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Comparing the efficiency of structural and func-

tional methods in measurement error models

Hans Schneeweiss and Alexander Kukush

Abstract

The paper is a survey of recent investigations by the authors and
others into the relative efficiencies of structural and functional estima-
tors of the regression parameters in a measurement error model. While
structural methods, in particular the quasi-score (QS) method, take
advantage of the knowledge of the regressor distribution (if available),
functional methods, in particular the corrected score (CS) method,
discards such knowledge and works even if such knowledge is not
available. Among other results, it has been shown that QS is more
efficient than CS as long as the regressor distribution is completely
known. However, if nuisance parameters in the regressor distribution
have to be estimated, this is no more true in general. But by mod-
ifying the QS method, the adverse effect of the nuisance parameters
can be overcome. For small measurement errors, the efficiencies of QS
and CS become almost indistinguishable, whether nuisance parame-
ters are present or not. QS is (asymptotically) biased if the regressor
distribution has been misspecified, while CS is always consistent and
thus more robust than QS.

1 Introduction

In recent years a number of results on measurement error models have been
derived by the authors and others that deal with the relative efficiencies
of structural and functional estimation methods. The first ones take the
regressor distribution into account, the latter ones do not rely on this distri-
bution. We want to review these results focussing mainly on two estimators:
the structural quasi-score (QS) estimator and the functional corrected score
(CS) estimator. Both are consistent, but differ in their asymptotic covariance
matrices (ACMs). The most important result will be that, generally speak-
ing, QS is more efficient than CS, but that this property may become invalid
when nuisance parameters describing the regressor distribution need to be
estimated. The result has also to be qualified when the regressor distribution
is misspecified because then QS becomes biased. If the measurement errors
are small QS and CS are essentially equally efficient.

1



We briefly also mention other estimators. For a recent review on the broader
field of measurement error models, see Schneeweiss and Augustin (2006).
Books on measure and error models are Schneeweiss and Mittag (1986), Fuller
(1987), Carroll et al. (1995), Cheng and Van Ness (1999), and Wansbeek and
Meijer (2000).

Section 2 introduces the measurement error model and Section 3 the esti-
mators we want to consider. Section 4 has some examples. In Section 5 we
introduce the asymptotic covariance matrix and discuss a few ”technical” as-
sumptions needed to derive the asymptotic properties of the estimators. The
main Section 6 reviews the various efficiency results, which are interpreted
in the Conclusion.

2 The model

The classical measurement error model consists of three parts: 1. a regression
model relating on unobservable (generally vector valued) regressor variable ξ
to a response variable y, which here is taken to be observable without mea-
surement errors; 2. a measurement model relating the unobservable ξ to an
observable surrogate variable x; 3. a distributional model for ξ. We consider
these three parts in some detail.

The regression model can be described by a conditional distribution of y given
ξ and given an unknown parameter vector θ. We assume this distribution
to be represented by a probability density function f(y|ξ; θ) with respect to
some underlying σ-finite measure on the Borel σ-field of IR. Here we restrict
the distribution to come from the exponential class, i.e., we assume f to be
of the form

f(y|ξ; β, ϕ) = exp
(yη − c(η)

ϕ
+ a(y, ϕ)

)
(1)

with
η = η(ξ, β),

where β is the regression parameter vector and ϕ a scalar dispersion parame-
ter such that θ = (βT , ϕ)T and a, c, and η are known functions, cf. Kukush
and Schneeweiss (2005). This class comprises the class of generalized linear
models, where η = η(ξT β). The conditional mean and conditional variance
of y given ξ are, respectively,

E(y|ξ) = m∗(ξ; β) = c′(η) (2)

V(y|ξ) = v∗(ξ; β, ϕ) = ϕ c′′(η). (3)
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The conditional mean function m∗ is the regression function to be estimated.
Although we started from model (1) and derived the mean and variance func-
tions (2) and (3), we could have also started from a mean-variance model (2),
(3) from the outset. Most of the following results would still hold true.

