv) for every x > 0 we have

u(x) = sup
g∈C(x)

inf
P∈P EP[

U (g)
] = sup

g∈C(x)∩Cb

inf
P∈P EP[

U (g)
]
.

Proof Corollary 2.13 implies that NFLVR(P)holds. Hence, we deduce from Theorem 2.6
that C and D are in duality and that D = Ma(P). Applying Corollary 2.13 once more, The-
orem 2.10 shows that the sets P and D = M are convex and compact. Using Corollary 2.13
a third time proves that (2.4) holds. Thus, the claim follows from [3, Theorem 2.10]. ��

We now aim at the extension of Theorem 2.19 regarding the existence of an optimal
portfolio and to utilities unbounded from below. The paper [3] provides abstract conditions
that guarantee both, the existence of an optimal (generalized) portfolio and an extension of
Theorem 2.19. In order to give verifiable parameterized condition in terms of b and a, we
now focus on specific utilities. That is, U is assumed to be one of the following

U (x) = log(x), U (x) = −e−λx for λ > 0, U (x) = x p

p
for p ∈ (−∞, 0) ∪ (0, 1).

The next two conditions are used when we consider utility functions unbounded from
above, i.e., in case of logarithmic and power utility with parameter p ∈ (0, 1). We will only
require that one of them holds. They provide sufficient integrability of the utility of portfolios
and thus entail, in particular, finiteness of the value function u.

Condition 2.20 There exists a robust market price of risk θ as in Condition 2.11 and the
function 〈θ, aθ〉 is uniformly bounded.
Condition 2.21 (Uniform ellipticity and boundedness of volatility) There exists a constant
K > 0 such that, for all ξ ∈ R

d with ‖ξ‖ = 1,

1

K
≤ 〈ξ, a( f , t, ω)ξ 〉 ≤ K

for all ( f , t, ω) ∈ F × [[0, T ]].
Remark 2.22 From a technical point of view, we require one of the Conditions 2.20 and 2.21
to obtain that certain stochastic exponentials have polynomial moments, which are needed
to treat unbounded utility functions. Such moments are readily established under the global
boundedness assumption from Condition 2.20 but less obvious under Condition 2.21. We
give a precise statement in Proposition 4.11 below that we believe to be of independent
interest.

We emphasise that the scope of the assumptions is different. On one hand, Condition 2.20
is a boundedness condition but it covers incomplete market models. On the other hand,
Condition 2.21 allows the drift coefficient b to be unbounded but it enforces a robust version
of market completeness.

123



Mathematics and Financial Economics (2023) 17:499–536 513

Both conditions are satisfied for the Lévy framework from [3, Section 3] that was dis-
cussed in Remark 2.17. Beyond the Lévy case, Condition 2.21 holds e.g. for real-valued
nonlinear affine processes as studied in [23]. In general, ellipticity assumptions (not neces-
sarily uniform) are quite standard in the literature on linear multidimensional diffusions (see,
e.g., [64]).

Next, we explain a suitable notion of generalized portfolios.

Remark 2.23 (Existence of an optimal portfolio) To show the existence of an optimal portfolio
g∗ ∈ C(x) with

u(x) = sup
g∈C(x)

inf
P∈P EP[

U (g)
] = inf

P∈P EP[
U (g∗)

]
,

we cannot rely on classical arguments such as Komlós’ lemma. In the realm of robust finance,
medial limits have been a suitable substitute and allow us to construct a (generalized) optimal
portfolio as the medial limit of a sequence of near-optimal portfolios.

Here, a medial limit is a positive linear functional limmed: �∞ → R satisfying

lim inf
n→∞ xn ≤ limmed

n→∞ xn ≤ lim sup
n→∞

xn

for every bounded sequence (xn)n∈N ∈ �∞, and for every bounded sequence (Xn)n∈N of
universally measurable functions Xn : � → R, the medial limit limmed n→∞ Xn is again
universally measurable with

EP
[
limmed
n→∞ Xn

]
= limmed

n→∞ EP [Xn],
for every P ∈ P(�). Note that a medial limit extends naturally to sequences with values in
[−∞,∞].

We refer to [2, 3, 52, 55] for recent applications of medial limits. Let us also mention that
the existence of medial limits is guaranteed when working under ZFC together with Martin’s
axiom, see [47, 51].

Condition 2.24 Medial limits exist.

Provided Condition 2.24 is in force, we set

C := {
g : � → [0,∞]: g = limmed

n→∞ gn with (gn)n∈N ⊂ C},
and, for x, y > 0, we define

C(x) := x C, u(x) := sup
g∈C(x)

inf
P∈P EP[

U (g)
]
.

We are in the position to state the main results of this paper. The first of the following
two theorems deals with utility functions which are bounded from below and the second
deals with utility functions which are unbounded from below. Note that in case the utility is
unbounded from below we have to rely on generalized portfolios.

The following theorems extend [3, Theorems 3.4, 3.5] from a Lévy setting to a general
nonlinear semimartingale framework.

Theorem 2.25 Assume that the Conditions 2.8, 2.9 and 2.11 hold. Let U be either a power
utility U (x) = x p/p with exponent p ∈ (0, 1), or an exponential utility U (x) = −e−λx

with parameter λ > 0. In case U is a power utility assume also that either Condition 2.20
or Condition 2.21 holds. Then,
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(i) u is nondecreasing, concave and real-valued on (0,∞),
(ii) v is nonincreasing, convex, and proper,
(iii) the functions u and v are conjugates, i.e.,

u(x) = inf
y>0

[
v(y) + xy

]
, x > 0, v(y) = sup

x>0

[
u(x) − xy

]
, y > 0,

(iv) for every x > 0 we have

u(x) = sup
g∈C(x)

inf
P∈P EP[

U (g)
] = sup

g∈C(x)∩Cb

inf
P∈P EP[

U (g)
]
.

If additionally Condition 2.24 holds, then

(v) for every x > 0 we have u(x) = u(x),
(vi) for every x > 0 there exists g∗ ∈ C(x) such that

u(x) = sup
g∈C(x)

inf
P∈P EP[

U (g)
] = inf

P∈P EP[
U (g∗)

]
.

Theorem 2.26 Assume that the Conditions 2.8, 2.9, 2.11 and 2.24 hold. Let U be either a
power utility U (x) = x p/p with exponent p ∈ (−∞, 0), or the log utility U (x) = log(x).
In case U is the log utility assume also that either Condition 2.20 or Condition 2.21 holds.
Then,

(i) u is nondecreasing, concave and real-valued on (0,∞),
(ii) v is nonincreasing, convex, and real-valued on (0,∞),
(iii) the functions u and v are conjugates, i.e.,

u(x) = inf
y>0

[
v(y) + xy

]
, x > 0, v(y) = sup

x>0

[
u(x) − xy

]
, y > 0,

(iv) for every x > 0 there exists g∗ ∈ C(x) with
u(x) = sup

g∈C(x)
inf
P∈P EP[

U (g)
] = inf

P∈P EP[
U (g∗)

]
.

The proofs of the Theorems 2.25 and 2.26 are given in Sect. 4.5 below. In the next section
we discuss a variety of frameworks to which our results apply.

3 Examples

In this section we mention three examples of stochastic models that are covered by our
framework. We stress that it includes many previously studied frameworks but also some
new ones which are of interest for future investigations.

3.1 Nonlinear diffusions

Let b′ : F ×R
d → R

d and a′ : F ×R
d → S

d+ be two Borel functions and set, for ( f , t, ω) ∈
F × [[0, T ]],

b( f , t, ω) = b′( f , ω(t)), a( f , t, ω) = a′( f , ω(t)).

This setting corresponds to a nonlinear diffusion framework. In particular, in this case the
correspondences � and �̃ have Markovian structure, i.e., the sets �(t, ω), �̃(t, ω) depend

123



Mathematics and Financial Economics (2023) 17:499–536 515

on (t, ω) only through the valueω(t). To provide some further insights, we require additional
notation. For each x ∈ R

d , we set

R(x) := {
P ∈ Pac

sem : P ◦ X−1
0 = δx , (λ\ ⊗ P)-a.e. (dBP/dλ\, dCP/dλ\) ∈ �

}
,

and further define the sublinear operator Ex on the convex cone of upper semianalytic func-
tions ψ : � → [−∞,∞] by

Ex (ψ) := sup
P∈R(x)

EP[
ψ

]
.

For every x ∈ R
d , we have by construction that Ex (ψ(X0)) = ψ(x) for every upper semi-

analytic function ψ : R
d → R.

Denote, for t ∈ [0, T ], the shift operator θt : � → � by θt (ω) := ω((· + t) ∧ T ) for all
ω ∈ �. As in [16, Proposition 2.8], we obtain the following result.

Proposition 3.1 For every upper semianalytic function ψ : � → R, the equality

Ex (ψ ◦ θt ) = Ex (EXt (ψ))

holds for every x ∈ R
d , and every t ∈ [0, T ].

Proposition 3.1 confirms the intuition that the coordinate process is a nonlinear Markov
process under the family {Ex : x ∈ R}, as it implies the equality

Ex (ψ(Xs+t )) = Ex (EXt (ψ(Xs)))

for every upper semianalytic functionψ : R
d → R, s, t ∈ [0, T ]with s+t ≤ T , and x ∈ R

d .
Notice that the Conditions 2.8 and 2.9 are implied by the following conditions:

(i)′ F is compact.
(ii)′ b′ and a′ are continuous.
(iii)′ There exists a constant C > 0 such that

‖b′( f , x)‖2 + ‖a′( f , x)‖ ≤ C
(
1 + ‖x‖2)

for all ( f , x) ∈ F × R
d .

(iv)′ The set {(b′( f , x), a′( f , x)) : f ∈ F} ⊂ R
d × S

d+ is convex for every x ∈ R
d .

