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Does a Gibbs sampler approach to spatial Poisson regression

models outperform a single site MH sampler?

Susanne Gschlößl Claudia Czado ∗

December 6, 2005

Abstract

In this paper we present and evaluate a Gibbs sampler for a Poisson regression model

including spatial effects. The approach is based on Frühwirth-Schnatter and Wagner (2004b)

who show that by data augmentation using the introduction of two sequences of latent vari-

ables a Poisson regression model can be transformed into an approximate normal linear

model. We show how this methodology can be extended to spatial Poisson regression models

and give details of the resulting Gibbs sampler. In particular, the influence of model param-

eterisation and different update strategies on the mixing of the MCMC chains is discussed.

The developed Gibbs samplers are analysed in two simulation studies and applied to model

the expected number of claims for policyholders of a German car insurance company. The

mixing of the Gibbs samplers depends crucially on the model parameterisation and the up-

date schemes. The best mixing is achieved when collapsed algorithms are used, reasonable

low autocorrelations for the spatial effects are obtained in this case. For the regression effects

however, autocorrelations are rather high, especially for data with very low heterogeneity.

For comparison a single component Metropolis Hastings algorithms is applied which displays

very good mixing for all components. Although the Metropolis Hastings sampler requires a

higher computational effort, it outperforms the Gibbs samplers which would have to be run

considerably longer in order to obtain the same precision of the parameters.

Key words: block updates, collapsing, data augmentation, Gibbs sampler, model parameterisa-

tion, spatial Poisson count data
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1 Introduction

In this paper we present a straightforward Gibbs sampler for spatial Poisson regression models

using data augmentation techniques. In particular, we aim to investigate whether this Gibbs

sampler is found to be superior to a conventional single site Metropolis Hastings (MH) sampler.

The issue of model parameterisation and several update schemes for the parameters in the Gibbs

sampler is thoroughly addressed. The performance of the developed Gibbs sampler schemes and

the MH sampler is investigated in two simulation studies as well as on real data from a German

car insurance company. Performance of the samplers is measured in the computational costs

required to obtain the same precision of the posterior means of the parameters.

Since the full conditional distributions of a spatial Poisson regression model do not follow any

standard distribution, often single site MH steps are performed in a MCMC setting, see for

example Diggle et al. (1998), Dimakos and Frigessi (2002) or Gschlößl and Czado (2005). How-

ever, this requires the choice of appropriate proposal distributions in order to achieve reasonable

acceptance rates and a good mixing of the MCMC chains. Advanced independence proposals,

like for example a normal proposal with the same mode and inverse curvature at the mode as

the target distribution, can lead to high acceptance rates and low autocorrelations but involve

considerable computational efforts.

Frühwirth-Schnatter and Wagner (2004a) developed a Gibbs sampler for Poisson regression mod-

els for small counts. They show that by data augmentation via the introduction of two sequences

of latent variables a linear normal model is obtained. In Frühwirth-Schnatter and Wagner (2004b)

an application of this Gibbs sampler to state space models is given, in Frühwirth-Schnatter and

Wagner (2004a) the same methodology is applied for standard Poisson regression models and

Poisson regression models with overdispersion. Using similar techniques, a Gibbs sampler for

logistic models is developed in Frühwirth-Schnatter and Waldl (2004).

The aim of this paper is to show that this methodology can be extended to spatial Poisson

regression models in a straightforward manner allowing for a Gibbs update of both regression

parameters and spatial effects. Although we only consider spatial Poisson data distributed on

regions in this paper, the presented methodology could also be applied on geostatistical Poisson

models, see Diggle et al. (1998).

It is well known, that mixing and convergence of the Gibbs sampler depends crucially on several

implementation issues, see for example Roberts and Sahu (1997) for a detailed discussion. High

autocorrelations can be reduced by updating several parameters in one block or using collapsed

algorithms, another important issue is model parameterisation. Gelfand et al. (1995) discuss the

efficiency of centered and non-centered parameterisations for hierarchical normal linear models,

Papaspiliopoulos et al. (2003) address parameterisation issues for several classes of hierarchical

models and introduce partially non-centered parameterisations. Christensen et al. (2005) pro-

pose the standardization and orthogonalization of all model components leading to efficient and

robust MCMC algorithms.

In this paper both centered and non-centered model parameterisations are considered, various
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algorithmic schemes, in particular a joint block update of the intercept and the spatial effects

as well as collapsed algorithms, see Liu et al. (1994), are discussed. The performance of the

samplers is examined and compared to a single site MH sampler with independence proposals

in two simulation studies. In the first study, the samplers are applied on data with both large

and small spatial effects, while the second study considers the influence of the data heterogene-

ity on the performance of the samplers. The performance of the samplers is measured in the

computational costs required in order to obtain a certain precision of the posterior means of the

regression parameters and spatial effects. This is done by taking both the Monte Carlo error of

the posterior means of the parameters and the computational time required for one iteration

into account. A very similar approach for comparing the performance of MCMC samplers is

conducted by Christensen and Waagepetersen (2002). Among the Gibbs samplers collapsed al-

gorithms perform best. In particular for data with small spatial effects, the Monte Carlo errors

of the spatial effects are considerably reduced when collapsed samplers and model parameteri-

sations with non-centered scale or variance are used. The Monte Carlo errors of the regression

parameters however are rather high, especially for data with low heterogeneity. The MH inde-

pendence sampler in contrast, exhibits very low Monte Carlo errors and good mixing for both

regression and spatial effects in all settings. Although the MH sampler requires a higher com-

putational effort, this drawback is compensated by the high precision of the posterior means

of the parameters. In order to obtain the same precision the Gibbs samplers would have to be

run considerably longer, diminishing the computational advantage in comparison to the MH

sampler. Therefore we have to conclude that the proposed Gibbs sampler for spatial Poisson

regression models can not outperform a single site MH sampler using independence proposals.

This paper is organized as follows. In Section 2 the spatial Poisson regression model is specified

and the two steps of the data augmentation scheme are described for this specific model. Details

on several algorithmic schemes for updating the regression and spatial effects are given in Section

3. In Section 4 the developed Gibbs sampler schemes are examined and compared to a single

component MH sampler with independence proposals in two simulation studys. We also apply

the Gibbs samplers to model the expected number of claims in a real data set from a German

car insurance company. Section 5 gives a summary and draws conclusions.

2 Data augmentation and Gibbs sampler for spatial Poisson re-

gression models

We assume that observations Yi, i = 1, .., n observed at J regions follow a Poisson model

yi ∼ Poisson(µi). (2.1)

The mean µi is specified by

µi = ti exp(z′iα) := ti exp(x′
iβ + v′

iγ) = ti exp(x′
iβ + γR(i)) (2.2)
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where z′i = (x′
i,v

′
i) denotes the covariate vector xi = (1, xi1, .., xip)

′ and the incidence vector

vi = (vi1, .., viJ )′ for the regions, i.e. vij =

{

1, if R(i) = j

0 otherwise
, with R(i) ∈ {1, .., J} denoting

the region of the i-th observation. Note, that we do not only observe one single but several

observations in each region. Further α = (β,γ)′ denotes the vector of regression parameters

β = (β0, β1, .., βp) and spatial random effects γ = (γ1, ..γJ ). By the inclusion of spatial effects

we allow for geographical differences in the J regions. The quantity ti gives the exposure time

for the i-th observation.