The classical measurement model assumes that the observed variable x differs
from the latent ξ by a measurement error variable δ, which is independent
of ξ and y:

x = ξ + δ

with Eδ = 0. Here we assume that δ ∼ N(0, Σδ) with Σδ known.

The parameter θ has to be estimated with the help of observable data
(xi, yi), i = 1, . . . , n. We assume that (yi, ξi, δi) are i.i.d. variables.

The distributional model for ξ either states that the ξ are unknown constants
(functional variant) or that ξ is a random variable with a distribution given
by a density h(ξ; γ), where γ is a vector of nuisance parameters describing
the distribution of ξ. The arguments of this paper are based on the structural
variant. We typically assume ξ ∼ N(µξ, Σξ), although we also sometimes let
ξ follow a finite mixture of normal distributions. Most of the time we assume
γ to be known. If not, it can often be estimated in advance (or pre-estimated)
without regard to the regression model and the data yi. E.g., if ξ is normal,
µξ and Σξ can be estimated by x̄ and Sx − Σδ, respectively, where x̄ and
Sx −Σδ are the empirical mean vector and covariance matrix of the data xi.

3 Estimators

If the variable ξ were observable, one could estimate β (and also ϕ) by max-
imum likelihood. The corresponding likelihood-score function for β is given
by

ψ∗(y, ξ; β, ϕ) =
∂ log f(y|ξ; β, ϕ)

∂β
=

y − c′(η)

ϕ

∂η

∂β
(4)

or, because of (2) and (3),

ψ∗(y, ξ; β, ϕ) = {y −m∗(ξ; β)}v∗(ξ; β, ϕ)−1∂m∗(ξ; β)

∂β
. (5)

For notational simplicity, we often omit the arguments in the functions m∗, v∗,
etc. We also denote a derivative with respect to a variable z, say, by using
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the subscript z. Then (5) can also be written as ψ∗ = (y −m∗)v∗−1m∗
β.

The score function ψ∗ has to be supplemented by a score function for ϕ. For
simplicity, let us assume in what follows that ϕ is known, unless otherwise
stated. Thus ϕ may be omitted in the argument of ψ∗. The following results
still hold true when φ is unknown and has to be estimated.

The score function ψ∗ is unbiased, which means that Eψ∗(y, ξ; β) = 0,
where the expectation is taken for the same β as the β in the argument.
As a consequence, the estimator β̂∗ of β based on ψ∗ (i.e., the solution to∑n

i=1 ψ∗(yi, ξi; β̂
∗) = 0) is consistent. But as ξ is unobservable, this estimator

is not feasible.

If the latent variable ξ is replaced with the surrogate x, we get an estimating
function ψ∗(y, x; β), which can be used to construct the so-called naive (N)
estimator β̂N as the solution to the equation

∑n
i=1 ψ∗(yi, xi; β̂N) = 0. Since

ψ∗ as a function of y and x is not unbiased the resulting estimator is inconsis-
tent. Nevertheless, one can study its (asymptotic) bias and its (asymptotic)
variance, cf. Kukush and Schneeweiss (2005).

In order to construct consistent estimators we typically need to be given some
additional pieces of information. Here we assume that the measurement error
covariance matrix Σδ is known. We distinguish between two types of estima-
tors, functional and structural ones. The latter make use of the distribution
of ξ, which therefore must be given, at least up to the unknown parameter
vector γ. The former does not need the distribution of ξ and works even
when ξ is not random (functional variant).

