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Abstract
Transitions from school to further education, training, or work are among

the most extensively researched topics in the social sciences. Success in such
transitions is influenced by predictors operating at multiple levels, such as
the individual, the institutional, or the regional level. These levels are inter-
twined, creating complex inter-dependencies in their influence on transitions.
To unravel them, researchers typically apply (multilevel) regression techniques
and focus on mediating and moderating relations between distinct predictors.
Recent research demonstrates that machine learning techniques can uncover
previously overlooked patterns among variables. To detect new patterns in
transitions from school to vocational training, we apply artificial neural net-
works (ANNs) trained on survey data from the German National Educational
Panel Study (NEPS) linked with regional data. For an accessible interpretation
of complex patterns, we use explainable artificial intelligence (XAI) methods.
We establish multiple non-linear interactions within and across levels, conclud-
ing that they have the potential to inspire new substantive research questions.
We argue that adopting ANNs in the social sciences yields new insights into
established relationships and makes complex patterns more accessible.

Keywords: school-to-work transitions, vocational education and training, machine
learning, artificial neural networks, explainable artificial intelligence, SHAP values,
rule extraction

This paper uses data from the National Educational Panel Study (Blossfeld, Roßbach & Von Mau-
rice, 2019). The NEPS is carried out by the Leibniz Institute for Educational Trajectories (LIfBi,
Germany) in cooperation with a nationwide network.



PREPRINT: January 2025 D.O. Kubitza, K.Weßling

Contents
1 Introduction 2

2 Transitions in the German Context 4
2.1 The German Education System . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
2.2 Panel Data, Data Linkage, and Variables . . . . . . . . . . . . . . . . . . . . . . . . 4

3 Machine Learning Tools 6
3.1 Artificial Neural Networks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
3.2 Explainable Artificial Intelligence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

4 Implementation 8

5 Results 11
5.1 Extracted Rules . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
5.2 SHAP Values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

5.2.1 Urbanity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
5.2.2 Unemployment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
5.2.3 Share of STEM employees . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
5.2.4 Female labor force participation . . . . . . . . . . . . . . . . . . . . . . . . . 16

6 Discussion and Conclusion 16

7 Supplements 20

References 22

1 Introduction
Educational transitions after school are well-researched in the social sciences. These transitions
are key events in the life course because they have lasting consequences on careers. To empirically
measure the success factors of these transitions with quantitative data, researchers apply differ-
ent regression techniques. They typically aim at singling out one (group of) influencing factor(s)
and ’control away’ the confounding and mediating variables (Rohrer, Hünermund, Arslan & Elson,
2022). As influencing factors exist at various analytical levels (e.g., the individual level, the institu-
tional (of schools and classrooms) or the regional level), multilevel approaches can be applied (e.g.
Snijders & Bosker, 2012). When analyzing effects of higher-order levels, like regional contexts, stud-
ies focus on specific characteristics of these contexts (e.g., industry sectors Flohr, Menze & Protsch,
2020), the unemployment rate, or the provision of training places (Hillmert, Hartung & Weßling,
2017; Hartung, Weßling & Hillmert, 2022) as proxies representing (perceived) training or employ-
ment opportunities. Thus, various variables often represent the same or a similar theoretically
assumed mechanism. This makes it challenging to assess the importance of regional factors. Fur-
thermore, higher-order contextual variables show less variation and greater intercorrelation, making
it challenging to determine their relationship to individual-level outcomes. In educational transi-
tion research, efforts are made to show that specific predictors, whether on the same or different
analytical levels, interact or are moderated by other predictors. Hence, the effect of one predictor
is reinforced or diminished by another predictor. To provide a substantive example, research has
shown that the chance to secure a training position is lower for young people with lower levels
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of schooling and from lower social backgrounds. This effect is stronger in socioeconomically poor
regions with fewer training opportunities (Hartung, Weßling & Hillmert, 2022; Hartung & Weßling,
2024).

Only a few studies follow conceptual arguments provided by Cook (2003) suggesting that also
the contextual variables on different levels (e.g., schools, neighborhoods or regions) can have a
mediating or moderating influence on individual-level outcomes (Rich & Owens, 2023). Weßling
and Meng (2021) show for the Netherlands that missing regional labor-market opportunities can
be attenuated for ethnic minority youths by living in same-ethnic neighborhoods. To analyze such
interactions, researchers have to make selections of predictors based on theoretical assumptions.
Conventional regression techniques limit the possibilities to explore multiple and complex interde-
pendencies between predictors on different levels simultaneously.

A growing body of research shows how artificial intelligence1 (AI) can be used in the social
sciences. Machine learning2 (ML) algorithms can uncover overlooked patterns between predictors
and summarize complex relationships, by relaxing some statistical assumptions (for an overview,
see Lundberg, Brand & Jeon, 2022). For example is correlation between predictors a less severe
problem for some ML algorithms, as they attribute lower impact to correlated features (De Veaux
& Ungar, 1994).

However, ML is not a wonder drug for social research as its high complexity often poses chal-
lenges for interpreting and presenting models. Thus, it is essential to combine self-learning tools
with ’human attention’ (Lundberg, Brand & Jeon, 2022).

In this paper, we train artificial neural networks3 (ANNs) on survey data from the German
National Educational Panel Study (NEPS): starting cohort 4 – 9th Grade (NEPS-SC4, NEPS
Network, 2021) to replicate transitions of young people from secondary education to vocational
training or to further general education. We extract the learned ’knowledge’ from the ANNs in a
human-readable form through explainable AI (XAI): We calculate importance scores for each input
feature (i.e., predictor) and for each observation (i.e., student) to identify patterns in students’
transition chances, and we extract human-readable rules from the ANN to explain these observed
patterns. By applying this explorative approach, our results are not strictly causal, and we cannot
falsify any theoretical assumption, but lay the groundwork to develop new research questions.