We assume a normal prior distribution centered around zero with a large standard deviation for

the regression parameters β, in particular

β ∼ Np+1(0, V0)

where V0 = τ2Ip+1 with τ2 = 100. Here Np(µ,Σ) denotes the p-variate Normal distribution with

mean µ and covariance matrix Σ. For the spatial effects a conditional autoregressive (CAR)

prior based on Pettitt et al. (2002) is used. In particular, we assume

γ|ψ, σ2 ∼ NJ(0, σ2Q−1)

where the elements of the precision matrix Q = (Qij), i, j = 1, .., J are given by

Qij =











1 + |ψ| ·Ni i = j

−ψ i 6= j, i ∼ j

0 otherwise

. (2.3)

We write i ∼ j for regions i and j which are contiguous and assume regions to be neighbours

if they share a common border. Ni denotes the number of neighbours of region i. The spatial

hyperparameter ψ determines the degree of spatial dependence, for ψ = 0 independence of the

spatial effects is obtained whereas for ψ → ∞ the degree of spatial dependency increases. Note,

that this prior is a proper distribution in contrast to the well known intrinsic CAR model in-

troduced by Besag and Kooperberg (1995). Other proper spatial prior distributions have been

considered, see for example Czado and Prokopenko (2004) who use a modification of Model (2.3)

and Sun et al. (2000).

Therefore, we have a multivariate normal prior distribution for the regression and spatial pa-

rameters α which is given by

α|θ ∼ Np+1+J(0,Σ) (2.4)

with Σ =

(

V0 0

0 σ2Q−1

)

. For the spatial hyperparameters θ = (ψ, σ2) the proper prior distri-

butions

ψ ∼
1

(1 + ψ)2
and σ2 ∼ IGamma(1, 0.005)
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are assumed. The parameterisation of this model described by Observation Equation (2.2) and

Prior Specification (2.4) is called non-centered in the mean, since the intercept β0 appears

in the observation equation, but not in the spatial prior formulation. Other possible model

parameterisations include parameterisations additionally non-centered in the scale or variance

of the spatial prior as well as a centered parameterisation, where the intercept β0 only appears

as the mean of the spatial prior. These parameterisations are summarized in Table 1. For a

summary on existing parameterisation techniques see for example Frühwirth-Schnatter (2004).

Initially, our investigations are based on the non-centered mean parameterisation given by (2.2)

parameterisation spatial prior observation equation

centered γc ∼ N(β0, σ
2Q−1) µi = ti exp(x′

i−0β−0 + v′
iγ

c)

non-centered mean γ ∼ N(0, σ2Q−1) µi = ti exp(β0 + x′
i−0β−0 + v′

iγ)

non-centered mean and scale γ∗ ∼ N(0, Q−1) µi = ti exp(β0 + x′
i−0β−0 + σv′

iγ
∗)

non-centered mean and variance γ∗∗ ∼ N(0, I) µi = ti exp(β0 + x′
i−0β−0 + σv′

iLγ∗∗)

where LL′ = Q−1

Table 1: Spatial prior and observation equation for different model parameterisations, where

xi−0 := (xi1, .., xip)
′ and β−0 := (β1, .., βp)

and (2.4). Necessary changes when other parameterisations are used will be indicated specifically.

2.1 Step 1: Introduction of hidden inter-arrival times

The basic idea of the data augmentation scheme developed by Frühwirth-Schnatter and Wagner

(2004b) is to regard the Poisson observations yi, i = 1, .., n, as the number of jumps of an

unobserved Poisson process with intensity µi within the unit interval. The first step of the data

augmentation consists in the introduction of yi+1 hidden inter-arrival times τij, j = 1, .., yi+1 for

each observation yi. Using that the inter-arrival times are independent and follow an exponential

distribution with parameter µi, see for example Mikosch (2004), i.e. τij |α ∼ Exponential(µi) =
Exponential(1)

µi
, we obtain

log τij |α = − log ti − z′iα + ǫij , ǫij ∼ log(Exponential(1)). (2.5)

Denote by τ = {τij , i = 1, .., n, j = 1, .., yi + 1} the collection of all inter-arrival times. Since the

posterior distribution of α conditional on τ is independent of y, conditional on τ we are now

dealing with model (2.5) which is linear in the parameters α, but still has a non-normal error

term.

2.2 Step 2: Mixture approximation for error term

The second step of the data augmentation scheme eliminates the non-normality of model (2.5).

As shown by Frühwirth-Schnatter and Wagner (2004b), the error term in (2.5) can be approx-
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imated sufficiently close to a normal distribution by a mixture of five normal distributions,

i.e.

p(ǫij) = exp(ǫij − exp(ǫij)) ≈

5
∑

r=1

wrfN (ǫij ;mr, s
2
r),

where fN(·;mr, s
2
r) denotes the density of the normal distribution with mean mr and variance

s2r. Frühwirth-Schnatter and Wagner (2004b) also give the corresponding values for mr, s
2
r and

the weights wr.

In the second step of the data augmentation the component indicators rij ∈ {1, .., 5} are in-

troduced as latent variables. Denoting the set of all component indicators by R = {rij , i =

1, .., n, j = 1, .., yi + 1}, we have conditional on R

log τij |α, rij = − log ti − z′iα +mrij
+ ǫij , ǫij ∼ N(0, s2rij

),

i.e. we are dealing with a normal model which is linear in α now. Since the prior distribution

π(α|θ) is normal as well, the resulting posterior distribution is multivariate normal and a Gibbs

sampler can be applied. Note, that by performing this data augmentation we are no longer

dealing with n but with
∑n

i=1(yi + 1) observations. Therefore this Gibbs Sampler is mainly

useful for count data with small counts only, otherwise the data set might get very large.

2.3 Algorithmic scheme

The algorithmic scheme for the above Gibbs Sampler is the following:

Choose appropriate starting values for the component indicators R and the inter-arrival times

τ .

(1) sample regression and spatial parameters α = (β,γ)′ given τ ,R,θ

(2) sample spatial hyperparameters θ = (ψ, σ2) given α

(3) sample the inter-arrival times τij given α,y

(4) sample the component indicators rij given τ ,α

Step (1) consists of sampling from a multivariate normal distribution. This can be done in

one block, however it might be computationally more efficient to perform an update in several

smaller blocks. We will consider several update strategies for step (1) in Section 3 in more detail.

The spatial hyperparameter ψ is updated using a MH step, whereas σ2 can be updated using

a Gibbs step. Steps (3) and (4), elaborated in Frühwirth-Schnatter and Wagner (2004b), are

described in the Appendix A and B, for the choice of starting values see Appendix C.
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3 Updating schemes for the regression and spatial parameters

in the Gibbs Sampler

For α several update schemes are possible and will be discussed in this section. For notational

convenience we define with N :=
∑n

i=1(yi + 1)

τ̃ = (τ̃1, .., τ̃N ) := (τ11, .., τ1,y1+1, τ21, .., τ2,y2+1, .., τn1, .., τn,yn+1),

ǫ̃ = (ǫ̃1, .., ǫ̃N ) := (ǫ11, .., ǫ1,y1+1, ǫ21, .., ǫ2,y2+1, .., ǫn1, .., ǫn,yn+1),

m̃ = (m̃1, .., m̃N ) := (mr11
, ..,mr1,y1+1

,mr21
, ..,mr2,y2+1

, ..,mrn1
, ..,mrn,yn+1

)

and

s̃2 = (s̃21, .., s̃
2
N ) := (s2r11

, .., s2r1,y1+1
, s2r21

, .., s2r2,y2+1
, .., s2rn1

, .., s2rn,yn+1
).

Let t̃ = (t̃1, .., t̃N ) denote the vector where ti is repeated yi + 1 times. Further define

ỹ = (ỹ1, .., ỹN ) := (log τ̃1 − m̃1 + log t̃1, .., log τ̃N − m̃N + log t̃N ).