Summing up, this setting provides a robust counterpart to classical continuous Markovian
financial frameworks. In particular, it allows to combine different Markovian models such
as, for instance, Cox–Ingersoll–Ross and Vasic̆ek models.

3.2 Random generalized G-Brownianmotions

An economically interesting situation, previously studied in [57], see also [53], is the case
where d = 1 and, for (t, ω) ∈ [[0, T ]],

�(t, ω) := [bt (ω), bt (ω)] × [at (ω), at (ω)],
�̃(t, ω) := {0} × [at (ω), at (ω)],

where b, b : [[0, T ]] → R and a, a : [[0, T ]] → R+ are predictable functions such that

b ≤ b, a ≤ a.
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In this case, the sets P andM are given by

P = {
P ∈ Pac

sem : P ◦ X−1
0 = δx0 , (λ\ ⊗ P)-a.e. b ≤ dBP/dλ\ ≤ b, a ≤ dCP/dλ\ ≤ a

}
,

M = {
P ∈ Pac

sem : P ◦ X−1
0 = δx0 , (λ\ ⊗ P)-a.e. dBP/dλ\ = 0, a ≤ dCP/dλ\ ≤ a

}
.

The idea behind the setP of real-worldmeasures is that drift and volatility take flexible values
in the random intervals [b, b] and [a, a], which capture uncertainty stemming for instance
from an estimation procedure. Here, the boundaries of the intervals can depend on the whole
history of the paths of the process X in a predictable manner.

This setting is included in our framework. For instance, we can model it by taking F :=
[0, 1] × [0, 1] and, for (( f1, f2), t, ω) ∈ F × [[0, T ]],

b(( f1, f2), t, ω) := bt (ω) + f1 · (bt (ω) − bt (ω)),

a(( f1, f2), t, ω) := at (ω) + f2 · (at (ω) − at (ω)).

For these choices of F, b and a, part (i) of Condition 2.8 and Condition 2.9 are evidently
satisfied. Furthermore, parts (ii) and (iii) of Condition 2.8 transfer directly to the boundary
functions (in the sense that (ii) and (iii) are satisfied once b, b, a and a are continuous and
of linear growth). We consider these assumptions to be relatively mild from a practical
perspective. Finally, let us also comment on Condition 2.11, i.e., the existence of a locally
bounded MPR. Clearly, in case the coefficients b, b, a and a are locally bounded, and a is
locally bounded away from zero, the function

θ(( f1, f2), t, ω) := bt (ω) + f1 · (bt (ω) − bt (ω))

at (ω) + f2 · (at (ω) − at (ω))
, (( f1, f2), t, ω) ∈ F × [[0, T ]],

is a robustMPRas described inCondition 2.11. This setting is uniformly elliptic and therefore,
corresponds to a complete market situation.

Let us also give an example for a related incomplete situation in that Condition 2.11 is
satisfied. Consider the case where F := [0, 1] and

b( f , t, ω) := f · bt (ω), a( f , t, ω) := f · at (ω).

In this case, provided we presume that b is locally bounded and a is locally bounded away
from zero, the function

θ( f , t, ω) := bt (ω)

at (ω)
, ( f , t, ω) ∈ [0, 1] × [[0, T ]],

is a robustMPR as described in Condition 2.20. As f = 0 is possible, the volatility coefficient
a is allowed to vanish.

3.3 Stochastic delay equations with parameter uncertainty

In the paper [24], the author investigates the optimal portfolio strategy for a stochastic delay
equation that is used to model a pension fund that provides a minimum guarantee and a
surplus that depends on the past performance of the fund itself. We present a framework in
the spirit of [24] with uncertain parameters. Consider a stochastic process Y with dynamics

dYt = [
(r + σ 2λ)Yt − γ (Yt − Y(t−τ)∨0)

]
dt + σdWt .

Here, the constants r , σ, λ and the function γ : R → R+, that we presume to be of linear
growth, are model parameters and W is a one-dimensional standard Brownian motion. The
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term γ (Yt−Y(t−τ)∨0) is related to a surplus part of benefits of a fund and τ ∈ [0, T ] represents
the time people remain in the fund. The dynamics of Y follow a so-called delay equation that
has a non-Markovian structure due to the presence of the surplus term.

In the following, we shortly explain how uncertainty can be introduced to such a frame-
work. Let r , r , λ, λ, σ 2 and σ 2 be constants such that

r ≤ r , λ ≤ λ, 0 < σ 2 ≤ σ 2,

and define

F := [r , r ] × [λ, λ] × [σ 2, σ 2].
Clearly, F is compact and part (i) from Condition 2.8 holds. Next, we introduce the robust
coefficients b and a as

b( f , t, ω) := ( f1 + f3 f2)ω(t) − γ (ω(t) − ω((t − τ) ∨ 0)), a( f , t, ω) := f3,

for (( f1, f2, f3), t, ω) ∈ F × [[0, T ]]. The functions b and a satisfy (ii) and (iii) from
Condition 2.8. Furthermore, a short computation shows that also Condition 2.9 holds.

Since σ 2 > 0, the function

θ(( f1, f2, f3), t, ω) := ( f1 + f3 f2)ω(t) − γ (ω(t) − ω((t − τ) ∨ 0))

f3
,

(( f1, f2, f3), t, ω) ∈ F × [[0, T ]],
is a MPR that satisfies Condition 2.11. Finally, we notice that Condition 2.21 holds. Hence,
our main Theorems 2.25 and 2.26 apply in this setting.

4 Proofs

In this section we present the proofs of our main results. The structure is chronological with
the appearance of the results in the previous sections.

4.1 Superhedging duality: proof of Theorem 2.3

We start with some auxiliary preparations and then finalize the proof. For ω,ω′ ∈ � and
t ∈ [0, T ], we define the concatenation

ω ⊗t ω′ := ω1[0,t) + (ω(t) + ω′ − ω′(t))1[t,T ].

Furthermore, for a probability measure Q ∈ P(�) and a transition kernel ω �→ Q∗
ω, we set

(Q ⊗τ Q∗)(A) :=
∫∫

1A(ω ⊗τ(ω) ω′)Q∗
ω(dω′)Q(dω), A ∈ F.

Definition 4.1 A family {R(t, ω) : (t, ω) ∈ [[0, T ]]} ⊂ P(�) is said to have the Property (A)
if

(i) the graph grR = {
(t, ω, Q) ∈ [[0, T ]] × P(�) : Q ∈ R(t, ω)

}
is analytic;

(ii) for any (t, α) ∈ [[0, T ]], any stopping time τ with t ≤ τ ≤ T , and any Q ∈ R(t, α)

there exists a family {Q(·|Fτ )(ω) : ω ∈ �} of regular Q-conditional probabilities
given Fτ such that Q-a.s. Q(·|Fτ ) ∈ R(τ, X);
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(iii) for any (t, α) ∈ [[0, T ]], any stopping time τ with t ≤ τ ≤ T , any Q ∈ R(t, α) and
any Fτ -measurable map � ! ω �→ Q∗

ω ∈ P(�) the following implication holds:

Q-a.s. Q∗ ∈ R(τ, X) "⇒ Q ⊗τ Q∗ ∈ R(t, α).

Definition 4.2 We say that a family {R(t, ω) : (t, ω) ∈ [[0, T ]]} ⊂ P(�) is adapted if

R(t, ω) = R(t, ω(· ∧ t))

for all (t, ω) ∈ [[0, T ]].
Lemma 4.3 Let {R(t, ω) : (t, ω) ∈ [[0, T ]]} be an adapted family that satisfies Condition (A)
and that has a Borel measurable graph. Then, the family {Pa(R(t, ω)) : (t, ω) ∈ [[0, T ]]},
where

Pa(R(t, ω)) = {P ∈ P(�) : ∃R ∈ R(t, ω) with P � R}, (t, ω) ∈ [[0, T ]],
is adapted and satisfies Condition (A).

Proof Step 1.We start by showing that the correspondencePa(R) has an analytic graph. As
F is countably generated, [18, Theorem V.58, p. 52] (and the subsequent remarks) grants the
existence of a Borel function D : �×P(�)×P(�) → R+ such that D(·, P, R) is a version
of the Radon-Nikodym derivative of the absolutely continuous part of P with respect to R
on F. Let

P(�) × P(�) ! (P, R) �→ φ(P, R) := ER[
D(·, P, R)

] ∈ [0, 1]. (4.1)

Notice that φ is Borel by [6, Theorem 8.10.61]. Let π : [[0, T ]]×P(�)×P(�) → [[0, T ]]×
P(�) be the projection to the first three coordinates. As R is assumed to have a Borel
measurable graph, we conclude from the identity

grPa(R) = π
({

(t, ω, P, R) : (t, ω, R) ∈ gr C, φ(P, R) = 1
})

,

that Pa(R) has an analytic graph.
Step 2. Next, we show part (ii) from Condition (A). Let (t, α) ∈ [[0, T ]] and take a

stopping time t ≤ τ ≤ T and a measure Q ∈ Pa(R(t, α)). By definition, there exists a
measure P ∈ R(t, α) such that Q � P . As R satisfies part (ii) from Condition (A), P-a.s.
P(·|Fτ ) ∈ R(τ, X). To conclude that Q-a.s. Q(·|Fτ ) ∈ Pa(R(τ, X)), it suffices to show
that Q-a.s. Q(·|Fτ ) � P(·|Fτ ). With the notation Z := dQ/dP , the generalized Bayes
theorem ([63, Theorem 6, p. 274]) yields that, for all A ∈ F, Q-a.s.

Q(A|Fτ ) = EP [1AZ |Fτ ]
EP [Z |Fτ ] .

Due to the fact thatF is countably generated, this formula holds Q-a.s. for all A ∈ F. Hence,
Q-a.s. Q(·|Fτ ) � P(·|Fτ ), which proves that Q-a.s. Q(·|Fτ ) ∈ Pa(R(τ, X)).