Our scientific contribution to the literature that implements ML in the social sciences (Di Franco
& Santurro, 2021; Shu & Ye, 2023) is threefold: First, ANNs and XAI techniques represent the
introduction of a new set of tools in sociological research. Second, this paper reduces the ’black box’
image of AI methods by employing XAI to make the learned patterns about transitions interpretable
and meaningful. Third, our work situates these patterns within well-established research on school-
to-work transitions, identifying research gaps regarding multi-level influences, but also supporting
existing relations.

The paper is structured as follows: In the subsequent section, we discuss the German school
and vocational education and training (VET) system and introduce our data. Next, we offer a
description of the machine learning tools employed in this study. Following this, we provide the
implementation details. The subsequent section presents the results of the XAI approaches. Finally,
the paper discusses the findings in the context of previous research and concludes with an evaluation
of the study’s limitations and broader implications.

1Mimicking intelligent behavior through algorithms, often facilitated through machine learning.
2Algorithms that adapt themselves to solve a task, based on data that is presented to them.
3ML models that comprise a complex network of simple processing units.
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2 Transitions in the German Context
2.1 The German Education System
The German education system is federally organized and characterized by (mostly) strict tracking
of secondary school types. School types and school tracks can differ between states. Some federal
states provide three, others two types of secondary schools, which offer different secondary education
diplomas. The lower-level secondary education diploma (Hauptschulabschluss, 9th grade) and the
intermediate-level secondary education diploma (Realschulabschluss, 10th grade) are considered
pre-vocational, after which students typically can enter VET or continue with general schooling.

In Germany, approximately 60 percent of an age cohort obtain a professional qualification
in the VET system (BMBF, 2024). Education in the VET system leads after 2 to 3 years to a
qualification in one of the 324 legally defined professions. Most VET students are trained dually in
the apprenticeship system, where students are employed at a company while attending part-time
VET school. In the apprenticeship system, employers decide which applicant to recruit, which is
comparable to the labor market entrance. Besides the apprenticeship system, the German VET
system offers full-time school-based vocational training, which provides the possibility of obtaining
a professional qualification without being employed at a company. The choice between the type of
VET depends on occupations and sector. While trade and commercial occupations dominate the
apprenticeship system, school-based VET focuses on health and care professions.

Graduates of the secondary education have the possibility - based on their performance and
institutional restrictions - to continue in the general school system. In doing so, they can obtain a
university entrance qualification, which allows them to continue further in higher education (HE).
The upper-level secondary education diploma (Abitur/Fachabitur, 12th/13th grade) allows students
to enter higher education at universities (of applied sciences). This is the most common alternative
for these students. However, in the German context, at least 21 percent of students who enroll for
VET have Abitur/Fachabitur (BMBF, 2024).

2.2 Panel Data, Data Linkage, and Variables
We use the National Educational Panel Study (NEPS): Starting Cohort 4–9th Grade (NEPS-SC4:
NEPS Network, 2021). NEPS-SC4 is a school-based survey panel that targeted 9th graders in
2010 and followed them during school graduation, VET and/or HE, up to their labor-market entry.
The data contains information on the place of residence, enabling us to link the data with regional
data on the district level (’Kreise’, corresponding to the European NUTS3 level). The NEPS-SC4
comprises a wide range of students’, school, and parental characteristics.

We predict the first transition of students after obtaining a lower-level or intermediate-level
secondary school diploma. Our dependent variable measures whether students enter ’dual VET’,
’school-based VET’, or ’stay in (general) school’. One of the most important predictors encodes the
type of school students attended. We distinguish between a lower-level secondary school diploma
(diploma type 0, usually obtained at a so-called ’Hauptschule’), and intermediate-level secondary
school diploma obtained at a so-called ’Gymnasium’ (diploma type 2), and an intermediate-level
secondary school diploma obtained at a different school form (diploma type 1). Figure 1 shows the
transitions we are considering in the analytical part of this paper in relation to the whole Education
System.

Of the 9,960 initially targeted individuals, 6,812 remained in the dataset after removing obser-
vations with missing or censored variables4. We merge the NEPS data set with regional information

4The data preparation matches 57,225 self-reported educational episodes to individual data and
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Figure 1: Overview of the education system and transitions in Germany.
Depiction of the education system, showing schools, diplomas, transitions, and age context, dis-
tinguishing between the General School System and the VET System. Several types of secondary
schools offer the same diplomas. Notes: (1) The transition from lower secondary education to
intermediate secondary education is excluded from our analysis, since it usually occurs automat-
ically by not dropping school. (2) Those who reported only finishing upper secondary school are
classified as ’staying in school’ during the age 14-16. (3) VET graduates that reported achieving a
VET degree are counted as ’school-based VET’, while others are classified as ’staying in school’.

from INKAR (BBSR, 2022) and IÖR data (Meinel & Schumacher, 2010) capturing local economic
structure, demographics, land-use and electoral votes. INKAR is an interactive geospatially ref-
erenced platform provided by the Federal Institute for Research on Building, Urban Affairs and
Spatial Development (BBSR). The IÖR monitor developed by the Institute for Ecological Economy
Research (IÖR) is a platform providing environmental indicators. All regional data is linked on
basis of the NUTS3 identifier of the residential location of students.