Using this notation we have according to (2.5)

ỹi|α,R ∼ N(−z̃′iα, s̃
2
i )

where z̃ =









z̃′1
...

z̃′N









is a N × (p+ 1 + J)-matrix where zi is repeated yi + 1 times.

3.1 Block update of α = (β, γ)′

For a joint update of the regression parameters β and the spatial effects γ in one block we have

to consider the full conditional of α = (β,γ)′ which is given by

p(α|θ, τ ,R) ∝ π(α|θ)

N
∏

i=1

exp
(

−
1

2s̃2i
(ỹi + z̃′iα)2

)

∝ exp
{

−
1

2

[

α′Σ−1α +

N
∑

i=1

1

s̃2i
(ỹi + z̃′iα)2

]}

∝ exp
{

−
1

2

[

α′Σαα − 2α′µα

]}

,

where Σα := Σ−1 +
∑N

i=1
1
s̃2
i

z̃iz̃
′
i and µα := −

∑N
i=1

1
s̃2
i

z̃iỹi.

Hence,

α|θ, τ ,R ∼ Np+1+J(Σ−1
α µα,Σ

−1
α ).

7



3.2 Separate update of β and γ

The calculation of the posterior covariance matrix Σ−1
α in Section 3.1 can be computationally

expensive if the number of regression parameters and spatial effects is large as is the case in

most spatial applications. Therefore it might be more efficient to update β and γ in two separate

blocks. The full conditional distributions of β and γ are given by

β|γ,θ, τ ,R ∼ Np+1(Σ
−1
β µβ,Σ

−1
β ) and γ|β,θ, τ ,R ∼ NJ(Σ−1

γ µγ ,Σ
−1
γ ).

The explicit formulas for Σβ, µβ, Σγ and µγ are given in Table 2.

3.3 Block update of the intercept β0 and γ (block)

Due to identifiability problems between the intercept β0 and the spatial effects γ mixing and

convergence is not very good when β and γ are updated in two separate blocks. Better results

are achieved if a joint block update of β0 and γ is performed, whereas the remaining param-

eters β−0 = (β1, .., βp) are still updated in one separate block. With this setting the posterior

distributions are given by

β−0|β0,γ,θ, τ ,R ∼ Np(Σ
−1
β−0

µβ−0
,Σ−1

β−0
)

and

γ, β0|β−0,θ, τ ,R ∼ NJ+1(Σ
−1
γβ0

µγβ0
,Σ−1

γβ0
)

with Σβ−0
, µβ−0

, Σγβ0
and µγβ0

as given in Table 2.

3.4 Collapsed algorithm for a model parameterisation with a non-centered

mean (coll1)

Another possibility is to use a collapsed algorithm. This means, that particular components of

the posterior are integrated out and an update based on the marginal distribution is performed.

In our context the joint posterior distribution of β and γ can be written as

p(β,γ|θ, τ ,R) ∝ p(β|τ ,R)p(γ|β,θ, τ ,R)

where p(β|τ ,R) =
∫

p(β,γ|θ, τ ,R)dγ is the marginalised posterior density of β with γ inte-

grated out. It is shown in the Appendix D that

β|τ ,R ∼ Np+1(Σ
−1
colµcol,Σ

−1
col)

with Σcol and µcol as given in Table 2.

Step (1) in the algorithmic scheme presented in Section 2.3 is then the following for the

collapsed algorithm:

• sample β from Np+1(Σ
−1
colµcol,Σ

−1
col)

• sample γ|β,θ, τ ,R as in Section 3.2
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Section

3.2 Σβ := V −1
0 +

∑N
i=1

1
s̃2
i

x̃ix̃
′
i

µβ := −
∑N

i=1
1
s̃2
i

x̃i(ỹi + γR(i))

Σγ := 1
σ2Q+

∑N
i=1

1
s̃2
i

ṽiṽ
′
i

µγ := −
∑N

i=1
1
s̃2
i

ṽi(ỹi + x̃′
iβ)

3.3 Σβ−0
:= V −1

0β−0
+
∑N

i=1
1
s̃2
i

x̃β−0ix̃
′
β−0i

(block) µβ−0
:= −

∑N
i=1

1
s̃2
i

x̃β−0i(ỹi + γR(i) + β0)

Σγβ0
:=

(

τ−2 0

0 1
σ2Q

)

+
∑N

i=1
1
s̃2
i

(1, ṽi)(1, ṽi)
′

µγβ0
:= −

∑N
i=1

1
s̃2
i

(1, ṽi)(ỹi + x̃′
β−0iβ−0)

V0β−0
= τ2Ip

x̃β−0i = (x̃i1, .., x̃ip)

3.4 Σcol := τ−2I +
∑N

i=1
1
s̃2
i

x̃ix̃
′
i − (

∑N
i=1

1
s̃2
i

ṽix̃
′
i)
′A−1(

∑N
i=1

1
s̃2
i

ṽix̃
′
i)

(coll1 ) µcol := (
∑N

i=1
1
s̃2
i

ṽix̃
′
i)
′A−1(

∑N
i=1

1
s̃2
i

ṽiỹi) −
∑N

i=1
1
s̃2
i

x̃iỹi

A :=
∑N

i=1
1
s̃2
i

ṽiṽ
′
i + σ−2Q

3.5 Σ∗
col := τ−2I +

∑N
i=1

1
s̃2
i

x̃ix̃
′
i − (σ

∑N
i=1

1
s̃2
i

ṽix̃
′
i)
′(A∗)−1(σ

∑N
i=1

1
s̃2
i

ṽix̃
′
i)

(coll2 ) µ∗
col := (σ

∑N
i=1

1
s̃2
i

ṽix̃
′
i)(A

∗)−1(σ
∑N

i=1
1
s̃2
i

ṽiỹ
′
i) −

∑N
i=1

1
s̃2
i

x̃iỹi

A∗ := σ2
∑N

i=1
1
s̃2
i

ṽiṽ
′
i +Q

Σ∗
γ := σ2

∑N
i=1

1
s̃2
i

ṽiṽ
′
i +Q

µ∗
γ := −σ

∑N
i=1

1
s̃2
i

ṽi(ỹi + x̃′
iβ)

Σ∗
σ :=

∑N
i=1

1
s̃2
i

(γ∗
R(i))

2 + τ−2
σ

µ∗σ := −
∑N

i=1 γ
∗
R(i)

1
s̃2
i

(ỹi + x̃′
iβ)

3.6 Σ∗∗
col := τ−2I +

∑N
i=1

1
s̃2
i

x̃ix̃
′
i − (σ

∑N
i=1

1
s̃2
i

L̃′vix̃
′
i)
′(A∗∗)−1(σ

∑N
i=1

1
s̃2
i

L̃′vix̃
′
i)

(coll3 ) µ∗∗
col := (σ

∑N
i=1

1
s̃2
i

L′ṽix̃
′
i)(A

∗∗)−1(σ
∑N

i=1
1
s̃2
i

L̃′viỹ
′
i) −

∑N
i=1

1
s̃2
i

x̃iỹi

A∗∗ := σ2
∑N

i=1
1
s̃2
i

L′ṽiṽ
′
iL+ I

Σ∗∗
γ := σ2

∑N
i=1

1
s̃2
i

L′ṽiṽ
′
iL+ I

µ∗∗
γ := −σ

∑N
i=1

1
s̃2
i

L′ṽi(ỹi + x̃′
iβ)