Step 3. It remains to prove part (iii) from Condition (A). Take (t, α) ∈ [[0, T ]], let τ be a
stopping time with t ≤ τ ≤ T , fix a measure Q ∈ Pa(R(t, α)) and an Fτ -measurable map
� ! ω �→ Q∗

ω ∈ P(�) such that Q-a.s. Q∗ ∈ Pa(R(τ, X)). Using that R is adapted, grR
is Borel and that ω �→ Q∗

ω is Fτ -measurable, we obtain that

Z := {
(ω, P) ∈ � × P(�) : P ∈ R(τ (ω), ω), Q∗

ω � P
}

= {
(ω, P) ∈ � × P(�) : (τ (ω), ω(· ∧ τ(ω)), P) ∈ grR, φ(Q∗

ω, P) = 1
} ∈ Fτ ⊗ B(P(�)).
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Denoting the projection to the first coordinate by π1 : � × P(�) → �, it follows that the
set

π1(Z) = {
ω ∈ � : ∃P ∈ R(τ (ω), ω), Q∗

ω � P
}

is analytic and consequently, an element of F∗. Using Galmarino’s test, we also see that

π1(Z) = {
ω ∈ � : ω(· ∧ τ(ω)) ∈ π1(Z)

}
.

Hence, it follows from the universially measurable version of Galmarino’s test ([57,
Lemma 2.5]) that π1(Z) ∈ F∗

τ . As Q ∈ Pa(R(t, α)), there exists a measure P ∈ R(t, α)

such that Q � P . We define a nonempty-valued correspondence γ : � � P(�) by

γ (ω) :=
{{

R ∈ P(�) : R ∈ R(τ (ω), ω), Q∗
ω � R

}
, ω ∈ π1(Z),

{
P(·|Fτ )(ω)

}
, ω /∈ π1(Z).

Notice that

gr γ = [Z ∩ (π1(Z) × P(�))
] ∪ [

gr P(·|Fτ ) ∩ (�\π1(Z) × P(�))
]
.

As ω �→ P(·|Fτ )(ω) is Fτ -measurable and the image space is Polish,3 we observe that
gr P(·|Fτ ) ∈ Fτ ⊗ B(P(�)) and therefore, that gr γ ∈ F∗

τ ⊗ B(P(�)). By Aumann’s
theorem ([28, Theorem 5.2]), there exists anF∗

τ -measurable function� ! ω �→ Pω ∈ P(�)

such that P-a.s. P ∈ γ . It is well-known ([34, Lemma 1.27]) that P coincides P-a.s. with
an Fτ -measurable function � ! ω �→ P∗

ω ∈ P(�). As P ∈ R(t, α) and because R
satisfies part (ii) fromProperty (A), we have P-a.s. P(·|Fτ ) ∈ R(τ, X). Consequently, P-a.s.
P∗ ∈ R(τ, X). Further, as Q � P and because Q(π1(Z)) = 1, Q-a.s. Q∗ � P∗. We are in
the position to complete the proof.Using thatR satisfies part (iii) fromCondition (A),we have
P⊗τ P∗ ∈ R(t, α).Hence, it suffices to show that Q⊗τ Q∗ � P⊗τ P∗. Let A ∈ F such that
(P⊗τ P∗)(A) = 0. Then, by definition of P⊗τ P∗, we have P∗

ω({ω′ : ω⊗τ(ω) ω
′ ∈ A}) = 0

for P-a.a., and because Q � P also Q-a.a., ω ∈ �. Since Q-a.s. Q∗ � P∗, we get that
Q∗

ω({ω′ : ω ⊗τ(ω) ω′ ∈ A}) = 0 for Q-a.a. ω ∈ �, which implies that (Q ⊗τ Q∗)(A) = 0.
We conclude that Q ⊗τ Q∗ ∈ Pa(R(t, α)). The proof is complete. ��

We call an R
d -valued continuous process Y = (Yt )t∈[0,T ] a (continuous) semimartingale

after a time t∗ ∈ R+ if the process Y·+t∗ = (Yt+t∗)t∈[0,T−t∗] is a d-dimensional semimartin-
gale for its natural right-continuous filtration. The law of a semimartingale after t∗ is said
to be a semimartingale law after t∗ and the set of them is denoted by Psem(t∗). Notice also
that P ∈ Psem(t∗) if and only if the coordinate process is a semimartingale after t∗, see [15,
Lemma 6.4]. For P ∈ Psem(t∗) we denote the semimartingale characteristics of the shifted
coordinate process X ·+t∗ by (BP·+t∗ ,C

P·+t∗). Moreover, we set

Pac
sem(t∗) := {

P ∈ Psem(t∗) : P-a.s. (BP·+t∗ ,C
P·+t∗) � λ\

}
, Pac

sem := Pac
sem(0),

where λ\ denotes the Lebesgue measure. For (t, ω) ∈ [[0, T ]], we define

P(t, ω) :=
{
P ∈ Pac

sem(t) :
P(Xt = ωt ) = 1, (λ\ ⊗ P)-a.e. (dBP·+t/dλ\, dCP·+t/dλ\) ∈ �(· + t, X)

}
,

3 cf. [6, Exercise 3.10.53].
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and

M(t, ω) :=
{
P ∈ Pac

sem(t) :
P(Xt = ωt ) = 1, (λ\ ⊗ P)-a.e. (dBP·+t/dλ\, dCP·+t/dλ\) ∈ �̃(· + t, X)

}
,

where we use the standard notation Xt := X ·∧t .

Corollary 4.4 The family {M(t, ω) ∩ Pa(P(t, ω)) : (t, ω) ∈ [[0, T ]]} satisfies Condition (A)
and is adapted.

Proof Notice that {P(t, ω) : (t, ω) ∈ [[0, T ]]} and {M(t, ω) : (t, ω) ∈ [[0, T ]]} are adapted
by construction. Further, for those two families, Condition (A) has been verified in [15,
Lemmata 6.6, 6.12, 6.17], including Borel measurability of their graphs. Hence, thanks to
Lemma4.3, the family {Pa(P(t, ω)) : (t, ω) ∈ [[0, T ]]} satisfiesCondition (A) and is adapted.
Therefore, the intersection {M(t, ω) ∩ Pa(P(t, ω)) : (t, ω) ∈ [[0, T ]]} satisfies Condition
(A) and is adapted. ��

The following lemma provides a minor extension of the dynamic programming principle
as given by [21, Theorem 2.1]. This is very much in the spirit of [57, Theorem 2.3], whose
proof we follow.

Lemma 4.5 let {R(t, ω) : (t, ω) ∈ [[0, T ]]} be an adapted family that satisfies Condition (A)
and let f : � → R be an upper semianalytic function. Define, for (t, ω) ∈ [[0, T ]],

Et ( f )(ω) := sup
P∈R(t,ω)

EP [ f ].

Let s, t ∈ [0, T ] with s ≤ t . Then, for fixed ω ∈ � and P ∈ R(0, ω), we have

Es( f ) = ess sup P {
ER[Et ( f )|Fs] : R ∈ R(0, ω) with R = P on Fs

}
P-a.s.

Proof Fix ω ∈ � and P ∈ R(0, ω). We start by showing, for s ∈ [0, T ] and every upper
semianalytic function f : � → R,

Es( f ) = ess sup P {
ER[ f |Fs] : R ∈ R(0, ω) with R = P on Fs

}
P-a.s. (4.2)

Let R ∈ R(0, ω) with R = P on Fs . By Condition (A), there exists a family {R(·|Fs)(α) :
α ∈ �} of regular R-conditional probabilities given Fs such that R-a.s. R(·|Fs) ∈ R(s, X).
Hence,

Es( f ) ≥ ER[ f |Fs] R-a.s.

Notice that both sides in (4.1) areF∗
s -measurable by [21, Theorem 2.1] and a suitable version

of Galmarino’s test, see [57, Lemma 2.5]. As R = P on Fs we also have R = P on F∗
s and

we conclude that

Es( f ) ≥ ess sup P {
ER[ f |Fs] : R ∈ R(0, ω) with R = P on Fs

}
P-a.s.

To show the converse inequality let ε > 0. As in the proof of [21, Theorem 2.1] there exists
an Fs-measurable kernel � ! ω �→ Q∗

ω ∈ P(�) such that P-a.s. Q∗ ∈ R(t, X) and

EQ∗ [ f ] ≥ Es( f )1{Es ( f )<∞} + 1

ε
1{Es ( f )=∞}.
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By Condition (A), the measure P ⊗s Q∗ is contained in R(0, ω) and coincides with P on
Fs . Further, it holds that

EP⊗s Q∗ [ f | Fs] = EQ∗ [ f ] ≥ (Es( f ) − ε) ∧ 1

ε
P-a.s.,

and, as ε > 0 was arbitrary, we conclude that (4.2) holds. Next, it follows from [21, Theorem
2.1] and (4.2) that

Es( f ) = Es(Et ( f )) = ess sup P {
ER[Et ( f )|Fs] : R ∈ R(0, ω) with R = P on Fs

}
P-a.s.

The proof is complete. ��

We are in the position to give a proof for Theorem 2.3. We follow closely the lines of [54,
proof of Theorem 3.2] and adapt it to our setting.