Among the functional methods, we consider the corrected score (CS) estima-
tor, cf. Nakamura (1990), Stefanski (1989). (Another one is SIMEX, which
however is not always consistent, cf. Cook and Stefanski (1994)). We want
to construct an unbiased estimating function for β in the variables y and x.
To this purpose, we need to find functions g1 and g2 of x and β such that

E [g1(x; β)|ξ] = ϕv∗−1 m∗
β = ηβ (6)

E [g2(x; β)|ξ] = ϕm∗ v∗−1 m∗
β = c′(η) ηβ. (7)

Then

ψC(y, x; β) = yg1(x; β)− g2(x; β) (8)

is the so-called corrected score function. Because of E(ψC |y, ξ) = ϕψ∗ and
Eψ∗ = 0, ψC is unbiased and can therefore be used to construct a consistent
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estimator β̂C of β as the solution to
∑n

i=1 ψC(yi, xi; β̂C) = 0. The functions
g1 and g2 do not always exist. Stefanski (1989) gives conditions for their
existence and shows how to find them in case they exist.

Among the structural methods we consider the quasi score (QS) and the
maximum likelihood (ML) estimators (The regression calibration (RC) esti-
mator, cf. Caroll et al. (1995), is not consistent in general, although it often
reduces the bias considerably).
For QS, we construct the (obviously unbiased) quasi-score function very sim-
ilar to (5) but with

m(x; β) := E(y|x)

v(x; β) := V(y|x)

in place of m∗(ξ; β) and v∗(ξ; β), respectively:

ψQ(y, x; β) = [y −m(x; β)] v(x; β)−1mβ(x; β). (9)

Again we dropped the parameter ϕ taking it to be known. In addition,
we disregarded in the notation the dependence of m and v on the nuisance
parameter γ describing the regressor distribution. Indeed, in order to com-
pute m and v we need the conditional distribution of ξ given x, and this
depends on the distribution of ξ with its parameter γ. If ξ ∼ N(µξ, Σξ), then
ξ|x ∼ N(µ(x), T ) with

µ(x) = µξ + Σξ(Σξ + Σδ)
−1(x− µξ). (10)

T = Σδ − Σδ(Σξ + Σδ)
−1Σδ, (11)

cf. Shklyar and Schneeweiss (2005) and, for an extension to a mixture of
normals, Schneeweiss and Cheng (2003). Very often the first component of
the vector x is the dummy variable 1 and the first component of δ is 0. Then
the first row and column of Σδ and also of Σξ are 0. In this case the inverse
of Σξ + Σδ is to be understood as the Moore-Penrose generalized inverse.
The matrix T then also has zeros in the first row and column, and the first
component of µ(x) is 1.

Given the conditional distribution of ξ|x one can compute m and v starting
from the original mean and variance functions, m∗ and v∗, of the error-free
model:

m(x; β) = E [m∗(ξ; β)|x]

v(x; β) = V [m∗(ξ; β)|x] + E [v∗(ξ; β)|x] .
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The quasi-score function (9) constructed in this way is, of course, unbiased
and thus produces a consistent QS estimator β̂Q as the solution to the esti-

mating equation
∑n

i=1 ψQ(yi, xi; β̂Q) = 0.

Maximum likelihood (ML) is based on the joint density of x and y, which is
given (again omitting ϕ and γ) by

q(y, x; β) =

∫
f(y|ξ; β)g(x|ξ)h(ξ)dξ,

where g is the density of N(ξ, Σδ). Alternatively, one can express q(y, x) as
a conditional expectation of the model density f(y|ξ) given y and x:

q(y, x; β) = E [f(y|ξ; β)|y, x] k(x),

where k is the density of X and may be omitted if γ is known or has been
estimated in advance. Thus in contrast to QS, which relies on the conditional
expectations only of the error-free mean and variance functions, m∗ and
v∗, ML relies on the conditional expectation of the whole error-free model
distribution. Therefore, ML is more sensitive than QS with respect to a
potential model misspecification because QS is always consistent as long as
at least the mean function (along with the density of ξ) has been correctly
specified. In addition, the likelihood function is generally much more difficult
to compute than the quasi score function. This often justifies the use of the
relatively less efficient QS instead of the efficient ML method.

4 Examples

A few examples will illustrate the concepts introduced in the previous sec-
tions, cf. also Carroll et al. (1995).