The final dataset contains variables that allow for a comprehensive understanding of individual,
school, and regional factors influencing transitional outcomes. Individual demographic factors, such
as gender, migration background, and parental education, provide insights into social stratification
and the role of family background in shaping transitions. Variables like last diploma score and school
average score capture academic performance and educational quality, which are critical predictors
of post-education transitions. Regional variables such as unemployment rates, shares of science,
tech, engineering and mathematics (STEM) employees, shares of working females, industrial land
use and urbanity reflect the economic and structural opportunities available in different areas and

school information. Educational episodes are self-reported by the participants and multiple may
exist per student. 35,974 episodes remained after the merger and deletion of missing variables of
which the relevant one was selected.
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shares of conservative voters capture cultural differences between regions. A full list of all used
variables with their descriptions and encoding is provided in the Appendix.

3 Machine Learning Tools
3.1 Artificial Neural Networks
ANNs are ML models that comprise a complex network of processing units, so-called neurons, re-
sembling the structure of biological neural networks like brains. Each neuron implements a function
projecting multiple inputs to a single output value, the so-called activation. Depending on its spec-
ification, a neuron can serve different purposes, like storing a single variable’s value, or performing
a logit-transformation on the sum of its weighted inputs. By combining multiple neurons and im-
plementing a weighted network between them, ANNs can extract knowledge from heterogeneous
data sets, as their structural complexity allows them to learn non-linear relations. Since non-linear
models are difficult to interpret, implementing ANNs in the social science has been tentative. How-
ever, ANNs provide also scientific benefits: The derived results are agnostic to researchers’ beliefs,
existing models, and explanatory approaches, as long as the data captures such facts and the model
is trained well enough. ANNs can solve tasks like image classification5, predictive maintenance, or
speech recognition, just by appropriate selection of the internal organization of neurons (e.g., feed-
forward networks, recurrent networks), the ANN training algorithms (e.g., backpropagation of error,
equilibrium propagation) and the learning environment (reinforced, supervised, or unsupervised).

Especially for complex tasks with high-dimensional input data, deep neural networks6 (DNNs)
are the preferred ML models. Since DNNs require huge amounts of ANN training data and comput-
ing capacities, they are only useful in specific scenarios where data amount and quality are sufficient.
The above-mentioned applications to image classification or speech recognition fall under this cat-
egory. Conventional ANNs are often more suited applications when predicting human decisions or
behavior (Mason, Twomey, Wright & Whitman, 2018; Maszczyk, Go laś, Pietraszewski, Roczniok,
Zajac & Stanula, 2014; Zeinalizadeh, Shojaie & Shariatmadari, 2015). This is particularly the case
when data sampling is costly and data quantity is limited.

We use fully connected multi-layer perceptrons (MLP) without thresholds, which are one of the
simplest forms of ANNs. MLPs for panel datasets are applied in epidemiology (Khan, Kaushik,
Ji, Malik, Ali & Wei, 2019) but also in financial economics (Ding, Zhang, Liu & Duan, 2015)
and engineering (Bojarski, Del Testa, Dworakowski, Firner, Flepp, Goyal, Jackel, Monfort, Muller,
Zhang & others, 2016). They are feed-forward ANNs, in which information passes uni-directional
from the input neurons through multiple layers of hidden neurons to the output neurons. Each
artificial neuron applies an internal differentiable activation function to the weighted sum of outputs
from the previous layer. We call the output of this function neuronal activity7. Each input layer
neuron corresponds to a predictor (input variables like in our case the last diploma score, the
regional unemployment etc.), and each output layer neuron corresponds to a class of the learned
classification (output variable like in our case the class ’staying in school’). Categorical variables are
translated to multiple input and output neurons in the neural network, such that every predictor
is represented by at least one neuron. Figure 2 shows a stylistic MLP, along with its terminology
and relevant variables.

5Assigning predefined categories or labels to input data based on its characteristics or features.
6ANNs that have many layers and can therefore learn abstract knowledge and concepts.
7Response of a neuron in an ANN, representing either the continuous value of activation or the

binary classification between active and inactive.
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Figure 2: Specification for the used MLP
Depicted are the layers, neurons (including bias neurons labeled as (1)), weights between neurons,
and activation function specifications. Input neurons correspond to parameters, output neurons to
target classes. Design choices include the number H of hidden neurons and the activation function
form (e.g., logistic, as depicted). Weights between layers are summarized as matrices W1 and W2.

Before an ANN can be used in production, it needs to be trained to serve a specific task.
ANNs can be trained using different approaches depending on the type of problem and data.
Supervised learning involves training the network on labeled data, where the input-output pairs are
known, and the goal is to minimize the difference between predicted and actual outputs. The ANN
training process initializes all weights at random and updates the incoming weights of each neuron
proportionally to the gradients of the overall error term. While the structure of the ANN remains
unchanged, the relationships between neurons are adjusted during ANN training to assign more or
less weight.