Proof of Theorem 2.3 By Corollary 4.4, the family {R(t, ω) : (t, ω) ∈ [[0, T ]]}, where
R(t, ω) := M(t, ω) ∩ Pa(P(t, ω)), (t, ω) ∈ [[0, T ]],

satisfies Condition (A) and is adapted. Hence, it follows from [21, Theorem 2.1] that for
every upper semianalytic f : � → R and t ∈ [0, T ] the function

Et ( f )(ω) := sup
Q∈R(t,ω)

EQ[ f ], ω ∈ �,

is F∗
t -measurable and satisfies Es(Et ( f )) = Es( f ) for s, t ∈ [0, T ] with s ≤ t . Let f : � →

R+ be as in the statement of the theorem. Notice that Ma(P) = R(0, x0), where x0 ∈ � is
the constant path x0(s) = x0 for all s ∈ [0, T ]. Hence, we conclude that

sup
Q∈Ma(P)

EQ[Et ( f )] = π < ∞,

where π := supQ∈Ma(P) E
Q[ f ]. This, together with Lemma 4.5, implies that the process

t �→ Et ( f ) is a Q-F∗-supermartingale for every Q ∈ Ma(P). As in the proof of [54,
Theorem 3.2] we can now construct a càdlàg process Y that is a Q-G-supermartingale for
every Q ∈ Ma(P) and satisfies

Y0 ≤ π and YT = f Q-a.s. for all Q ∈ Ma(P).

AsMa(P) is a nonempty and saturated (in the sense of [54]) set of local martingale measures
for X , the robust optional decomposition theorem [54, Theorem 2.4] grants the existence
of a GMa(P)-predictable process H such that

∫ ·
0 HsdXs is a Q-supermartingale for every

Q ∈ Ma(P), and

π +
∫ T

0
HsdXs ≥ f Q-a.s. for all Q ∈ Ma(P).

In particular, as f is non-negative, this implies

∫ t

0
HsdXs ≥ EQ

[ ∫ T

0
HsdXs | GMa (P)

]
≥ −π, for all t ∈ [0, T ], Q-a.s. for all Q ∈ Ma(P).

This completes the proof. ��
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4.2 Separating duality for nonlinear semimartingales: proof of Theorem 2.6

Lemma 4.6 Suppose that NFLVR(P)holds. Let H be a GP-predictable process. Then, H ∈
L(X , P) for every P ∈ P if and only if H ∈ L(X , Q) for every Q ∈ Ma(P). In particular,
HP = HMa(P).

Proof Recall that NFLVR(P) implies that P ∼ Ma(P). Hence, it suffices to establish the
first part of the statement. In this regard, suppose H ∈ L(X , P) for every P ∈ P, and let
Q ∈ Ma(P). AsMa(P) ⊂ Pa(P), there exists a measure P ∈ P with Q � P . Hence, [46,
LemmaV.2] implies that H ∈ L(X , Q). Conversely, let H ∈ L(X , Q) for every Q ∈ Ma(P),
and let P ∈ P. By NFLVR(P) , there exists a measure Q ∈ Ma(P) with P � Q. Hence,
[46, Lemma V.2] implies that H ∈ L(X , P). ��
Proposition 4.7 (First Duality) Ma(P) = D = {

Q ∈ Pa(P) : EQ
[
g
] ≤ 1 for all g ∈

C ∩ Cb(�; R)
} =: U

Proof To see Ma(P) ⊂ D, let g ∈ C and Q ∈ Ma(P). By definition of Ma(P), there exists
a measure P ∈ P with Q � P . Moreover, by the definition of C, there exists a process
H ∈ HP ⊂ L(X , P) such that P-a.s.

g ≤ 1 +
∫ T

0
HsdXs . (4.3)

We deduce from [46, Lemma V.2] that (4.3) holds Q-a.s. as well. As 1+ ∫ ·
0 HsdXs is a non-

negative local Q-martingale, it is also a Q-supermartingale, which shows that EQ[g] ≤ 1.
Thus, Q ∈ D. Notice that D ⊂ U by definition. It remains to show U ⊂ Ma(P). To this end,
we define

� :=
{
g ∈ Cb(�; R) : ∃H ∈ HP such that g ≤

∫ T

0
HsdXs

}
.

Let Q ∈ U and take a function g ∈ �. As g is bounded, there exists a constant c > 0 such that
g + c ≥ 0. Moreover, as Q ∈ U ⊂ Pa(P), there exists a process H ∈ HP such that Q-a.s.
1+ g/c ≤ 1+ ∫ T

0 Hs/cdXs . Hence, because H/c ∈ HP, we have 1+ g/c ∈ C∩Cb(�; R)

and the definition of U yields that 1+ EQ[g]/c ≤ 1. This implies EQ[g] ≤ 0. Thanks to [3,
Lemma 5.6], we can conclude that Q is a local martingale measure. This yields Q ∈ Ma(P).
��
Proposition 4.8 (Second Duality) Suppose that NFLVR(P)holds. Then,

C ∩ Cb(�; R) = {
g ∈ C+

b (�; R) : EQ[
g
] ≤ 1 for all Q ∈ D}

.

Proof Since, by definition, C ∩ Cb(�; R) ⊂ {g ∈ C+
b (�; R) : EQ[g] ≤ 1 for all Q ∈ D},

it suffices to prove the converse inclusion C ∩ Cb(�; R) ⊃ {g ∈ C+
b (�; R) : EQ[g] ≤

1 for all Q ∈ D}. Let g ∈ C+
b (�; R) be such that EQ[g] ≤ 1 for all Q ∈ D. As g is bounded

and continuous, the superhedging duality given by Theorem 2.3, together with the equality
D = Ma(P) from Proposition 4.7, grants the existence of a GMa(P)-predictable process H
such that H ∈ HMa(P), and

1 +
∫ T

0
HsdXs ≥ g Q-a.s. for all Q ∈ Ma(P).

As H ∈ HP by Lemma 4.6, and P ∼ Ma(P) by the hypothesis that NFLVR(P)holds, we
conclude that g ∈ C ∩ Cb. The proof is complete. ��
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Now, Theorem 2.6 follows directly from the previous two propositions.

Proof of Theorem 2.6 The duality (2.2) follows from Proposition 4.7, and the duality (2.3)
follows from Proposition 4.8. ��

4.3 P andM are convex and compact: proof of Theorem 2.10

It suffices to prove the claims for P, as M is the special case with b ≡ 0. The convexity
follows from [33, Lemma III.3.38, Theorem III.3.40], see the proof of [16, Lemma 5.8] for
more details. Next, we prove compactness. First, we show that P is closed, which follows
along the lines of the proof of [16, Proposition 3.8], and then we explain that P is also
relatively compact.

Let (Pn)n∈N ⊂ P be such that Pn → P weakly. We have to show that P ∈ P, i.e., we
have to prove that P ∈ Pac

sem with differential characteristics in �. For each n ∈ N, denote
the Pn-characteristics of X by (Bn,Cn).

Before we start the main part of this proof, we need a last bit of notation. Let

�′ := � × � × C([0, T ]; R
d×d)

and denote the coordinate process on �′ by Y = (Y (1), Y (2), Y (3)). Further, set F′ :=
σ(Ys, s ∈ [0, T ]) and let F′ = (F′

s)s∈[0,T ] be the right-continuous filtration generated by Y .
Step 1.We start by showing that {Pn ◦ (X , Bn,Cn)−1 : n ∈ N} is tight. Since Pn → P , it

suffices to prove tightness of {Pn ◦ (Bn,Cn)−1 : n ∈ N}. We use Aldous’ tightness criterion
([33, Theorem VI.4.5]), i.e., we show the following two conditions:

(a) for every ε > 0, there exists a K > 0 such that

sup
n∈N

Pn
(

sup
s∈[0,T ]

‖Bn
s ‖ + sup

s∈[0,T ]
‖Cn

s ‖ ≥ K
)

≤ ε;

(b) for every ε > 0,

lim
θ↘0

lim sup
n→∞

sup
{
Pn(‖Bn

L − Bn
S‖ + ‖Cn

L − Cn
S‖ ≥ ε)

} = 0,

where the sup is taken over all stopping times S, L ≤ T such that S ≤ L ≤ S + θ .

By the linear growth assumptions on b and a from Condition 2.8, a standard Gronwall
argument (see, e.g., [38, Problem 5.3.15]) shows that

sup
P∈P

EP
[

sup
s∈[0,T ]

‖Xs‖2
]

< ∞.

Thus, we get

sup
n∈N

EPn
[

sup
s∈[0,T ]

‖Xs‖2
]

≤ sup
P∈P

EP
[

sup
s∈[0,T ]

‖Xs‖2
]

< ∞. (4.4)

Using the linear growth assumption once again, we obtain that Pn-a.s.

sup
s∈[0,T ]

‖Bn
s ‖ + sup

s∈[0,T ]
‖Cn

s ‖ ≤ C
(
1 + sup

s∈[0,T ]
‖Xs‖2

)
,

where the constant C > 0 is independent of n. By virtue of (4.4), this bound yields (a). For
(b), take two stopping times S, L ≤ T such that S ≤ L ≤ S+ θ for some θ > 0. Then, using
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again the linear growth assumptions, we get Pn-a.s.

‖Bn
L − Bn

S‖ + ‖Cn
L − Cn

S‖ ≤ C(L − S)
(
1 + sup

s∈[0,T ]
‖Xs‖2

)
≤ Cθ

(
1 + sup

s∈[0,T ]
‖Xs‖2

)
,

which yields (b) by virtue of (4.4).We conclude that the family {Pn ◦(X , Bn,Cn)−1 : n ∈ N}
is tight. Up to passing to a subsequence, from now on we assume that Pn ◦(X , Bn,Cn)−1 →
Q weakly.

Step 2. Next, we show that Y (2) and Y (3) are Q-a.s. absolutely continuous. For M > 0
and ω ∈ �, define

τM (ω) := inf{t ∈ [0, T ] : ‖ω(t)‖ ≥ M} ∧ T .

Furthermore, for ω = (ω(1), ω(2)) ∈ � × �, we set

ζM (ω) := sup
{‖ω(2)(t ∧ τM (ω)) − ω(2)(s ∧ τM (ω))‖

t − s
: 0 ≤ s < t ≤ T

}
.