4.1 Polynomial model

For scalar ξ the polynomial model is given by the equation, cf. Cheng and
Schneeweiss (2002),

y = β0 + β1ξ + · · ·+ βkξ
k + ε,

where ε ∼ N(0, σ2
ε) and ε is independent of ξ. Here η =

∑k
0 βrξ

r, c(η) = 1
2
η2,

and ϕ = σ2
ε .

To construct the CS function, we first need to find functions tr(x) such that

E [tr(x)|ξ] = ξr.
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If turns out that, under normal δ, tr(x) is a polynomial of degree r given by,
cf. Schneeweiss (2005),

tr(x) =
r∑

j=0

(
r
j

)
µ+

j xr−j

µ+
j :=





0 if j is odd

(j − 1)!!(−1)
j
2 σj

δ if j is even,

where (j − 1)!! is short for 1 · 2 · 3 · · · (j − 1) and (−1)!! = 1. Alternatively,
tr(x) can be computed recursively by the recursion formula, cf. Stefanski
(1989),

tr+1(x) = tr(x)x− rtr−1(x)σ2
δ ; t0(x) = 1, t−1(x) = 0.

In fact, tr(x) = Hr(x/σδ)σ
r
δ , where the Hr(x) are the Hermite polynomials.

For computing tr under non-normal δ, cf. Cheng and Schneeweiss (1998).
The CS function can now be set up as follows

ψC(y, x; β) = yt(x)− T (x)β,

where t(x) = (t0(x), . . . , tk(x))> and T (x) is a (k + 1)× (k + 1) matrix with
Trs(x) = tr+s(x), r, s = 0, . . . , k. Thus for the polynomial model,

g1(x; β) = t(x), g2(x; β) = T (x)β.

For constructing the QS function, we first need to find µr(x) := E(ξr|x). For
normal ξ, we find that, cf. Schneeweiss (2005),

µr(x) =
r∑

j=0

(
r
j

)
µ∗jµ1(x)r−j

µ∗j =





0 if j is odd

(j − 1)!!τ j if j is even,

where µ1(x) = µ(x) of (10) and τ 2 = T of (11), both for scalar x. Alterna-
tively, µr+1(x) can be computed recursively by

µr+1(x) = µr(x)µ1(x) + rµr−1(x)τ 2, µ0(x) = 1, µ−1(x) = 0.

7



The mean and variance functions are now given by

m(x; β) = µ̃(x)>β

v(x; β) = σ2
ε + β>(M(x)− µ̃(x)µ̃(x)>)β,

where µ̃(x) = (µ0(x), . . . , µk(x))> and M(x) is a (k+1)×(k+1) matrix with
Mrs(x) = µr+s(x), r, s = 0, . . . , k. The QS function can then be written as

ψQ(y, x; β) = (y − µ̃(x)>β)v−1µ̃(x).

4.2 Loglinear Poisson model

Let y ∼ Po(λ) with λ = exp(ξ>β). Then η = log λ, c(η) = eη and ϕ = 1.
The CS function is given by, cf. Shklyar and Schneeweiss (2005),

ψC(y, x; β) = yx− exp(x>β − 1

2
β>Σδβ)(x− Σδβ),

so that here

g1(x; β) = x, g2(x; β) = exp(x>β − 1

2
β>Σδβ)(x− Σδβ).

For the QS function ψQ, we use the mean and variance functions, cf. Shklyar
and Schneeweiss (2005):

m(x; β) = exp(β>µ(x) +
1

2
β>Tβ)

v(x; β) = m(x; β) +
[
exp(β>Tβ)− 1

]
m2(x; β).

with µ(x) and T from (10) and (11).