Σ∗∗
σ :=

∑N
i=1

1
s̃2
i

(γ∗∗′(
∑N

i=1
1
s̃2
i

L′ṽiṽ
′
iL)γ∗∗ + τ−2

σ

µ∗∗σ := −
∑N

i=1 v′
iLγ∗∗ 1

s̃2
i

(ỹi + x̃′
iβ)

3.7 µcent
γ := β0

σ2Q1−
∑N

i=1
1
s̃2
i

ṽi(ỹi + x̃′
β−0iβ−0)

(centered) Σβ0
:= 1

σ2

∑J
i,j=1Qij + 1

τ2

µβ0
:= 1

σ2 1
′Qγc

Table 2: Covariance and mean specifications for the update strategies in Sections 3.2-3.7.
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3.5 Collapsed algorithm for a model parameterisation with a non-centered

mean and scale (coll2)

Up to now, we only considered models with the non-centered mean parameterisation specified

by (2.2) and the spatial prior γ|ψ, σ ∼ NJ(0, σ2Q−1). In this section we consider a model where

the prior of the spatial effects is not only non-centered in the mean, but in the scale as well, i.e.

the third model parameterisation given in Table 1. By assuming γ∗|ψ ∼ NJ(0, Q−1), σ appears

as an unknown parameter in the observation equation, in particular we have

µi = ti exp(x′
iβ + σγ∗R(i)).

For this parameterisation and π(·) denoting the prior distributions, the joint posterior of β,γ∗, ψ

and σ is given by

p(β,γ∗, ψ, σ|ỹ, τ ,R) ∝ exp
{

−
1

2

n
∑

i=1

1

s̃2i
(ỹi + x̃′

iβ + σṽ′
iγ

∗)2
}

π(β)π(γ∗|ψ)π(ψ)π(σ).

Following the lines of Section 3.4 we obtain for β the marginalized posterior distribution

β|σ, τ ,R ∼ Np+1((Σ
∗
col)

−1µ∗
col, (Σ

∗
col)

−1).

The full conditional distribution for γ∗ is given by

γ∗|β, τ ,R, σ, ψ ∼ NJ((Σ∗
γ)−1µ∗

γ , (Σ
∗
γ)−1).

The definitions of Σ∗
col, µ∗

col, Σ∗
γ and µ∗

γ can be found in Table 2. The spatial hyperparameter

ψ is again updated using a MH step since the full conditional distribution can not be sampled

from directly. For this model parameterisation we choose a normal prior for σ, in particular σ ∼

N(0, τ2
σ ). Note, that σ is not restricted to take positive values, leading to nonidentifiability, since

the same likelihood results for (σ,γ∗) and (−σ,−γ∗). However, as pointed out by Frühwirth-

Schnatter (2004), this leads to an improved mixing for models with small scales σ2 since boundary

problems for σ are avoided. The full conditional distribution of σ is then again normal, in

particular

σ|β,γ∗, τ ,R ∼ N((Σ∗
σ)−1µ∗σ, (Σ

∗
σ)−1),

see Table 2 for details on Σ∗
σ and µ∗σ.

3.6 Collapsed algorithm for a model parameterisation with a non-centered

mean and variance (coll3)

In this section we consider the model parameterisation non-centered in both mean and variance,

also given in Table 1. In contrast to the non-centered parameterisation in scale only considered

in the previous section, we now assume the prior

γ∗∗ ∼ NJ(0, I).
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The spatial structure incorporated in the precision matrix Q is now moved to the observation

equation given by

µi = ti exp(x′
iβ + σv′

iLγ∗∗),

where L is a lower triangular matrix resulting from the Cholesky decomposition Q−1 = LL′.

The resulting joint posterior distribution of β,γ∗∗, ψ and σ is given by

p(β,γ∗∗, ψ, σ|ỹ, τ ,R) ∝ exp
{

−
1

2

n
∑

i=1

1

s̃2i
(ỹi + x̃′

iβ + σṽ′
iLγ∗)2

}

π(β)π(γ∗∗)π(ψ)π(σ).

The marginalized posterior distribution of β changes to

β|σ, τ ,R ∼ Np+1((Σ
∗∗
col)

−1µ∗∗
col, (Σ

∗∗
col)

−1),

the full conditional distribution of γ∗∗ is given by

γ∗∗|β, τ ,R, σ, ψ ∼ NJ((Σ∗∗
γ )−1µ∗∗

γ , (Σ
∗∗
γ )−1),

with Σ∗∗
col, µ∗∗

col, Σ∗∗
γ and µ∗∗

γ as given in Table 2. While ψ is again updated using a MH step, the

full conditional distribution of σ is given by

σ|β,γ∗∗, ψ, τ ,R ∼ N((Σ∗∗
σ )−1µ∗∗σ , (Σ

∗∗
σ )−1),

see Table 2 for details on Σ∗∗
σ and µ∗∗σ . Here again the normal prior σ ∼ N(0, τ2

σ ) is assumed.

3.7 Centered CAR-Model (centered)

Alternatively, the centered spatial prior γc|β0 ∼ N(β0, σ
2Q−1) with β0 ∼ N(0, τ2) and β−0 ∼

N(0, τ2Ip) can be used. For this model the posterior distribution for β−0 is the same as in

Section 3.3 but with µβ−0
replaced by −

∑N
i=1

1
s̃2
i

x̃β−0i(ỹi + γc
R(i)).

The posterior distribution for γc is given by

γc|β0,β−0,θ, τ ,R,y ∼ NJ(Σ−1
γ µcent

γ ,Σ−1
γ )

where Σγ is the same as in Section 3.2 and µcent
γ is given in Table 2.

β0 is updated in an extra Gibbs step, in particular

β0|β−0,γ,θ, τ ,R,y ∼ N(Σ−1
β0
µβ0

,Σ−1
β0

)

with Σβ0
and µβ0

defined as in Table 2.

4 Simulation studies and application

We aim to apply the developed Gibbs samplers to analyse the expected number of claims in a data

set from a German car insurance company. The data include 16307 policyholders in Bavaria with

11



full comprehensive car insurance within one year and contain information on several covariates

like age and gender of the policyholders, kilometers driven per year and the geographical region

each policyholder is living in. Bavaria is divided into 96 regions. The variability of these data is

very small, 95% of the observations are zero observations, the highest number of claims observed

is only four. The data have been already analysed by Gschlößl and Czado (2005) who considered

both a spatial Poisson regression model as well as spatial models taking overdispersion into

account. They show that the spatial effects are very small for these data and have no significant

contribution to explaining the expected claim number.

In this section, the performance of the Gibbs sampler schemes developed in Sections 2 and 3 will

be examined on simulated data first. For comparison, we additionally use a single site Metropolis

Hastings algorithm for spatial Poisson regression models with an independence proposal where

both β and γ are updated component by component. In particular, we use a t-distribution with

20 degrees of freedom as proposal which has the same mode and inverse curvature at the mode

as the target distribution.

The performance of the samplers is measured in terms of the computation time required in order

to obtain a certain precision of the estimated posterior means of the parameters. The posterior

mean of a variable θ is given by θ̄ :=
∑R

j=1 θ̂
j with θ̂j, j = 1, .., R denoting the MCMC iterates

of θ after burnin. The precision of θ̄ is given by the Monte Carlo standard error of θ̄ which is

defined as σMC(θ̄) :=
σasy(θ̄)√

R
where

σ2
asy(θ̄) := V ar(θ)

(

1 + 2

∞
∑

k=1

ρk(θ)
)

denotes the asymptotic variance of θ̄, V ar(θ) the sample variance and ρk(θ) the autocorrelation

of the MCMC iterates θ̂1, .., θ̂R at lag k. The asymptotic variance will be estimated using the

initial monotone sequence estimator (see Geyer (1992)), defined by

σ̂2
asy(θ̄) := ˆV ar(θ)(1 + 2

2m+1
∑

j=1

ρ̂k(θ)),

where m is chosen to be the largest integer such that the sequence Γm = ρ̂2m(θ) + ρ̂2m+1(θ) is

positive and monotone. Here ˆV ar(θ) := γ̂0, ρ̂k(θ) :=
γ̂k

γ̂0
, γ̂k := 1

R

∑R−k
j=1 (θ̂j − θ̄)(θ̂j+k − θ̄). We

additionally require the estimated empirical autocorrelations ρ̂2m+1(θ) to fall below 0.1.