Similar to the proof of [16, Lemma 3.6], we obtain the existence of a dense set D ⊂ R+
such that for every M ∈ D the map ζM is Q ◦ (Y (1), Y (2))−1-a.s. lower semicontinuous.
By the linear growth conditions and the definition of τM , for every M ∈ D there exists
a constant C = C(M) > 0 such that Pn(ζM (X , Bn) ≤ C) = 1 for all n ∈ N. As ζM is
Q ◦ (Y (1), Y (2))−1-a.s. lower semicontinuous, [61, Example 17, p. 73] yields that

0 = lim inf
n→∞ Pn(ζM (X , Bn) > C) ≥ Q(ζM (Y (1), Y (2)) > C).

Further, since D is dense in R+, we obtain that Y (2) is Q-a.s. Lipschitz continuous, i.e., in
particular absolutely continuous. Similarly, we get that Y (3) is Q-a.s. Lipschitz and hence,
absolutely continuous.

Step 3. Define the map � : �′ → � by �(ω(1), ω(2), ω(3)) := ω(1). Clearly, we have Q ◦
�−1 = P and Y (1) = X ◦�. In this step, we prove that (λ\⊗Q)-a.e. (dY (2)/dλ\, dY (3)/dλ\) ∈
� ◦ �. By [16, Lemma 3.2], the correspondence (t, ω) �→ �(t, ω) is continuous with
compact values, as F is compact and b and a are continuous by Condition 2.8. Additionally,
compactness of F and continuity of b and a provide compactness of �([t, t + 1], ω) for
every (t, ω) ∈ [[0, T ]]. Further, Condition 2.9 guarantees that � has convex values. Hence,
[16, Lemma 3.4] implies, together with [1, Theorem 5.35], that

⋂

m∈N
conv �([t, t + 1/m], ω) ⊂ �(t, ω) (4.5)

for all (t, ω) ∈ [[0, T ]]. Here, conv denotes the closure of the convex hull. By virtue of [20,
Corollary 8, p. 48], Pn-a.s. for all t ∈ [0, T − 1/m], we have

m(Bn
t+1/m − Bn

t ,Cn
t+1/m − Cn

t ) ∈ conv (dBn/dλ\, dCn/dλ\)([t, t + 1/m])
⊂ conv �([t, t + 1/m], X). (4.6)

Thanks to Skorokhod’s coupling theorem, with little abuse of notation, there exist random
variables

(X0, B0,C0), (X1, B1,C1), (X2, B2,C2), . . .

defined on some probability space (�,G, R) such that (X0, B0,C0) has distribution Q,
(Xn, Bn,Cn) has distribution Pn ◦(X , Bn,Cn)−1 and R-a.s. (Xn, Bn,Cn) → (X0, B0,C0)

in the uniform topology.Wededuce from[16,Lemmata 3.2, 3.3] that the correspondenceω �→
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�([t, t+1/m], ω) is continuous. Furthermore, as conv �([t, t+1/m], ω) is compact (by [1,
Theorem 5.35]) for everyω ∈ �, it follows from [1, Theorem 17.35] that the correspondence
ω �→ conv �([t, t +1/m], ω) is upper hemicontinuous and compact-valued. Thus, by virtue
of (4.6) and [1, Theorem 17.20], we get, R-a.s. for all t ∈ [0, T − 1/m], that

m(B0
t+1/m − B0

t ,C
0
t+1/m − C0

t ) ∈ conv �([t, t + 1/m], X0).

Notice that (λ\ ⊗ R)-a.e. on [[0, T [[

(dB0/dλ\, dC0/dλ\) = lim
m→∞m(B0·+1/m − B0· ,C0·+1/m − C0· ).

Now, with (4.5), we get that R-a.s. for λ\-a.a. t < T

(dB0/dλ\, dC0/dλ\)(t) ∈
⋂

m∈N
conv �([t, t + 1/m], X0) ⊂ �(t, X0).

This shows that (λ\ ⊗ Q)-a.e. (dY (2)/dλ\, dY (3)/dλ\) ∈ � ◦ �.
Step 4. In thefinal step of the proof,we show that P ∈ Pac

sem andwe relate (Y (2), Y (3)) to the
P-semimartingale characteristics of the coordinate process. Thanks to [64, Lemma 11.1.2],
there exists a dense set D ⊂ R+ such that τM ◦ � is Q-a.s. continuous for all M ∈ D. Take
some M ∈ D. Since Pn ∈ Pac

sem, it follows from the definition of the first characteristic
that the process X ·∧τM − Bn·∧τM

is a local Pn-F+-martingale. Furthermore, by the definition
of the stopping time τM and the linear growth assumption, we see that X ·∧τM − Bn·∧τM

is
Pn-a.s. bounded by a constant independent of n, which, in particular, implies that it is a true
Pn-F+-martingale. Now, it follows from [33, Proposition IX.1.4] that Y (1)

·∧τM◦� − Y (2)
·∧τM◦� is

a Q-F′-martingale. Recalling that Y (2) is Q-a.s. absolutely continuous by Step 2, this means
that Y (1) is a Q-F′-semimartingale with first characteristic Y (2). Similarly, we see that the
second characteristic is given by Y (3). Finally, we need to relate these observations to the
probability measure P and the filtration F+. We denote by Ap,�−1(F+) the dual predictable
projection of some process A, defined on (�′,F′), to the filtration �−1(F+). Recall from
[31, Lemma 10.42] that, for every t ∈ [0, T ], a random variable Z on (�′,F′) is �−1(Ft+)-
measurable if and only if it is F∗

t -measurable and Z(ω(1), ω(2), ω(3)) does not depend on
(ω(2), ω(3)). Thanks to Stricker’s theorem (see, e.g., [32, Lemma 2.7]), Y (1) is a Q-�−1(F+)-
semimartingale. Notice that each τM ◦ � is a �−1(F+)-stopping time and recall from Step 3
that (λ\ ⊗ Q)-a.e. (dY (2)/dλ\, dY (3)/dλ\) ∈ �. Hence, by definition of τM and the linear
growth assumption, for every M ∈ D and i, j = 1, . . . , d , we have

EQ[
Var(Y (2,i))τM◦�

] + EQ[
Var(Y (3,i j))τM◦�

]

= EQ
[ ∫ τM◦�

0

(∣∣∣
dY (2,i)

dλ\

∣∣∣ +
∣∣∣
dY (3,i j)

dλ\

∣∣∣
)
dλ\

]
< ∞,

where Var(·) denotes the variation process. By virtue of this, we get from [31, Propo-
sition 9.24] that the Q-�−1(F+)-characteristics of Y (1) are given by ((Y (2))p,�

−1(F+),

(Y (3))p,�
−1(F+)). Hence, thanks to [32, Lemma 2.9], the coordinate process X is a P-F+-

semimartingale whose characteristics (BP ,CP ) satisfy Q-a.s.

(BP ,CP ) ◦ � = ((Y (2))p,�
−1(F+), (Y (3))p,�

−1(F+)).
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Consequently, we deduce from the Steps 2 and 3, and [27, Theorem 5.25], that P-a.s.
(BP ,CP ) � λ\ and

(λ\ ⊗ P)
(
(dBP/dλ\, dCP/dλ\) /∈ �

)

= (λ\ ⊗ Q ◦ �−1)
(
(dBP/dλ\, dCP/dλ\) /∈ �

)

= (λ\ ⊗ Q)
(
EQ[(dY (2)/dλ\, dY (3)/dλ\)|�−1(F+)−] /∈ � ◦ �

) = 0,

where we use [20, Corollary 8, p. 48] for the final equality. This means that P ∈ P and
therefore, P is closed.

To finish the proof, it remains to show that P is relatively compact. Thanks to Prohorov’s
theorem, it suffices to prove tightness, which follows from an application of Aldous’ tightness
criterion as in Step 1 above. We omit the details. ��

4.4 Equality ofM andD: proof of Theorem 2.12

We prepare the proof of Theorem 2.12 with two auxiliary lemmata.

Lemma 4.9 Assume that the Conditions 2.8 and 2.11 hold. Take P ∈ P and denote the
differential characteristics of X under P by (bP , aP ). Then, there exists a predictable function
f : [[0, T ]] → F such that (λ\ ⊗ P)-a.e. (bP , aP ) = (a(f)θ(f), a(f)), where θ is the robust
MPR from Condition 2.11.

Proof Let P be the predictable σ -field on [[0, T ]]. Thanks to [15, Lemma 2.9], the graph
gr� is P ⊗ B(Rd) ⊗ B(Sd+)-measurable. Thus,

G := {
(t, ω) ∈ [[0, T ]] : (bPt (ω), aP

t (ω)) /∈ �(t, ω)
}

= {
(t, ω) ∈ [[0, T ]] : (t, ω, bPt (ω), aP

t (ω)) /∈ gr�
} ∈ P.

We define

π(t, ω) :=
{

(b( f0, t, ω), a( f0, t, ω)), if (t, ω) ∈ G,

(bPt (ω), aP
t (ω)), if (t, ω) /∈ G,

where f0 ∈ F is arbitrary but fixed. Thanks to the measurable implicit function theorem
[1, Theorem 18.17], as (b, a) is a Carathéodory function on F × [[0, T ]] in the sense that
it is continuous in the F and P-measurable in the [[0, T ]] variable, the correspondence
γ : [[0, T ]] � F defined by

γ (t, ω) := {
f ∈ F : (b( f , t, ω), a( f , t, ω)) = π(t, ω)

}

is P-measurable and it admits a measurable selector, i.e., there exists a P-measurable
function f : [[0, T ]] → F such that π(t, ω) = (b(f(t, ω), t, ω), a(f(t, ω), t, ω)) for all
(t, ω) ∈ [[0, T ]]. Since P ∈ P, we have (λ\ ⊗ P)-a.e. π = (bP , aP ), and further b = aθ

by Condition 2.11. Putting these pieces together, we conclude that f has all claimed
properties. ��

The second lemmacanbe seen as an extension ofBenes̆’ condition ([38,Corollary 3.5.16]).
To prove the lemma we use a local change of measure in combination with a Gronwall type
argument (see, e.g., [10, 14] for related strategies).