4.3 Loglinear Gamma model

Let y ∼ G(µ, ν), i.e.,

f(y) =
1

Γ(ν)
(
ν

µ
)νyν−1 exp(−ν

µ
y), y > 0,

with µ = exp(β0 + β1ξ), ξ scalar. (In the special case ν = 1, we have the
loglinear exponential model). Here η = − 1

µ
and ϕ = 1

ν
. We have c(η) =

− log(−η). For CS, we need to derive the functions g1 and g2 of (6) and (7).
We find, cf. Kukush et al. (2005a),

g1(x; β) = exp(−β0 − β1x− 1

2
β2

1σ
2
δ )(1, x + β1σ

2
δ )
>

g2(x) = (1, x)>.
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For QS, we need to compute m and v:

m(x; β) = exp{β0 + β1µ1(x) +
1

2
β2

1τ
2}

v(x; β, ν) = {(1 +
1

ν
) exp(β2

1τ
2)− 1}m(x; β)2.

4.4 Logit model

Let y ∼ B(1, π), i.e.,

f(y) = πy(1− π)1−y , y ∈ {0, 1},

with π = {1 + exp(−β0 − β1ξ)}−1, ξ scalar.

Here η = log( π
1−π

) = β0 + β1ξ, ϕ = 1, and c(η) = log(1 + eη).

For CS, we need to find functions g1 and g2 such that

E[g1(x)|ξ] = (1, ξ)>

E[g2(x; β)|ξ] = {1 + exp(−β0 − β1ξ)}−1(1, ξ)>

Obviously g1(x) = (1, x)>. But, according to Stefanski (1989), g2(x; β) does
not exist in general. However, if (β0, β1, ξ) can be restricted such that β0 +
β1ξ > 0 (sometimes known as ”rare event” restriction, Buzas and Stefanski
(1996)), then a corrected score function exists. It can be evaluated with the
help of a Taylor series expansion of the logistic function.
Indeed, with z = β0 + β1x,

(1 + e−z)−1 =
∞∑

k=0

(−1)ke−kz,

which is absolutely convergent if, and only if, z > 0. The function g2 is then
given by

g2(x) =
∞∑

k=0

(−1)k exp{−k(β0 + β1x)− k2

2
β2

1σ
2
δ}

(
1

x + kβ1σ
2
δ

)
.

For QS, we need to construct

m(x; β) = E[{1 + exp(−β0 − β1ξ)}−1|x]

v(x; β) = m(x; β){1−m(x; β)}.
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There is no closed form expression for m(x; β). The expected value has
to be computed by numerical integration, Crouch and Spiegelman (1990),
Monahan and Stefanski (1992). However, a possible way out is to use a probit
model as an approximation to the logit model. Indeed, it is well-known that
the logistic function (1 + e−η)−1 is closely approximated by Φ(η/c), where Φ
is the standard normal distribution function and c = 1.70, cf. Johnson and
Kotz (1970, Chapter 22). Thus assume that π = Φ{1

c
(β0 + β1ξ)}. Then

m(x, β) = Φ




1
c
{β0 + β1µ(x)}√

1 + 1
c2

β2
1τ

2


 .

So the conditional model, given x, is again a probit model and can be esti-
mated by standard methods, one possibility being that it is again approxi-
mated by a logit model.

5 Asymptotic covariance matrix (ACM)

Under rather general assumptions, the CS and QS estimators of β exist
uniquely (at least for large enough n and with probability going to 1). For
CS and QS, β̂ is consistent and

√
n(β̂− β) is asymptotically normal with an

asymptotic covariance matrix (ACM), which is given by a sandwich formula
of the form

Σ = A−1BA−> (12)

A = −E ∂ψ

∂β>
(13)

B = Eψψ>, (14)

where ψ is either ψC or ψQ (or some other estimating function) depending on
the estimator considered. For QS the matrices A and B are equal, and the
sandwich formula for ΣQ simplifies to ΣQ = B−1

Q . If ϕ has to be estimated
along with β, the formula for Σ does not change, but if nuisance parame-
ters γ are present and have been pre-estimated, the ACM of β̂Q has to be
supplemented by an additional term, i.e.,