In order to obtain a certain precision k, R =
σ̂2

asy

k2 samples are needed. Hence, the computation

time required to obtain a precision k for an algorithm with computational costs m per iteration,

is given by R ·m. For a direct comparison of the Gibbs sampler schemes to the MH independence

sampler we consider the computational costs relative to the costs of the MH sampler required

to obtain the same precision of the posterior means of the parameters. This is given by Rrel ·

mrel :=
σ̂2

asy

σ̂2
asy,ind

· m
mind

, where σ̂2
asy,ind and mind denote the estimated asymptotic variance and

the computational costs for one iteration of the MH independence sampler.

We consider two studies. In the first study the influence of the size of the spatial effects on

mixing behaviour is examined, while in the second study the impact of data heterogeneity is
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investigated. In both studies the Gibbs samplers described in Sections 3.3-3.7, i.e. the following

model parameterisations and update schemes are assumed:

• non-centered mean:

– block update of β−0|β0,γ and (β0,γ)|β−0 given in Section 3.3 (block)

– collapsed algorithm given in Section 3.4 (coll1 )

• non-centered mean and scale: collapsed algorithm given in Section 3.5 (coll2 )

• non-centered mean and variance: collapsed algorithm given in Section 3.6 (coll3 )

• centered parameterisation: algorithm given in Section 3.7 (centered)

In the following we will refer to these samplers as block, coll1, coll2, coll3 and centered.

4.1 Computational costs

Recall, that by using the data augmentation scheme described above, we are no longer dealing

with n observations, but with N =
∑n

i=1(yi + 1) latent inter-arrival times τij and mixture

component indicators rij. Both τ and R have to be updated, therefore the number of variables to

sample from in each iteration is 2N+J+p+1(+2 hyperparameters) in comparison to J+p+1(+2

hyperparameters) variables in the MH independence sampler. The MH independence sampler in

contrast requires the calculation of the posterior mode and the inverse curvature at the posterior

mode for each of the J + p + 1 components in every iteration. The posterior mode may be

obtained using the bisection method for example. In our simulation studies, except the sampler

coll3, the Gibbs samplers are always faster than the MH independence sampler. However, the

computational advantage of the Gibbs samplers depends on the complexity of the model. The

computational costs mrel relative to the costs of the MH sampler for one iteration are reported

in Table 3. For the setting in Study 1 with 5000 observations, an intercept and two covariates

for example, the centered Gibbs sampler only takes 0.86 times as long as the MH independence

sampler. For the setting in Study 2 with a larger data set the centered Gibbs sampler even takes

only 0.26 times as long. Among the Gibbs samplers the centered Gibbs sampler is the fastest,

followed closely by the Gibbs sampler using a block update. The collapsed Gibbs samplers non-

centered in the mean (coll1 ) and non-centered in mean and scale (coll2 ) require slightly more

time than the centered Gibbs sampler. The computational effort for the Gibbs sampler in the

model parameterisation non-centered in the mean and the variance (coll3 ) however is more than

twice as large. In this algorithm a Cholesky decomposition of the precision matrix Q−1 has to

be performed in every iteration.

4.2 Study 1: Influence of the size of the spatial effects

We consider two simulated data sets of size 5000 with yi ∼ Poisson(µi), i = 1, .., 5000. For both

data sets the mean µi is specified by

µi = exp(β0 + xi1β1 + xi2β2 + γR(i))

13



sampler Study 1 Study 2

independence 1 1

block 0.87 0.27

centered 0.86 0.26

coll1 0.96 0.30

coll2 0.99 0.31

coll3 2.18 0.57

Table 3: Computation times mrel for the different samplers relative to the MH independence

sampler for the settings in Study 1 and Study 2.

where x1 is an indicator variable and x2 a continuous standardized variable. The exposure is as-

sumed to be ti = 1 for all observations. We assume a simple spatial structure, namely 100 regions

on a 10×10 grid. The spatial effects γ are generated according to the CAR prior γ ∼ N(0, σ2Q−1)

with spatial dependence parameter ψ = 3. For the first simulated data set y1 we assume σ2 = 1

resulting in a range of [min(γ)max(γ)] = [−0.86, 0.85] for the spatial effects, whereas for the

second data set y2 we take σ2 = 0.01 resulting in a range of [min(γ)max(γ)] = [−0.08, 0.08]. The

Gibbs samplers block, coll1, coll2, coll3 and centered as well as the independence MH sampler

are run for 5000 iterations, a burnin of 1000 iterations is taken. As described above, the perfor-

mance of the samplers is measured in terms of the Monte Carlo standard error of the posterior

means of the parameters and the required computation times. Since estimation of the Monte

Carlo error is based on the estimated empirical autocorrelations, this quantity also depends on

the mixing of the samplers. For a fair comparison of the Monte Carlo error of the spatial effects

the model parameterisation of each sampler has to be taken into account. Therefore we compute

the Monte Carlo error for β0 + γ for the MH independence sampler and the samplers block and

collapsed, while for the centered sampler the standard error of γ is considered since here the

intercept is the spatial prior mean and therefore already included in γ. For the coll2 and coll3

samplers the Monte Carlo errors for β0 + σγ and β0 + σLγ, respectively, are computed.

In the left panel of Table 4, for each sampler the Monte Carlo standard errors and the per-

formance relative to the MH independence sampler Rrel ·mrel are reported for the regression

parameters β1, β2 and the spatial effects in data set y1. For the spatial effects the average error,

taken over all J components, is given. Additionally plots of the empirical estimated autocor-

relations are presented in Figure 1. In the left panel the autocorrelations for 25 of the spatial

effects, in the right panel autocorrelations for the regression effects are plotted. Mixing for all

Gibbs samplers is reasonable well, in average autocorrelations of the spatial effects are below 0.1

at a lag of about 16 to 18. The average Monte Carlo error for the spatial effects is around 0.01

for all Gibbs samplers. The Monte Carlo error of the regression parameters however is lower

for the collapsed Gibbs samplers, for the block and the centered Gibbs sampler especially the

autocorrelations of β1 decrease rather slowly.

The independence MH sampler in contrast, displays the smallest Monte Carlo error for both
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spatial effects and regression parameters. In average the autocorrelations of β0 + γj are below

0.1 at a lag 3 already, the autocorrelations for the regression parameters decrease rapidly as

well. Considering the computational effort relative to the MH independence sampler, given by

Rrel · mrel, the MH independence sampler outperforms the Gibbs samplers considerably. The

computational effort required to obtain the same precision of the posterior means of the spatial

effects is more than 5 times as large for the Gibbs samplers compared to the independence

sampler.