123



Mathematics and Financial Economics (2023) 17:499–536 527

Lemma 4.10 Let P ∈ Pac
sem, denote the differential characteristics of X under P by (bP , aP )

and define the continuous local P-martingale part of the coordinate process X by

Xc := X − X0 −
∫ ·

0
bPs ds.

Further, let cP be a predictable process. Assume the following three conditions:

(a) For every N ∈ N there exists a constant C = CN > 0 such that P-a.s.
∫ TN

0
〈cPs , aP

s c
P
s 〉ds ≤ C, (4.7)

where

TN = inf{t ∈ [0, T ] : ‖Xt‖ ≥ N } ∧ T .

(b) There exists a constant C > 0 such that P-a.s. for λ\-a.a. t ∈ [0, T ]
‖bPt + aP

t c
P
t ‖2 + tr

[
aP
t

] ≤ C
(
1 + sup

s∈[0,t]
‖Xs‖2

)
.

(c) There exists a constant C > 0 such that P-a.s. ‖X0‖ ≤ C.

Then, the stochastic exponential

Z P := exp
( ∫ ·

0
〈cPs , dXc

s 〉 − 1

2

∫ ·

0
〈cPs , aP

s c
P
s 〉ds

)

is a well-defined P-martingale.

Proof For a moment, we fix N ∈ N. Thanks to the assumption (a), Novikov’s condition
implies that the stopped process Z P·∧TN

is a P-martingale and the global process Z P is a
well-defined, non-negative local P-martingale, i.e., in particular a P-supermartingale. Thus,
Z P is a P-martingale if and only if EP [Z P

T ] = 1. In the following we prove this property.
Define a probability measure QN via the Radon–Nikodym density dQN/dP = Z P

T∧TN
. As

QN ∼ P , Girsanov’s theorem ([33, Theorem III.3.24]) yields that X is a QN -semimartingale
with absolutely continuous characteristics whose densities (bQN , aQN ) are given by

bQN = bP + aPcP1[[0,TN ]], aQN = aP .

By assumption (b) and the equivalence QN ∼ P , there exists a constant C > 0 such that,
QN -a.s. for λ\-a.a. t ∈ [0, TN ], we have

‖bQN ‖2 + tr
[
aQN
t

] ≤ C
(
1 + sup

s∈[0,t]
‖Xs‖2

)
. (4.8)

Now, using standard arguments (see [38, pp. 389–390]), hypothesis (c) and (4.8), we get, for
all t ∈ [0, T ], that

EQN
[

sup
s∈[0,t∧TN ]

‖Xs‖2
]

≤ C
(
1 + EQN

[ ∫ t∧TN

0

(‖bQN
s ‖2 + tr

[
aQN
s

])
ds

])

≤ C
(
1 +

∫ t

0
EQN

[
sup

r∈[0,s∧TN ]
‖Xr‖2

]
ds

)
.

where the constant C > 0 is independent of N . Gronwall’s lemma yields that

EQN
[

sup
s∈[0,t∧TN ]

‖Xs‖2
]

≤ CeCT , t ∈ [0, T ].
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Hence, by Chebyshev’s inequality, we get that

QN (TN ≤ T ) = QN

(
sup

s∈[0,T∧TN ]
‖Xs‖ ≥ N

)
≤ CeCT

N 2 → 0 with N → ∞.

Finally, using the monotone convergence theorem for the first equality, we obtain

EP[
Z P
T

] = lim
N→∞ EP[

Z P
t 1{TN>T }

] = lim
n→∞ QN (TN > T ) = 1,

which completes the proof. ��

Proof of Theorem 2.12 Take P ∈ P and denote the differential characteristics of X under P
by (bP , aP ). By Lemma 4.9, there exists a predictable function f such that (λ\ ⊗ P)-a.e.
(bP , aP ) = (b(f), a(f)). Let θ be the robust MPR from Condition 2.11 and define

Z P := exp
(

−
∫ ·

0
〈θ(fs), dX

c
s 〉 − 1

2

∫ ·

0
〈θ(fs), a(fs)θ(fs)〉ds

)
. (4.9)

Using the Conditions 2.8 and 2.11, it follows from Lemma 4.10 that Z P is a P-martingale.
Hence, we may define a probability measure Q ∼ P via the Radon–Nikodym derivative
dQ/dP = Z P

T . By Girsanov’s theorem ([33, Theorem III.3.24]) Q ∈ Pac
sem and the differ-

ential characteristics of X under Q are given by (b(f) − a(f)θ(f), a(f)) = (0, a(f)) ∈ �̃. In
particular, this shows that Q ∈ M.

Conversely, take Q ∈ M and let aQ be the second differential characteristic of X under Q.
By Lemma 4.9, which we can use because the zero function is a feasible choice for the
coefficient b, there exists a predictable function f : [[0, T ]] → F such that (λ\ ⊗ Q)-a.e.
aQ = a(f). Let θ be the robust MPR from Condition 2.11 and define

ZQ := exp
( ∫ ·

0
〈θ(fs), dXs〉 − 1

2

∫ ·

0
〈θ(fs), a(fs)θ(fs)〉ds

)
.

Using the Conditions 2.8 and 2.11, we deduce from Lemma 4.10 that ZQ is a Q-martingale.
Therefore, we can define a measure P ∼ Q via the Radon–Nikodym derivative dP/dQ =
ZQ
T . As in the previous case, we deduce from Girsanov’s theorem that P ∈ Pac

sem with
differential characteristics (a(f)θ(f), a(f)) = (b(f), a(f)) ∈ �. We conclude that P ∈ P. ��

4.5 Duality theory for robust utility maximization: proofs of Theorems 2.25 and 2.26

The idea of proof is to apply the abstract duality results given by [3, Theorems 2.10 and
2.16]. This requires some care to account for the lack of boundedness from above of the
power utility U (x) = x p

p , p ∈ (0, 1), and the log utility U (x) = log(x).

4.5.1 Some preparations

The following lemma is a generalization of [25, Corollary 2] in the sense that, instead of
Brownianmotion,we consider a continuous localmartingalewith uniformly elliptic volatility.
The novelty in our proof is the application of time change and comparison arguments to
deduce certain moment bounds for the driving local martingale from those of Brownian
motion.
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Proposition 4.11 Suppose that Condition 2.21 holds. Let Q ∈ M and denote the differential
characteristics of X under P by (bQ = 0, aQ). Furthermore, take a predictable process cQ

of linear growth, i.e., such that there exists a constant C > 0 such that

‖cQt (ω)‖ ≤ C
(
1 + sup

s∈[0,t]
‖ω(s)‖

)

for (λ\ ⊗ Q)-a.a. (t, ω) ∈ [[0, T ]]. Define a continuous local P-martingale by

Z Q := exp
( ∫ ·

0
〈cQs , dXs〉 − 1

2

∫ ·

0
〈cQs , aQ

s cQs 〉ds
)
.

For every p ≥ 1, we have

EQ[
(ZQ

T )p
]

< ∞.

Proof Throughout the proof, fix p ≥ 1. By virtue of [25, Corollary 1], it suffices to prove
that there exists a partition 0 = t0 < t1 < . . . < tm = T of the interval [0, T ] such that

EQ
[
exp

(
Cp

∫ tn

tn−1

〈cQs , aQ
s cQs 〉ds

)]
< ∞, n = 1, 2, . . . ,m.

Fix n ∈ {1, . . . ,m}. By the linear growth assumption on cQ and the (λ\⊗Q)-a.e. boundedness
assumption on aQ (which stems from the definition ofM and Condition 2.21), we have

EQ
[
exp

(
Cp

∫ tn

tn−1

〈cQs , aQ
s cQs 〉ds

)]
≤ CEQ

[
exp

(
Cp(tn − tn−1) sup

s∈[0,T ]
‖Xs‖2

)]
,

where Cp > 0 depends on T > 0 and the power p. Itô’s formula shows that

d‖Xt‖2 = 2〈Xt , dXt 〉 + tr
[
aQ
t

]
dt .

Thanks to Condition 2.21, there exists a constant K ∈ N such that

‖ξ‖2
K

≤ 〈ξ, a( f , t, ω)ξ 〉 ≤ K‖ξ‖2 (4.10)

for all (ξ, f , t, ω) ∈ R
d × F × [[0, T ]]. Next, define

L :=
∫ ·

0

[ 〈Xs, a
Q
s Xs〉

K‖Xs‖2 1{Xs �=0} + 1{Xs=0}
]
ds,

and St := inf{s ∈ [0, T ] : Ls ≥ t} for t ∈ [0, LT ]. Notice from (4.10) that L is strictly
increasing, continuous and LT ≤ T . Hence, S is continuous and the inverse of L . In the
following we use standard results from [62, Section V.1] on time changed continuous semi-
martingales without explicitly mentioning them. We obtain that, for t ∈ [0, LT ],

d‖XSt ‖2 = 2〈XSt , dXSt 〉 + tr
[
aQ
St

]
dSt .