In the training of ANNs, multiple trade-offs need to be balanced. The bias-variance trade-off
(Geman, Bienenstock & Doursat, 1992) involves balancing underfitting (high bias, where the model
is too simplistic to capture patterns) and overfitting (high variance, where the model captures noise
along with the signal). The trade-off between computational cost and performance (Carvalho,
Ramos & Chaves, 2011) arises because larger models with more neurons or layers can improve
accuracy but demand significantly more memory, processing power, and time, often exceeding
available resources.
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3.2 Explainable Artificial Intelligence
Despite being more flexible, ANNs can provide erroneous results, which are critical in realistic
applications, such as autonomous driving. The detection of such errors is harder because to the
black-box nature of ANNs. Explainable Artificial Intelligence (XAI) technology addresses this issue
by equipping experts with tools to analyze and interpret ML models, making it possible to identify
the sources of errors. As AI technologies are more frequently adopted across various industries and
scientific disciplines, XAI are accordingly of increasing importance (see Arrieta, Dı́az-Rodŕıguez,
Del Ser, Bennetot, Tabik, Barbado, Garćıa, Gil-López, Molina, Benjamins & others, 2020, for
an extensive overview). The XAI methods for ANNs that we apply here belong to two groups of
methods: feature relevance explanations and simplification-based explanations. Feature relevance
explanation focuses on analyzing the ANN as a unified entity to understand the relationships
between inputs and outputs. Various importance scores are estimated to quantify the contribution
of each input feature to the network’s predictions and then visually analyzed. In the field of visual
analytics, such methods are applied as a component of optimizing decision-making processes (Keim,
Andrienko, Fekete, Görg, Kohlhammer & Melançon, 2008).

We perform such an analysis with SHapley Additive exPlanations (SHAP, Lundberg & Lee,
2017). SHAP values are based on the game-theoretic definition of Shapley values (Shapley, 1951)
and analyze the differentials of classification probabilities for changes in input values. Since SHAP
value calculations yield a separate importance score per predictor and observation, they are useful
for identifying subgroups of observations with similar importance. For instance, SHAP values can
indicate that a variable contributes to a 20% increase in the probability for a classification for one
observation, while simultaneously contributing only 1% for a different observation.

In contrast, to ignoring the internal structure and analyzing the ANN as a unity, explanation by
simplification reduces the ANN to smaller components that are easier to interpret. These methods
can involve altering the structure of the ANNs, such as dropping irrelevant weights, replacing con-
tinuous with binary scales, or replacing certain neurons with alternative mechanisms. Algorithms
for rule extraction(RE) transform ANNs into a set of easily understandable logical rules by recur-
sively applying heuristics to the neurons. The form of the extracted rules depends on the purpose
of the RE and the data types, whether variables are continuous, binary, categorical, or a mixture
(see Hailesilassie, 2016, for an overview of RE on DNNs).

Our method for RE is based on three techniques that are frequently used: weight pruning
removes unimportant weights in the input of each neuron; Discretization regards the continuous
space of values that a neuron can receive as inputs or send as outputs as a discrete set of values;
Linearization replaces the non-linear activation function of the neurons with a linear equivalent.

4 Implementation
We use the R package neuralnet (Wright & Stachelek, 2020), which provides the implementation
of the MLPs and the resilient backpropagation algorithm. The latter is applied for ANN train-
ing (Riedmiller & Braun, 1994), and ensures improving convergence rates compared to standard
backpropagation of errors.

In the first step, we identify the best ANNs for replicating the dependent variable. The three
transition alternatives - ’dual VET’, ’school-based VET’, and ’staying in school’ — are defined
as output neurons of the ANNs. Since the structure of the ANN and the specifics of the ANN
training process heavily influence the performance of the ANNs, we evaluate multiple configurations
of both structure and training methods. Each evaluation involves splitting the data randomly
into ANN training (80%) and test (20%) data and averaging performance over 20 pseudo-random

8
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Figure 3: Performance Chart of Different ANN Models
Connected line plots of performance for different combinations of ANN Models, training and
datasets. share of faulty classifications on y-axis. number of hidden neurons on x-axis. faceted
by the test and training datasets. performance of greedy predictors are plotet for reference.

initializations for the weights. Performance statistics are calculated and evaluated on the test
dataset. These measures help reduce overfitting, minimize random variance in performance, and
ensure generalization.

The computation time increases when additional hidden layers are introduced, while the quality
of the classification did not improve. Hence, we only consider variations in the number of hidden
neurons within the first hidden layer, ranging from 3 to 10 neurons. Initial test runs reveal that

9
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the distribution of target classes, particularly the underrepresentation of ’school-based VET’, is
unfavorable for ANN training. ANNs ignore such cases, leading to a high proportion of miss-
classification for those underrepresented cases. Therefore, we allowed more variation in our ’full
dataset’ by underfitting the overrepresented classes or by overfitting the underrepresented ’school-
based VET’ class. To do so, we employ two strategies: capping and over-sampling.

Capping involves reducing the ANN training data to achieve a more balanced distribution
between the different school diplomas and the type of ANN training. After removing overrepresented
classes, 2,434 observations remain. Over-sampling involves duplicating underrepresented classes
during ANN training to balance their representation. ANNs are trained either until the partial
derivatives of the error function fall below 0.05 or until the ANN training reached 200,000 iterations.
Corresponding with the trade-off between training time vs. model accuracy, we increased the target
thresholds for the stopping criterion of the ANN training to reduce computing time. However, these
thresholds often cannot converge with sufficient reliability for meaningful comparisons.

A greedy predictor, calculated on both the full and reduced dataset, served as a benchmark. This
predictor classifies all observations into the most common class. Figure 3 presents the performance
metrics for the test and ANN training datasets compared to these benchmarks. While the ANNs
trained on the full dataset outperform the benchmarks, they show smaller relative improvements
compared to models trained on capped or over-sampled data. This suggests that performance gains
are disproportionately driven by reduced errors in overrepresented groups. A configuration with
four hidden neurons, data capping, and a threshold of 0.05 emerged as the most effective. This
setup show the highest amount of learned information on the test data.