Data set y1 Data set y2

sampler spatial β1 β2 spatial β1 β2

effects effects

independence 0.0041 0.0015 0.0032 0.0021 0.0013 0.0030

1 1 1 1 1 1

block 0.0100 0.0039 0.0130 0.0031 0.0042 0.0108

5.18 5.88 14.36 1.90 9.08 11.28

centered 0.0102 0.0045 0.0115 0.0061 0.0078 0.0279

5.32 7.74 11.11 7.26 30.96 74.38

coll1 0.0101 0.0031 0.0117 0.0022 0.0024 0.0097

5.83 4.10 12.83 1.05 3.27 10.04

coll2 0.0099 0.0027 0.0105 0.0025 0.0029 0.0114

5.77 3.21 10.66 1.40 4.93 14.30

coll3 0.0101 0.0024 0.0102 0.0023 0.0026 0.0133

13.23 5.58 22.15 2.62 8.72 42.85

Table 4: Estimated σ̂MC (upper row) for the regression parameters β1, β2 and average estimated

σ̂MC for the spatial effects γ + β0 in the independence, block, coll1 sampler, γ in the centered,

β0 + σγ in the coll2 and β0 + σLγ in the coll3 sampler, as well as Rrel ·mrel (lower row) for all

parameters for data set y1 and y2 using different update strategies in Study 1.

The corresponding results for data set y2 with small spatial effects are reported in the right panel

in Table 4, plots of the estimated empirical autocorrelations are given in Figure 1. Here, clearly

the lowest precision and worst mixing is obtained if the Gibbs sampler based on the centered

model parameterisation is used. This confirms the results given in Gelfand et al. (1995). They

show that for a hierarchical normal linear model with random effects the centered parameterisa-

tion is efficient if the variance of the random effects dominates the variance in the data. However,

if the variance of the random effects is very small in contrast to the variability of the data (as

it is the case in data set y2), high posterior correlations result. For the block and particularly

the collapsed Gibbs samplers a considerably lower Monte Carlo error is obtained. The average

Monte Carlo error of the spatial effects in the collapsed sampler coll1 is almost as small as in the

MH independence sampler. For the regression effects however, the MH independence sampler
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exhibits lower Monte Carlo standard errors. The computational costs Rrel ·mrel relative to the

MH sampler, which are required to obtain the same precision of the posterior means of the pa-

rameters are greater 1 for all Gibbs samplers for both spatial effects and regression parameters.

Hence, the independence sampler gives the best performance for data set y2 as well.

The variance of the two simulated data sets y1 and y2 takes the values var(y1) = 0.51 and

var(y2) = 0.49. However, the variability of our real data from a car insurance company is very

small, the variance of these data is only 0.05. Therefore we conduct a second simulation study

where we examine whether the heterogeneity of the data influences the performance of the

samplers.

4.3 Study 2: Influence of data heterogeneity

We simulate two data sets based on the design of the real data where, according to Gschlößl

and Czado (2005), eight covariates significant for explaining the expected claim number yi were

observed, i.e. yi ∼ Poisson(µi), i = 1, .., 16307 with

µi = ti exp(x′
iβ + γR(i)).

Here xi = (1, xi1, .., xi8) and xik, k = 1, .., 8 are standardized categorical and metrical covariates,

the observation specific exposure ti takes values up to one year. In this setting we have 96 irreg-

ular regions in Bavaria. The spatial effects γ again are generated according to the CAR prior

γ ∼ N(0, σ2Q−1) with ψ = 8 and σ2 = 0.01. This results in small spatial effects with a range

of [−0.06 0.08], i.e. spatial effects similar to the ones observed in our real data set. For the

first data set y3 the intercept β0 is taken to be −1, whereas for the second data set y4 we take

β0 = −2.5. For the remaining regression parameters the same values are assumed for both data

sets. The resulting variances of y3 and y4 are V ar(y3) = 0.46 and V ar(y4) = 0.05, i.e. data set

y4 has very low heterogeneity and is close to our real data. The variance of data set y3 is not

particularly high either, but in comparison to data set y4 we will refer to this data set as data

with high heterogeneity.

The block, centered, coll1, coll2 and coll3 Gibbs samplers are run for 5000 iterations, the first

1000 iterations are discarded for burnin. For comparison again the MH independence sampler is

applied. The Monte Carlo errors for the posterior means of the regression parameters β1, .., β8,

the spatial effects γ in the centered, β0+γ in the non-centered mean, β0+σγ in the non-centered

mean and scale and β0 + σLγ in the non-centered mean and variance model parameterisation

and the quantities Rrel ·mrel are reported in Table 5. For the high heterogeneity data set y3 the

collapsed Gibbs samplers coll2 and coll3 exhibit the lowest Monte Carlo errors for the spatial

effects among the Gibbs samplers. The sampler coll2 even only requires 38 % of the computa-

tional effort of the MH sampler in order to obtain the same precision for the spatial effects. The

precision and autocorrelations of the regression effects however are considerably smaller in the

independence sampler compared to all Gibbs samplers. The precision and autocorrelations (see

Figure 2) of the regression effects however are considerably smaller in the independence sampler

compared to all Gibbs samplers. In order to achieve a high precision like in the MH sampler
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for all parameters, for each Gibbs sampler the maximum relative effort Rrel · mrel, occurring

for spatial and regression parameters, is required. Since the maximum values Rrel · mrel are

considerably greater than 1 for each Gibbs sampler, the MH sampler is clearly superior to the

Gibbs samplers.

The average Monte Carlo error for the spatial effects in data set y4 with low heterogeneity

is rather high for the three Gibbs sampler schemes block, centered and coll1 for both spatial

effects and regression parameters, the estimated empirical autocorrelations plotted in Figure 2

decrease very slowly. While for the high heterogeneity data y3 the computational costs in order

to obtain the same precision for the spatial effects of the block Gibbs sampler are only 0.65

times as large as of the MH sampler, for the data y4 the performance of the Gibbs sampler is

clearly worse with Rrel ·mrel = 5.37. Results are improved for the collapsed algorithms based on

the model parameterisations non-centered in the scale (coll2 ) and in the variance (coll3 ). The

sampler coll2 performs even better than the MH sampler (Rrel ·mrel = 0.45). As indicated in

Section 3.5, the model parameterisation with non-centered scale is supposed to improve mixing

particularly for models with small scale σ2 which is the case for data sets y3 and y4. However,

the Monte Carlo errors for the regression parameters are rather high for all Gibbs samplers and

in particular considerably higher than for the high heterogeneity data y3. The MH independence

sampler in contrast exhibits a high precision for all parameters again. Compared to data set y3,

the standard errors for all parameters resulting from the MH sampler are about twice as large

for data set y4, this loss of precision however is much smaller than for the Gibbs samplers. Ac-

cording to the performance measure Rrel ·mrel for the regression parameters, the MH sampler

outperforms the Gibbs samplers considerably. For example, although the Gibbs sampler coll2

sampler only requires 31 % of the computation time of the MH sampler for one iteration (see

Table 3), 30.33 (Rrel ·mrel for β2) times the effort of the MH sampler for data set y4 would be

needed in order to obtain for all parameters a precison comparable to the MH sampler.

Note that, compared to the collapsed algorithm coll2, the collapsed algorithm coll3 does not

display significantly lower standard errors, neither in Study 1 nor in Study 2. The additional

computational effort required for coll3 which is more than twice as large as for coll2, see Table

3, does not pay off.

4.4 Application to car insurance data

Finally we apply the discussed Gibbs samplers as well as the independence MH sampler on the

car insurance data set described at the beginning of this section. The Monte Carlo errors for

the posterior means of the regression and the spatial effects as well as the corresponding values

of Rrel ·mrel are reported in Table 6. Similar results as for data set y4 which is very close to

our real data, are observed. In particular for the regression parameters, the performance of all

Gibbs samplers is considerably worse than the performance of the MH independence sampler.