Further, we obtain that, for t ∈ [0, LT ],
∫ t

0

[ K‖XSs‖2
〈XSs , a

Q
Ss
XSs 〉

1{XSs �=0} + 1{XSs =0}
]
ds =

∫ t

0

[ K‖XSs‖2
〈XSs , a

Q
Ss
XSs 〉

1{XSs �=0} + 1{XSs =0}
]
dLSs

=
∫ St

0

[ K‖Xs‖2
〈Xs , a

Q
s Xs〉

1{Xs �=0} + 1{Xs=0}
]
dLs = St .
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Hence,

1[0,LT ](s)dSs = 1[0,LT ](s)
[ K‖XSs‖2
〈XSs , a

Q
Ss
XSs 〉

1{XSs �=0} + 1{XSs =0}
]
ds,

which implies, for t ∈ [0, LT ], that

d‖XSt ‖2 = 2〈XSt , dXSt 〉 + tr
[
aQ
St

][ K‖XSt ‖2
〈XSt , a

Q
St
XSt 〉

1{XSt �=0} + 1{XSt =0}
]
dt .

Notice that
∫ ·∧LT
0 〈XSt , dXSt 〉 is a continuous local martingale (for a time-changed filtration)

with second characteristic

∫ ·∧LT

0
〈XSs , a

Q
Ss
XSs 〉dSs =

∫ ·∧LT

0

〈XSs , a
Q
Ss
XSs 〉K‖XSs‖2

〈XSs , a
Q
Ss
XSs 〉

1{XSs �=0}ds =
∫ ·∧LT

0
K‖XSs‖2ds.

By a classical representation theorem for continuous local martingales (see
[30, Theorem III.7.1′, p. 90]), on a standard extension of the underlying filtered proba-
bility space, there exists a one-dimensional standard Brownian motion W such that, for all
t ∈ [0, LT ],

d‖XSt ‖2 = 2
√
K‖XSt ‖dWt + tr

[
aQ
St

][ K‖XSt ‖2
〈XSt , a

Q
St
XSt 〉

1{XSt �=0} + 1{XSt =0}
]
dt .

By virtue of (4.10), we get that Q-a.s. for λ\-a.a. t ∈ [0, LT ]

tr
[
aQ
St

][ K‖XSt ‖2
〈XSt , a

Q
St
XSt 〉

1{XSt �=0} + 1{XSt =0}
]

≤ tr
[
aQ
St

][
K21{XSt �=0} + 1{XSt =0}

] ≤ dK3.

(4.11)

Let Y be a continuous semimartingale with dynamics

dYt = 2
√
K|Yt |dWt + dK3 dt, Y0 = ‖x0‖2. (4.12)

Such a process exists as its SDE satisfies strong existence (see, e.g., [62, Chapter IX] or [38,
Chapter 5]). Furthermore, as the SDE

dZt = 2
√
K|Zt |dWt , Z0 = 0,

has the (up to indistinguishability) unique solution Z ≡ 0, it follows from
[62, Proposition IX.3.6] that Q-a.s. Y ≥ 0. Next, we use a comparison argument as in
the proofs of [62, Theorem IX.3.7] or [14, Lemma 5.6] to relate the processes ‖XS‖2 and Y .
Notice that Q-a.s. for all t ∈ [0, T ]

∫ t∧LT

0

1{Ys<‖XSs ‖2}
4K|‖XSs‖2 − Ys |d[‖XS‖2 − Y , ‖XS‖2 − Y ]s

=
∫ t∧LT

0

1{Ys<‖XSs ‖2}
4K|‖XSs‖2 − Ys |4K

(‖XSs‖ − √
Ys

)2
ds

≤
∫ t∧LT

0

1{Ys<‖XSs ‖2}
|‖XSs‖2 − Ys | |‖XSs‖2 − Ys |ds ≤ t .
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Hence, by [62, Lemma IX.3.3], Q-a.s. L0·∧LT
(‖XS‖2 − Y ) = 0, where L0 denotes the

semimartingale local time in zero. Using this observation, Tanaka’s formula and (4.11) yield
that Q-a.s. for all t ∈ [0, LT ]

(‖XSt ‖2 − Yt
)+ =

∫ t

0
1{Ys<‖XSs ‖2}d

(‖XSs‖2 − Ys
)

≤
∫ t

0
1{Ys<‖XSs ‖2}2K

[‖XSs‖ − √
Ys

]
dWs .

As the coefficients of the SDEs for Y and ‖XS·∧LT
‖ satisfy standard linear growth conditions,

these processes have polynomial moments and it follows readily that the Itô integral process
∫ ·∧LT

0
1{Ys<‖XSs ‖2}2K

[‖XSs‖ − √
Ys

]
dWs

is a martingale. Consequently, for all t ∈ [0, T ],
EQ

[(‖XSt∧LT
‖2 − Yt∧LT

)+]
= 0.

By the continuous paths of Y and XS·∧LT
, we conclude that Q-a.s. Yt ≥ ‖XSt ‖2 for all

t ∈ [0, LT ]. Let B = (B(1), . . . , B(dK2)) be a dK2-dimensional standard Brownian motion
such that ‖B0‖2 = ‖x0‖2. By Lévy’s characterization of Brownian motion, the process

B :=
dK2∑

k=1

∫ ·

0

B(k)
Ks√

K‖BKs‖
dB(k)

Ks

is a one-dimensional standard Brownian motion, and, by Itô’s fomula,

d‖BKt‖2 = 2
√
K‖BKt‖dBt + dK3dt .

As the SDE (4.12) satisfies uniqueness in law (see, e.g., [62, Chapter IX] or [38, Chapter 5]),
we conclude that Y = ‖BK·‖2 in law. For the remainder of this proof, we presume that the
partition t1, . . . , tm is choosen such that tn − tn−1 < 1/(2CpKT ) for all n = 1, . . . ,m.
Then, by [38, Proposition 1.3.6], the process (exp(Cp(tn − tn−1)‖BKs‖2))s∈[0,T ] is a positive
submartingale. Using that LT ≤ T and Doob’s maximal inequality, we obtain

EQ
[
exp

(
Cp(tn − tn−1) sup

s∈[0,T ]
‖Xs‖2

)]
= EQ

[
exp

(
Cp(tn − tn−1) sup

s∈[0,T ]
‖XSLs ‖2

)]

≤ EQ
[
exp

(
Cp(tn − tn−1) sup

s∈[0,LT ]
‖Ys‖2

)]

≤ EQ
[
exp

(
Cp(tn − tn−1) sup

s∈[0,T ]
‖Ys‖2

)]

= E
[

sup
s∈[0,T ]

exp
(
Cp(tn − tn−1)‖BKs‖2

)]

≤ 4E
[
exp

(
Cp(tn − tn−1)‖BKT ‖2

)]
< ∞.

The proof is complete. ��
Lemma 4.12 Assume that the Conditions 2.8 and 2.11 hold. Additionally, suppose that either
Condition 2.20 or Condition 2.21 holds. Then, for every P ∈ P there exists a probability
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measure Q ∈ Me(P) such that

EQ
[( dP

dQ

)p]
< ∞, ∀ p > 0. (4.13)

Proof Take P ∈ P and denote the differential characteristics of X under P by (bP , aP ).
By Lemma 4.9, there exists a predictable function f : [[0, T ]] → F such that (λ\ ⊗ P)-
a.e. (bP , aP ) = (b(f), a(f)). Let Z P be as in (4.9) and recall that it is a P-martingale by
Lemma 4.10. We define a probability measure Q ∼ P by the Radon–Nikodym derivative
dQ/dP = Z P

T . Then, Girsanov’s theorem ([33, Theorem III.3.24]) shows that Q ∈ Me(P)

and simple computations yield that Q-a.s.

dP

dQ
=

(dQ
dP

)−1 = exp
( ∫ T

0
〈θ(fs), dXs〉 − 1

2

∫ T

0
〈θ(fs), a(fs)θ(fs)〉ds

)
.

In case Condition 2.20 holds,
∫ T
0 〈θ(fs), a(fs)θ(fs)〉ds is Q-a.s. bounded and (4.13) follows

from [25, Theorem 1]. Further, if Condition 2.21 holds, θ(f) = a−1(f)b(f) is of linear growth
by Condition 2.8, and Proposition 4.11 yields (4.13). This completes the proof. ��
Lemma 4.13 Assume that the Conditions 2.8 and 2.11 hold. Additionally, suppose that either
Condition 2.20 or Condition 2.21 holds. Let x > 0 and (gn)n∈N ⊂ C(x). Then, for every
P ∈ P and every ε ∈ (0, 1), we have

sup
n∈N

EP[
(gn)

ε
]

< ∞.

Proof The lemma follows similar to [3, Lemma 5.11]. Fix ε ∈ (0, 1), P ∈ P and let
(gn)n∈N ⊂ C(x). Set p := 1

1−ε
. By virtue of Lemma 4.12, there exists a probability measure

Q ∈ Me(P) with

EQ
[( dP

dQ

)p]
< ∞.

Hence, Hölder’s inequality together with Proposition 4.7 implies

sup
n∈N

EP[
(gn)

ε
] ≤ EQ

[( dP
dQ

)p]1−ε

EQ[
gn

]ε ≤ EQ
[( dP

dQ

)p]1−ε

xε < ∞,

which gives the claim. ��
The following estimate can be extracted from the proof of [3, Theorem 2.10].

Lemma 4.14 Let P ∈ P, and let Q ∈ D be such that Q � P. Then, for every x, y > 0, we
have

u(x) ≤ u(x) ≤ EP
[
max

{
V1

(
y
dQ

dP

)
, 0

}]
+ xy. (4.14)

Finally, we present two lemmata which deal with the power and the log utility separately.

Lemma 4.15 Assume that the Conditions 2.8 and 2.11 hold. Additionally, suppose that either
Condition 2.20 or Condition 2.21 holds. Let U be a power utility function U (x) = x p

p with
exponent p ∈ (0, 1). Then,

(i) there exists an x > 0 such that u(x) < ∞,
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(ii) for every x > 0 and (gn)n∈N ⊂ C(x), the sequence of random variables

max
{
U

(
gn + 1

n

)
, 0

}
, n ∈ N,

is uniformly integrable for every P ∈ P.