To further validate this configuration, we retrained the model ten times using different random
seeds on the capped dataset. This approach ensured that the model can leverage all available
relevant information. The best iteration achieved 68.62 percent correct classifications across all
6,812 observations, with an accuracy of at least 54.3 percent for the underrepresented classes of
’dual VET’ and ’school-based VET’. Table 1 contains the multi-class precision-recall matrix. While
the ANN experienced more difficulty distinguishing between the two types of VET, it performed
better in replicating the choice between ’staying in school’ and entering one of the two VET forms.
Treating both types of VET as a single transition option results in a precision of 81.42 percent.

Table 1: Confusion matrix of selected ANN

predicted class

staying dual school-
in school VET based VET

tr
ue

cl
as

s staying in school 0.894
0.758 3503 568 528

dual VET 303 0.531
0.543 872 430

school-based VET 108 200 0.238
0.591 300

Confusion matrix for the best-selected ANN structure (4 hidden neurons). Conditional shares of
the predicted class in the exponent (multi-class precision) and conditional shares of the actual
class in the index (multi-class recall).

10
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We consider several XAI methods for application. The key limiting factors are the applicability
to our ANN structure, the availability of implementations in CRAN-R (R Core Team, 2018), and
compliance with GDPR8. The here used data is only available for on-site evaluation in the secure
data room of the Leibnitz Institute for Educational Trajectories. Advanced frameworks like LIME
(Ribeiro, Singh & Guestrin, 2016) and G-REX (Konig, Johansson & Niklasson, 2008), which both
provide rule-based explanations for network classifications, were not applicable due to their reliance
on external non-R programs. The illustrations we present in the following use approximate SHAP
values provided by the R package ’fastSHAP’ (Greenwell, 2020). By illustrating these values as a
beeswarm plot for a general overview and scatter plots for a detailed depiction, we visualize the
input-output relations of the ANNs. Besides the visual interpretation of the SHAP values, we
implement a RE for the hidden layers using simple heuristics from different RE algorithms9.

We begin with an analysis of the hidden neurons and apply a discretization of the outputs, where
the distribution of activities shows a bi-modal pattern. Where discretization appears beneficial, we
replace each suitable hidden neuron with if-then rules of the form: If the sum of the variables exceeds
the bias, then the hidden neuron is active (=1); otherwise, it is inactive (=0). This approach directly
implements both linearization and discretization. When discretization does not seem beneficial, we
keep the neuron’s internal structure. We apply weight pruning to remove input variables of hidden
neurons with absolute weights below the mean of the absolute values. For mutually exclusive
observations, like male and female genders, we add all but one weight to the bias and eliminate the
corresponding variables.

The ANN training results in only four hidden neurons, making it feasible to analyze the inter-
actions in the simplified ANN by hand. Let H1,H2,H3 and H4 denote the 4 hidden neurons. The
weights of three of the four hidden neurons (H1-H3) (Table A1) exhibit exceptionally high values,
indicating that their activations are also likely to be high in absolute terms. The distribution of
the activity of the hidden neurons (Figure 4) across all observations supports the same conclusion.
Consequently, the continuous neuronal activity of H4 is the primary determinant of classification.
A value above a specific threshold triggers a change in classification. The activity or inactivity of
the other hidden neurons defines the thresholds (Figure 5) and the target class of the classification.

5 Results
5.1 Extracted Rules
A classification based on the extracted rules instead of the ANN leads with a level of accuracy of
68.09 percent to similar performance like the ANN(68.62 percent), which is remarkable considering
the reduced complexity. We analyze extracted rules in a bottom-up strategy. Thus, we first focus
on the inputs of the hidden neurons. Here, we consistently observe a mixture between different
levels of influences (i.e., individual, regional, and institutional). The exact values of each rule are
provided in table 2.

The extracted binary rule for H1 contains diploma type and grades as variables on the individual
level. Better grades lead to an activation together with either a lower secondary diploma or an
intermediate secondary diploma at a Gymnasium. Contrary, the average last diploma scoring at
the school has a negative impact on the activation and cancels out the individual score. This

8The General Data Protection Regulation (GDPR) is an EU regulation ensuring the lawful,
transparent, and secure processing of personal data, while granting individuals’ rights over their
data. See regulation (EU) 2016/679 for details.

9As we found no implementation of a suitable RE algorithm in CRAN-R
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Figure 4: Bar plots of neuronal activities
The x-axis represents counts, while the y-axis shows neuronal activity. The plots are faceted by the
four hidden neurons.

means H1 is more likely to be active for individuals significantly better than their school peers.
High unemployment in the region, a high share of young inhabitants and urbanity accompanied
by vacant VET positions are key drivers of the of activation. In turn, high shares of industry and
commuters in the region are drivers of deactivation.