When using the non-centered scale and variance parameterisations at least for the spatial effects

reasonable low errors are obtained, however, according to the relative effort Rrel ·mrel the MH

sampler is still superior.
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data sampler spatial β1 β2 β3 β4 β5 β6 β7 β8

effects

ind 0.0020 0.0346 0.0327 0.0003 0.0003 0.0008 0.0010 0.0003 0.0002

1 1 1 1 1 1 1 1 1

y3 block 0.0031 0.1771 0.1627 0.0013 0.0022 0.0042 0.0039 0.0015 0.0009

0.65 7.07 6.68 5.07 14.54 7.44 4.11 6.75 5.47

centered 0.0036 0.1955 0.1768 0.0015 0.0020 0.0038 0.0045 0.0013 0.0010

0.84 8.30 7.60 6.50 11.56 5.87 5.27 4.88 6.50

coll1 0.0040 0.1487 0.1635 0.0011 0.0018 0.0032 0.0032 0.0015 0.0009

1.20 5.54 7.50 4.03 10.80 4.80 3.07 7.50 6.08

coll2 0.0022 0.1561 0.1736 0.0014 0.0021 0.0030 0.0031 0.0012 0.0010

0.38 6.31 8.74 6.75 15.19 4.36 2.98 4.96 7.75

coll3 0.0024 0.1899 0.1505 0.0014 0.0022 0.0031 0.0028 0.0016 0.0011

0.82 17.17 12.07 12.41 30.65 8.56 4.47 16.21 17.24

ind 0.0048 0.0673 0.0611 0.0006 0.0006 0.0017 0.0021 0.0006 0.0005

1 1 1 1 1 1 1 1 1

y4 block 0.0214 0.5199 0.3323 0.0038 0.0041 0.0217 0.0211 0.0076 0.0030

5.37 16.11 7.99 10.83 12.61 43.99 27.26 43.32 9.72

centered 0.0114 0.5906 0.4910 0.0040 0.0052 0.0150 0.0209 0.0060 0.0055

1.47 20.02 16.79 11.56 19.53 20.24 25.75 26.00 31.46

coll1 0.0189 0.6749 0.6181 0.0052 0.0057 0.0129 0.0133 0.0049 0.0049

4.65 30.17 30.70 22.53 27.08 17.27 12.03 20.01 28.81

coll2 0.0058 0.5505 0.6044 0.0038 0.0048 0.0076 0.0070 0.0050 0.0041

0.45 20.74 30.33 12.43 19.84 6.20 3.44 21.53 20.84

coll3 0.0091 0.5301 0.4789 0.0052 0.0056 0.0097 0.0096 0.0048 0.0044

2.05 35.36 35.02 42.81 49.65 18.56 11.91 36.48 44.14

Table 5: Estimated σ̂2
MC (upper row) for the regression parameters β1, .., β8 and estimated

average σ̂2
MC for the spatial effects γ + β0 in the independence, block, coll1 sampler, γ in the

centered, β0 + σγ in the coll2 and β0 + σLγ in the coll3 sampler, as well as Rrel ·mrel (lower

row) for data set y3 and y4 using different update strategies in Study 2.

5 Summary and conclusions

We have presented a new MCMC methodology for spatial Poisson regression models, extending

the approach by Frühwirth-Schnatter and Wagner (2004b). Using data augmentation we have

shown that a straightforward Gibbs sampler for spatial Poisson models is available. Several up-

date schemes like a joint block update of the intercept and the spatial effects as well as collapsed

algorithms have been discussed. Further we have addressed the issue of model parameterisa-

tion, centered as well as non-centered model parameterisations in the mean, the scale and the

variance have been considered. The performance of the Gibbs sampler based on different model

parameterisations and update schemes has been compared to a single site MH independence

sampler on simulated and real data. Performance is measured in terms of the computational
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sampler spatial β1 β2 β3 β4 β5 β6 β7 β8

effects

independence 0.0046 0.0673 0.0628 0.0006 0.0007 0.0017 0.0020 0.0006 0.0005

1 1 1 1 1 1 1 1 1

block 0.0192 0.5201 0.3823 0.0051 0.0083 0.0116 0.0203 0.0037 0.0047

4.70 16.13 10.01 19.51 37.96 12.57 27.82 10.27 23.86

centered 0.0138 0.5465 0.5847 0.0045 0.0068 0.0126 0.0145 0.0048 0.0028

2.34 17.14 22.54 14.63 24.54 14.28 13.67 16.64 8.15

coll1 0.0207 0.5967 0.5753 0.0040 0.0073 0.0155 0.0082 0.0043 0.0032

6.08 23.58 25.28 13.33 32.63 24.94 5.04 15.41 12.29

coll2 0.0116 0.4359 0.6172 0.0046 0.0063 0.0122 0.0096 0.0057 0.0044

1.97 13.00 29.94 18.22 25.11 15.97 7.14 27.98 24.01

coll3 0.0100 0.5167 0.5945 0.0056 0.0060 0.0115 0.0110 0.0054 0.0036

2.69 33.60 51.08 49.65 41.88 26.08 17.24 46.17 29.55

Table 6: Estimated σ̂MC (upper row) for the regression parameters β1, .., β8 and average esti-

mated σ̂MC for the spatial effects γ + β0 in the independence, block, coll1 sampler, γ in the

centered, β0 + σγ in the coll2 and β0 + σLγ in the coll3 sampler, as well as Rrel ·mrel (lower

row) for the car insurance data using different update strategies.

costs required in order to obtain the same precision of the posterior means of the parameters.

For data which are not too homogeneous, the Gibbs samplers display good mixing and rea-

sonable small Monte Carlo errors. In particular for data with small spatial random effects, the

performance is improved when collapsed Gibbs samplers are used, while the centered parame-

terisation is not very efficient any more in this case. The MH independence sampler however

exhibits the smallest Monte Carlo errors for all parameters for data with both small and large

spatial effects. Taking additionally the required computation times of the samplers into account,

the MH sampler gives the best performance.

For data with low heterogeneity the Monte Carlo errors increase significantly for all Gibbs sam-

plers, mixing of the samplers is much worse. The MH sampler in contrast also mixes well for

low heterogeneity data, the precision of the posterior means of the parameters is considerably

higher than for the Gibbs samplers. Considering the computation times of the samplers and the

required MCMC iterations in order to obtain the same precision for all parameters, the MH

sampler clearly outperforms the Gibbs samplers for low heterogeneity data. Similar results are

observed for the real data which also display low heterogeneity.

In the literature various approaches for MCMC estimation in spatial Poisson models are pro-

vided. Knorr-Held and Rue (2002) discuss efficient block sampling MH algorithms for Markov

random field models in disease mapping, based on the methodology developed in Rue (2001). Ha-

ran et al. (2003) study MH algorithms with proposal distributions based on Structured MCMC,

introduced by Sargent et al. (2000), for spatial Poisson models, while Christensen et al. (2005)

discuss Langevin-Hastings updates in spatial GLMM’s. Rue et al. (2004) present non-Gaussian
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approximations to hidden Markov random fields and give applications in disease mapping and

geostatistical models. These methods have been found to be superior to a conventional MH

sampler only performing individual updates of the parameters. Therefore, since a single site MH

sampler clearly outperformed the Gibbs samplers developed in this paper, a comparison of the

Gibbs samplers to these methods seems to be unnecessary. However, the performance of the

Gibbs samplers might be improved by applying the reparameterisation techniques presented in

Christensen et al. (2005), which is subject of current research.