Proof We start with (i). Let P ∈ P. By virtue of Lemma 4.14, it suffices to construct Q ∈ D
such that Q � P and

EP
[
max

{
V1

(
y
dQ

dP

)
, 0

}]
< ∞, V1(y) = sup

x≥0

[ (x + 1)p

p
− xy

]
.

This follows as in [3, Lemma 5.16], when replacing [3, Lemma 5.10] by Lemma 4.12.
Regarding (ii), this can be shown as [3, Lemma 5.13] by using Lemma 4.13 instead of [3,
Lemma 5.11]. ��

Lemma 4.16 Assume that the Conditions 2.8 and 2.11 hold. Additionally, suppose that either
Condition 2.20 or Condition 2.21 holds. Let U be the log utility U (x) = log(x). Then,

(i) there exists an x > 0 such that u(x) < ∞,
(ii) for every x > 0 and (gn)n∈N ⊂ C(x), the sequence of random variables

max
{
U

(
gn + 1

n

)
, 0

}
, n ∈ N,

is uniformly integrable for every P ∈ P,
(iii) for each y > 0, and each P ∈ P, there exists Q ∈ D with Q � P such that

E P
[
max

{
V1

(
y
dQ

dP

)
, 0

}]
< ∞,

where

V1(y) := sup
x≥0

[
log(x + 1) − xy

]
.

Proof By virtue of Lemma 4.14, (iii) implies (i). To see (iii), one argues as in
[3, Lemma 5.15], replacing [3, Lemma 5.10] by Lemma 4.12. Regarding (ii), this can be
shown as [3, Lemma 5.12], using Lemma 4.13 instead of [3, Lemma 5.11]. ��

4.5.2 Duality for utilities bounded from below: proof of Theorem 2.25

Recall that in this sectionU is either a power utility U (x) = x p

p , p ∈ (0, 1), or an exponential

utility U (x) = −e−λx , λ > 0. Note that both utilities are bounded from below, and that the
power utility is unbounded from above. Corollary 2.13 implies that NFLVR(P)holds. Hence,
we deduce from Theorem 2.6 that C and D are in duality and that D = Ma(P). Applying
Corollary 2.13 once more, Theorem 2.10 shows that the sets P and D = M are convex
and compact. Using Corollary 2.13 a third time proves that (2.4) holds. Hence, by virtue of
[3, Theorem 2.10], the claim follows directly in case of a exponential utility. To handle the
power utility, we additionally apply Lemma 4.15. ��
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4.5.3 Duality for utilities unbounded from below: proof of Theorem 2.26

Recall that in this section U is either a power utility U (x) = x p

p , p ∈ (−∞, 0), or the
log utility U (x) = log(x). Note that both utilities are unbounded from below, i.e., U (0) =
limx→0U (x) = −∞, and that the log utility is unbounded from above. Corollary 2.13
implies that NFLVR(P)holds. Hence, we deduce from Theorem 2.6 that C and D are in
duality and thatD = Ma(P). Applying Corollary 2.13 once more, Theorem 2.10 shows that
the sets P and D = M are convex and compact. Using Corollary 2.13 a third time proves
that (2.4) holds. Hence, by virtue of [3, Theorem 2.16], the claim follows directly in case of
a power utility. To handle the log utility, we additionally apply Lemma 4.16. ��
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10. Cheridito, P., Filipović, D., Yor, M.: Equivalent and absolutely continuous measure changes for jump-

diffusion processes. Ann. Appl. Probab. 15(3), 1713–1732 (2005)
11. Choulli, T., Stricker, C.: Deux applications de la décompositionde Glatchouk–Kunita–Watanabe. Sémi-

naire de Probabilités XXX, pp. 12-23, Lecture Notes in Mathematics vol. 1626, Springer, (1996)
12. Cox, J.C., Huang, C.F.: Optimal consumption and portfolio policies when asset prices follow a diffusion

process. J. Econ. Theory 49, 33–83 (1989)

123

http://creativecommons.org/licenses/by/4.0/


Mathematics and Financial Economics (2023) 17:499–536 535

13. Cox, J.C., Huang, C.F.: A variational problem arising in financial economics. J. Math. Econ. 20, 465–487
(1991)

14. Criens, D.: No arbitrage in continuous financial markets. Math. Financ. Econ. 14, 461–506 (2020)
15. Criens, D., Niemann, L.: Nonlinear continuous semimartingales. arXiv:2204.07823v3, (2023)
16. Criens, D., Niemann, L.: Markov selections and Feller properties of nonlinear diffusions.

arXiv:2205.15200v2, (2022)
17. Delbaen, F., Schachermayer, W.: The Mathematics of Arbitrage. Springer, Berlin (2006)
18. Dellacherie, C., Meyer, P.A.: Probabilities and Potential A. North Holland, Amsterdam (1978)
19. Denis, L., Kervarec, M.: Optimal investment under model uncertainty in nondominated models. SIAM J.

Control. Optim. 51(3), 1803–1822 (2013)
20. Diestel, J., Uhl, Jr. JJ.: Vector Measures. American Mathematical Society, (1977)
21. El Karoui, N., Tan, X.: Capacities, measurable selection and dynamic programming part II: application

in stochastic control problems. arXiv:1310.3364v2, (2015)
22. Gikhman, I. I., Skorokhod, A.V.: The Theory of Stochastic Processes III. Springer Berlin Heidelberg,

reprint of the 1974 ed., (2007)
23. Fadina, T., Neufeld, A., Schmidt, T.: Affine processes under parameter uncertainty. Probab. Uncertain.

Quant. Risk 4(5), 214 (2019)
24. Federico, S.: A stochastic control problem with delay arising in a pension fund model. Finance Stochast.

15, 421–459 (2011)
25. Grigelionis, B., Mackevicius, V.: The finiteness of moments of a Stochastic exponential. Stat. Probab.

Lett. 64, 243–248 (2003)
26. He, H., Pearson, N.D.: Consumption and portfolio policies with incomplete markets and short-sale con-

straints: the infinite-dimensional case. J. Econ. Theory 54(2), 259–304 (1991)
27. He, S.-W., Wang, J.-G., Yan, J.-A.: Semimartingale Theory and Stochastic Calculus. Routledge, London

(1992)
28. Himmelberg, C.J.: Measurable relations. Fundam. Math. 87, 53–72 (1975)
29. Hollender, J.: Lévy-Type Processes under Uncertainty and Related Nonlocal Equations. PhD thesis, TU

Dresden, (2016)
30. Ikeda, N., Watanabe, S.: Stochastic Differential Equations and Diffusion Processes, 2nd edn. North-

Holland Publishing Company, Oxford (1989)
31. Jacod, J.: Calcul stochastique et problèmes de martingales. Springer, Berlin (1979)
32. Jacod, J.: Weak and strong solutions of stochastic differential equations. Stochastics 3, 171–191 (1980)
33. Jacod, J., Shiryaev, A.N.: Limit Theorems for Stochastic Processes, 2nd edn. Springer, Berlin (2003)
34. Kallenberg, O.: Foundations of Modern Probability, 3rd edn. Springer, New York (2021)
35. Karatzas, I., Kardaras, C.: The numéraire portfolio in semimartingale financial models. Finance Stochast.

11, 447–493 (2007)
36. Karatzas, I., Lehoczky, J.P., Shreve, S.E.: Optimal portfolio and consumption decisions for a “small

investor” on a finite horizon. SIAM J. Control. Optim. 25, 1557–1586 (1987)
37. Karatzas, I., Lehoczky, J.P., Shreve, S.E., Xu, G.L.: Martingale and duality methods for utility maximi-

sation in an incomplete market. SIAM J. Control. Optim. 29, 702–730 (1991)
38. Karatzas, I., Shreve, S.E.: BrownianMotion and Stochastic Calculus, 2nd edn. Springer, NewYork (1991)
39. Kramkov, D., Schachermayer, W.: The asymptotic elasticity of utility functions and optimal investment

in incomplete markets. Ann. Appl. Probab. 9(3), 904–950 (1999)
40. Kühn, F.: On infinitesimal generators of sublinear Markov semigroups. Osaka J. Math. 58(3), 487–508

(2021)
41. Liang, Z., Ma, M.: Consumption-investment problem with pathwise ambiguity under logarithmic utility.

Math. Financ. Econ. 13(4), 519–541 (2019)
42. Liang, Z., Ma, M.: Robust consumption-investment problem under CRRA and CARA utilities with time-

varying confidence sets. Math. Financ. 30(3), 1035–1072 (2020)
43. Lin, Q., Riedel, F.: Optimal consumption and portfolio choice with ambiguous interest rates and volatility.

Econ. Theor. 71(3), 1189–1202 (2021)
44. Liu, C., Neufeld, A.: Compactness criterion for semimartingale laws and semimartingale optimal trans-

port. Trans. Am. Math. Soc. 372(1), 187–231 (2019)
45. Lowther, G.: (https://mathoverflow.net/users/1004/george-lowther). Compactness of the set of densities

of equivalent martingalemeasures.MathOverflow, https://mathoverflow.net/q/101784 (version: 2022-02-
12)

46. Mémin, J.: Espaces de semi martingales et changement de probabilité. Zeitschrift fürWahrscheinlichkeit-
stheorie und verwandte Gebiete 52(1), 9–39 (1980)

47. Meyer P. A.: Limites médiales, d’après Mokobodzki. In: Séminaire de Probabilités VII, pp. 198–204,
Springer, Berlin (1973)

123

http://arxiv.org/abs/2204.07823v3
http://arxiv.org/abs/2205.15200v2
http://arxiv.org/abs/1310.3364v2
https://mathoverflow.net/users/1004/george-lowther
https://mathoverflow.net/q/101784


536 Mathematics and Financial Economics (2023) 17:499–536
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