ΣQ = B−1
Q + B−1

Q AγΣγA
−>
γ B−1

Q , (15)

where Σγ is the ACM of γ̂ and Aγ = −E∂ψQ

∂γ> .
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We briefly discuss some of the assumptions underlying these results, cf.
Kukush and Schneeweiss (2005). A typical assumption often made in nonlin-
ear models is the requirement that β is an interior point of a given compact
set. Furthermore the functions c(η) and η(ξ, β) should be sufficiently smooth
and its derivatives should be exponentially bounded with respect to ξ. This
guarantees the existence of the conditional expectations introduced above
and the interchangeability of taking expectations and going to limits in the
parameter space. An important condition guaranteeing the identifiability of
β is the following strengthening of the unbiasedness property of ψ∗. Not
only do we require that Eψ∗(y, ξ; β) = 0, but even more that β is the unique
solution, b = β, to Eψ∗(y, ξ; b) = 0, where the expectation is taken with
respect to the true value of β. A similar assumption is made with regard to
ψQ. Finally, it is required that the matrix Emβm>

β is positive definite. In the

linear model this is equivalent to the familiar assumption that Exx> is pos-
itive definite. With these and some more assumptions the results described
in the next section can be proved.

6 Efficiency comparison

We compare the relative efficiencies of β̂C and β̂Q by comparing their ACMs.
It turns out that

ΣC ≥ ΣQ (16)

in the sense of the Loewner order for symmetric matrices. This can be shown
by noting that ψC and ψQ are both linear in y and that ψQ is optimal within
the class of linear-in-y unbiased estimating functions. Indeed, this follows
from a general criterion of Heyde (1997) which, if applied to the present
case, states that ΣC ≥ ΣQ if, and only if, (EψCβ)−1EψCψ>Q does not depend
on β, and this independence can be verified. However, one can say more.
One can construct a simple score (SS) estimator through a so-called simple
score function given by

ψS(y, x; β) = [y −m(x; β)]g2(y; β)

and one can show, cf. Kukush et al. (2005a), that for the corresponding
ACMs

ΣC ≥ ΣS ≥ ΣQ. (17)

In special cases, one can also give conditions under which one or both of the
≥ signs can be replaced with =, 6=, or > signs, cf. Kukush et al. (2005a).
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Just to cite one result: if the components of mg1−g2 are linearly independent
as function of x, then ΣC > ΣS, cf. Kukush and Schneeweiss (2006). In the
polynomial model (see section 4.1), ΣC = ΣQ if β(0) = 0 and ΣC > ΣQ if
β(0) 6= 0, where β(0) = (β1, . . . , βk), cf. Shklyar et al. (2005). In the Poisson
model (see section 4.2), ΣC = ΣQ if Σδβ = 0, and ΣC > ΣQ if Σδβ 6= 0, cf.
Shklyar and Schneeweiss (2005).

These results hold true if the nuisance parameters γ are known. If, however,
they have to be estimated in advance, ΣQ is given by (15), and (16) or (17)
need not to be true any more. In the linear model, CS and QS coincide if the
nuisance parameters µξ and σ2

ξ have been pre-estimated, and so ΣC = ΣQ

in this case. In the quadratic model, det ΣC < det ΣS for sufficiently large
σ2

δ , although we still find that diag ΣC ≥ diag ΣS, cf. Schneeweiss (2005).
For the Poisson model, Shkylar (2006) shows that ΣC ≥ ΣQ even if µξ and
σ2

ξ have to be estimated. In the polynomial as well as in the Poisson model,

we still have ΣS ≥ ΣQ because the additional term in the ACMs of β̂S and

β̂Q due to the estimation of γ, see (15), is the same for both estimators.
Recently, it has been shown that QS can be modified so that, in general,
ΣC ≥ ΣQ when x ∼ N(µx, σ

2
x) even if the nuisance parameters µx and σ2

x

are unknown and have to be estimated, but they must be estimated together
with β, not in advance, Kukush et al. (2006).

Considering the naive estimator β̂N , which is (asymptotically) biased, one
might expect that ΣC ≥ ΣN because CS corrects for the bias and therefore
loses efficiency relative to N. However, in the polynomial model, there are
cases where ΣC − ΣN is indefinite, cf. Kukush et al. (2005b).