A Sampling the inter-arrival times

Given y and α, the inter-arrival times for different observations i = 1, .., n are independent. For

fixed i however, τi1, .., τi,yi+1 are stochastically dependent, but independent of the component

indicators R. The inter-arrival times τi1, .., τiyi
are independent of α and only depend on the

number of jumps, whereas τi,yi+1 depends on the model parameters. Using this we have

p(τ |y,α,R) =

n
∏

i=1

p(τi,yi+1|yi,α, τi1, .., τiyi
)p(τi1, .., τiyi

|yi)

Given yi = n, the n arrival times of a Poisson process are distributed as the order statistics

of n U([0, 1]) distributed random variables, see for example Mikosch (2004). The last inter-

arrival time τi,yi+1, given yi, τi1, .., τiyi
, is exponentially distributed with mean 1

µi
= 1

ti exp(z′iα)

conditionally on being greater than 1 −
∑yi

j=1 τij. Using the lack of memory property of the

exponential distribution this corresponds to sampling τi,yi+1 from an exponential distribution

with mean 1
µi

plus an ”offset” 1−
∑yi

j=1 τij. Therefore the inter-arrival times can be sampled as

follows:

• If yi > 0

– sample yi random numbers ui1, .., uiyi
∼ U([0, 1])

– sort these random numbers: ui,(1), .., ui,(yi)

– define τij as the increments τij = ui,(j) − ui,(j−1), j = 1, .., yi where uj,(0) := 0

– sample τi,yi+1 = 1 −
∑yi

j=1 τij + ζi, where ζi ∼ Exponential(µi)

• If yi = 0 sample τi1 = 1 + ζi, where ζi ∼ Exponential(µi)

B Sampling the component indicators

The component indicators R are mutually independent given τ ,α, therefore p(R|τ ,α) =
∏n

i=1

∏yi+1
j=1 p(rij |τij,α). Further

p(rij = k|τij,α) =
p(rij = k, τij ,α)

p(τij,α)
=
p(τij|rij = k,α)p(rij = k)

p(τij |α)

∝ p(τij|rij = k,α)wk (2.1)
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since wk = p(rij = k). Since log τij|α, rij ∼ N(− log µi +mrij
, s2rij

), τij is log normal distributed,

i.e.

p(τij |rij = k,α) ∝
1

skτij
exp
[

−
1

2

( log(τij) + log µi −mk

sk

)2]

.

rij can therefore be sampled from the discrete distribution (2.1) with five categories.

C Starting values

Starting values for the component indicators rij are obtained by drawing random numbers from

1 to 5. For τij starting values are generated according to the sampling procedure described

in Appendix A. For observations equal to zero we sample ζi ∼ Exponential(0.1), for observa-

tions greater than zero ζi ∼ Exponential(yi), as suggested in Frühwirth-Schnatter and Wagner

(2004b).

D Details on algorithm in Section 3.4

For the collapsed algorithm in Section 3.4 we consider p(β|τ ,R) =
∫

p(β,γ|θ, τ ,R)dγ. We have

p(β,γ|θ, τ ,R) ∝ exp
{

−
1

2

[

N
∑

i=1

1

s̃2i
(ỹi + x̃′

iβ + ṽ′
iγ)2 + γ′σ−2Qγ + β′τ−2Iβ

]}

= exp
{

−
1

2

[

β′τ−2Iβ +

N
∑

i=1

1

s̃2i
(ỹi + x̃′

iβ)2
]}

× exp
{

−
1

2

[

γ ′
(

N
∑

i=1

1

s̃2i
ṽiṽ

′
i + σ−2Q

)

γ + 2γ ′
N
∑

i=1

1

s̃2i
ṽi(ỹi + x̃′

iβ)
]}

:= c(β) × exp
{

−
1

2

[

γ ′Aγ + 2γ ′a
]}

(4.2)

where A :=
∑N

i=1
1
s̃2
i

ṽiṽ
′
i + σ−2Q. Further

exp
{

−
1

2

[

γ ′Aγ + 2γ ′a
]}

∝ exp
{

−
1

2

[

γ′Aγ + 2γ′A(A−1a) + (A−1a)′A(A−1a) − (A−1a)′A(A−1a)
]}

∝ exp
{

−
1

2

[

(γ +A−1a)′A(γ +A−1a) − (A−1a)′A(A−1a)
]}

and therefore
∫

exp
{

−
1

2

[

γ ′Aγ + 2γ ′a
]}

dγ ∝ (2π)
J
2 |A|−

1

2 exp
{1

2
(A−1a)′A(A−1a)

}

∝ exp
{1

2
(A−1a)′A(A−1a)

}

(4.3)
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From (4.2) and (4.3) it then follows that

∫

p(β,γ|θ, τ ,R)dγ

∝ c(β) exp
{1

2
(A−1a)′A(A−1a)

}

∝ exp
{

−
1

2

[

β′(τ−2I +

N
∑

i=1

1

s̃2i
x̃ix̃

′
i)β + 2β′

N
∑

i=1

1

s̃2i
x̃iỹi − a′A−1a

]}

Finally, with

a′A−1a =
(

N
∑

i=1

1

s̃2i
ṽiỹi +

N
∑

i=1

1

s̃2i
ṽix̃

′
iβ
)′
A−1

(

N
∑

i=1

1

s̃2i
ṽiỹi +

N
∑

i=1

1

s̃2i
ṽix̃

′
iβ
)

∝ β′
(

N
∑

i=1

1

s̃2i
ṽix̃

′
i

)′
A−1

(

N
∑

i=1

1

s̃2i
ṽix̃

′
i

)

β + 2β′
(

N
∑

i=1

1

s̃2i
ṽix̃

′
i

)′
A−1

(

N
∑

i=1

1

s̃2i
ṽiỹi

)

it follows that

p(β|τ ,R) ∝ exp
{

−
1

2

[

β′
(

τ−2I +
N
∑

i=1

1

s̃2i
x̃ix̃

′
i − (

N
∑

i=1

1

s̃2i
ṽix̃

′
i)
′A−1(

N
∑

i=1

1

s̃2i
ṽix̃

′
i)
)

β

− 2β′
(

(

N
∑

i=1

1

s̃2i
ṽix̃

′
i)
′A−1(

N
∑

i=1

1

s̃2i
ṽiỹi) −

N
∑

i=1

1

s̃2i
x̃iỹi

)]}

,

i.e.

β|τ ,R ∼ N(Σ−1
colµcol,Σ

−1
col)

with

Σcol := τ−2I +

N
∑

i=1

1

s̃2i
x̃ix̃

′
i − (

N
∑

i=1

1

s̃2i
ṽix̃

′
i)
′A−1(

N
∑

i=1

1

s̃2i
ṽix̃

′
i)

and

µcol := (
N
∑

i=1

1

s̃2i
ṽix̃

′
i)
′A−1(

N
∑

i=1

1

s̃2i
ṽiỹi) −

N
∑

i=1

1

s̃2i
x̃iỹi.
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Figure 1: Estimated empirical autocorrelations for the spatial effects (left panel) and the regres-

sion parameters β1 (solid),β2 (dashed) (right panel) for the independence MH sampler (i), the

block (ii), centered (iii), coll1 (iv), coll2 (v) and coll3 (vi) Gibbs samplers for data sets y1 and

y2.
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Figure 2: Estimated empirical autocorrelations for the spatial effects (left panel) and the re-

gression parameters β1, .., β8 (right panel) for the independence MH sampler (i), the block (ii),

centered (iii), coll1 (iv), coll2 (v) and coll3 (vi) Gibbs samplers for data sets y3 and y4.
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