The extracted binary rule for H2 contains the diploma type as individual level information.
Having a lower secondary diploma reduces the chance of activation of this neuron to that extend,
that it can only become active for lower secondary diploma students if unemployment and urbanity
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Table 2: Extracted rules for the activation of the hidden neurons

(a) Binary rule for H1
Variable Weights
bias −222.68
reg industry area −197.89
school average score −158.89
reg commuters 150km −124.47
last diploma score 151.18
reg young people 167.42
reg unemployed 172.87
last diploma type 2 187.27
reg vet position 190.21
last diploma type 0 195.09
reg urban permeation 222.35
active if SUM > 0

(b) Binary rule for H2
Variable Weights
reg unemployed −494.52
reg urban permeation −336.96
last diploma type 0 −286.02
reg working females 187.86
bias 374.10
reg industry area 392.30
Active if SUM > 0

(c) Binary rule for H3
Variable Weights
bias −363.36
reg urban permeation −268.31
reg unemployed −194.56
male 195.2
reg working females 248.31
reg consverative voters 373.58
reg stem empoyments 460.35
active if SUM > 0

(d) Rule for H4
Variable Weights
last diploma score −6.45
school average score −1.98
reg conservative voters −1.45
reg unemployed 1.85
reg vet positions 2.25
bias 7.55
1/(1 + e−SUM )

Depicted are

the extracted rules for each hidden neuron. For H1 to H3, the rules calculate the weighted sum of
the input variables, including the bias. If the result is above 0, the respective neuron becomes active
(=1). For H4, the rules calculate the weighted sum and apply a logit transformation to determine
the activation.

are both low. As the bias is high, H2 is likely to be active for all other diploma types. This is
especially the case if the region is characterized by a wide-spreading industry sector and a high
share of working women.

The extracted binary rule for H3 contains gender as individual level information. Being male
increases the chance of activation. High shares of STEM employees, conservative voters, and a high
shares of female employees in the region have positive impacts on the activation, while regional
unemployment and urbanity have a negative impact.

The rule for H4 contains individual level information on students’ last diploma scores and
school level information on average scores. As the bias is the highest factor of influence, we can
estimate that the neuronal activity of H4 is high by default, and even increases with high shares
of unemployment in the region and open VET positions in the region. The most important factor
in decreasing the neuronal activity is the score of the last diploma, followed by the school average
score and the share of conservative voters in the region.

As the analysis of each neuron on its own cannot quantify the decisions made by the ANN,
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we need to analyze them jointly. A visualization of these joint interactions, conditioned on the
neuronal activity of the four hidden neurons, is provided in Figure 5. As H2 has the most active
cases, we start our analysis from there: If H2 is inactive, students’ transition will either be ’staying
in school’ or ’dual VET’ with different thresholds. If H1 is simultaneously active, it increases this
threshold, such that with the same activation value of H4, more students would choose ’staying in
school’. If H3 is also active, it lowers the threshold. If only H2 is active, the classification choice is
between ’staying in school’ and ’school-based VET’. If H3 is active in addition, the choice of classes
changes to ’staying in school’ and ’dual VET’ with lower thresholds. If at least H1 and H2 are
active, there is no choice anymore, and the classification is always ’staying in school’, regardless of
the values of H4.

In general, the cases where H1 and H2 are both inactive and both active seem to be irrelevant.
We have no observations that share this condition (H1 and H2 inactive), or the outcome is that
almost everyone stays in school (H1 and H2 active), regardless of the neural activation of H4. Thus
we have not enough heterogeneity in our data that our ANNs can use.

For the other cases (where either H1 or H2 is active), a higher value of H4 always leads to
the transition of ’staying in school’, with the main determinants of H4 being individual school
performance. Contextual factors such as peer effects on the school level and regional influences
play a role - especially conservative voters, the unemployment rate, and the supply-demand ratio
of VET positions in the region are important: If unemployment is high and relatively many vet
positions are open students with comparatively high grades have a higher probability to enter VET,
either ’dual vet’ (H1 active) or ’school-based VET’ (H2 active).

When only H2 is active, we observe the transitions to be almost equally likely with the same
neuronal activity as H4. Such a grouping has two implications: First, this group is less affected by
selection and sampling bias, as the ANN would have exploited such a hint. Second, there may exist
an unobserved variable which would improve the ANN and also future studies on school-to-training
transitions.

5.2 SHAP Values
Depending on the purpose of the analysis, researchers can apply different techniques for interpreting
SHAP values. This subsequent section tries to identify subpopulations that ’behave’ differently
than the general population. For this purpose, the following list contains a description of visible
deviations from the linear distributions of SHAP values to the continuous distribution of the original
values within a variable. Figure 6 contains a beeswarm plot, for all variables and classifications,
visualizing these differences. We limit the description to the most important variables for each of the
three target classifications ’staying in school’, ’dual VET’, ’school-based VET’. The most common
case of such deviations are groups of observations with a similar original value that show entirely
different SHAP values. We append these observations with an explanation based on the mechanisms
that work in the ANN, according to the extracted rules and interpret them. The interpretations of
these patterns can be understood as exemplary and are limited to highly plausible and particularly
interesting - based on the empirical knowledge of school-to-training transition - findings.

5.2.1 Urbanity
Higher urbanity increases the probability of ’staying in school’ and decreases the probability of
choosing VET. For some individuals that enter ’dual VET’, this relation is reversed but with a
smaller magnitude. Based on the extracted rules, we know that the urbanity has a negative effect
on the activation of H2 and H3, a positive effect on the activation of H1, and no influence on
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H4. An activation of H1 or deactivation of H3 always increases the chance of choosing ’staying in
school’. Thus, urbanity can only have a reversed effect, like observed, if H2 is deactivated by the
high urbanity. We interpret that, ’staying in school’ is more attractive in urban areas because the
schools might be more likely to be available that offer this alternative. In such contexts, the VET
positions are more likely to be filled with students holding lower levels of schooling. In regions that
have a more competitive job market and show higher shares of industrial land use, urbanization
has a positive impact on transitioning to ’dual VET’ instead of ’staying in school’. In that regard,
our results align with already identified differences between rural and urban markets for students
with lower and intermediate degrees (Schuster & Margarian, 2021).