Kukush and Schneeweiss (2005) have a number of results regarding the rela-
tive efficiencies of estimators when the measurement errors are small. They
consider only the scalar case (δ one-dimensional), although their results can
be extended to the vector case. They prove that

ΣC − ΣQ = O(σ4
δ )

if σ2
δ → 0 and all other parameters are kept fixed, regardless of whether

nuisance parameters are present or not. They show this by expanding ΣC

and ΣQ in term of powers of σ2
δ . In general, one cannot go beyond the forth

power of σδ: e.g., for the Poisson model, the terms of order σ4
δ differ in the

expansions of ΣC and ΣQ, cf. Shkylar and Schneeweiss (2005). For the naive
estimator, the difference of ΣN and ΣQ (or ΣC) is of the order σ2

δ , not σ4
δ ,

cf. Kukush and Schneweiss (2005). Similarly, the differences ΣQ − Σ∗ and
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ΣC −Σ∗ are of order σ2
δ , where Σ∗ is the ACM of the ML estimator β̂∗ in the

error free model.

In another approach, Kukush and Schneeweiss (2005) show that different re-
sults emerge if along with σ2

δ also ϕ tends to zero such that there ratio remains
constant. In this case ΣC and ΣQ differ at the order of σ2

δ such that ΣC−ΣQ

is positive definite at that order. At the same time, ΣN −ΣC = O(σ4
δ ). Thus

for small σ2
δ and ϕ, ΣN − ΣQ is positive definite despite the fact that β̂N is

biased and β̂Q is not.

In the efficiency comparison of CS and QS it seems that QS comes out best,
at least when σ2

δ is not too large so that the influence of the nuisance para-
meters is not yet felt. But one must keep in mind that QS (just as SS and
ML) rely on the knowledge of the distribution of ξ. If this distribution is
misspecified, QS is (asymptotically) biased. Schneeweiss and Cheng (2006)
investigate this bias by studying a distribution h(ξ) which is a mixture of
normals. When the true distribution is a mixture of two normals with equal
variances but different means, whereas the assumed distribution is just a nor-
mal distribution, and when the difference ϑ of the two means tends to zero,
the bias of β̂Q is of the order ϑ2 and therefore most often negligible. But
when the two means differ a lot and one of the components of the mixture
has a weight p that tends to zero, the bias is of the order p and therefore not
negligible.

7 Conclusion

We focused our review on two quite popular estimation methods for measure-
ment error models with known measurement error variance (or covariance
matrix): the functional CS and the structural QS method.

If the regressor distribution is known, QS is more efficient than CS. This re-
sult is plausible, as QS uses more information than CS. But it is by no means
self-evident, as QS is not ML. Indeed, when the regressor distribution has
unknown (nuisance) parameters, which need to be estimated in advance, this
result is no more universally valid, although the superiority of QS can still
be claimed in many cases. One can, however, modify the QS procedure so
that the nuisance parameters are not pre-estimated, but are estimated jointly
with the regression parameter β. Under this modification,QS is more efficient
than CS. But there are other reasons why CS might be preferred to QS. First
of all, for small measurement errors the efficiency difference between CS and

13



QS becomes almost negligible in the precise sense that the difference of the
ACMs is of the order σ4

δ . Furthermore, the QS estimator will typically be
biased if the regressor distribution, on which it relies, has been misspecified.
In some cases this bias may be negligible, but in other cases it is relevant. In
those other cases one can try to rectify the misspecification by specifying a
mixture of normals for the regressor distribution. This, however, introduces
more parameters with the danger that QS will lose efficiency. Lastly, at least
for the polynomial model, one can modify the CS estimator so that it be-
comes more efficient in small samples, cf. Cheng et al. (2000).

In summary, one cannot give a clear-cut advice on which estimator to use.
But the present paper at least gives some hints to a well-founded choice.
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