5.2.2 Unemployment
Higher shares of regional unemployment increase the probability of choosing VET and decrease the
probability of ’staying in school’. For all classifications, there are certain individuals where high and
low shares of unemployment lead to the opposite decision, but with less magnitude. Based on the
extracted rules, we know that: Regional unemployment has a positive effect on the activation of H1,
a negative effect on the activation of H2 and H3, and a negative effect on the activity of H4. Higher
activities in H4 always support a choice towards VET, as long as H1 and H2 are not active. An
activation of H1 or an deactivation of H3 decrease the probabilities of entering VET. Most likely,
H3 induces the reversed effect because unemployment has a higher effect on that neuron compared
to other predictors of H3.

Thus, higher unemployment rates make it more attractive to start any type of VET, as VET
provides earlier and more secure access to jobs. This is largely in line with the ’discouraged worker
hypothesis’ (Micklewright, Pearson & Smith, 1990; Hartung, Weßling & Hillmert, 2022; Brunello,
2009). In regions with a high share of STEM employees, a high share of conservative voters, and/or
a high share of female labor force participation, the unemployment effect on entering VET versus
staying on in school is reversed. In such regions, the status of VET occupations seems to differ.
They have a higher value because they are more contested, which makes it difficult to enter them.
This status effect is stronger for women, as we find that gender either moderates the previously
mentioned predictors or is mediated by at least one of them.

5.2.3 Share of STEM employees
Higher shares of stem employees in the region increase the probability of choosing VET and decrease
the chance of ’staying in school’. For ’dual VET’, some of the highest STEM employee’ shares also
have the highest positive impact. For some individuals, the impact is larger than that of any
other predictor. Based on the extracted rules, we know that: The share of STEM employees has
a positive effect on the activation of H3 and no effect on the other hidden neurons. As the Bias
of H3 is highly negative, the high values can only be attributed to cases where H3 will be inactive
without the STEM predictor. Most likely, this is only achieved for regions in which the share of
STEM employees is exceptionally large. Thus, STEM employees have, on average, no effect on
the probabilities of transitioning. In rural areas with a high share of STEM, the effect is positive,
increasing the transition to ’dual VET’. As stated in previous research, STEM is relevant for ’dual
VET’ in rural labor markets compared with any other options. The STEM effect is not only high
in rural regions but also in regions with a high share of conservative voters. In such contexts, there
seems to be a moderation effect on particular parts of the population.
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5.2.4 Female labor force participation
Higher shares of female labor force participation increase the probability of transitioning to VET
and decrease the chance of ’staying in school’. For ’dual VET’, there are numerous individuals where
high and low shares show a reversed behavior with the same magnitude. Based on the extracted
rules, we know that: Female labor force participation has a small positive effect on the activation
of H2 and H3 and no effect on H1 and H4. An activation of H2 reduces the chances for VET and
an activation of H3 increases the chances of VET. This is as long H1 and H2 are not simultaneously
active. The direction of the effect changes, depending on the other predictors that influence H2
and H3. Thus, the share of working women influences the transition to VET, especially for female
students. The direction of the effect entirely depends on the regional labor market and whether
it is a rural or an urban area. In rural areas with low unemployment, a high share of working
women seems to motivate female students to enter VET. In urban areas with high unemployment,
a high share of working women seems to increase young women‘s probability of ’staying in school’.
Strong gender differences in the German VET system are known, but implicit drivers are hard to
identify (Haasler, 2020). The here depicted rural-urban differences can affect policies addressing
these disparities.

6 Discussion and Conclusion
By employing the capabilities of ML, our study conducts a comprehensive analysis and exemplary
interpretation of school-to-training transitions in the German education system. We train multi-
ple ANNs to emulate the transitions of adolescents during their secondary education. Through
explainable artificial intelligence, we try to unveil the intricate ways in which these ANNs predict
transitions. We use SHAP (SHapley Additive exPlanations) values for the identification of patterns
and the extraction of human-readable rules for interpretation.

Our objectives with this study was: First to apply XAI to a well-studied application in socio-
logical research - namely, post-school educational transitions -, to unravel the black-box of ANNs
by making learned patterns interpretable, and finally to illustrate how these patterns could be
interpreted and understood within the scope of empirical sociological research.

The interpretations we derive incorporate multiple predictors at different contextual levels si-
multaneously within the analytical framework, showcasing interactions of individual, regional, and
institutional variables together. Notably and in frequently line with previous research (Mick-
lewright, Pearson & Smith, 1990; Hartung, Weßling & Hillmert, 2022; Brunello, 2009; Haasler,
2020; Schuster & Margarian, 2021), regional unemployment rates, supply and demand for VET
occupations, STEM employee shares in the region, regional female labor force participation, the
highest school diploma, and, of course, individual grades and school performance proved to be the
most viable determinants of transitions in our dataset. While some of the above interpretations
have already been described in prior research, especially their interactions across multiple levels
can be a starting point for future research.

Although our application points the way to new approaches and possibilities of data analysis
in the social sciences, it bears notable limitations. The plausibility of the derived interpretations
depends on different factors. Mainly the used algorithms and the data itself. The overall quality of
the classification in this study is better than expected, with ANNs and extracted rules both showing
an accuracy of over 68 percent. Thus, while XAI methods could foster the implementation and
application of ML in the social sciences, the possibilities in open-source implementations (especially
in R) are still fairly limited. Furthermore, survey data does not prove to be an optimal data source
for the application of ML, as it is impossible to generate new data. The only way to account for
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underrepresented data is to adapt the training process of the ANNs, which is inferior to adding
better and new data. Better-suited data sources are, for example, social media or job advertisement
web-pages, where new observations can be extracted and mined on demand.

Beyond that, including posterior predictors is time consuming and might lead to different
optimal ANNs. To ensure reproducibility of results, software that enables weight initialization
independent of the amount of input variables is necessary. Missing software and the computational
constraints limited the computational scope of our ANN models.

Notwithstanding these limitations, the application of ANNs and XAI to survey data effectively
replicated well-established relationships concerning school-to-training transitions. Moreover, it gen-
erates valuable new insights, particularly regarding non-linear cross-level interaction effects, serving
as a promising foundation for future research.
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Figure 5: Measured activities for observations depending on the binary activation of
H1-H3 and the continuous activation of H4
The activation value of H4 is shown on the y-axis, while combinations of active and inactive neurons
H1-H3 are plotted on the x-axis. The plots are faceted by the three target classes and observations
belonging to these true classes. The combination ’000’ corresponds to all three neurons (H1, H2,
and H3) being inactive, whereas ’111’ indicates all three neurons are active.
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7 Supplements
Names and description of variables
Individual information

type train ’0’ for continuation in school-based secondary education.
’1’ for company based VET. ’2’ for ’school-based VET’.
(categorial, derived from ts15201)

last diploma score Grades of school diploma scaled from 1 (worst) to 5 (best).
(interval, derived from tf11218)

mig background 0 No migration background. (binary, derived from t400500 g3R)

mig background 1 Migration background. (binary, derived from t400500 g3R)

parent academic edu 0 No parent studied at a university or comparable institu-
tion. (binary, derived from t731422, t731472)

parent academic edu 1 At least one parent studied at a university or comparable
institution. (binary, derived from t731422, t731472)

parent school edu 0 Highest educational degree of both parents is at most at
lower secondary education diploma. (binary, derived from
t731320, t731370)

parent school edu 1 Highest educational degree of both parents is intermedi-
ate secondary education diploma. (binary, derived from
t731320, t731370)

parent school edu 2 Highest educational degree of both parents is higher sec-
ondary education diploma. (binary, derived from t731320,
t731370)

female Participant categorizes herself as ’female’. (binary, derived
from t700031)

male Participant categorizes himself as ’male’. (binary, derived
from t700031)

last diploma type 0 Participant finished lower secondary education (binary,
derived from ts11209).

last diploma type 1 Participant finished intermediate secondary education at
a different school than Gymnasium.(binary, derived from
ts11209)

last diploma type 2 Participant finished intermediate secondary education at
a Gymnasium. (binary, derived from ts11209)
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School Contexts

avg school score Average final scores of all participants of this school. Grades
of scaled from 1 (worst) to 5 (best). (continuous, derived
from tf11218)

Regional Contexts

reg unemployment Share of People without employment

reg vet positions Ratio of Supply of VET Contracts to Demand of VET
contracts as of 2013

reg stem employees Share of workers working in STEM oriented services as of
2013

reg conservative voters Share of Votes for the Christ-Democratic Union 2017

reg big companies Share of Businesses with more than 250 employees as of
2013

reg commuters 150km Share of worker with more than 150km distance commut-
ing as of 2017

reg female employees Share of female employees out of all employees as of 2013

reg young people Share of inhabitants between 18 and 25 years as of 2011

reg urbanity Urban permeation as of 2010

reg industry area Share of Land Area used for Industry and Trade as of 2011
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Table A1: First layer weight matrix for neural network with 4 hidden neurons (base
model)

Neuron H1 H2 H3 H4
bias -1.121 14.856 -18.531 2.010
last diploma score 151.177 -108.015 2.476 -6.451
reg unemployed 172.868 -494.516 -194.556 1.850
reg mint empoyments 55.825 64.034 460.345 0.389
reg consverative voters -75.422 5.810 373.581 -1.454
reg vet positions 190.214 107.901 145.152 2.250
reg big companies -81.698 8.302 129.199 -0.081
reg commuters 150km -124.473 58.628 134.255 0.343
reg working females -7.871 187.858 248.308 -0.293
reg young people 167.420 -13.386 -115.686 0.825
reg industry area -197.889 392.302 51.112 -1.333
reg urban permeation 222.349 -336.960 -268.306 -0.082
school average score -158.886 -8.021 -150.826 -1.982
last diploma type 0 3.783 -2.827 -101.900 2.307
last diploma type 1 -191.306 283.195 -27.169 1.845
last diploma type 2 -4.037 295.054 0.895 1.213
female -20.204 35.344 -194.090 0.274
male 2.407 1.738 1.113 -0.448
mig background 0 -6.393 2.558 -0.706 1.251
mig background 1 -0.934 30.548 -88.940 1.177
parents school edu 0 -60.080 78.037 -6.478 0.846
parents school edu 1 -3.234 37.352 -122.375 1.144
parents school edu 2 8.197 0.875 -157.792 0.772
parents academic edu 0 -0.421 0.790 -0.483 1.027
parents academic edu 1 -24.854 15.788 -36.086 0.366

Table A2: Second layer weight matrix for neural network with 4 hidden neurons
(base model)

Neuron dual VET school-based VET staying in school
bias -1.602 -4.608 2.375
H1 -1.058 -2.185 2.210
H2 -2.136 -0.700 2.130
H3 1.694 -0.774 -1.185
H4 2.711 5.631 -5.717
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